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Abstract

Clinical prediction rules (CPRs) that predict the absolute risk of a clinical condition or future outcome for individual patients

are abundant in the medical literature; however, systematic reviews have demonstrated shortcomings in the

methodological quality and reporting of prediction studies. To maximise the potential and clinical usefulness of CPRs, they

must be rigorously developed and validated, and their impact on clinical practice and patient outcomes must be

evaluated. This review aims to present a comprehensive overview of the stages involved in the development, validation

and evaluation of CPRs, and to describe in detail the methodological standards required at each stage, illustrated with

examples where appropriate. Important features of the study design, statistical analysis, modelling strategy, data collection,

performance assessment, CPR presentation and reporting are discussed, in addition to other, often overlooked aspects such

as the acceptability, cost-effectiveness and longer-term implementation of CPRs, and their comparison with clinical

judgement. Although the development and evaluation of a robust, clinically useful CPR is anything but straightforward,

adherence to the plethora of methodological standards, recommendations and frameworks at each stage will assist in the

development of a rigorous CPR that has the potential to contribute usefully to clinical practice and decision-making and

have a positive impact on patient care.

Keywords: Clinical prediction rule, Prediction model, Risk model, Model development, Model validation, Impact studies,

Model reporting, Implementation, Diagnosis, Prognosis, Study design

Background
The aim of a clinical prediction rule (CPR) is to estimate

the probability of a clinical condition or a future outcome

by considering a small number of highly valid indicators [1,

2]. CPRs include three or more predictors, from patients’

clinical findings, history or investigation results [3]. Their

purpose is to assist clinicians in making decisions under

conditions of uncertainty and enhance diagnostic, prognos-

tic or therapeutic accuracy and decision-making, with the

ultimate aim of improving the quality of patient care [1, 2,

4]. The predicted probabilities from a CPR allow clinicians

to stratify patients into risk groups and help them to decide

whether further assessment or treatment is necessary [5].

Some CPRs can help to ‘rule in’ a condition by identifying

patients who are very likely to have a condition and who

thus require additional diagnostic testing or treatment,

whilst others aim to ‘rule out’ a condition by identifying pa-

tients who are very unlikely to have a condition, thus redu-

cing unnecessary testing without compromising patient

care [2, 4]. CPRs that aim to predict the probability of a

condition being present are termed diagnostic or screening

rules; those that aim to predict the probability of a future

outcome are termed prognostic rules; and those that aim to

predict the probability that a specific treatment or interven-

tion will be effective are termed prescriptive rules [2].

To maximise the predictive accuracy and clinical util-

ity of CPRs, it is vital that they are rigorously developed,

validated and evaluated. However, numerous systematic

reviews have demonstrated shortcomings in the meth-

odological quality and reporting of prediction studies,

which restricts the CPR’s usefulness in practice [6–15].

Methodological standards for the development of CPRs

were originally outlined by Wasson and colleagues [16].

With the increase in popularity of CPRs inspired by the

evidence-based medicine movement, these standards
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have since been modified and updated by a number of

authors over the years [3, 4, 17–19]. Experts have pro-

vided thorough and accessible overviews of the princi-

ples and methods involved in conducting diagnostic and

prognostic research [20–32] and devised frameworks to

enhance the conduct and interpretation of prediction

studies [33–35]. They have also provided guidance and

recommendations for researchers to consider when de-

veloping and evaluating CPRs, without aiming to dictate

how analyses should be conducted. These recognise that

there is no clear consensus on many aspects of model

development, that the field is continually evolving and

that methodological standards will therefore require up-

dating accordingly [36]. Guidelines for the reporting of

clinical prediction research have also been developed,

namely the Transparent Reporting of a multivariable

prediction model for Individual Prognosis or Diagnosis

(TRIPOD) guidelines [36].

This review aims to outline the stages and methodo-

logical standards involved in the development and evalu-

ation of CPRs, illustrated with examples where appropriate.

Terminology used in this review

In the literature, the term ‘clinical prediction rule’ is used

interchangeably with the terms clinical prediction tool

[37], clinical decision rule [17], clinical decision tool [38],

clinical prediction algorithm [39], prognostic score [40],

prognostic model [21], risk prediction model [23], risk

model [30], risk score [41], scoring tool [42], scoring sys-

tem [43] or risk index [44]. Reilly and Evans [32] distin-

guish between assistive prediction rules that simply

provide clinicians with diagnostic or prognostic predicted

probabilities without recommending a specific clinical

course of action, and directive decision rules that explicitly

suggest additional diagnostic tests or treatment in line

with the obtained score. Decision rules intend to directly

influence clinician behaviour, while prediction rules intend

to help clinicians predict risk without providing recom-

mendations, with the assumption that accurate predic-

tions will lead to better decisions [32]. Some researchers

also distinguish between prediction models that provide

predicted probabilities along the continuum between cer-

tified impossibility (Pi = 0) and absolute certainty (Pi = 1)

[45], and prediction rules that classify patients into risk

groups, by applying a clinically relevant cut-off that bal-

ances the likelihood of benefit with the likelihood of harm

[19, 46]. Such cut-offs are known as ‘decision thresholds’;

a threshold must be applied if a prediction model aims to

influence decision-making [19]. In this review, the term

‘clinical prediction rule’ is used to refer to diagnostic,

prognostic or prescriptive rules/models derived from mul-

tivariable statistical analyses, which predict the probability

of a condition or outcome, with or without the use of a

clinical cut-off or recommendation for further action.

Stages in the development of clinical prediction
rules
It is widely acknowledged in the literature that there are

three main stages in the development of CPRs (Fig. 1);

derivation; external validation; and impact analysis to de-

termine their impact on patient care [4, 20, 22–25, 32,

33]. Stiell and Wells [17] identified a further three im-

portant stages, namely identifying the need for a CPR,

determining the cost-effectiveness of a CPR and

long-term dissemination and implementation of a CPR.

Therefore all six stages are summarised in Table 1 and

discussed in detail below.

Detailed methodological and practical recommendations

pertaining to the three main stages of development have

been published, as each requires a different methodo-

logical approach [3, 4, 16–36]. These three stages also cor-

respond to increasing hierarchies of evidence, as outlined

in Table 2 [4, 32, 33]. A CPR that has been derived, but

not externally validated, corresponds to the lowest level of

evidence and is not recommended for use in clinical prac-

tice, except arguably in rare instances when a CPR is de-

veloped for use in only one setting. It has been suggested

that a CPR that has been successfully externally validated

in a setting, or population, similar to the one from which

it was derived (‘narrow’ validation), can be used cautiously

in similar future patients [32]. Similarly, it is proposed that

a CPR should be consistently successfully externally vali-

dated in multiple settings or populations (‘broad’ valid-

ation), before clinicians can use its predictions confidently

in future patients [32]. Finally, it is recommended that an

impact analysis is conducted and that the CPR demon-

strates improvements to patient care, before it can be used

as a decision rule for the management and treatment of

patients [32]. Ideally, the impact of a CPR should also be

tested in multiple settings. Impact analysis studies corres-

pond to the highest level of evidence [32].

Stage 1: identifying the need for a clinical prediction rule

Before developing a CPR, researchers need to ensure

that there is a clinical need for the rule. CPRs are most

valuable when decision-making is challenging, when

there is evidence that clinicians are failing to accurately

diagnose a condition, and when there are serious conse-

quences associated with an incorrect diagnosis [2, 4].

CPRs are also valuable when there is a need to simplify

or speed up the diagnostic or triage process, for example

in patients presenting to the emergency department with

chest pain and suspected acute cardiac ischaemia [49].

CPRs are most likely to be adopted into clinical practice,

and to demonstrate improvements in patient care and

reductions in health care costs, when they improve the

overall efficiency of clinical practice [17]. For example,

ankle injuries are frequently seen in the emergency de-

partment. Prior to the implementation of the Ottawa
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Ankle Rule, clinicians ordered a high proportion of radio-

graphs that were negative for fracture, when the majority

of them believed that a fracture was highly unlikely [50].

The rule was found to lead to a reduction in both radiog-

raphy [51] and health care costs [52], and in one survey

70% of Canadian and UK emergency department clini-

cians reported frequent use of the rule [53].

Before developing a CPR, researchers should consider

whether a new CPR is needed, as many are developed for

the same target population or to predict the same out-

come [8, 10, 11, 54–57]. The characteristics, performance

and level of evidence of existing CPRs should be systemat-

ically reviewed using validated search filters for locating

prediction studies, and the Critical Appraisal and Data Ex-

traction for Systematic Reviews of prediction modelling

studies (CHARMS) checklist [58, 59]. The recently pub-

lished Prediction model Risk Of Bias ASsessment Tool

(PROBAST) can be used to assess the risk of bias and ap-

plicability of CPRs [60]. Researchers can also assess the

performance of existing CPRs on their own collected data

[61]. Existing CPRs with potential should be updated, vali-

dated or tested in an impact study before a new CPR is de-

veloped [54, 62, 63]. If a new CPR is derived, researchers

should clearly justify why it is required, with reference to

existing CPRs, to avoid research waste and duplication of

efforts [64]. Qualitative research with clinicians can be

useful in determining whether a proposed CPR is clinically

relevant, and to assess the credibility of the proposed pre-

dictor variables [65, 66].

