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Abstract 

Methodological reporting guidelines for studies of event-related potentials (ERPs) were updated 

in Psychophysiology in 2014. These guidelines facilitate the communication of key 

methodological parameters (e.g., preprocessing steps). Failing to report key parameters 

represents a barrier to replication efforts, and difficultly with replicability increases in the 

presence of small sample sizes and low statistical power. We assessed whether guidelines are 

followed and estimated the average sample size and power in recent research. Reporting 

behavior, sample sizes, and statistical designs were coded for 150 randomly-sampled articles 

from five high-impact journals that frequently publish ERP research from 2011 to 2017. An 

average of 63% of guidelines were reported, and reporting behavior was similar across journals, 

suggesting that gaps in reporting is a shortcoming of the field rather than any specific journal. 

Publication of the guidelines paper had no impact on reporting behavior, suggesting that editors 

and peer reviewers are not enforcing these recommendations. The average sample size per group 

was 21. Statistical power was conservatively estimated as .72-.98 for a large effect size, .35-.73 

for a medium effect, and .10-.18 for a small effect. These findings indicate that failing to report 

key guidelines is ubiquitous and that ERP studies are primarily powered to detect large effects. 

Such low power and insufficient following of reporting guidelines represent substantial barriers 

to replication efforts. The methodological transparency and replicability of studies can be 

improved by the open sharing of processing code and experimental tasks and by a priori sample 

size calculations to ensure adequately powered studies. 

 

Key Words: event-related potentials (ERPs); reporting guidelines; statistical power; sample size; 

replicability 
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Replication difficulties in psychological science have focused attention on research 

practices that contribute to replication failures (Chambers, 2017; De Boeck & Jeon, 2018; 

Forstmeier, Wagenmakers, & Parker, 2017; Nelson, Simmons, & Simonsohn, 2018; Shrout & 

Rodgers, 2018). A common target of criticism is flexible data analysis that inflates the chance of 

erroneously observing significant effects. Unfortunately, this practice is endemic in cognitive 

neuroscience and psychophysiology, such as in studies of event-related brain potentials (ERPs; 

Baldwin, 2017; Larson & Carbine, 2017; Luck & Gaspelin, 2017), because collecting and 

analyzing ERPs is computationally intensive and requires many methodological choices. Given 

the numerous possible researcher degrees of freedom in ERP studies, publication guidelines for 

ERP studies were published in Psychophysiology by a committee convened by the Society for 

Psychophysiological Research (SPR; Keil et al., 2014). These guidelines help to facilitate 

methodological transparency by identifying the key parameters that should be reported in ERP 

studies. Such information is critical for evaluating the quality of research and for ensuring 

sufficient information is present to conduct replication studies. The first purpose of the present 

study was to evaluate the extent to which these publication guidelines are followed and to 

determine how the publication of these guidelines influenced reporting behavior in ERP 

research. 

 Adhering to systematic publication guidelines for ERP studies ensures that key details are 

reported and sheds light on critical data processing steps. Ambiguous or missing experimental 

details hinder replication efforts and can elevate false positive rates in the face of undisclosed 

flexibility (Carp, 2013). Hence, a purpose of a Methods section is to clearly communicate all of 

these steps and to provide justification of the relevant decisions in the data processing pipeline. 

For example, a recent study conducted an informal analysis on whether ERP studies justified the 
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measurement windows and sites used for ERP analysis (Luck & Gaspelin, 2017), which is a 

requirement of the publication guidelines (Keil et al., 2014). Four of the fourteen studies (29%) 

published in Psychophysiology failed to sufficiently justify measurement windows and sites. This 

small analysis indicated that only a minority of studies failed to report this critical step. 

However, the sample was small and the extent to which all necessary data processing steps are 

reported for entire studies remains unclear. 

 Another important research practice associated with replication failures is the use of 

small sample sizes, an issue that is exacerbated when researcher degrees of freedom are 

exploited (Forstmeier et al., 2017). Studies of small samples can lead to the attenuation or 

exaggeration of effect sizes (i.e., magnitude error) or flip the direction of the relationship 

between variables (i.e., sign error; Brand & Bradley, 2016; Gelman, 2018; Gelman & Carlin, 

2014; Loken & Gelman, 2017). Hence, significant findings based on small samples can lead to 

erroneous statistical inferences that fail to replicate. The bias to believe such findings in small 

samples is referred to as the “law of small numbers fallacy” (Tversky & Kahneman, 1971). This 

fallacy reflects the belief that because it is more difficult to observe statistical significance in a 

small sample than it is to observe significance in a large sample, then finding a statistically 

significant effect in a small sample must be “true” and represent a robust and real effect. 

However, in studies of small samples, magnitude and sign errors are common because of the 

noisy nature of the data. Thus, small sample sizes can undermine the replicability and 

generalizability of scientific research. 

Sample sizes are an important determinant of statistical power, and statistical power is 

impacted by multiple other factors, such as the statistical analysis approach, number of 

observations/trials, effect size, and reliability of measurements. Low statistical power is 
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prevalent in neuroscience studies (Button et al., 2013b) and has been observed for some ERP 

research (Baldwin, 2017). In a meta-analysis of the relationship between the error-related 

negativity (ERN) and anxiety, the average number of participants per group was 22 (Moser, 

Moran, Kneip, Schroder, & Larson, 2016). The average statistical power of these studies was 

conservatively estimated at around 10% to detect the estimated effect size of Cohen’s d = -.36 

(Baldwin, 2017). According to the ERP guidelines paper, statistical power and/or effect sizes 

should be explicitly stated when they are relevant to the research question (Keil et al., 2014). 

However, a systematic review of 100 clinical electroencephalogram (EEG) and ERP studies 

recently found that only 40% of studies reported effect sizes and no study (0%) reported a priori 

power analyses, suggesting that statistical power is rarely reported in ERP research (Larson & 

Carbine, 2017). 

Low statistical power is also associated with the exaggeration of significant effects in the 

presence of researcher bias (Button et al., 2013a; Ioannidis, 2005; Ioannidis, 2008). For example, 

exploiting researcher degrees of freedom and conducting many different tests of effects increases 

the likelihood of finding a spuriously large effect, because only large statistical effects will 

satisfy a statistical significance threshold in a study with low power (Ioannidis, 2005; Ioannidis, 

2008). Such researcher degrees of freedom are reflected in some ERP analysis approaches. For 

example, if a researcher fails to find a significant effect at the a priori electrode of interest, it is 

possible to look at additional electrodes, such as all sites along the midline or multiple lateralized 

sites. In this way, ERP studies can reduce statistical power but inflate chances to find significant 

effects by examining multiple channels (Baldwin, 2017; Luck & Gaspelin, 2017). Taking 

multiple analysis approaches until a significant finding is obtained potentially leads to erroneous 

conclusions, but this practice can be difficult to detect when such exploratory analyses are 
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presented as confirmatory. Because of the relationship between statistical power and the 

statistical analysis performed, it is important to consider the statistical analysis approaches used 

in ERP studies to estimate the power in the literature. 

