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Abstract: Buildings do not usually perform during operation as well as predicted during the 

design stage. Disagreement between simulated and metered energy consumption represents 

a common issue in building simulation. For this reason, the calibration of building simulation 

models is of growing interest. Sensitivity and uncertainty analyses play an important role in 

building model accuracy. They can be used to identify the building model parameters most 

influent on the energy consumption. Given this, these analyses should be integrated within 

calibration methodologies and applications for tuning the parameters. This paper aims at 

providing a picture of the state of the art of calibration methodologies in the domain of 

building energy performance assessment. First, the most common methodologies for 

calibration are presented, emphasizing criticalities and gaps that can be faced. In particular 

the main issues to be addressed, when carrying out calibrated simulation, are discussed.  

The standard statistical criteria for considering the building models calibrated and for 

evaluating their goodness-of-fit are also presented. Second, the commonly used techniques 

for investigating uncertainties in building models are reviewed. Third, a review of the latest 

main studies in the calibrated simulation domain is presented. Criticalities and recommendations 

for new studies are finally provided. 
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1. Introduction 

Since the mid-1970s, building simulation (BS) has emerged as an attempt to emulate reality [1] and 

improve on traditional manual methods to study and optimize the energy performance of buildings and 

systems. At first, BS was used throughout the design process, from the early stages to detailed 

construction phases. As Clarke pointed out [1], simulation may be used at any design stage to address 

relevant questions when assisting the building design practice. So far, the BS domain has grown and 

continuous improvements are being made to software features and, above all, to the building models 

robustness [2]. In response to current high and ambitious sustainability goals, building design has been 

recently subjected to changes, involving BS directly. As the main focus is still to reduce the energy 

demand of the building and optimize its energy performance, BS, as a clear response, is of growing 

importance. However, its potential is not fully exploited and even acknowledging the upward slope of 

its productivity for the last two decades, its uptake is still restricted [2]. It is much more common to see 

BS applications in construction or advanced design phases rather than in early phases (e.g., concept 

design). Despite this, a recent boost has been given to BS by its application in post-construction stages [3]. 

Buildings do not perform as well as predicted. Several studies have thus highlighted great discrepancies 

between simulated building energy performance and measured performance [3–5]. Due to this,  

an extensive interest in building real-monitoring and operation diagnostic has been aroused and the 

disagreement between measured and simulated data has thus become a primary issue in the BS domain. 

In order to make BS a more reliable tool for the design process, improvements towards a better match 

of the simulated and monitored building energy performance have emerged as an imminent need. 

This particular application of building simulation is customarily called calibrated simulation (CS).  

It corresponds to the process of fine-tuning or of “calibrating” the simulation inputs so that the observed 

energy consumptions closely match those predicted by the simulation program [6]. The use of CS is 

growing in importance and many activities [3], mostly related to the commissioning or the assessment 

of the energy retrofit scenario of existing buildings, in fact require a calibration-based study. In particular, 

on-going and post-construction commissioning of new and existing buildings requires the use of 

calibrated simulation for operational optimization of control strategies or for diagnostic purposes for 

further prediction of energy savings [7–9]. 

Additionally, CS has been officially endorsed by the International Performance Measurements and 

Verification protocol (IPMVP) [10]. Within IPMVP two main approaches for energy savings projects 

are listed; retrofit isolation options (Option A and B) and whole facility options (Option C and D) [10]. 

Option D is a simulation-based approach that requires models to be calibrated based on measured 

monthly or hourly data. CS, within Option D, is the suggested procedure for performance and usage 

verification of the whole building or specific building components. The IMPVP approach is also  

applied in the Federal Energy Management Program (FEMP) Measurements and Verification (M&V) 

guidelines [11]. 
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However, although many improvements have been made in BS and the use of CS is growing fast, 

many issues and criticalities still characterize the calibration process. When performing CS, it is 

important to distinguish different levels of calibration. First, depending on the monitored data available, 

calibration can be performed hourly, or monthly. Second, the type of in-depth analysis on the  

building model can regard only the building system or the whole building, also described within M&V 

guidelines [10]. 