Stage 2: derivation of a clinical prediction rule according

to methodological standards

Once a need for a new CPR is established, and a re-

searcher has an appropriate clinical question, a CPR must

be derived according to strict methodological standards

[23]. There are various elements to consider, pertaining to

the study design, statistical techniques employed and the

assessment, presentation and reporting of the CPR. Re-

searchers should consider writing and publishing a study

protocol and registering the study prior to the derivation

of a new CPR, in the interests of transparency [67, 68].

Study design for the derivation of a clinical prediction rule

The first stage in the development of a CPR is the deriv-

ation of the rule. This involves an examination of the

ability of multiple potential variables from the clinical

findings, history or investigation results to predict the

target outcome of interest. Predicted probabilities are

derived from the statistical analysis of patients with

known outcomes, and the outcome of interest serves as

the reference standard by which the performance of the

CPR is assessed. The performance of a CPR is dependent

upon the quality of the underlying data, and the dataset

used to derive the CPR should be representative of the

target population it is intended for [17, 30, 69, 70].

The optimal study design for the derivation of a diagnos-

tic CPR is a cross-sectional cohort study, while for prognos-

tic CPRs, the preferred design is a longitudinal cohort study

[30]. In general, case-control studies are inappropriate, as

they do not allow for the estimation of absolute outcome

risk [21, 23, 71]; however, nested case-control or

case-cohort studies can be used [71, 72]. Prospective cohort

studies are preferred to retrospective cohort studies, to op-

timise measurement and documentation of predictive and

outcome variables [21, 23]. For prescriptive CPRs, study de-

signs that include a control group, such as randomised con-

trolled trials (RCTs), are essential to ensure that treatment

effect modifiers and non-specific prognostic predictors are

distinguishable from one another [73, 74]. The study design

should be adequately detailed and include the study setting,

inclusion and exclusion criteria and patient demographics

and characteristics [17]. To enhance generalisability, multi-

centre studies are recommended [30].

Statistical analysis

Commonly used statistical methods for the derivation of

CPRs include multivariable regression techniques, and

recursive partitioning techniques, such as classification

Derivation

Identification of 
factors with 

predictive power

Validation

Evidence of reproducible 
accuracy

Narrow Validation

Application of rule in a similar 
clinical setting and population as 

in the derivation stage

Broad Validation

Application of rule in multiple 
clinical settings with varying 
prevalence and outcomes of 

disease

Impact Analysis

Evidence that rule 
changes physician 

behaviour and improves 
patient outcomes and/or 

reduces costs

Fig. 1 The three main stages in the development and evaluation of clinical prediction rules. Adapted from McGinn, 2016 [47]
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Table 1 Stages in the development and evaluation of clinical

prediction rules

Stage of development Methodological standards

Stage 1. Identifying the need for a
CPR

• Consider conducting qualitative research
with clinicians to determine clinical
relevance and credibility of CPR

• Conduct a systematic review of the
literature to identify and evaluate existing
CPRs developed for the same purpose

• Consider updating, validating or testing
the impact of existing CPRs

Stage 2. Derivation of a CPR
according to methodological
standards

Study design for the derivation of a CPR

• Consider registering the study and
publishing a protocol

• Ensure the dataset is representative of the
population for whom the CPR is intended

• Conduct a prospective multicentre cohort
study

Statistical analysis

• Conduct multivariable regression analysis
(logistic for binary outcomes, Cox for
long-term prognostic outcomes)

• Identify the model to be used, plus
rationale if other methods used

Missing data

• Use multiple imputation

Selection of candidate predictors for
inclusion in a multivariable model

• Only include relevant predictors based on
evidence in the literature/clinical
experience

• Aim for a sample size with a minimum of
ten events per predictor, preferably more

• Avoid selection based on univariable
significance testing

• Avoid categorising continuous predictors

Selection of predictors during multivariable
modelling

• Backward elimination of predictors is
preferred

• Avoid data-driven selection and incorpor-
ate subject-matter knowledge into the se-
lection process

Definition and assessment of predictor and
outcome variables

• Define predictor and outcome variables
clearly

• Consider inter-rater reliability of predictor
measurement and potential measurement
error

• Aim for blind assessment of predictor and
outcome variables

Internal validation

• Use cross-validation or bootstrapping and
adjust for optimism

• Ensure to repeat each step of model
development if using bootstrapping

CPR performance measures

• Assess and report both calibration and
discrimination

Table 1 Stages in the development and evaluation of clinical

prediction rules (Continued)

Stage of development Methodological standards

• Consider decision curve analysis to
estimate the clinical utility of the CPR

Presentation of a CPR

• Report the regression coefficients of the
final model, including the intercept or
baseline hazard

• Consider a clinical calculator if the CPR is
complex

Reporting the derivation of a CPR

• Adhere to the TRIPOD guidelines [36]

Stage 3. External validation and
refinement of a CPR

Study design for the external validation of a
CPR

• Conduct a prospective multicentre cohort
study

• Aim for a sample size with a minimum of
100 outcome events, preferably 200

• Consider using a framework of
generalisability to enhance the
interpretation of the findings [34]

Types of external validation

• Conduct temporal, geographical and
domain validation studies to ensure
maximum generalisability

• If multiple validations have been
performed, conduct a meta-analysis to
summarise the overall performance of the
CPR, using a published framework [35]

Refinement of a CPR: model updating or
adjustment

• Consider updating, adjusting or
recalibrating the CPR if poor performance
is found in an external validation study

• Consider further external validation of
updated CPRs

Comparing the performance of CPRs

• Compare the CPR with other existing CPRs
for the same condition

• Ensure the statistical procedures used for
comparison are appropriate; consider a
decision-analytic approach

Reporting the external validation of a CPR

• Adhere to the TRIPOD guidelines [36]

Stage 4. Impact of a CPR on clinical
practice

Study design for an impact analysis

• Consider whether the CPR is ready for
implementation

• Conduct a cluster randomised trial with
centres as clusters, or a before–after study

• Perform appropriate sample size
calculations

• Consider decision-analytic modelling as an
intermediate step prior to a formal impact
study

Measures of impact of a CPR

• Report the safety and efficacy of the CPR

• Report the impact of the CPR on clinician
behaviour if assessed
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and regression tree analysis [75]. Methods based on uni-

variable analysis, where individual risk factors are simply

totalled and assigned arbitrary weightings, should be

avoided, as they are much less accurate than methods

based on multivariable analysis [76]. This is because the

final model may include predictors that are potentially

related to each other and not independently associated

with the outcome of interest [76]. Multivariable methods

overcome the limitations of univariable analysis by

enabling improved assessment of the association of the

predictors with the target outcome [76].

In the case of multivariable regression, logistic regres-

sion models are required to predict binary events such as

the presence or absence of a condition, while Cox regres-

sion models are suitable for time-to-event outcomes. Such

models estimate regression coefficients (e.g. log odds or

hazard ratios) of each predictor. Regression coefficients

are mutually adjusted for the other predictors, and thus

represent the contribution of each predictor to the prob-

ability of the outcome [23]. The probability of an outcome

can be computed for a patient by combining the observed

values of the predictors and their corresponding regres-

sion coefficients with the model intercept, or estimated

baseline hazard [23]. For logistic models, the model inter-

cept and the weighted values applicable to each patient

are summed [16]. Specific values are assigned to each pre-

dictor, which are multiplied by the corresponding coeffi-

cients. In the case of a model with only binary categorical

predictors, the predictors are multiplied by 0 or 1, de-

pending on whether they are absent (0) or present (1), as

per the model in Table 3 [77]. Exponentiating the final risk

score gives the odds, and the probability (absolute risk) is

calculated by use of the inverse logistic link function [78].

In this way, the probability of an outcome can be esti-

mated from any combination of the predictor values [36].

The estimated probability for an individual without any of

the predictors depends only on the intercept [23]. In this

case, the value for each of the predictors will be 0; when

each of these is multiplied by its relevant coefficient the

value of 0 is retained [78]. For Cox regression models, the

baseline hazard is estimated separately [26, 29].

Recursive partitioning involves repeatedly splitting

patients into subpopulations including only individ-

uals with a specific outcome [79], and was the

method used to derive the Ottawa Ankle Rule [80].