 The present study focused on reporting behavior and sample sizes of ERP studies, which 

are two important aspects for replication. The first aim was to determine the extent to which ERP 

studies published in multiple journals that focus on ERP research follow the publication 

guidelines in Psychophysiology (Keil et al., 2014). Then, we examined whether the publication 

of the guidelines paper impacted reporting behavior by testing differences in guideline reporting 

pre- and post-guideline publication. We also sought to determine the typical sample sizes of ERP 

studies; the average statistical power of the ERP literature was then computed based on the 

typical sample size and statistical designs.  

Method 

 The aims, inclusion/exclusion criteria, design, and analyses were preregistered on Open 

Science Framework (OSF; https://osf.io/pdbw3/). Raw data, source code for all analyses, and 

supplementary material are also posted on OSF (https://osf.io/mbsvy/). 

Article Selection 

 To determine the journals to use for coding ERP studies, the top 10 journals with the 

most ERP studies published between 2011 and 2013 and between 2015 and 2017 were identified 

from PubMed. Journals were then ranked based on their 2017 impact factors. The top three 

journals were selected and included NeuroImage, Clinical Neurophysiology, and Journal of 

Cognitive Neuroscience. We also included the two flagship society journals for ERP research, 

Psychophysiology and International Journal of Psychophysiology. 
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 The ERP guidelines paper was published in 2014 (Keil et al., 2014). Fifteen ERP studies 

were randomly sampled without replacement from each abovementioned journal for the 

following years: 2011, 2012, 2013, 2015, 2016, and 2017. Articles from 2014 were not 

examined, because it was expected that there would be a delay in the adoption of the guidelines. 

The first five articles sampled from each journal from each year that satisfied the inclusion and 

exclusion criteria were selected for subsequent coding. This resulted in a total of 150 articles. 

Inclusion criteria were 1) the study reported an ERP experiment, 2) the study was conducted in 

human participants, and 3) the study was published in one of the five journals of interest during 

one of the six years of interest. Exclusion criteria included 1) multimodal studies (e.g., fMRI and 

ERP), 2) EEG time-frequency analyses (without ERP analyses), 3) poster abstracts, and 4) 

studies coded as part of the piloting coding procedures for the raters.  

 Statistical Power Analysis. We had no a priori predictions regarding what effect size 

would be expected for the change in reporting behavior following the publication of the ERP 

guidelines paper. Alternatively, we conducted sensitivity analyses to determine the statistical 

effect size that a two-tailed independent samples t test would be powered to detect. An 

independent samples t test was chosen in order to compare reporting behavior prior to 

publication of the guidelines paper to reporting behavior after publication of the guidelines 

paper. Sensitivity analyses were conducted using a power of .80, a sample size of 75 for each 

group (pre-guideline publication and post-guideline publication; 150 total articles), and an alpha 

level of .05. The present analyses had sufficient power to detect a Cohen’s d of .46 (i.e., a 

medium effect size).  

Article Rating 
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 Rating of the articles followed a rubric that was compiled based on the Keil et al. (2014) 

guidelines paper. The rubric included information from the following eight categories: 

Participant Information, EEG Recording, Stimulus and Timing, Preprocessing, ERP 

measurement, Statistics, Principal Components Analysis (PCA), and Independent Components 

Analysis (ICA). Information related to sample size, number of groups, statistical analyses, and 

software packages were also coded.  

Each guideline was coded based on whether the information was clearly presented and 

adequate for confident direct replication of the study. Given the emphasis on estimating observed 

statistical power of ERP studies, the final sample sizes used for ERP analyses were extracted. 

The final sample size is typically smaller than the initial sample size reported in ERP studies, 

because participants are often excluded due to too few trials retained for analysis, poor ERP 

score reliability, or hardware/software malfunction.  

Prior to coding the 150 studies, ten studies were pilot coded by authors PEC and KAC. 

Mismatches were resolved by unanimous consensus of PEC, KAC, and MJL. The same 

procedure for coding all 150 articles was followed so that each article was coded by two raters 

with any discrepancies adjudicated by consensus of all three raters. Percent agreement across 

variables among the two raters was high (median: 96.7%, mean: 95.0%, minimum to maximum 

= 79.3% to 100%). Median Cohen’s Kappa was acceptable (median: .83, mean: .78, minimum to 

maximum: .25 to 1.00) but appeared low for a few variables due to the low variability in 

response options (there were only two rating options for many variables). The pre-registered 

rubric for article coding, description of specific information relevant to each coded guideline, 

and the ratings (raw data) are posted on OSF.  

Data Analysis 
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We first investigated whether there were differences in reporting behavior across the five 

journals using a one-way analysis of variance (ANOVA). Then, we determined whether the ERP 

guidelines paper impacted reporting behavior. Reporting behavior (i.e., the proportion of 

reported guidelines) from articles published between 2011and 2013 was compared to reporting 

behavior from articles published between 2015 and 2017. A two-tailed independent samples t 

test was first conducted to determine whether there was a change in reporting behavior. In order 

to avoid the biasing effects of heterogeneity of variances, equal variances were not assumed. 

Hence, Welch’s t test was used and adjusted degrees of freedom are reported (Welch, 1947). 

Pooled standard deviations were used in the calculation of Cohen’s d (Bonett, 2008). 

To conclude that there was no meaningful effect of the guidelines paper on reporting 

behavior, tests of equivalence were performed using the “two one-sided tests” procedure 

(Lakens, 2017; Schuirmann, 1987). The two one-sided tests procedure provides a framework for 

estimating that an effect is statistically equivalent to zero or, in other words, that there is “no 

effect”. The equivalence test requires specifying an effect size of interest. Because the current 

study was only powered to detect a difference for a Cohen’s d of .46, the test of equivalence used 

a Cohen’s d of .50 as the smallest effect size of interest. The two one-sided tests procedure tested 

whether the difference pre- and post-guidelines reporting behavior was between Cohen’s ds of -

.50 and .50.  

Power and sample size estimates for the independent groups t test and paired sample t test 

were computed using the power command in Stata (version 15.1; StatCorp, 2017). Estimates for 

the 2-Between x 2-Within group ANOVA were computed using G*Power (version 3; Faul, 

Erdfelder, Buchner, & Lang, 2009). 