Several studies based on calibration have been carried out [6,12–17] but as yet no universal consensus 

guidelines have been presented. There are thus standard criteria for validating a calibrated model but the 

lack of a formal and recognized methodology still makes CS a process highly dependent on the user’s 

skills and judgments. 

This paper aims at providing a review of the state of the art in the domain of calibrated simulation.  

In particular it reviews the current techniques used for calibrating a building model, focusing on gaps 

and criticalities related to CS. The paper is organized as follows: the scope and applications of CS is 

given in the introduction; Section 2 briefly outlines the main issues faced when calibrating a building 

model; Section 3 presents the statistical criteria used for judging the goodness-of-fit of the calibrated 

models; Section 4 reviews the most used calibration techniques in building simulation domain;  

Section 5 focuses on the reliability of building models and presents the techniques for investigating 

uncertainties; Sections 6 and 7, respectively, provide a brief description of the main CS applications and 

point out criticalities and gaps in CS. 

2. Typical Calibration Issues 

Building energy models are complex and composed of a large number of input data. When modeling 

a building within a simulation program, the accuracy especially relies on the ability of the user to input 

the parameters (input data) that results in a good model of the actual building energy use [3]. Given the 

large number of parameters involved, the process of calibrating a detailed energy model is a highly 

undetermined problem that brings to a non-unique solution [15,18]. 

It is quite common to use a “trial and error” method to calibrate a building model. This kind of 

approach, driven by experience assumptions, may bring inexperienced users to time consuming and 

unsolved problems. Usually building energy models are complex. Many assumptions on the building 

characterization, with a direct impact on the simulation results, have to be made. Moreover the process 

of modeling acquires higher degree of difficulty during calibration. Therefore, in order to handle 

properly the model complexity during calibration, the tuning process of the model parameters requires 

domain experts’ knowledge. 

It is essential to define the level of calibration to work on and, more importantly, to verify if the data 

collected are adequate for carrying out the calibration. To this regard, in order to compare predicted 

consumption with measured consumption, utility bills data are necessary; they represent the minimum 

requirement for CS, in terms of measurements and history data about the building. Additionally, 

depending on the input data available, different levels of calibration can be listed [17,18], as reported in 

Table 1. Utility bills are necessary for all the calibration levels. The period of availability of measured 

data or utility bills should be at least one-year-long in order to provide reliable results. Level 1 is a first 

calibration based on incomplete and split information due to the availability of nothing but as-built data. 
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It is thus the weakest calibration level as the information about the building definition and operation is 

not detailed and cannot be cross-checked with on-site visits. In Level 2 site visits or inspections allow 

verifying as-built data and collect more information. In Level 3, which is based on detailed audit of the 

case study, on-spot measurement of the building operation and energy consumption are collected.  

Level 4 and 5, based, respectively, on short-term and long-term monitoring, are the most detailed levels 

of calibration. At this level data loggers are thus installed in the building to collect all the required 

missing information. 

Table 1. Calibration levels based on the building information available [17,18]. 

Calibration 
Levels 

Building Input Data Available 

Utility 
Bills 

As-Built 
Data 

Site Visit or 
Inspection 

Detailed 
Audit 

Short-Term 
Monitoring 

Long-Term 
Monitoring 

Level 1 X X     
Level 2 X X X    
Level 3 X X X X   
Level 4 X X X X X  
Level 5 X X X X X X 

CS is a complex process, which is usually based on the users’ experience. Many issues can be faced 

when dealing with calibration. Previous studies [6,17–20] investigated CS application focusing on the 

main issues that characterize CS. In particular a very detailed review was carried out recently by  

Coakley et al. [19], about the state of the art, in the CS domain, gathering the most recent applications 

of CS depending on the type of building model and on the approach used (manual or automated).  

The review hereby presented intents to start from the background provided within [19] and integrate it 

with the more recent applications and findings in the CS domain. In particular, a detailed review of the 

current sensitivity and uncertainty analyses used for calibration is also presented aiming at underpin it 

as crucial and essential part of the process of calibration. 

The list of the issues affecting calibration proposed by [19], revised and integrated by the authors of 

this paper is hereinafter provided as follows:  

- Standardization. Statistical criteria are used for assessing whether or not a building model can be 

considered calibrated. They do not provide a method about how calibrating a building model. 