CPRs can also be derived using discriminant function

analysis [3], and machine learning algorithms based

on artificial neural networks [1]. Artificial intelligence and

Table 1 Stages in the development and evaluation of clinical

prediction rules (Continued)

Stage of development Methodological standards

Acceptability of a CPR

• Evaluate the acceptability of the CPR using
the validated OADRI [48], or using
qualitative or vignette methods

Comparison of a CPR with unstructured
clinical judgement

• Compare the sensitivity and specificity of
the CPR with clinicians own predictions/
decisions

The four phases of impact analysis for CPRs

• Follow the framework for the impact
analysis of CPRs [33]

• Ensure extensive preparatory and
feasibility work is conducted prior to a
formal impact study

Reporting the impact analysis of a CPR

• There are currently no published reporting
guidelines for impact studies of CPRs; this
is an area for future research

Stage 5. Cost-effectiveness • Conduct a formal economic evaluation,
with sensitivity analyses to examine the
uncertainty of the model projections

Stage 6. Long-term implementation
and dissemination

• Devise and evaluate targeted
implementation strategies to ensure
maximum uptake

Barriers and facilitators to the use of CPRs

• Assess barriers to the use of the CPR and
devise strategies to overcome these

CPR clinical prediction rule, TRIPOD Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis, OADRI Ottawa
Acceptability of Decision Rules Instrument

Table 2 Hierarchies of evidence in the development and evaluation of clinical prediction rules

Level of evidence Definitions and standards of evaluation Implications for clinicians

Level 1: Derivation of CPR Identification of predictors using multivariable model; blinded
assessment of outcomes.

Needs validation and further evaluation before it
is used clinically in actual patient care.

Level 2: Narrow validation of
CPR

Validation of CPR when tested prospectively in one setting;
blinded assessment of outcomes.

Needs validation in varied settings; may use CPR
cautiously in patients similar to derivation sample.

Level 3: Broad validation of
CPR

Validation of CPR in varied settings with wide spectrum of
patients and clinicians.

Needs impact analysis; may use CPR predictions
with confidence in their accuracy.

Level 4: Narrow impact analysis
of CPR used for decision-
making

Prospective demonstration in one setting that use of CPR
improves clinicians’ decisions (quality or cost-effectiveness of pa-
tient care).

May use cautiously to inform decisions in settings
similar to that studied.

Level 5: Broad impact analysis
of CPR used for decision-
making

Prospective demonstration in varied settings that use of CPR
improves clinicians’ decisions for wide spectrum of patients.

May use in varied settings with confidence that
its use will benefit patient care quality or
effectiveness.

Adapted from Reilly and Evans 2016 [32]. CPR clinical prediction rule
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machine learning approaches are becoming increasingly

more common [81, 82].

Missing data

In clinical research, investigators almost always encounter

missing observations involving predictor or outcome vari-

ables, even in carefully designed studies and in spite of

their best efforts to maximise data quality [83]. There are

three types of missing data mechanisms: (1) missing com-

pletely at random (MCAR), (2) missing at random (MAR)

and (3) missing not at random (MNAR) [84]. When data

are MCAR, this means that there are no systematic differ-

ences between the missing and observed values; for ex-

ample, laboratory tests may be missing because of a

dropped test tube or broken equipment. When data are

MAR, this means that the probability of a missing value

depends on the observed values of other variables (but

not the unobserved values); for example, missing blood

pressure measurements may be lower than observed mea-

surements because younger people may be more likely to

have missing measurements; in this case, data can be said

to be MAR given age [85]. When data are MNAR, this

means that the probability of a missing value depends on

the unobserved values or other unobserved predictors,

conditional on the observed data; for example, people with

high blood pressure may be more likely to miss a doctor’s

appointment due to headaches [85]. Missing values are

rarely MCAR, that is, their ‘missingness’ is usually directly

or indirectly related to other subject or disease character-

istics, including the outcome [23, 25]. Missing data is fre-

quently addressed with case-wise deletion, which excludes

all participants with missing values from the analysis [85].

However, when data are plausibly MAR, this reduces sam-

ple size and statistical power and biases the results [85],

leading to inaccurate estimates of predictor-outcome rela-

tionships and the predictive performance of the model,

since the participants with complete data are not a ran-

dom subsample of the original sample [84, 86, 87].

Multiple imputation is a popular approach to the prob-

lem of missing data [83, 85, 86, 88–91], as it quantifies the

uncertainty in the imputed values, by generating multiple

different plausible imputed datasets, and pooling the results

obtained from each of them [85, 91]. Multiple imputation

involves three stages [85, 89, 91–93]. First, as the name sug-

gests, multiple imputed datasets are created, based on the

distribution of the observed data. This first stage accounts

for uncertainty in estimating the missing values by adding

variability into the values across the imputed datasets. In

the second stage, standard statistical techniques are used to

fit the models that are of interest in the substantive analysis

to each of the imputed datasets. Estimated associations in

each of the imputed datasets will be different, due to the

variability introduced in stage one. In the third and final

stage, the multiple results are averaged together, and stand-

ard errors are calculated using Rubin’s combination rules

[91], which account for both within-and between-imput-

ation variability and the number of imputed datasets, and

therefore the uncertainty of the imputed values. Multiple

imputation typically assumes that data are MAR [93]. Im-

portantly, the MAR assumption is just that; an assumption,

rather than a property of the data [85]. The MCAR as-

sumption can be tested, but it is not possible to differentiate

between MAR and MNAR from the observed data [26, 85].

Most missing data are expected to be at least partly MNAR

[85, 94, 95]. Sensitivity analyses can help to determine the

effect of different assumptions about the missing data

mechanism; work in this area is ongoing [96–100]. Other

statistically principled approaches to dealing with missing

data have been developed, based on random effects models

[101, 102], Bayesian methods or maximum likelihood esti-

mation [103] or, where data are longitudinal, joint models

[104, 105]. Guidelines for reporting on the treatment of

missing data in clinical and epidemiological research studies

have been suggested by Sterne and colleagues [85]. Guid-

ance also exists for handling missing data when deriving

and validating CPRs [83, 106, 107]. It has been demon-

strated that the outcome should be used for imputation of

missing predictor values [87]. It is also becoming increas-

ingly apparent that a real-time strategy to impute missing

values is desirable when applying a CPR in clinical practice

[108–110]. This is because one or more predictor variables

may be unobserved for a particular patient, and thus the

CPRs risk prediction cannot be estimated at the time of

decision-making [108]. Real-time multiple imputation is

not typically straightforward, as it requires access to the

derivation dataset via, for example, a website [108, 110]. Of

note, although multiple imputation is a widely advocated

approach for handling missing data in CPR studies, a recent

study showed that implementing simpler imputation

methods resulted in similar predictive utility of a CPR to

predict undiagnosed diabetes, when compared to multiple

imputation [111].

Selection of candidate predictors for inclusion in a

multivariable model

Candidate predictors are variables that are preselected

for consideration in a multivariable model, and differ

from those that are subsequently selected for inclusion

in the final model [23]. Candidate predictors should be

selected without studying the predictor-outcome rela-

tionship in the data; in other words, predictors should

not be excluded as candidates solely because they are

Table 3 Clinical prediction rule for postoperative nausea and

vomiting (PONV) [77]

Risk of PONV = 1/(1 + exp. − [2.28 + 1.27 × female sex + 0.65 × history of
PONV or motion sickness + 0.72 × non-smoking + 0.78 × postoperative
opioid use])
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not statistically significant in univariable analysis [25, 26,

29, 112–114]. Predictor variables do not have to be caus-

ally related to the outcome of interest [21, 115]. Effects

modelled in studies examining causality are expressed

with relative risk estimates such as odds ratios, while

risk predictions are presented as probabilities on an ab-

solute scale between 0 and 1. Relative risk estimates are

used in prediction research to calculate an absolute

probability of an outcome for a patient, as described

above, and can also be reported alongside risk predic-

tions. All variables thought to be related to the target

outcome can be selected as candidate predictors for in-

clusion in a multivariable model; however, when the

number of outcome events in the dataset is small, there

is a risk of overfitting the data when a large number of

predictor variables are included. Thus the CPR will per-

form well on the derivation data, but poorly on new data

[29, 69, 113, 116]. CPRs with a smaller number of pre-

dictors are also easier to use in practice. To overcome

this problem, only the most clinically relevant candidate

predictors should be chosen from the larger pool of po-

tential predictor variables, without looking into the data

[5, 117]. In addition, sample size recommendations for

studies deriving CPRs are often based on the concept of

events-per-variable (EVP), whereby the researcher con-

trols the ratio of the number of outcome events to the

number of coefficients estimated prior to any data-

driven variable selection [31]. A rule-of-thumb of ten

EPV has been suggested [29, 31, 114, 118]. Simulation

studies examining the effect of this rule-of-thumb have

yielded conflicting results [119–123]. One study found

that when the EPV was less than ten, there were a range

of circumstances in which coverage and bias were within

acceptable levels [119]. Another found that 20 EPV or

more are required when low-prevalence predictors are

included in a model [123], while another suggested that

problems may arise even when the EPV exceeds ten, as

CPR performance may depend on many other factors

[120]. Research in this area continues to evolve, as new

guidance is clearly needed to support sample size con-

siderations for the derivation of CPRs [121]. Recently,

van Smeden and colleagues have suggested that sample

size should be guided by three influential parameters:

the number of predictors, total sample size and the

events fraction [122].

Relevant predictors may be chosen based on a com-

bination of clinical experience, expert opinion surveys,

qualitative studies and formal systematic reviews and

meta-analyses of the literature [26, 33, 36, 65, 124].

Strategies for reducing the number of candidate predic-

tors include removing those that are highly correlated

with others, and combining similar predictors [29].