Results 
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Reporting Guidelines 

The percentage of guidelines that were reported per article was similar across the five 

journals, F(4, 145) = 1.21, p = .31, h2 = .03 (see Table 1). Articles reported an average of 63% 

(SD = 7%) of guidelines. The range of reported guidelines across articles was quite wide (range 

= 39% to 82%), and no article reported all guidelines. As mentioned above, these percentages 

refer to the proportion of articles that reported the guideline when it was necessary to do so. For 

example, if an article did not use PCA, it was not necessary to specify any PCA parameters. 

Considering that reporting behavior was consistent across the five journals (see Table 1), 

summaries of reporting behavior collapse across journal membership. Information for each 

journal is separately presented in the supplementary material posted on OSF. 

Reporting guidelines were binned into eight categories that were consistent with Keil et 

al. (2014). Figure 1 shows the percentage of guidelines reported within each category across all 

150 articles. In the order of the most guidelines reported to the fewest, Stimulus and Timing 

(86% of guidelines reported) was the highest reported category and was followed by Participant 

Information (79%), Statistics (76%), Preprocessing (68%), PCA (65%), EEG Recording (52%), 

ERP Measurement (51%), and then ICA (36%). The guidelines for each category are discussed 

in detail below. 

Participant information. Participant Information comprises demographic characteristics 

of the participants, which includes gender, age, and education level of participants (see Figure 2). 

Most articles reported the gender (99%) and age (95%) of participants, but fewer articles 

reported education level (43%). 

EEG recording. The EEG Recording category consisted of guidelines related to the 

online recording of EEG, such as information about the sensors, amplifiers, and online filtering 
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(see Figure 2). Most articles reported the EEG sampling rate (97%) and the online reference 

electrodes (87%). Although the majority of articles also reported the online filter cutoffs (75%), 

very few articles reported specific information about filter characteristics. Most articles failed to 

report whether half-amplitude or half-power cutoffs were used (4%), the online filter roll-off 

(3%), or filter family (2%). 

Stimulus and timing. This category refers to the stimulus and timing parameters of the 

paradigm used during EEG recording (see Figure 2). Most articles reported clear information 

about the timing characteristics of the paradigm (90%). However, only 56% of articles reported 

enough information about the stimuli (such as specific information about color, size, or which 

pictures were used) that would allow direct replication of the paradigm to be possible.   

Preprocessing. The Preprocessing category comprises information related to offline EEG 

data reduction and processing (see Figure 2). The order in which preprocessing steps was 

performed was clear in 90% of articles. When applicable, all articles (100%) clearly reported the 

offline reference and the offline filter cutoffs. However, few articles reported whether half-

amplitude or half-power cutoffs (2%) were used or the filter roll-off (26%) and filter family 

(18%).  

Preprocessing steps are implemented in software packages, and the reporting of such 

information can sometimes be used to infer some specific parameters of preprocessing. Of the 

150 articles coded, 86 (57%) reported the software packages used for EEG data analysis, and 

some of these articles reported using multiple software packages (see Table 2). There were 17 

different software packages reported, and the most frequently used software packages were 

EEGLab (n = 31) and BrainVision Analyzer (n = 28). 
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ERP measurement. This category mostly consisted of information related to ERP 

quantification (see Figure 3). Most articles reported inferential statistics (97%), measurement 

sensors (95%), measurement timing window (95%), and the measurement approach (91%). 

However, very few articles reported whether a priori sensors (5%) and temporal windows (3%) 

were used. For peak amplitude measures, only 8% of articles reported whether a local or absolute 

peak amplitude approach was used. 

Statistical analyses. This category refers to information related to statistical analyses 

(see Figure 3). Most articles reported p values (99%), clearly described the statistical procedures 

used (95%), and provided inferential test statistics (91%). When permutation statistics were used, 

about half of articles reported the number of permutations (44%) and the method for identifying 

a significance threshold (56%). Appropriate corrections for violating assumptions of statistical 

models was reported in 55% of articles, and 40% of articles considered corrections for multiple 

comparisons. 

PCA. When PCA was used, all articles (100%) provided sufficient information so that 

the preprocessing steps implemented prior to PCA were clear (see Figure 3). Most articles 

described the structure of EEG data submitted to the PCA (75%), the rotation applied to the data 

(62%), and the decision rule for retaining or discarding components (62%). Half of the articles 

(50%) described the PCA algorithm and relatively few articles described the type of association 

matrix (38%). 

ICA. When ICA was used, all articles provided sufficient information regarding 

preprocessing steps prior to the ICA (see Figure 3). The majority of articles described how ICA 

components were selected (58%). However, very few articles reported the ICA algorithm (13%), 



REPORTING BEHAVIOR IN ERP STUDIES  13 

structure of the data submitted to the ICA (8%), or the number of components retained/removed 

(3%). 

Impact of Guidelines Paper 

 To determine whether the publication of guidelines for ERP studies impacted reporting 

behavior, reporting behavior for the three years prior to the publication of the guidelines paper 

was compared to the reporting behavior for the three years following its publication (see Table 

3). There was no significant difference in reporting behavior, t(142.33) = 0.73, p = .47, Cohen’s 

d = .12, 95% CI [-1.5%, 3.2%].  

 Beyond determining whether the guidelines paper increased or decreased reporting 

behavior, analyses were performed to determine if the results were statistically equivalent to the 

absence of an effect. The equivalence tests set equivalence bounds to ± 3.62%. Both lower-

bound and upper-bound equivalence tests were significant, t(142.33) = 2.33, p = .01; t(142.33) = 

-3.79, p < .01, 95% CI [-2.8%, 1.1%], respectively.  

Based on the combination of the null-hypothesis significant test and the equivalence tests, 

the observed impact of the guidelines paper was not statistically different from zero and was 

statistically equivalent to zero. In short, the publication of the ERP guidelines paper had no 

impact on reporting behavior in the three years after publication. 

Sample Sizes 

 Summary statistics for the number of participants examined in each article are presented 

in Table 1. For all articles coded, each article contained an average of 29 (median = 22, SD = 21, 

range 5 to 146) participants. The sample size decreased when considering the number of 

participants in each group examined in each article. When considering participants per group, 

each article contained an average of 21 (median = 18, SD = 11; range = 5 to 86) participants per 
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group. Of those articles that reported data on more than one group, 77% examined two groups of 

participants. 

Statistical Power 

 There was a great deal of heterogeneity in the statistical models used in the coded 

articles. A summary of the between- and/or within-subject ANOVA models used in at least three 

articles are shown in Table 4 (see supplementary material on OSF for a description of all 

statistical models). In order to estimate the statistical power in the coded articles, we estimated 

power for three models: independent samples t tests, paired samples t tests, and a 2-Between 

Group x 2-Within Group ANOVA interaction (see Figure 4 and Table 5). Additional power 

analyses were not conducted for the 2-Within Group x 2-Within Group ANOVA design, because 

it is equivalent to a paired t test on difference scores. 