Therefore, so far, there is no formal and recognized standard methodology or guidelines for CS, 

which is usually carried out based on users’ judgment and experience. 

- Calibration costs. The modeling process does not represent an easy task, even for building 

simulation that does not require calibration. Calibrated models are far more complicated and 

require higher expenses than “uncalibrated” models. Calibration, as no automated procedure has 

been defined yet, is highly time-consuming indeed. Furthermore time and expense for collecting 

sub-metered data, contribute to CS costs. 

- Model complexity. Depending on the type of energy model created and on the model complexity, 

the number of input data considered may vary. Normative quasi-steady models are simpler than 

transient energy models, created within energy simulation program (e.g., EnergyPlus, TRNSYS 

(Transient System Simulation Tool), etc.). The degree of simplification of the building model 
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concerns directly the input data, as the more complex the models is, the larger amount of input 

data are required. 

- Model input data. Large quantity of input data are always involved in the building modeling 

process. However, the quantity may vary depending on the level of detail pursued in the model 

definition and on the data availability (e.g., problems of data quality). Measured data are 

sometime used for providing the model with further information (e.g., building occupancy, 

temperature set point, etc.) during validation of the calibrated model based on statistical indices. 

- Uncertainty in building models. When manual calibration is carried out, a deterministic approach 

is usually adopted. However as not all input data affect the investigated energy consumption in 

the same ways, it is important to identify, throughout a screening analysis, the parameters that 

influence the most the building model, and define their level of uncertainty. 

- Discrepancies identification. Issues concerning the reason of discrepancies between simulated 

consumption and measured consumption is often encountered during CS. Experienced users may 

be able to detect the underlying causes of the mismatch due to their building simulation skills 

and knowledge. These disagreements may be linked to a chain of causes or imputation errors in 

building model definition or also to measurements errors. 

- Automation. So far, no approved automated methodology for calibration has been presented. 

Various CS application, based on users’ experience and manual approach, can be listed.  

An automated methodology will so far reduce expenses and also attempt to wider the knowledge 

of calibration to other professionals. 

- User’s experience. Another issue that should be taken into consideration is the user’s experience. 

Reddy et al. [17] claims that “calibration is highly dependent on the personal judgment of the 

analyst doing the calibration”. Since from the first stages of simulation, the user’s experience can 

affect calibration results. Even with a systematic and automated procedure, users are still 

responsible of CS and a more than basic knowledge of the building simulation domain is required 

for applying the procedure. A deep sensibility towards the modeling process may in fact reduce 

calibration expenses, in terms of timing and avoiding mistakes. 

3. Criteria for the Model Goodness-of-Fit 

So far statistical indices are the most used criteria for evaluating the accuracy of calibration and 

whether or not a model should be considered calibrated. These criteria determine how well simulated 

energy consumption matches the measured utility data at the selected time interval. They do not 

constitute a methodology for calibrating buildings models, but rather a measure of the goodness-of-fit 

of the building energy model. 

After calibration has been endorsed as a methodology for the energy savings estimation, statistical  

indices have become the international reference criteria for the validation of calibrated models.  

They have been recommended by three main international bodies in the following documents:  

- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 

Guidelines 14 [21]; 

- International Performance Measurements and Verification protocol (IPMVP) [19]; and 

- M&V guidelines for FEMP [11]. 
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During calibration two main sets of data are needed: the simulation data set, from the building model 

created, and the metered data set, from the real building monitoring. The building model data set is 

composed of large quantity of data, among which, the most influencing parameters have to be selected 

in order to find a matching between simulated and measured energy consumption. Commonly the Mean 

Bias Error (MBE) and the Coefficient of variation of the Root Mean Square Error (Cv(RMSE)) are the 

two statistical indices used. The consideration of both indices allows preventing any calibration error 

due to errors compensation. MBE measures how closely simulated data corresponds to monitored data. 

It is an overall measure of how biased the data are. MBE is calculated, as reported in Equation (1),  

as the total sum of the difference between measured and simulated energy consumption at the calculation 

time intervals (e.g., month) of the considered period. The difference is then divided by the sum of the 

measured energy consumption. 

	 %
∑
∑

100% (1)

where  

- M is the measured energy data point during the time interval; and 

- S is the simulated energy data point during the same time interval. 