Other considerations include selecting predictors that

will be readily available for clinicians to observe or

measure in the target setting, and selecting predictors

that are relatively easy to measure and demonstrate high

inter-rater reliability between clinicians [17, 21]. In terms

of handling continuous predictors, researchers strongly

advise against converting continuous variables into cat-

egorical variables, due to information loss and reduced

predictive accuracy [125–128]. Similarly, it should not

be assumed that continuous variables have a linear rela-

tionship [127]. Instead, methods that permit more flexi-

bility in the functional form of the association between

the predictors and outcome should be considered [127,

129]; two common approaches are fractional polyno-

mials and restricted cubic splines [130, 131]. However, if

sample size is limited, assuming a linear relationship be-

tween continuous variables may make a model less sen-

sitive to extreme observations.

Penalised regression can be used to alleviate the prob-

lem of overfitting [116]. This approach involves placing a

constraint on the values of the estimated regression coeffi-

cients in order to shrink them towards zero [116]. This

has the effect of yielding less extreme risk predictions, and

thus may improve the accuracy of predictions when the

CPR is applied in new patients [113, 132]. The two most

popular penalised methods are ridge regression [133] and

lasso regression [134]. Unlike ridge regression, lasso re-

gression also selects predictors as a consequence of its

penalisation [116]. Ridge regression is usually preferred

when a set of pre-specified predictors is available, while

lasso regression may be preferred if a simpler model with

fewer predictors is required [116, 132].

Selection of predictors during multivariable modelling

There is no consensus regarding how predictors should

be selected while developing the final model [25]. Two

common strategies include the ‘full model approach’ and

the ‘predictor selection approach’ [23]. An alternative

approach, known as ‘all possible subsets regression’, is

less commonly used [28]. In the full model approach, all

previously identified candidate predictors are included,

and no further analysis is performed. Although this ap-

proach precludes selection bias and overfitting, it re-

quires in-depth knowledge about the most relevant

candidate predictors [26, 29]. In the predictor selection

approach, predictors are chosen either by ‘backward

elimination’ or ‘forward selection’, based on pre-defined

criteria. Backward elimination begins with all predictors

in the model and removes predictors, while forward se-

lection begins with an empty model, and predictors are

added successively. All possible subsets regression can

build models with combinations of predictors not gener-

ated by the standard forward or backward procedures,

because every conceivable combination of predictors is

assessed to find the best fitting model [135]. With all

methods, a series of statistical tests are performed to
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assess the ‘goodness of fit’ between the different models.

Models can be compared by setting a pre-defined signifi-

cance level and using the log likelihood ratio test, or

using other model selection criterion such as the Akaike

information criterion, or the Bayesian information criter-

ion [23, 25]. Backward elimination is favoured, as it al-

lows for the assessment of the effects of all predictors

concurrently, and can take into account all correlations

between predictors [136, 137]. Multiple testing in all

possible subsets regression can easily lead to overfitting.

However, with all methods, the choice of significance

level impacts upon the number of final predictors; the

use of smaller significance levels (e.g. p < 0.05) produces

models with fewer predictors at the risk of excluding po-

tentially important predictors, while the use of larger

significance levels (e.g. p < 0.25) may result in the inclu-

sion of less important predictors [25].

Predictor selection by so-called automated, data-

dependent significance testing may generate overfitted,

‘optimistic’ models, particularly when the derivation data-

set is small [23, 28, 128, 138, 139]. Thus, the Akaike infor-

mation criterion is preferred, as it discourages overfitting

by comparing models based on their fit to the data and

penalising for the complexity of the model [25]. In

addition, it may be acceptable to retain a non-significant

predictor in a model, if there is substantial evidence of its

predictive ability in the literature [26].

Definition and assessment of predictor and outcome

variables

To ensure that the CPR can be accurately applied in

practice, predictor and outcome variables should be

clearly defined, and outcome variables should be clinic-

ally important [17]. Predictor variables must be reliable

to enable their assessment in clinical practice; reliability

refers to the reproducibility of the findings by the same

clinician (intra-rater reliability) or between different cli-

nicians (inter-rater reliability). Some researchers recom-

mend that the reliability of predictor variables be

explicitly evaluated, and that only those demonstrating

good agreement beyond that expected by chance alone

should be considered for inclusion [17]. A recent study

found that measurement error of predictor variables is

poorly reported, and that researchers seldom state expli-

citly when the predictors should be measured, and the

CPR applied [140]. Another study demonstrated that

predictor measurement heterogeneity across settings can

have a detrimental impact on the performance of a CPR

at external validation [141]. Ideally, the outcome variable

should be assessed independently of the predictor vari-

ables to avoid circular reasoning or ‘incorporation bias’,

when the results of the CPR or its predictor variables

are used in the determination of the outcome [142].

However, it is acknowledged that this is not always

possible, particularly for conditions that require a con-

sensus diagnosis based on all available patient informa-

tion [143]. It is well known that misclassification in the

outcome variable may cause serious problems with pre-

diction accuracy [144, 145].

Internal validation

Prediction models are known to perform better in the data-

set from which they are derived, in comparison to applying

them in new but plausibly related patients [146, 147].

‘Plausibly related patients’ may be defined as those who are

suspected of having the same condition or who are at risk

of the same outcome examined in the derivation study

[148]. This enhanced performance occurs simply because a

model is designed to optimally fit the available data [23].

The performance of a model is most likely to be overesti-

mated when the derivation dataset is small, and uses a large

number of candidate predictors. Therefore, regardless of

the approaches used in the derivation stage of development,

internal validation is required to examine and correct the

amount of overfitting or ‘optimism’ in the model, and thus

the stability of the model [23].

Internal validation does not validate a model itself, but

the process used to fit the model [26, 29]. Optimism is es-

timated using the original derivation dataset only. A num-

ber of methods are available for this purpose, including

split-sampling, cross-validation and bootstrapping.

Split-sampling is the simplest method, and is performed

by dividing the derivation dataset into a ‘training’ sample

and a ‘test’ sample prior to modelling. The CPR is then de-

rived using the training sample, and its performance is

assessed using the test sample [20]. However, the test sam-

ple usually comprises one-third of the original derivation

dataset and is likely to be relatively small, resulting in im-

precise performance estimates [149, 150]. This approach

also squanders the test data that could have been used in

the derivation of the CPR [23, 150]. In cross-validation,

the CPR is derived using the whole derivation dataset, and

the whole dataset is then reused to assess performance

[20]. It is randomly split into equal samples: five or ten

samples are commonly used. In the case of five samples,

the model is refitted using four of the five samples and its

performance tested using the fifth; this process is repeated

five times until each of the five samples has been used as

the test data, and an average of the estimated performance

is taken. To improve stability, the overall procedure can

be replicated several times, using different random sub-

samples [149]. The preferred internal validation method is

bootstrapping, particularly when the derivation dataset is

small or a large number of candidate predictors are

assessed [23, 29]. The idea is to mimic random sampling

from the target population by repeatedly drawing samples

of the same size with replacement from the derivation

dataset [151]. Sampling with replacement renders
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bootstrap samples similar, but not identical, to the original

derivation sample [23]. Each step of model development is

repeated in each bootstrap sample (typically 500), most

likely yielding different models with varying performance.

Each bootstrap model is then applied to the original deriv-

ation sample, yielding a difference in model performance.

The average of these differences indicates the optimism in

the performance metrics of the model that was initially

derived in the derivation dataset [23, 26, 29, 151], and en-

abling adjustment of the overall performance to better ap-

proximate the expected model performance in novel

samples [23]. Bootstrapping also estimates a uniform

shrinkage factor to enable adjustment of the estimated re-

gression coefficients for over-fitting [26, 29, 151]. How-

ever, no internal validation procedures can be a substitute

for external validation; internal validation only addresses

sampling variability, while external validation considers

variation in the patient population [147].

Clinical prediction rule performance measures

CPR predictive performance can be assessed in terms of

overall performance, calibration and discrimination [26].

‘Overall performance’ can be quantified by calculating

the distance between observed and predicted outcomes,

using measures such as R2 or the Brier score [152]. ‘Cali-

bration’ reflects the agreement between the predicted

probabilities produced by the model and the observed

outcome frequencies [23]. For example, if a model pre-

dicts a 20% probability of residual tumour for a testicu-

lar cancer patient, residual tumour should be observed

in about 20 out of 100 of these patients [46]. ‘Internal

calibration’ refers to agreement between predicted prob-

abilities and observed outcome frequencies in the deriv-

ation dataset, where poor calibration may indicate lack

of model fit or model misspecification [153]. ‘External

calibration’ refers to agreement between predicted prob-

abilities and observed outcome frequencies in novel

datasets external to the one from which the model was

derived, where poor calibration may indicate an over-

fitted model [153]. Calibration can be visualised by cate-

gorising individuals into quantiles based on their

predicted probabilities, and plotting the observed out-

come frequencies against the mean predicted probabil-

ities [25]. Such a plot is the graphical equivalent of the

Hosmer and Lemeshow goodness-of-fit test [154],

which, although frequently used, may lack statistical

power to identify overfitting [25, 26]. Alternatively, bin-

ary outcomes can be regressed on the predicted prob-

abilities of the fitted model to estimate the observed

outcome probabilities using smoothing techniques such

as the loess algorithm [29, 153]. A comprehensive over-

view of calibration is given in Van Calster et al. [155].