The number of participants needed to achieve a statistical power of .80 for a large effect 

size (Cohen’s d = .8, Cohen’s f = .4) and an alpha level of .05 was 52 participants (26 

participants per group) for an independent samples t tests, 15 participants for a paired samples t 

test, and 22 participants (11 participants per group) for a 2-Between Group x 2-Within Group 

ANOVA interaction. The number of participants needed to achieve a statistical power of .80 for 

a small effect size (Cohen’s d = .2, Cohen’s f = .1) and an alpha level of .05 was 788 participants  

(394 participants per group) for an independent samples t test, 199 participants for a paired 

samples t test, and 298 participants (194 participants per group) for a 2-Between Group x 2-

Within Group ANOVA interaction. A summary of the number of participants needed for each 

effect size and statistical design is provided in Table 6.  

Next, the average sample size in the coded articles was considered to determine the 

average effect size coded articles were powered to detect. The effect size (Cohen’s d or Cohen’s 



REPORTING BEHAVIOR IN ERP STUDIES  15 

f) for a two-tailed test that a study with 21 participants per group, a statistical power of .80, and 

an alpha level of .05 would be able to detect is .89 (large effect size) for an independent samples 

t tests, .62 (medium-to-large effect size) for a paired samples t test, and .44 (large effect size) for 

2-Between Group x 2-Within Group ANOVA interaction.  

 Lastly, the achieved statistical power was computed based on a sample size of 21 

participants per group (see Table 7), and this analysis provides a conservative estimate of the 

statistical power of coded ERP studies. Studies only achieved a power of .72 to detect a large 

effect size (Cohen’s d =.80) for an independent samples t test. Studies that used paired samples t 

tests achieved a power of .94 to detect a large effect size (Cohen’s d = .80) but were 

insufficiently powered (achieved power: .59) to detect a medium effect size (Cohen’s d = .50). 

For a 2-Between Group x 2-Within Group interaction, studies achieved .98 power to detect a 

large effect size (Cohen’s f = .40), but they were underpowered (achieved power: .73) to detect a 

medium effect size (Cohen’s f = .25). Taken together, independent samples t tests were 

insufficiently powered to detect large effect sizes, and paired samples t tests and tests of the 2-

Between Group x 2-Within Group interactions were only sufficiently powered to detect large 

effect sizes. 

Discussion 

 Across 150 ERP studies, an average of 63% of guidelines were reported, which suggests 

that published ERP studies omit key information required for independent replication. This 

reporting behavior was consistent across five prominent ERP journals: Clinical 

Neurophysiology, International Journal of Psychophysiology, Journal of Cognitive 

Neuroscience, NeuroImage, and Psychophysiology. Hence, gaps in methods reporting appear to 

be a shortcoming of the field, rather than any specific journal or impact factor level. Notably, the 
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ERP guidelines paper (Keil et al., 2014) had no impact on reporting behavior for the three years 

following its publication. With regard to the sample size of ERP studies, the average sample size 

per group was 21 participants. Considering this sample size, ERP studies had sufficient power to 

observe only large statistical effects (Cohen’s d > .8, Cohen’s f > .4). Taken together, the present 

study revealed critical shortcomings in the reporting of common ERP practices that hinder the 

ability to independently replicate ERP studies and the probability for ERP studies to find 

replicable effects. 

Reporting Behavior 

 The widespread omission of over a third of the required reporting guidelines serves as a 

substantial barrier to replication efforts and to the evaluation of research quality. It is unclear 

how to judge whether experimental manipulations and data collection and processing are sound 

without sufficient details to be reproducible. Poor research reporting documentation is not unique 

to ERP studies and has been observed in other subfields of neuroscience (Carp, 2012; Guo et al., 

2014; Muncy, Hedges-Muncy, & Kirwan, 2017; Poldrack et al., 2017) and the biomedical 

sciences (Chalmers & Glasziou, 2009; Glasziou et al., 2014; Ioannidis et al., 2014). It is 

estimated that in the biomedical science, billions of dollars are wasted every year due to the 

consequences of misreporting and inadequate reporting of research (Chalmers & Glasziou, 

2009). It is likely that missing details in the ERP data analysis pipeline might similarly lead to 

wasted resources. 

 A potential reason that Methods sections lack enough information for replication is an 

underappreciation of the importance of direct (close) replications (Chambers, 2017; Nosek & 

Lakens, 2014; Schmidt, 2009; Simons, 2014). A direct replication tests the repeatability of a 

finding by duplicating the study design and analysis of the original study. Direct replications are 
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important for increasing the precision of effect size estimates in meta-analyses, establishing 

generalizability of effects, identifying boundary conditions for “real” effects, and correcting 

scientific theory (Nosek & Lakens, 2014). It is important for direct replications to be conducted 

by outside laboratories in order to verify the robustness of the effects found in the original 

research (Nosek & Lakens, 2014; Schmidt, 2009; Simons, 2014). Without reporting all 

experimental details, it is unlikely that replication studies will be successful. In fact, failure to 

report important methodological details that impact study findings or failure to disclose 

flexibility in data analysis is considered a “questionable” research practice that contributes to 

replication difficulties (Forstmeier et al., 2017; John, Loewenstein, & Prelec, 2012; Simmons, 

Nelson, & Simonsohn, 2011). 

Unfortunately, direct replications are quite rare, and in psychology they are frequently 

replaced with conceptual replications (LeBel & Peters, 2011; Nosek & Lakens, 2014; Schmidt, 

2009). A conceptual “replication”1 seeks to test a phenomenon using a different method, and 

conceptual replications are essential for theory testing. The consequence of replacing direct 

replications with conceptual replications is that conceptual replications cannot conclusively 

disprove the original finding and failures to replicate are often attributed to methodological 

changes (LeBel & Peters, 2011; Simons, 2014). Hence, science cannot self-correct when theories 

are built on conceptual replications. Additionally, conceptual replications can exploit researcher 

degrees of freedom to erroneously support the original study idea by changing analysis 

approaches (Forstmeier et al., 2017; Simmons et al., 2011; Simons, 2014).  

Some information was consistently underreported across coded studies, suggesting an 

underappreciation of the impact of reporting some EEG data reduction parameters on final ERP 

scores. The most frequently underreported parameters related to characteristics of the online and 
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offline filters. The ERP guidelines paper recommends reporting the filter cutoffs, specifying 

whether those cutoffs were half-amplitude or half-power, describing the filter roll-offs, and 

identifying the filter family. The most commonly reported aspect of filtering was the filter cutoff. 

However, even when using the same filter cutoffs, the signal quality is differentially impacted 

based on the other mentioned filter characteristics (Widmann & Schröger, 2012; Widmann, 

Schröger, & Maess, 2015). The characteristics of the filter used should be determined by the 

ERP components of interest, and the same filter cutoffs and filter characteristics are not well 

suited to all studies of any ERP component (Cook & Miller, 1992; Edgar, Stewart, & Miller, 

2005; Nitschke, Miller, & Cook, 1998; Widmann & Schröger, 2012; Widmann et al., 2015).  