Due to a compensation effect (positive and negative values contribute to reduce MBE final value), 

MBE usually is not a “stand-alone” index, but it is assessed together with the Cv(RMSE). The Root Mean 

Squared Error (RMSE) is a measure of the sample deviation of the differences between the measured 

values and the values predicted by the model. The Cv(RMSE) is the Coefficient of Variation of RMSE 

and is calculated as the RMSD normalized to the mean of the observed values. Cv(RMSE) is either a 

normalized measure of the variability between measured and simulated data and a measure of the 

goodness-of-fit of the model. It specifies the overall uncertainty in the prediction of the building energy 

consumption, reflecting the errors size and the amount of scatter. It is always positive. Lower Cv(RMSE) 

values bring to better calibration. It is calculated as follows in Equations (2)–(4):  

100 (2)

∑
 (3)

∑
 (4)

where NInterval is the number of time intervals considered for the monitored period. 

In addition, Reddy et al. [6] have proposed an aggregated index that considers all three main types of 

the building energy uses (electricity in kWh, demand in kW, gas use in m3). It is a weighted mean of 

MBE and Cv that takes into account the weight of each energy quantity on the total annual energy cost. 

In order to consider a model calibrated, a threshold limit of the MBE and the Cv(RMSE) must be 

respected. Depending on the time interval for the calibration (monthly or hourly) and in compliance with 

the requirements of the Standard/Protocol considered, the limit threshold is subjected to slight 

differences, as reported in Table 2. 
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Table 2. Threshold limits of statistical criteria for calibration in compliance with [10,11,21]. 

Statistical  
Indices 

Monthly Calibration Hourly Calibration 

St. 14 IPMVP FEMP St. 14 IPMVP FEMP 

MBE [%] ±5 ±20 ±5 ±10 ±5 ±10 
Cv(RMSE) [%] 15 - 15 30 20 30 

If a model is calibrated in compliance with these limits, “it is sufficiently close to the physical reality 

that it is intended to simulate” [16]. However, these thresholds represent a first guidance for the building 

calibration and should not be taken as definite values. The presented statistical indices are related only 

to the predicted building energy consumption. The compliance with the thresholds can also be achieved 

with different models, as the solution is not unique and may not guarantee that all the model input data 

are correctly tuned. As stated before, calibration is an underdetermined problem.  

Moreover it is important to note that this validation approach does not take into account uncertainties 

in the model and takes no notice of other influent parameters, such as indoor condition, temperature 

trend and occupancy. 

4. Calibration Methodologies for Building Simulation Models 

Clarke et al. [22] have proposed four main categories of calibration methodologies, revised also by 

Reddy et al. [16]:  

(1) manual calibration methods based on an iterative approach; 

(2) graphical-based calibration methods; 

(3) calibration based on special tests and analysis procedures; and 

(4) automated techniques for calibration, based on analytical and mathematical approaches. 

Different methods, from the four main categories above, can be used during the same calibration 

process. For example, both graphical and mathematical/statistical methods can be used in synergy to 

improve the calibration of a building model. Moreover, both manual and automated calibration can be 

based on analytical procedures. 

4.1. Manual Calibration 

This first category includes all CS applications without a systematic or an automated procedure.  

It is based on users’ experience and judgment and it is also the most commonly used in simulation 

applications [12,23,24]. It includes “trial and error” approaches, which are based on an iterative manual 

tuning of the model input parameters. Input data are altered based on the users’ experience and 

knowledge about the building. Manual calibration corresponds thus to subjective and ad-hoc approaches. 
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4.2. Graphical Techniques 

Within the manual calibration methodologies, techniques based on graphical representations and 

comparative displays of the results are included. They generally consist of time-series and scatter plots. 

Apart from classical and time-series plots [23–25] still used for calibration purposes, innovative methods 

have been also employed to this regard; two main techniques can be listed for their wide application:  

- 3D comparative plots; and 

- calibration and Characteristic signature. 

4.2.1. 3D Comparative Plots 

A 3D plot approach has been developed to analyze hourly differences, during the whole simulation 

period, between simulated and measured data [26]. This method is used for calibrating time-dependent 

parameters, such as schedule loads. Hourly values are computed and compared in the plot.  