Discrimination reflects the ability of a CPR to discrim-

inate between patients with, and without, the outcome

of interest. The predicted probabilities for patients with

the outcome should be higher than the predicted prob-

abilities for those who do not have the outcome [46].

The easiest way to assess discrimination is by calculation

of the discrimination slope, which is simply the absolute

difference in the average predicted probabilities for pa-

tients with and without the outcome [26]. Discrimin-

ation can also be visualised with a simple box plot. The

most widely used measure to assess discrimination is the

concordance index (c-index) [156], or, for logistic

models its equivalent, the area under the receiver oper-

ating characteristic curve (AUROC) [157]. These mea-

sures represent the chance that, given one patient with

the outcome and one without, the CPR will assign a

higher predictive probability to the patient with the out-

come compared to the one without. A c-index or

AUROC of 0.5 indicates predictions that are no better

than random predictions, and a value of 1 represents

perfect discrimination between patients with and with-

out the outcome [29]. In theory, a CPR may demonstrate

good discrimination (classifying patients into the correct

risk categories), but poor calibration (inaccurately esti-

mating the absolute probability of an outcome), and vice

versa [158]. A model that cannot discriminate between

patients with and without the outcome has little use as a

CPR; however, poor calibration can be corrected without

compromising discriminatory performance [19, 114].

Van Calster and Vickers [159] found that poorly cali-

brated models diminish the clinical usefulness of a CPR,

and can be harmful for clinical decision-making under

certain circumstances, emphasising the importance of

developing well-calibrated CPR’s. On the other hand, a

CPR with poor calibration but good discrimination at a

particular risk threshold may be appropriate if the aim is

to prioritise patients for assessment or treatment, by

identifying those with a very low risk of the target out-

come relative to the rest of the population [160].

Performance measures such as sensitivity, specificity,

positive and negative predictive values and positive and

negative likelihood ratios are used to assess performance

following the application of a risk threshold. Choosing a

risk threshold can often be arbitrary, and it can therefore be

useful to consider a range of thresholds when assessing per-

formance [19]. Ideally, a CPR will have both a high sensitiv-

ity and a high specificity, and therefore correctly identify

the majority of patients who truly have the condition, as

well as correctly exclude the majority of patients who do

not actually have the condition. However, this scenario

rarely occurs in clinical practice. More often than not, the

definition of a threshold is based on clinical considerations

about the relative consequences of false positive and false

negative classifications. Sensitivity and specificity are in-

versely proportional, so that as sensitivity increases, specifi-

city decreases and vice versa [161]. Defining a high cut-off
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point will result in good specificity and few false positives,

but poor sensitivity and many false negatives. A test with a

high specificity is useful for ruling in a disease if a person

tests positive. This is because it rarely misdiagnoses those

who do not have the condition of interest. Defining a low

cut-off point will result in good sensitivity and few false

negatives, but poor specificity and many false positives. A

test with a high sensitivity is useful for ruling out disease if

a person tests negative. This is because it rarely misdiag-

noses those who have the condition of interest [161]. Re-

ceiver operating characteristic (ROC) curves display the

sensitivity and specificity of a CPR across the full range of

cut-off values, and can be used to choose an optimal cut-off

threshold [162]. Other approaches to determining clinical

cut-offs have also been proposed [163].

In recent years, some novel model performance mea-

sures have been proposed that quantify the clinical use-

fulness of a CPR, by taking into account the costs and

benefits of clinical decisions. These measures include

relative utility curves and decision curves [164, 165]. De-

cision curves in particular are becoming a popular

method of evaluating whether clinical decisions based

on CPRs would do more good than harm [166]. Decision

curve analysis assumes that a given probability threshold

is directly related to the cost to benefit ratio, and uses

this threshold to weight false positive and false negative

predictions. The cost to benefit ratio thus defines the

relative weight of false-positive decisions to true-positive

decisions [164]. Model performance can subsequently be

summarised as a net benefit, by subtracting the propor-

tion of false-positive patients from the proportion of

true-positive patients, weighting by the relative costs of

a false-positive and a false-negative result. The net bene-

fit of a CPR can be derived across and plotted against

the whole range of threshold probabilities, yielding a de-

cision curve, similar to ROC curves that plot the full

range of cut-offs for a sensitivity/specificity pair [164].

Presentation of a clinical prediction rule

The final step in the derivation of a CPR is to consider

the format in which it should be presented. It is impera-

tive that the regression coefficients and intercept of a

final model are presented, and confidence intervals

around predicted probabilities can also be provided [23,

26]. If the final regression formula (as in Table 3) is not

provided, a CPR could not be applied by future users

[36]. A model can be developed into a simple web-based

calculator or application to enhance the usability of a

CPR. This may be beneficial for complex CPRs, and

would facilitate their integration into the electronic

health record, allowing them to be used at the point of

clinical care [167]. Nomograms, graphical decision trees

and other novel visualisation techniques could also be

used [26, 168], which may aid in the interpretation and

understanding of a CPR [168]; however, these must be

presented alongside the full model formula. Scoring sys-

tems are often used to simplify CPRs and facilitate use,

where regression coefficients are converted to integer

point values that can be easily totalled and related back

to the predicted probabilities [169]. However, this trans-

formation leads to a loss of information and therefore

reduced predictive accuracy [170].

Reporting the derivation of a clinical prediction rule

Numerous systematic reviews have shown that reporting

of the derivation of CPRs is deficient [6–8]. As a result,

the TRIPOD guidelines were produced [36], and should

be followed by all researchers working in this field.

Stage 3: external validation and refinement of a clinical

prediction rule

As previously noted, CPRs perform better in the dataset

from which they are derived compared to their application

in plausibly related or ‘similar but different’ individuals,

even after internal validation and adjustment [24]. Dimin-

ished performance can be due to overfitting, unsatisfactory

model derivation, the absence of important predictors, dif-

ferences in how the predictor variables are interpreted and

measured, differences in the patient samples (‘case mix’)

and differences in the prevalence of the disease [26, 148].

There is no guarantee that even well-developed CPRs will

be generalisable to new individuals. In one external valid-

ation study, a CPR to detect serious bacterial infections in

children with fever of unknown source demonstrated con-

siderably worse predictive performance, such that it was

rendered useless for clinical care [146]. It is therefore essen-

tial to assess the performance of a CPR in individuals out-

side the derivation dataset; this process is known as

external validation [28].

External validation is not simply repeating the steps

involved at the derivation stage in a new sample to

examine whether the same predictors and regression co-

efficients are obtained; neither is it refitting the model in

a new sample and comparing the performance to that

observed in the derivation sample [24, 31]. External val-

idation involves taking the original fully specified model,

with its predictors and regression coefficients as esti-

mated from the derivation study; measuring and docu-

menting the predictor and outcome variables in a new

patient sample; applying the original model to these data

to predict the outcome of interest; and quantifying the

predictive performance of the model by comparing the

predictions with the observed outcomes [20]. Perform-

ance should be assessed using calibration, discrimination

and measures to quantify clinical usefulness such as de-

cision curve analysis [164]. A CPR can also be refined if

it demonstrates poor performance in an external valid-

ation study. Regrettably, few CPRs are externally validated
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[27, 171, 172]. A systematic review of CPRs for children

identified 101 CPRs addressing 36 conditions; of these,

only 17% had narrow validation and only 8% had broad

validation [171].

Study design for the external validation of a clinical

prediction rule

Ideally, a validation study should be conducted prospect-

ively, by enrolling new individuals in a specifically prede-

signed study, and the CPR should be applied to all

patients meeting the study inclusion criteria [17, 23].

However, validation studies can be conducted retro-

spectively, using existing datasets. If adequate data on

the predictor and outcome variables is available [23]. In-

vestigators conducting a validation study should receive

brief training on the accurate application of the CPR. If

possible, all patients should be subjected to the reference

standard, to establish their true outcome and enable

comparison with the CPR prediction. However, in some

cases, this may not be feasible or practical, and an ap-

propriate and sensible proxy outcome may be used in-

stead [173]. Stiell and Wells [17] recommend that the

inter-rater reliability of the interpretation of the CPR re-

sult is assessed, to determine if the CPR is being applied

accurately and consistently. In terms of sample size, for

a logistic regression model with six predictors, a mini-

mum of 100 patients with the outcome of interest and

100 patients without the outcome of interest has been

suggested [174]. Other authors propose that external

validation studies require a minimum of 100 events, but

ideally 200 events [175]. A minimum of 200 events and

200 non-events has been suggested in order to reliably

assess moderate calibration and produce useful calibra-

tion plots [155]. The characteristics of patients included

in a validation study should be described in detail, and

compared with those included in the derivation study.