It was also rare for a study to report using a priori determined sensors and temporal 

windows for ERP measurement. A common approach to scoring ERPs is to choose sensors and 

temporal windows based on grand averages where the effect of interest appears maximal. This 

practice often leads to finding significant effects but results in a high rate of spurious findings 

(Luck & Gaspelin, 2017). When possible, it is considered “best practice” to select sensors and 

temporal windows a priori to avoid biased measurement and analysis. However, in some cases it 

is not possible to have definite a priori predictions, such as when using a novel paradigm. In 

these instances, there are alternative approaches, such as using a functional localizer, collapsed 

localizer, a window-independent or mass univariate measurement approach, or factor analysis 

(see Dien, 2017; Luck & Gaspelin, 2017). Regardless of the approach used, the measurement 

sensors and temporal windows used should be clearly reported and justified (Keil et al., 2014). 

Sample Size and Statistical Power 

 The average overall sample size of studies included was 29 (median = 22); the typical 

sample size of a group of participants was 21 on average (median = 18) in the coded articles, and 
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this resulted in an estimated statistical power of .72-.98 for a large effect size, .35-.73 for a 

medium effect size, and .10-.18 for a small effect size (see Table 7). However, these power 

estimates are considered conservative, because the majority of studies used more complicated 

statistical designs that will reduce power. Regardless, the observed sample size and statistical 

power for the statistical designs of focus are similar to other subfields of neuroscience. For 

example, estimates of the median sample sizes of fMRI studies range from 15 (Carp, 2012) to 

28.5 (Poldrack et al., 2017) for single-group studies and from 14.75 (Carp, 2012) to 19 (Poldrack 

et al., 2017) per group for studies with multiple groups. The estimated statistical power of fMRI 

studies is between .08 and .31 (Button et al., 2013b), and a recent large assessment of statistical 

power in the fields of cognitive neuroscience and psychology estimated a median power of .73 

for large effects, .44 for medium effects, and .12 for small effects (Szucs & Ioannidis, 2017). 

Although statistical power of ERP studies is on par with the fields of cognitive neuroscience and 

psychology, the consequences of small samples and low power nonetheless limit the 

interpretability and potential replicability of ERP studies. 

 The coded ERP studies were only powered at a level of .80 to detect large statistical 

effects for paired samples t tests and 2-Between Group x 2-Within Group ANOVA interactions, 

which together accounted for only 15% of coded studies. Given that statistical power was low for 

studies of smaller effects and that most studies used more complicated statistical analyses, many 

observed statistical effect sizes are likely exaggerated due to the statistical significance threshold 

commonly applied to published studies (Gelman, 2018; Rosenthal, 1979; Simmons et al., 2011). 

This bias to publish statistically significant effects incentivizes studying small samples and noisy 

measurements, because researchers can exploit the garden of forking paths (or researcher degrees 

of freedom) to find statistically significant effects (Baldwin, 2017; Brand & Bradley, 2016; 
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Clayson & Miller, 2017b; Gelman, 2018; Gelman & Carlin, 2014; Larson & Carbine, 2017; 

Loken & Gelman, 2017).  

When researcher degrees of freedom are intentionally exploited, such as when multiple 

iterations in the data processing pipeline are tested until a significant result is obtained, the 

likelihood of finding replicable effects is reduced. Furthermore, some meta-analytic approaches 

for estimating effect sizes are unable to adjust for the presence of this type bias. Most of these 

approaches are only designed to adjust for journal publication bias (i.e., the bias that journals are 

more likely to publish significant studies than non-significant studies), but they are not designed 

to adjust for questionable research practices that inflate the likelihood of finding statistical 

significance (Carter, Schönbrodt, Gervais, & Hilgard, 2018; Simonsohn, Nelson, & Simmons, 

2014a, 2014b; Simonsohn, Simmons, & Nelson, 2015). As a result, some meta-analytic 

approaches are unable to identify the “true” effect size in the literature and suffer from inflated 

false positives (Carter et al., 2018). Hence, ERP meta-analyses might consider employing 

approaches that identify whether the literature is biased due to questionable research practices, 

such as undisclosed researcher degrees of freedom. A p-curve analysis is one such approach that 

operates under the assumption of journal publication bias and can identify the use of 

questionable research practices to obtain statistically significant effects (Clayson, Carbine, & 

Larson, in principle acceptance; Simonsohn et al., 2015). Indeed, a pre-registered p-curve 

analysis on current and 10-year-past psychophysiological studies showed generally good 

evidential value and low selective reporting in the field, but demonstrated relatively low average 

statistical power (Carbine, Lindsey, Rodeback, & Larson, 2019).  

The estimate of statistical power of the coded articles is considered conservative, because 

it was based on the most frequently used approaches for statistical analysis. For example, most 
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studies used more factors or levels in ANOVAs than were considered in the power analyses, 

which would lead to lower power (see Table 4) and do not appear to follow best practices for 

repeated measures ANOVAs of ERP data (Dien, 2017). Including many factors in exploratory 

ANOVAs also leads to an increase in the family wise error rate, because it is not common 

practice to correct for multiple comparisons in ANOVAs (Cramer et al., 2015; Luck & Gaspelin, 

2017). Luck and Gaspelin (2017) showed that the probability of a Type I error is 5%, 14%, 30%, 

54%, and 80% for a one-, two-, three-, four-, and five-factor ANOVA, respectively. For the 

coded articles, most of the articles used more than one factor (see Table 4), indicating that the 

familywise error rate is above 5%. ERP studies2 often conduct many ANOVAs, such as an 

ANOVA on multiple ERP components, on amplitude and latency measurements, or across 

multiple time windows or electrodes. For example, some coded ERP studies performed 

multifactorial ANOVAs on 50ms chunks of activity across the entire ERP epoch (e.g., -200 to 

800ms, resulting in 20 separate ANOVAs). Such practices virtually ensure that a statistically 

significant, although possibly spurious or inflated, effect will be observed in an ERP study. 

When conducting ANOVAs, correcting for multiple comparisons, reducing the number of 

factors, and removing unnecessary analyses should be used to reduce the familywise and 

experiment-wise error rates (see Luck & Gaspelin, 2017). 