The originality of this method relies on the increased ease of identifying even small differences in the 

measured and simulation data comparison. An example 3D plot, created by the authors and pictured in 

Figure 1 shows on a daily basis three different D graphical plots, representing measured data, simulated 

data and the difference between simulated and measured data, respectively. This type of representation 

has also been used with statistical indices (MBE and Cv(RMSE)) for analyzing the goodness-of-fit of the 

building model. 

 

Figure 1. Cont. 
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Figure 1. Example of 3D comparative plots. 

4.2.2. Calibration Signature 

The term signature is used to refer to a graphical representation of the difference between the 

simulated and the measured energy performance of a particular case study [27]. It corresponds to  

a normalized plot of the differences between the predicted and simulated energy consumption,  

as a function of the outdoor air temperature. 

 (5)

	 100%	 (6)

For each temperature, the difference between measured and simulated energy values, divided by the 

maximum measured energy value and multiplied by 100%, is plotted versus the temperature, to draw 

the trend of the signature. For a model perfectly calibrated the signature should be a flat line. An example 

calibration signature is depicted in Figure 2. 

 

Figure 2. Example of calibration signature. 
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Another signature, referred as characteristic signature, should be defined for comparing values from 

two distinguished simulations, instead of values from measured and simulated data. The characteristic 

signature should be taken as reference or baseline for the measured values. Characteristic signatures are 

generally calculated based on a daily average basis and are denoted by a characteristic shape due to the 

climate and the system type considered. 

	 100%	 (7)

When assessing both characteristic and calibration signatures, the differences between the two curves 

help users detect errors in the simulation inputs for calibrating the model. It is thus possible to study the 

effect of the input parameters variation in the building models looking at the calculated signature. 

A proposed methodology based on the use of the calibration and characteristic signatures is presented 

in [27] as a fast procedure. Assessed for both heating and cooling consumption, usually the calibration 

signature is compared to the characteristic signature of the investigated system configuration or studied 

climate, to verify if, varying one or more parameters, the signatures are similar, and an acceptable value 

of the combined error, ERRORTOT, is reached. This error is calculated as follows:  

	  (8)

where  

subscripts HTG and CLG refer, respectively, to the heating and cooling time intervals considered; 

RSME is the Root Mean Squared Error calculated as in Equation (3); and 

MBE is the Mean Bias Error calculated as in compliance with Equation (1). 

When the minimum of ERRORTOT is achieved, then the calibration can be considered concluded. 

Several applications of this methodology can be found in research and academic US studies [28–30]. 

In particular, it has been presented within Sub-Task D2 of the International Energy Agency ECBCS 

Annex 40 “Commissioning of Buildings and HVAC Systems for Improved Energy Performance” [31]. 

4.3. Calibration Based on Analytical Procedures 

This category is based on analytical and test procedures, such as short or long-term monitoring 

periods. It can be distinguished from the automated methodologies as it does not employ mathematical 

or statistical procedure for the calibration process. 

Among the special tests that can be used for calibrating the building models, measurement tests  

(such as blower door tests or wall thermal transmittance measures) are considered. As they are quite 

invasive, especially when buildings are constantly occupied, they cannot always be performed.  

Short-term monitoring and in situ inspections can also assist the calibration process. For example, 

 the PSTAR (Primary and Secondary Term Analysis and Renormalization) method [32] is a unified 

method of hourly simulations of a building and analysis of performance data, based on the use of  

short-term monitoring data. 

The building energy balance is assessed as sum of the heat flows calculated after the audit inspection. 

Heat flows are assessed based on macro-dynamic calculations. Each heat flow term is then classified as 
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primary or secondary depending on its magnitude. Primary terms are then renormalized (calibrated) 

based on monitored data. 

Within this category, calibrations that are assisted by audit reports are also included. This builds on 

building verification from the audit information and technical specifications. 

4.4. Automated Techniques for Calibration Based on Analytical and Mathematical Approaches 

Automated techniques include all approaches that cannot be considered user driven and are built on 

sort of automated procedures [19]. They can be based on mathematical procedures (e.g., Bayesian 

calibration) or analytical approaches. 