To enhance the interpretation of external validation

studies, it is possible to quantify the degree of relatedness

between derivation and validation datasets, to determine

the extent to which the CPR can be generalised to differ-

ent populations [34]. Authors have also proposed bench-

mark values to distinguish between a case-mix effect and

incorrect regression coefficients in external validation

studies, and therefore assist in the interpretation of a

CPR’s performance in validation samples [176]. Similarly,

a model-based concordance measure has recently been

derived that enables quantification of the expected change

in a CPR’s discriminative ability owing to case-mix hetero-

geneity [177].

Types of external validation

Many types of external validation are recognised in

the literature, but all types consider patients that dif-

fer in some respect from the patients included in the

derivation study [26]. The greater the differences be-

tween the patients in the derivation and validation

samples, the stronger the test of generalisability of

the CPR [24]. Three types of external validation have

received the most attention, namely temporal valid-

ation, geographical validation and domain validation

[148].

In temporal validation studies, the CPR is tested on

patients in the same centre(s) but over a different time

period [147]. Geographical validation studies examine

the generalisability of the CPR to other centres, insti-

tutes, hospitals or countries [147]. Patient characteristics

are likely to vary between locations, and predictor and

outcome variables are likely to be interpreted and mea-

sured differently in different places, leading to greater

differences between the derivation and validation popu-

lations than in a temporal validation study [24, 148]. In

domain validation, the CPR is tested in very different pa-

tients than those from whom it was derived, for example

in patients from a different setting (e.g. primary or sec-

ondary care), or in patients of different ages (e.g. adults

vs. children). The case mix of patients included in a

domain validation study will clearly differ from the der-

ivation population [148]. Differences between the deriv-

ation and validation populations are generally smallest in

a temporal validation study, and greatest in a domain

validation study; therefore, good performance of a CPR

in a temporal validation study may only provide weak

evidence that the CPR can be generalised to new pa-

tients, while good performance in a domain validation

study can be considered as the strongest evidence of

generalisability [148]. Other types of external validation

studies include methodologic validation which refers to

testing using data collected via different methods,

spectrum validation which refers to testing in patients

with different disease severity or prevalence of the out-

come of interest and fully independent validation which

refers to testing by independent investigators at different

sites [26, 147]. A recent study of cardiovascular risk

CPRs found that very few were externally validated by

independent researchers; to increase the chance of fully

independent validation, researchers should report all the

information required for risk calculation, to ensure rep-

licability [178]. Some authors have found that CPRs

demonstrate worse performance in fully independent

external validation studies compared to temporal or

geographical external validation studies [26, 28], while

others have found no difference [179]. When multiple

external validations of a CPR have been performed, it is

useful to conduct a formal meta-analysis to summarise

its overall performance across different settings and to

assess the circumstances under which the CPR may need

adjusting; a recently published framework provides guid-

ance on how to do this [35].
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Refinement of a clinical prediction rule: model updating or

adjustment

When researchers encounter an inferior performance of

a CPR in an external validation study compared with

that found in the derivation study, there is a temptation

to reject the CPR and derive an entirely new one in the

often considerably smaller validation dataset [148, 180].

This approach leads to a loss of scientific information

captured in the derivation study and an abundance of

CPRs developed for the same clinical situation, leaving

clinicians in a quandary over which one to use [24, 148].

However, a reduction in performance is to be expected

in an external validation study [24, 26, 148]. The recom-

mended alternative is to update, adjust or recalibrate the

CPR using the validation data, thereby combining infor-

mation captured in the original CPR with information

from new patients and improving generalisability [22,

181, 182]. Several methods for updating CPRs are avail-

able. When the outcome prevalence in the validation

study is different to that in the derivation study, calibra-

tion in the validation sample will be affected, but can be

improved by adjusting the baseline risk (intercept) of the

original model to the patients in the validation sample

[180]. If the CPR is overfitted or underfitted, calibration

can be improved by simultaneously adjusting all of the

regression coefficients [24]. To improve discrimination,

individual regression coefficients can be re-estimated, or

additional predictors can be added [24, 180]. Ideally, up-

dated CPRs that are adjusted to validation samples

should themselves be externally validated, just like newly

derived CPRs [148].

Comparing the performance of clinical prediction rules

Once a CPR has been externally validated, it is useful to

compare its performance with the performance of other

existing CPRs for the same condition [61]. Improve-

ments in discrimination can be assessed by quantifying

the difference in the AUROC or equivalent c-index be-

tween two CPRs [183]; however, this approach is in-

appropriate in the case of nested models that are fitted

in the same data set [184]. Novel metrics have been pro-

posed that quantify the extent to which a new CPR im-

proves the classification of individuals with and without

the outcome of interest into predefined risk groups [46].

These include the net reclassification improvement

(NRI), and the integrated discrimination improvement

(IDI) [185]. Various decision-analytic approaches to

model comparison have also been proposed [186]. All of

these measures can be used for comparing both nested

and non-nested models. However, both the NRI and IDI

statistics have come under intense scrutiny in the litera-

ture and many researchers caution against their use, as

positive values may arise simply due to poorly fitted

models [30, 187–191]. Therefore, the NRI and IDI

statistics cannot be recommended [192]. Decision-analytic

methods are increasingly recommended as they incorporate

misclassification costs and therefore indicate the clinical

usefulness of CPRs [186]. A systematic review of compari-

sons of prediction models for cardiovascular disease found

that formal and consistent statistical testing of the differ-

ences between models was lacking and that appropriate risk

reclassification measures were rarely reported [193]. A re-

cent commentary provides a useful and comprehensive

overview of the advantages and disadvantages of the various

methods available for quantifying the added value of new

biomarkers [194].

Reporting the external validation of a clinical prediction

rule

External validation studies of CPRs are often poorly re-

ported [9]; researchers should adhere to the TRIPOD

checklist and accompanying guidelines [36].

Stage 4: impact of a clinical prediction rule on clinical

practice

Since the ultimate aim of a CPR is to improve the qual-

ity of patient care, the effect of a validated CPR on clin-

ician behaviour and patient outcomes should be

examined in what are known as impact analysis studies

[22, 24]. It is increasingly recognised that CPR’s should

be regarded as complex interventions, as the introduc-

tion of a CPR into clinical practice with subsequent

management decisions consists of multiple interacting

components [108, 195–201]. The impact of a CPR on

clinical practice will depend on several interacting fac-

tors, including the accuracy and applicability of the CPR,

clinicians’ interpretation of probabilities and clinicians’

adherence to and acceptance of the CPR [196]. Evaluat-

ing the impact of a CPR has been described as ‘the next

painful step’ in the development process [202]. Impact

analysis studies clearly differ from validation studies as

they must be comparative, typically requiring a control

group of clinicians providing usual care [22, 24, 32]. It is

possible to assess the impact of both assistive CPRs that

simply provide predicted probabilities, and directive de-

cision rules that suggest a specific course of action based

on probability categories [32]. Assistive CPRs respect cli-

nicians’ individual judgement and leave room for intu-

ition, whereas directive rules may be more likely to

influence clinician behaviour [32, 203, 204]. However, it

is not guaranteed that clinicians will follow CPR, or the

recommendations provided by directive rules [32].

Therefore, an impact study must demonstrate that clin-

ical behaviour can be altered and patient care improved

by the CPR, prior to widespread dissemination and im-

plementation [17].

Unfortunately, even fewer CPRs undergo an impact as-

sessment than undergo external validation. In the
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systematic review of 101 CPRs for children, none had

impact analysis performed [171]. An evaluation of 434

primary care CPRs found that only 12 had undergone

impact analysis [172]. A subsequent systematic review of

the impact of primary care CPRs found 18 studies relat-

ing to 14 CPRs, with 10/18 studies demonstrating an im-

provement in primary outcome when the CPR was used

compared to usual care [205]. This review cautioned that

the small number of impact analysis studies found pre-

cluded the possibility of drawing firm conclusions about

the overall effectiveness of CPRs in primary care, with

the authors pointing out that the methodological quality

of the included studies was unclear due to incomplete

reporting [205]. Another recent systematic review of the

impact of CPRs found that the intermediate conse-

quences of a CPR such as clinical management decisions

were the primary outcome in the majority of studies,

while few studies aimed to establish the effect of a CPR

on patient outcomes [206]. In addition, in many of the

included studies, the risk of bias was either high or un-

clear [206]. Finally, a study describing the distribution of

derivation, validation and impact studies in four reviews

of leading medical journals since 1981 demonstrated

that a minority of studies concerned CPR impact (10/

201), with the pattern remaining stable over time [27].

Study design for an impact analysis

Before carrying out a formal impact study, researchers

must consider whether the CPR is ready for implemen-

tation [108, 207]. If possible, the predictive performance

of the CPR should be verified in the new setting, and the

CPR tailored to the new setting to enhance performance

[108]. The optimal study design for an impact analysis is

a cluster randomised trial with centres as clusters [22].