Limitations 

 The present study has some limitations. We only coded whether authors followed 

guidelines based on what was stated by the authors in the published studies. It is possible that 

additional analysis steps were performed, but not reported. Some guidelines, such as the type of 

interpolation used or offline filtering, were only coded when they were reported, but it is likely 

that additional unreported steps were performed by authors. For example, some studies reported 
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conducting topographical analyses but did not mention how bad channels were interpolated or 

handled. In such instances, the type of interpolation was not coded, even though it is likely that 

interpolation was conducted. Hence, it is likely that the reporting behavior presented here was 

somewhat overestimated. The reported analyses focused on ERP studies, but other types of EEG 

studies, such as time-frequency analyses, might more or less closely adhere to reporting 

guidelines (Cohen, 2017). It is also possible that the publication of the Keil et al. (2014) 

guidelines paper had no impact on reporting behavior, because reporting behavior has remained 

stable since the publication earlier ERP reporting guidelines (Donchin, Callaway, Cooper, & 

Desmedt, 1977; Picton et al., 2000; Pivik et al., 1993).  Nonetheless, only two thirds of the 

required information for replicating contemporary ERP studies is being routinely reported.  

Furthermore, the spirit of the Keil et al. (2014) guidelines paper was to facilitate 

communication among researchers by providing explicit recommendations for reporting (see 

How To Use This Document section; Keil et al., 2014, p. 2). It is possible that authors 

consciously chose to deviate from the recommended guidelines for reasons specific to their 

study, which is acceptable. However, “such deviations are [to be] explicitly documented and 

explained” (Keil et al., 2014, p. 2). In the present coding procedure, a guideline was coded as 

acceptable as long as it was addressed. For example, sensors did not need to be chosen a priori 

so long as how sensors would be chosen was specified, such as through a mass univariate or 

functional localizer approach. Hence, it is unlikely that such deviations accounted for the low 

reporting behavior. In line with the spirit of the guidelines paper, we believe that communication 

of methodological parameters among researchers could, and should, be improved. 

For the present manuscript we randomly selected articles from five different journals; 

these articles examined healthy participants as well as various clinical and developmental 
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populations, but this was not explicitly coded. It is possible that some populations require special 

considerations when recording and analyzing ERP data. Consistent with recommendations from 

the guidelines paper, deviations from standard protocol should be documented and justified. 

Although such data can be costly and difficult to acquire, “the rules of statistical inference have 

no empathy for how hard it is to acquire data” (Nosek, Ebersole, DeHaven, & Mellor, 2018, p. 

5). Despite that data collection might be slow, the driving research questions are important 

enough to answer rigorously. 

Moving Forward 

 Failing to report all key methodological parameters appears to be commonplace in ERP 

research, which serves as a substantial barrier to replication efforts. Because each 

methodological parameter can impact ERP findings, reporting all parameters is a “best practice” 

for evaluating research quality and replicability. The question remains as to how does the field 

move forward to resolve these issues. We offer a few suggestions below based on how other 

fields are addressing the replication problem in science (see Button et al., 2013a, 2013b; 

Ioannidis, 2005; Ioannidis, 2008; Ioannidis et al., 2014; Lilienfeld, 2017; Tackett, Brandes, King, 

& Markon, 2019; Yom, 2018) and discuss some issues that are specific ERP research.  

The disclosure of key methodological parameters will increase transparency that 

hopefully unveils when researcher degrees of freedom are exploited and calibrates a careful 

reader’s confidence in reported effects. As such, it would be helpful for editors and reviewers to 

enforce ERP reporting guidelines. A reason that key information might be omitted from ERP 

studies is due to space limitations for journal articles. In such an event, authors could be 

encouraged to post all study details necessary for direct replication as supplementary material or 

to online repositories, such as OSF. Open sharing of processing code and experimental tasks 
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could also enhance reporting of most pipeline steps and further facilitate replication. The ERP 

guidelines paper has a checklist in the Appendix for ensuring that all key parameters are reported 

(Keil et al., 2014). A completed checklist could be submitted with journal articles to ensure that 

all methodological parameters are communicated in the manuscript. 

It is possible that some researchers are carefully considering each methodological 

parameter and simply not reporting each parameter due to oversight. Alternatively, researchers 

might be exploiting researcher degrees of freedom to find statistically significant effects. One 

approach that combats the exploitation of researcher degrees of freedom is study preregistration 

or the registered reports format adopted in some journals (Larson, 2016; Munafò et al., 2017; 

Nosek et al., 2018; Nosek & Lakens, 2014). In essence, a preregistration is a locked analysis plan 

that is sealed before any data analysis (and ideally data collection) is conducted. Preregistration, 

when correctly followed, prevents the exploitation of researcher degrees of freedom by locking 

in a data analysis plan prior to examining the data (Nosek et al., 2018). Preregistrations of ERP 

studies can include a prespecified hypothesis, EEG preprocessing plan, and a data analysis plan, 

and it could be helpful to complete the checklist from the Appendix of the ERP guidelines paper 

in such preregistrations. The OSF offers a mechanism for preregistering a study (https://osf.io/) 

that can include the information mentioned above as well as software scripts for data processing 

and statistical analysis.  

The gold standard of preregistration is the registered report format (https://cos.io/rr/), 

which consists of two phases of peer review. In the first phase, the study hypothesis and 

methodology are peer reviewed prior to data collection. Upon successful completion of this first 

phase, the manuscript is provisionally accepted for publication. During the second phase, the full 

manuscript is reviewed and published as long as the proposed methodology was followed. This 
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format removes one incentive (the publication of a manuscript) to exploit researcher degrees of 

freedom at the data analysis stage, because the manuscript is accepted for publication at the 

completion of the first phase regardless of whether significant effects are observed. Of the 

primary psychophysiology journals, only the International Journal of Psychophysiology has, 

thus far, implemented the registered reports format (Larson, 2016). Many have argued that the 

incentive structure for academia needs to shift away from rewarding voluminous publishing to 

rewarding rigorous, careful research (Baldwin, 2017; Ioannidis et al., 2014; Nelson, Simmons, & 

Simonsohn, 2012). An advantage of a registered report format is that it shifts the incentive away 

from massaging data to uncover a statistically significant effect to designing a careful test of a 

specific hypothesis.  

Another barrier to reporting might be that researchers do not know the specific ways in 

which data were processed and analyzed due to a reliance on various software analysis packages 

(for a similar discussion, see Software as a Black Box section in Clayson & Miller, 2017b). 