4.4.1. Bayesian Calibration 

Bayesian analysis is a statistical method that employs probability theory to compute a posterior 

distribution for unknown parameters (θ) given the observed data (y). It is used for calibration purposes 

for incorporating directly uncertainties in the process [33,34]. Traditionally, the Bayesian technique was 

used for the model predictions in other domains (such as geochemistry [35] or geology [36,37])  

rather than in building physics simulation. However, recently different studies [38–40] have focused on 

the application of this technique to the building simulation domain. 

Based on the Bayesian theory [41], a set of values of the uncertain parameters θ of the energy model 

is formulated in order to find a matching between the simulation outcomes and the measured data y. 

Three different sources of uncertainty are investigated: parameter uncertainty in the energy model; 

discrepancy δ(x) between the energy model and the real building behavior; observation error ε(x).  

A prior probability density function is assigned to each calibration uncertain parameter based on users’ 

judgment and experience. 

The formulation adopted for denoting the observation y(x) is the following:  

η , θ δ ε  (9)

Observations (y) are calculated as a results of simulation outcomes from the model (η(x, θ)) having 

known parameters (x), unknown parameters (θ), observation errors (ɛ(x)) and discrepancies δ(x).  

A Gaussian process, based on a multivariate normal vector is adopted to denote η(x,θ) and δ(x).  

The energy model outputs are thus denoted as normal distribution. In order to solve the multivariate 

distribution the Markov Chain Monte Carlo algorithm is used to compute the probability density function 

of the calibration parameters considered. Finally a posterior distributions function of each uncertain 

parameter is assessed. 

4.4.2. Meta-Modeling 

According to Van Gelder et al. [42], a meta-model is a mathematical function which coefficients are 

determined based on a limited number of input/output combinations. Different meta-models techniques can 

be found in literature [42]: polynomial regression (PR), multivariate adaptive regression splines (MARS), 

kriging (KR), radial basis function networks (RBF), and sigmoidal neural networks (NN). 

A meta-model can be defined as a “model of a model” [43] or a surrogate model that is usually used 

for reducing the model complexity. It is thus a simpler and computationally faster version of the model. 
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For instance, meta-models created within building simulation programs are based on an essential 

characterization of the building. This type of building energy models is defined by varying all of the 

input parameters of the original and more complex model within a certain range, around its baseline 

design. Usually for creating an n sample of the p inputs, sampling techniques, like in the Monte Carlo 

Analysis as further described in the paper, are used. 

Once the meta-model is derived from the full original model, an optimization algorithm is applied. 

One of the main benefits of meta-modeling is the reduced simulation time that allow different 

optimization scenarios to be performed. Meta-modeling is also employed as sensitivity analysis for the 

assessment of the building energy performance. 

4.4.3. Optimization-Based Methods 

The term optimization is used in building simulation to refer to an automated approach based on 

numerical simulation and mathematical optimization [44,45]. Optimization-based methods are usually 

built on the coupling between a building simulation software (e.g., EnergyPlus, TRNSYS, etc.) and an 

optimization program (e.g., GenOpt), which employs optimization algorithms [45–47]. Simulation-based 

optimization has recently been used for various applications in building simulation [48–50], and also for 

the calibration of building models [43,51]. In order to perform the optimization, an objective function 

has to be set within the optimization program. Usually in calibration application the objective function 

is defined as a function of the difference between measured and simulated data. The optimization is thus 

based on the matching between a set of measured data and simulated data. 

5. Model Uncertainties 

Uncertainty and sensitivity analyses represent an integral part of the modeling process, especially for 

calibrated simulation. Saltelli et al. [52] claimed the relevance of sensitivity analyses in the modeling 

process models when dealing with uncertainties, treating the choice of the model as one of the sources 

of uncertainty. Recently uncertainty and sensitivity analyses have found applications in various 

engineering fields and especially in the building physics domain [18,33,39,53–64]. They can help 

overcoming gaps in the building knowledge, identifying and ranking the sources of uncertainties.  

As Campolongo et al. [54] stated, “uncertainty and sensitivity analyses study how the uncertainties in the 

model inputs (X1, X2, …, Xk) affect the model response Y”. The uncertainty analysis (UA) aims to quantify 

the output variability. On the other hand, as claimed by Saltelli et al. [41] “sensitivity analysis (SA) is 

the study of how the uncertainty in the output of a model can be apportioned to different sources of 

uncertainty in the model input”. 