Randomising individual patients is not recommended as

clinicians may learn the rule and apply it to patients ran-

domised to the control group [22]. Randomising clini-

cians is preferable but requires more patients, and may

lead to contamination of experience between clinicians

in the same centre [24, 208]. An attractive variant of a

cluster randomised trial is the stepped-wedge cluster

randomised trial. In a stepped-wedge design, all centres

apply care-as-usual, and then use the CPR at different,

randomly allocated time periods [209]. This design allows

for the comparison of outcomes both within and between

hospitals, generates a wealth of data regarding potential

barriers to implementation and is particularly beneficial if

the CPR turns out to have a promising effect [210]. When

the outcome of interest in an impact study is clinician be-

haviour or decision-making, a cross-sectional randomised

study without patient follow-up is sufficient, with random-

isation at either the patient or clinician level. However, to

determine the impact of a CPR on patient outcomes or

cost-effectiveness, follow-up of patients is essential [22].

Given the significant practical, logistic and economic

challenges associated with cluster randomised trials,

non-randomised approaches are possible and are often

used. Cluster randomised trials can be expensive and

time-consuming and it may be difficult to recruit an ad-

equate number of clusters [24, 108]. A suggested

rule-of-thumb is to regard four clusters per arm as the

absolute minimum number required [211]; however,

methods for determining sample size in cluster rando-

mised trials have been proposed by a number of authors

[212–214]. A popular design is a before–after study, in

which outcomes are assessed in a time period before a

CPR is available and compared with outcomes measured

in a time period after it is introduced; this design is sus-

ceptible to temporal confounding [24]. Finally, a rela-

tively low-cost and simple design is a before–after study

within the same clinicians. In this design, clinicians are

asked to indicate their treatment or management deci-

sion or perceived risk of disease for the same patient

both before, and after, receiving the CPR prediction [24].

Single centre impact studies are recommended to inform

the planning of multicentre randomised trials [32]. As

with derivation and validation studies, a sample size cal-

culation should be performed, with consideration of all

relevant impact measures, and where possible assess-

ment of outcome measures should be blinded to the

CPR predictions and recommendations [32, 33]. Clini-

cians must undergo training in order to correctly inter-

pret and use the CPR [17].

The impact of CPRs can also be estimated indirectly

using decision analytic modelling, which integrates infor-

mation on CPR predictions and information about the

effectiveness of treatments from therapeutic intervention

studies [215, 216]. Such studies cost less, and take less

time, than RCTs; however, they are limited by the quality

of available evidence, and only provide theoretical indi-

cations of the impact CPRs may have on patient out-

comes. Thus it has been suggested that they should not

replace RCTs but rather be performed as an intermedi-

ate step prior to an RCT [217].

Measures of impact of a clinical prediction rule

During an impact analysis study, the sensitivity and speci-

ficity of the CPR should be recalculated to determine its

accuracy in the new study population [17]. However, mea-

sures of CPR accuracy are not synonymous with measures

of impact, and only represent the potential impact of the

CPR [32]. This is because clinicians are unlikely to follow

the logic of the CPR or its recommendations in every case;

they may not use the CPR at all, they may not use it cor-

rectly, they may deliberately disregard its predictions or

suggestions or they may be unable to use it for other rea-

sons [32]. Measures that are assessed in traditional RCTs

include safety, which refers to any adverse events resulting
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from the implementation of an intervention, and efficacy,

which relates to the extent that an intervention helps to

improve patient outcomes, for example by reducing mor-

tality rates [218]. In addition, Reilly and Evans [32]

propose that the impact of a CPR is assessed in terms of

its ‘safety’ and ‘efficiency’, where safety is defined as the

proportion of patients found to have the outcome of inter-

est and who received the appropriate intervention, and ef-

ficiency is defined as the proportion of patients without

the outcome of interest and who did not receive the inter-

vention. The sensitivity and specificity of a CPR will only

be the same as its safety and efficiency if clinicians follow

the logic and recommendations of the CPR exactly [32].

Therefore, in an impact analysis study, a CPR may demon-

strate more, or less, actual impact than its potential im-

pact. The effect of clinicians’ incorrect use of the CPR, or

their deviations from its logic or suggestions can provide

important insights into its impact under specific circum-

stances, and may reveal complex interactions between cli-

nicians and the CPR [32]. For example, Reilly and

colleagues [219] found that when clinicians did not con-

sult a CPR for suspected acute cardiac ischemia at all, or

overruled its recommendations, their decisions were less

efficient than if they had followed the CPR in every case.

Acceptability of a clinical prediction rule

If the use of a CPR is warranted but it is not used, the

considerable time, money and effort that goes into its

development and evaluation is wasted. Assessing the ac-

ceptability of a CPR is therefore crucial for successful

implementation. Even valid and reliable CPRs may not

be accepted or used by clinicians [17]. Impact studies

allow researchers to evaluate the acceptability of a CPR

to clinicians, patients or others who may use it, as well

as its ease of use and barriers to its uptake [22]. If a CPR

proves to be acceptable, its long-term and widespread

dissemination and implementation would be justified; if

not, the CPR could undergo modification and further

evaluation [48]. Acceptability of a CPR and attitudes to-

wards it can be determined via survey, qualitative, simu-

lation or clinical vignette studies [33, 48, 220–222]. The

validated Ottawa Acceptability of Decision Rules survey

instrument can be used both to measure the overall ac-

ceptability of a CPR, and to assess specific barriers to its

use, which can inform potential improvements to the

CPR as well as the design of dedicated implementation

strategies [48]. Qualitative studies can be invaluable for

determining the acceptability of a CPR but are relatively

rare [200, 220, 222–225].

Comparison of a clinical prediction rule with unstructured

clinical judgement

For a CPR to improve the diagnostic accuracy of clini-

cians, its performance in distinguishing between patients

with and without the condition of interest should be su-

perior to that of unstructured clinical judgement alone.

Therefore, a vital metric is the comparison of the accuracy

of the CPR-predicted probabilities of disease, or recom-

mended decisions, with the accuracy of clinicians own es-

timated disease probabilities or management decisions

[18]. The sensitivity and specificity of clinicians’ predic-

tions or decisions are generally measured under usual

practice, and compared to the sensitivity and specificity of

the CPR predictions or decisions when applied to the

same patients [226, 227]. Some studies have used clinical

vignettes [228] while others have used multivariable logis-

tic models to assess the added value of a CPR over and

above clinical judgement alone [229]. If it can be demon-

strated that the performance of a CPR is superior to un-

aided clinician judgement, this may aid clinicians’

acceptance and use of the CPR [32]. Although comparison

of a CPR to clinician suspicion regularly takes place at the

impact analysis stage, some researchers have recom-

mended that this is carried out during the derivation or

validation stages, arguing that if the CPR does not add

anything beyond clinical judgement, then the use of the

CPR and an impact study would not be warranted [230].

In addition, Finnerty and colleagues [231] recommend

that comparison is undertaken in multiple settings, as the

performance of a CPR may be superior to clinical judge-

ment in certain settings, but inferior or no different in

other settings. A recent systematic review comparing

CPRs with clinical judgement concluded that the differ-

ences between the two methods of judgement are likely

due to different diagnostic thresholds, and that the pre-

ferred judgement method in a given situation would

therefore depend on the relative benefits and harms

resulting from true positive and false positive diagnoses

[232]. Brown and colleagues’ [200] found that the use and

potential advantages of a CPR may be much more com-

plex than originally thought, and that CPRs may be useful

for purposes not previously reported, such as enhancing

communication with colleagues and patients, and medico-

legal purposes. Recent studies in the child protection field

have demonstrated that CPRs may provide clinicians with

additional confidence in their decision-making, even if

they do not alter their management actions based on the

CPRs risk prediction [220, 233].

The four phases of impact analysis for clinical prediction

rules

Despite the abundance of methodological guidelines for

the derivation and validation of CPRs [26], there is a lack

of clear guidance for the design, conduct and reporting

of impact analysis studies of CPRs. To this end, Wallace

and colleagues [33] formulated an iterative four-phased

framework for the impact analysis of CPRs, specifying

the importance of substantial preparatory and feasibility
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work prior to the conduct of a full-scale formal experi-

mental study (Fig. 2). Phase 1 involves determining

whether the CPR is ready for impact analysis, i.e.

whether it has been rigorously derived and broadly vali-

dated according to pre-defined methodological stan-

dards. Phase 2 includes assessing the acceptability of the

CPR and identifying potential barriers to its uptake and

implementation, as well as assessing the feasibility of

conducting an impact study. Evaluating the feasibility of

carrying out an impact study involves consideration of

multiple factors including the most appropriate study

design for measuring relevant outcomes, and how the

CPR will be delivered at the point of care or integrated

into the clinical workflow. Phase 3 involves formally test-

ing the impact of the CPR using a comparative study de-

sign. Phase 4 involves long-term dissemination and

implementation of the CPR, which corresponds to stage

6 in the development of CPRs, discussed below.

Reporting the impact analysis of a clinical prediction rule

There are currently no published reporting guidelines

for studies analysing the impact of CPRs. This is a gap

in the literature, and a priority for future research. How-

ever, researchers assessing the impact of CPRs in an

RCT may refer to guidelines on the reporting of clinical

trials, such as the Consolidated Standards of Reporting

Trials (CONSORT) statement [218].