There are numerous software packages available for processing and analyzing ERP data, and it is 

impossible to be an expert in all methodologies. Hence, the appeal of prepackaged code is 

understandable, but such code can become a ‘black box’ (Clayson & Miller, 2017b). The extent 

to which popular software analysis packages can build in validity checks would be helpful for 

researchers who are not easily able to judge when analysis approaches are appropriate. Another 

useful feature for popular software packages that process ERP data would be functions that 

generate a print out of how the data were processed. Ideally such a processing summary would 

mirror the Appendix of the ERP guidelines paper (Keil et al., 2014) and provide all information 

that should be reported in a Methods section. 
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Although it is easy to suggest that researchers collect more participants to improve 

statistical power, there may be practical barriers that prevent some from doing so (e.g., limited 

access to particular patient populations). One approach to improve statistical power is through 

collaboration by conducting multisite ERP studies (Baldwin, 2017), and this is already a popular 

approach among some fMRI groups. Such multisite studies can increase samples sizes, statistical 

power, and generalizability of findings. In addition to multisite studies, depositing EEG data in 

repositories can facilitate sharing and combining of datasets to hopefully improve statistical 

power. A few repositories currently exist for such purpose and include the OpenfMRI database 

(https://www.openfmri.org/; Poldrack et al., 2013; Poldrack & Gorgolewski, 2017) and the 

Patient Repository for EEG Data + Computational Tools (PRED+CT; http://predict.cs.unm.edu/; 

Cavanagh, Napolitano, Wu, & Mueen, 2017). Furthermore, funding agencies have started to 

require depositing data to repositories. For example, all grant applications and awards submitted 

to the National Institute of Mental Health (NIMH) that involve human subjects after January 1, 

2020 will be required to deposit all raw and analyzed data, including psychophysiological data, 

unless an explicit exception is granted (https://grants.nih.gov/grants/guide/notice-files/NOT-MH-

19-033.html).  

Along the lines of statistical power, one feature that is often underappreciated when 

conducting a priori power calculations is the impact of score reliability on statistical power. 

Unreliable scores can reduce statistical power (Boudewyn, Luck, Farrens, & Kappenman, 2017; 

Clayson & Miller, 2017b; Fischer, Klein, & Ullsperger, 2017; Kolossa & Kopp, 2018; Luck & 

Gaspelin, 2017). Given the relationship between the number of trials included in an ERP average 

and internal consistency estimates of reliability (Clayson & Miller, 2017a), power contour plots 

can be used to estimate the optimal balance between the number of experimental trials, the 
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number of participants, and the statistical power of a given effect size (Baker et al., 2019). The 

positive relationships between reliability and effect sizes have been shown in both between-

group (Hajcak, Meyer, & Kotov, 2017) and within-person (Clayson & Miller, 2017a) ERP 

studies. For example, between-group effect sizes (healthy controls vs. people with generalized 

anxiety disorders) increased with increases in internal consistency (Hajcak et al., 2017).  

Conclusions  

 An average of 63% of key methodological parameters were reported across 150 ERP 

studies from five prominent journals, which suggests that the underreporting of recommended 

guidelines is a ubiquitous practice. Hopefully, this underreporting is due to oversight on the part 

of authors. However, it is possible that underreporting might be due to attempts to obscure data 

processing and analysis practices when authors exploit researcher degrees of freedom to find 

statistically significant effects. We have recommended some solutions, such as the 

preregistration of data processing and analysis plans to motivate rigor over novelty. We hope that 

moving forward authors, reviewers, and editors encourage the use of the ERP reporting 

guidelines (Keil et al., 2014) to facilitate communication among researchers and improve the 

replicability of ERP research. 

Small sample sizes and low statistical power appear endemic to ERP studies, which is 

consistent with the larger field of cognitive neuroscience. Our findings suggest that ERP research 

is powered to detect only large statistical effects for simple statistical designs. Anecdotally 

speaking, one of the advantages of using ERPs over some other neuroimaging techniques, such 

as functional magnetic resonance imaging (fMRI), is that conducting ERP studies is more 

affordable. The affordability is often cited as an advantage, because larger sample sizes can be 

obtained for a lower cost. Although ERP research is indeed more affordable, the typical ERP 
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study seems to suffer from the same problems associated with small sample sizes as fMRI 

studies, and this fact appears to be underappreciated, at least anecdotally. Small samples, low 

statistical power, and undisclosed researcher flexibility contribute the low replicability ERP 

studies. The replicability of ERP studies can be improved by conducting a priori sample size 

calculations to ensure adequately powered samples for relevant effect sizes and by conducting 

multisite ERP studies to increase sample size and generalizability of findings. 
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Footnote 

1. Using the term replication when referring to a study of the robustness of an effect under 

different methodological parameters is a misnomer. Nothing is being replicated per se. 

Rather a phenomenon of interest is simply being tested under different conditions. 

2. We chose not to provide specific citations as examples in the Discussion section. All of 

the issues discussed occurred in multiple articles, and thus it is likely a field-wide issue 

rather than an issue with one particular group or lab.   
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Table 1 

 

Summary Statistics for Reported Guidelines and Sample Sizes 

 

  Percent of Reported Guidelines Per Article 

Journal  Mean  Median  SD  Range 

Clinical Neurophysiology  63%  65%  10%  39% to 82% 

International Journal of Psychophysiology  64%  65%  7%  51% to 77% 

Journal of Cognitive Neuroscience  62%  62%  6%  51% to 72% 

NeuroImage  61%  61%  7%  44% to 72% 

Psychophysiology  64%  65%  6%  53% to 74% 

         

All Journals  63%  64%  7%  39% to 82% 
         

  Total Participants Per Article 

Journal  Mean  Median  SD  Range 

Clinical Neurophysiology  43  33  32  5 to 146 

International Journal of Psychophysiology  27  22  17  8 to 80 

Journal of Cognitive Neuroscience  23  21  12  10 to 66 

NeuroImage  20  17  8  10 to 46 

Psychophysiology  31  24  22  10 to 96 

         

All Journals  29  22  21  5 to 146 
         

  Total Participants Per Group Per Article 

Journal  Mean  Median  SD  Range 

Clinical Neurophysiology  25  21  17  5 to 86 

International Journal of Psychophysiology  18  17  7  8 to 55 

Journal of Cognitive Neuroscience  20  17  10  9 to 66 

NeuroImage  18  16  5  10 to 27 

Psychophysiology  21  21  7  10 to 40 

         

All Journals  21  18  11  5 to 86 

Note: Total participants per article indicates the number of participants in each coded article 

(ignoring group membership). Total participants per group per article indicates the number of 

participants in each group for a given article. The ‘All Journals’ row represents the summary 

statistics across all journals. 
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Table 2 

 

Frequency Table of Software Packages  

 

Software Package Frequency 

EEGLab 31 

BrainVision Analyzer 28 

Brain Electrical Source Analysis (BESA) 7 

Cartool 6 

Scan 6 

ERP PCA (EP) Toolkit 5 

Fieldtrip 5 

ERPLab 4 

EEProbe 3 

NetStation 2 

BrainStorm 1 

EMSE 1 

EPlyzer 1 

ERPSS 1 

Fully Automated Statistical Thresholding 

for EEG Artifact Rejection (FASTER) 
1 

Statistical Parametric Mapping (SPM) 1 
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Table 3 

 

Percentage of Guidelines Reported by Year 

 