Stage 5: cost-effectiveness of the clinical prediction rule

If an impact analysis study shows that a CPR demon-

strates safety and efficiency, alters clinician behaviour

and improves clinical care, a formal economic evaluation

can be carried out to determine the cost-effectiveness of

the CPR. The aim is to establish the health care savings

associated with routine use of the CPR in clinical prac-

tice [17]. Economic evaluation is usually based on deci-

sion analytic models [234]. Any economic evaluation

must make reasonable assumptions about the accuracy

and effectiveness of the CPR and the costs involved [17].

Sensitivity analyses should be performed by re-running

models with alternative assumptions, to examine the un-

certainty of the model projections [234]. In reality, many

economic evaluations are conducted prior to an impact

analysis study or even an external validation study, per-

haps because they are relatively quick and low cost to

perform, and provide a significant part of the justifica-

tion for the development and implementation of a CPR.

Stage 6: long-term implementation and dissemination of

the clinical prediction rule

The gap between evidence and practice has been con-

sistently demonstrated in health services research [235],

and there is no guarantee that a CPR will be widely dis-

seminated or used, even if it is shown to have a positive

impact on clinical care and cost benefits. Therefore, in

order to maximise the uptake of a CPR, an active

Fig. 2 The four phases of impact analysis for a clinical prediction rule. Reproduced with permission from Wallace et al. 2011 [33]
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dissemination and implementation plan must be in

place. Simple passive diffusion of study results via publi-

cation in journals or presentations at conferences is un-

likely to significantly change clinical practice [236].

Examples of dissemination include actively targeting spe-

cific audiences via direct mail or the press, while imple-

mentation involves the use of local administrative,

educational, organisational and behavioural strategies to

put the CPR into effect in clinical practice [236]. Active

broad dissemination of the widely accepted Ottawa ankle

rule via an educational intervention found no impact of

the rule on clinicians’ use of ankle radiography [237], lead-

ing the authors to recommend implementation strategies

at the local level instead. Some implementation strategies

have been found to be more effective than others in chan-

ging clinician behaviour. A systematic review found the

most effective approaches to be reminders in the form of

posters, pocket cards, sheets or computer-embedded

prompts, face-to-face local clinician education and the use

of multiple interventions simultaneously [238]. Incorpor-

ation of CPRs into clinical guidelines may also be of bene-

fit; a recent study found that clinical guidelines and local

policies that mandated the use of CPRs were effective in

increasing their adoption in clinical practice [200]. In

addition, the integration of CPRs into the clinical work-

flow via electronic health records may promote their use

[239]. Since impact in a research study does not ensure

impact in real-world clinical practice, follow-up of clini-

cians can be conducted to assess the long-term use and ef-

fect of the CPR [17, 33].

Barriers and facilitators to the use of clinical prediction

rules

Clearly, identifying the barriers and facilitators to the imple-

mentation of CPRs is crucial for the development of tar-

geted implementation strategies that may encourage

Table 4 Barriers to the use of clinical prediction rules in practice

identified in the literature

Theme Subtheme Barrier

Knowledge Awareness Unaware:

• That CPR exists

• Of clinical problem or burden of clinical
problem to which CPR applies

Unable to choose from multiple CPRs

Familiarity Unfamiliar with CPR

Understanding Lack of knowledge and understanding of the
purpose, development and application of CPRs in
general

Forgetting Clinician forgets to use CPR despite best
intentions

Attitudes Negative beliefs
about CPRs

Belief that:

• CPRs threaten autonomy

• CPRs are too ‘cook-book’, and oversimplify the
clinical assessment process

• Clinical judgement is superior to CPRs

• Clinical judgement is not error prone

• Use of CPRs causes intellectual laziness

• The development of the CPR was biased

• Patients will deem clinicians less capable if
using a CPR

• CPRs only apply to the less experienced

• Probabilities are not helpful for decision-making

Dislike of the term ‘rule’

Clinician had a false negative result when using a
CPR in the past

Existing CPRs are not ready for clinical application

Outcome
expectancy

Belief that:

• CPRs will not lead to improved patient or
process outcomes

• The information provided by the CPR is not
sufficient to alter clinical decisions

Clinician:

• Fears unintended consequences of use

• Is uncertain about using the CPR in patients
with an atypical presentation

• Worries that improving efficiency threatens
patient safety

Self-efficacy Belief that the CPR is too difficult to use

Clinician uncertain how to interpret or use CPR
output

Motivation Clinician lacks motivation to use the CPR

Behaviour Patient factors Patients expectations are not consistent with the
CPR

Features of the
CPR

Clinician:

• Finds CPR too complicated

• Finds CPR ‘too much trouble’ to apply

Perception that:

• The CPR is not an efficient use of time
• The CPR does not have face validity or that
important predictors are missing

• The CPR does not fit in with usual work flow or
approach to decision-making

Table 4 Barriers to the use of clinical prediction rules in practice

identified in the literature (Continued)

Theme Subtheme Barrier

• The CPR is not generalisable to the clinician’s
patient

• The CPR is static and does not consider the
dynamic nature of clinical practice

• Overruling the CPR is often justified

Data required for the CPR is difficult to obtain

Environmental
factors

Lack of:

• Time

• Organisational support

• Peer support for use

Perceived increased risk of litigation

Insufficient incentives or reimbursement for use
of the CPR

Adapted from Sanders 2015 [253]. CPR clinical prediction rule
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clinicians to use the CPR. The adoption of CPRs into clinical

practice is influenced by various factors including clinician

characteristics, patient factors, features of the CPR itself and

environmental factors [32, 66, 221, 224, 225, 240–252].

Table 4 provides an overview of the barriers to the adop-

tion of CPRs identified in the literature [253], grouped ac-

cording to their effect on clinician knowledge, attitudes or

behaviours [254]. Barriers relating to knowledge include

lack of awareness of the CPR or the burden of the clinical

problem it applies to, unfamiliarity with the CPR and a

lack of understanding of the purpose of CPRs in general

[225, 240–242]. Clinicians may also be unaware of a CPR

due to the increasing volume of CPRs, particularly when

they are developed for the same condition [61, 243]. Com-

mon barriers relating to clinician attitude include a con-

viction that clinical judgement is superior to the CPR, and

distrust of the accuracy of the CPR [32, 224, 240, 241, 244,

245]. Barriers relating to behaviour include organisational

factors [251], the complexity of the CPR and the time it

takes to apply; survey studies suggest that clinicians much

prefer a CPR that is simple to use, memorable and saves

time [221, 246, 247]. Complex models such as those based

on machine and artificial learning algorithms may intro-

duce additional barriers relating to applicability and us-

ability, due to their potential lack of reproducibility and

transparency [60, 82]. Other studies have demonstrated

that clinicians will be unlikely to use a CPR if there are

predictors missing which are deemed to be important, or

if the predictor variables are not logically related to the

outcome variable [32, 225]. Reilly and Evans [32] offer a

number of strategies for overcoming barriers to the use of

CPRs. These include emphasising the discretionary use of

the CPR, comparing clinical judgement with the CPR,

checking whether any excluded factors affect the CPR pre-

dictions, performing a simulated impact analysis and soli-

citing clinicians input regarding the logic and format of

the CPR, among others [32].

Summary
For CPRs to be useful in clinical practice, they must be

properly planned [67], derived using appropriate statistical

techniques [23] and externally validated in multiple set-

tings and by independent investigators to determine their

predictive accuracy [148]. In addition, CPRs must undergo

impact analysis to determine their effect on clinician be-

haviour and relevant patient outcomes [22]. There are nu-

merous factors to consider when deriving, validating and

assessing the impact of a CPR including the study design,

preparatory work, statistical analysis, modelling strategy,

performance/impact measures, the presentation of the

CPR and the reporting of the study methodology. New

CPRs should only be derived when there is a clear clinical

need for them [17]. There is an urgent need to change the

focus from the derivation of CPRs, to the validation and

impact analysis of existing ones [33]. The CPR must be

presented in full, and the study methods reported ad-

equately, to ensure its quality, risk of bias and clinical util-

ity can be evaluated; the TRIPOD guidelines should be

followed to ensure completeness of reporting require-

ments [36]. Feasibility and preparatory work is essential to

determine whether a formal impact study of the CPR is

warranted [33, 108], and survey and qualitative work

should be undertaken to verify whether the CPR is accept-

able and relevant to clinicians [48, 65, 220, 222]. If a CPR

is found to have a positive impact on patient outcomes, its

cost-effectiveness should be evaluated, and a targeted im-

plementation and dissemination strategy devised, with

consideration of possible barriers to implementation, to

maximise uptake [17].

In summary, the development and evaluation of a ro-

bust, clinically useful CPR with high predictive accuracy

is challenging, and research in the field concerning der-

ivation, validation and impact evaluation continues to

evolve. However, adhering to the existing methodological

standards and recommendations in the literature at

every step will help to ensure a rigorous CPR that has

the potential to contribute usefully to clinical practice

and decision-making.
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