Year  Mean  Median  SD  Range 

2011  62%  64%  8%  44% to 72% 

2012  63%  64%  9%  39% to 74% 

2013  62%  64%  7%  49% to 74% 
         

2015  64%  64%  6%  55% to 82% 

2016  63%  65%  6%  51% to 73% 

2017  63%  62%  7%  51% to 77% 

Note: Estimates represent the percentage of guidelines that were reported across all five journals. 
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Table 4 

 

Frequency Table of Statistical Models 

 

Factors and Levels in Analyses of Variance (ANOVAs)  Frequency 

2-Within  15 

2-Within x 2-Within  11 

2-Within x 2-Between  7 

2-Within x 2-Within x 2-Between  6 

3-Within  6 

2-Within x 2-Within x 3-Within  4 

2-Within x 4-Within  4 

3-Within x 2-Within  4 

2-Within x 2-Within x 2-Within  3 

2-Within x 3-Within  3 

2-Within x 3-Within x 2-Within  3 

3-Within x 2-Within x 2-Within x 2-Between  3 

4-Within  3 

   

Number of Factors in ANOVAs  Frequency 

1  29 

2  41 

3  43 

4  26 

5  8 

Note: #-Within indicates the number (#) of within-subject levels. #-Between indicates the 

number (#) of between-subject levels (i.e., groups). For the sake of brevity, this table shows the 

number of factors and levels for those statistical models that were used at least three times in the 

coded articles, which represents only 72 of the 147 coded articles (49%). Three articles were not 

included, because they used approaches such as multilevel modelling. All models are shown in 

the supplementary material on OSF. 
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Table 5 

 

Numerical Summary of the Relationship between Sample Size, Statistical Power, Large Effect 

Sizes, and Statistical Analysis 

Analysis Statistical Power 

Required 

Participants 

Detectable Effect 

for Typical n  

Independent Samples t Test .80 52 .89 

 .85 60 .95 

 .90 68 1.03 

 .95 84 1.14 
    

Paired Samples t Test .80 16 .64 

 .85 18 .69 

 .90 20 .74 

 .95 24 .83 

    

2-Between Group x 2-

Within Group Interaction 

.80 52 .44 

.85 60 .47 

 .90 68 .51 

 .95 84 .57 

Note: The ‘Required Participants’ column indicates the number of participants needed to obtain a 

given level of statistical power to detect a large effect size. A large effect size was considered a 

Cohen’s d of .80 for independent samples t tests and paired samples t test. A large effect size was 

considered a Cohen’s f of .40 for the 2-Between Group x 2-Within Group interaction. The 

‘Detectable Effect for Typical n’ column indicates the effect size that a study with 21 

participants per group and a given level of statistical power would be able to detect. Alpha level 

was set to .05 for all analyses. 
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Table 6 

 

Numerical Summary of the Number of Participants Needed to Achieve Statistical Power of .80 

for Each Effect Size and Statistical Design 

Analysis Effect Size 

Number of 

Participants 

Independent Samples t Test .20 788 

 .50 128 

 .80 52 
   

Paired Samples t Test .20 199 

 .50 34 

 .80 15 

   

2-Between Group x 2-

Within Group Interaction 

.10 298 

.25 50 

 .40 22 

Note: Number of participants for the independent samples t test and interaction effect reflect total 

number of participants (not number of participants per group). 
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Table 7 

 

Numerical Summary of the Achieved Power for each Statistical Design, Effect Size, and a Group 

Sample Size of 21 

Analysis Effect Size Achieved Power 

Independent Samples t Test .20 .10 

 .50 .35 

 .80 .72 
   

Paired Samples t Test .20 .14 

 .50 .59 

 .80 .94 

   

2-Between Group x 2-

Within Group Interaction 

.10 .18 

.25 .73 

 .40 .98 
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Figure Captions 

 

Figure 1. The proportion of guidelines reported across the eight categories of interest. 

 

Figure 2. The proportion of guidelines reported within the following four categories: Participant 

Information, EEG Recording, Stimulus and Timing, and Preprocessing. 

 

Figure 3. The proportion of guidelines reported within the following four categories: ERP 

Measurement, Statistics, PCA, and ICA. 

 

Figure 4. These plots show the relationship between statistical power, effect sizes, and total 

sample sizes for an independent samples t test, a paired samples t tests, and a test of the 2-

Between Group x 2-Within Group interaction in an analysis of variance (ANOVA). Dotted lines 

represent small (Cohen’s d = .2; Cohen’s f = .1), medium (Cohen’s d = .5; Cohen’s f = .25), and 

large effect sizes (Cohen’s d = .8; Cohen’s f = .4). 

 

 

 

 

 

 

 

  



REPORTING BEHAVIOR IN ERP STUDIES  44 

Figure 1 
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Figure 2 
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Figure 3 

 

 
  

0%

25%

50%

75%

100%

In
fe

re
nt

ia
l 
S
ta

ti
st

ic
s

M
ea

su
re

m
en

t 
S
en

so
rs

M
ea

su
re

m
en

t 
W

in
do

w

M
ea

su
re

m
en

t 
A

pp
ro

ac
h

D
es

cr
ip

ti
ve

 S
ta

ti
st

ic
s

N
um

be
r 

of
 T

ri
al

s

M
in

 N
um

be
r 

of
 T

ri
al

s
P
ea

k 
T
yp

e

A
 P

ri
or

i 
S
en

so
rs

A
 P

ri
or

i 
W

in
do

w

0%

25%

50%

75%

100%

R
ep

or
te

d 
p 

va
lu

es

P
ro

ce
du

re
s 

D
es

cr
ib

ed

T
es

t 
S
ta

ts
 R

ep
or

te
d

P
er

m
ut

at
io

n 
T

hr
es

ho
ld

s

C
or

re
ct

io
n 

of
 V

io
la

ti
on

s

N
um

be
r 

of
 P

er
m

ut
at

io
ns

C
or

re
ct

io
n 

fo
r 

M
ul

t 
C

om
pa

r

0%

25%

50%

75%

100%

P
re

pr
oc

es
si

ng
 C

le
ar

S
tr

uc
tu

re
 o

f 
D

at
a

P
C

A
 R

ot
at

io
n

D
ec

is
io

n 
R

ul
e

P
C

A
 A

lg
or

it
hm

A
ss

oc
ia

ti
on

 M
at

ri
x

0%

25%

50%

75%

100%
P
re

pr
oc

es
si

ng
 C

le
ar

In
fo

 f
or

 I
nt

er
pr

et
at

io
n

IC
A

 A
lg

or
it
hm

S
tr

uc
tu

re
 o

f 
D

at
a

N
um

be
r 

of
 C

om
po

ne
nt

s



REPORTING BEHAVIOR IN ERP STUDIES  47 

Figure 4 
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