Notwithstanding uncertainties are often overlooked in calibration studies and not included in 

calibration methodologies. They are referred as procedural techniques [19] that can be used to assist 

improving the calibration process. Nevertheless, considering that calibration is a highly under-determined 

problem, it is important to account for uncertainties in the model during CS. Uncertainties can thus hold 

a great potential for the design practice. Their identification can have a great impact on the model 

reliability. Uncertainty analyses may assist calibration for better probabilistic predictions, especially 

when analyzing different retrofit scenario or during commissioning. In fact even when the building 

model is created upon the “best plausible estimates”, in terms of input parameters values and building 
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system and operation definition, disagreements between simulated and measured energy consumption 

may be encountered. Such discrepancies may be attributed to an incomplete knowledge of the building; 

the building model may thus not reflect correctly the real behavior of the building intended to be simulated. 

In the building physics domain, uncertainties may result from different sources. Heo [34] identified 

four main categories of uncertainty sources in building models, when carrying out studies on energy 

retrofit analyses. Table 3 lists them. 

Table 3. Source of uncertainty in building energy models [34]. 

Category Factors 

Scenario uncertainty 
Outdoor weather conditions 
Building usage/occupancy schedule 

Building physical/operational uncertainty 

Building envelope properties 
Internal gains 
HVAC systems 
Operation and control settings 

Model inadequacy 
Modeling assumptions 
Simplification in the model algorithm 
Ignored phenomena in the algorithm 

Observation error Metered data accuracy 

All four categories refer to uncertainties in the physical domain of the building. The first category 

“Scenario uncertainty” concerns the external environment (e.g., outdoor weather conditions) and the 

building use. Usually, real weather data are used for creating real weather file to be employed in 

simulation instead of TMY weather data. Incomplete and fragmented data can determine uncertainties 

in the data collection and consequently in the definition of the real weather data. Similarly, uncertainties 

can affect the definition of the building use, which is set by means of schedules expressing the building 

occupancy and operation. The second category refers to uncertainties in the building modeling, with 

special regard to the building envelope thermo-physical properties, the building internal gains (people, 

appliances, lightings, etc.), the HVAC definition and its operational and control settings. The third 

category refers to uncertainties in the building model as physical representation of the real phenomena. 

Each building model is thus an approximation of a real building, created on the basis of assumptions and 

simplifications. The last category refers to observation errors in the measured data. The data quality of 

measurement used for calibrating the model can affect the accuracy of the results. Therefore uncertainties 

in measured data have thus to be taken into account. 

From literature, different methods for SA and UA can be applied. First, it is essential to distinguish 

two main approaches: external and internal methods [55]. Within internal methods fall all those 

approaches where, the mathematics equations, which the simulation models are built on, are not 

subjected to review. Internal methods won’t be described within the present paper, as the focus of this 

section will be on uncertainties coming from outside the system. The deterministic approach used for 

defining and simulating the building models is not discussed. Indeed, external methods include all 

methods aiming to alter the simulation model parameters and measure the effect of their variation on the 

outputs. Under the umbrella of the external methods two different categories can be identified [54]: local 

and global approaches. The first category includes both screening methods and local methods. They are 
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both considered One At a Time (OAT) method as one parameter (input data) is varied at time while all 

the others are maintained constant. Uncertainties in one parameter are thus calculated for studying how 

the variations affect the model output. Interactions between different model inputs are therefore 

overlooked. Global sensitivity methods are, on the other hands, based on varying more parameters 

simultaneously. They study thus the influence of uncertain input on the whole space. 

5.1. Screening-Based Method 

Screening analyses are local sensitivity analyses usually aimed at identifying the most important or 

influent parameters to be considered in further global SA. 

5.1.1. Sensitivity Index 

It is an OAT method and one of the simplest methods for screening the most important parameters 

over the investigated output in a model. Standard values and two extreme values on the standard one 

(minimum and maximum values) are defined for the studied model parameters. To evaluate the sensitivity 

of each parameter a specific measure, the sensitivity index (SI) is calculated. It corresponds to the output 

difference, in %, for the extreme values of the parameter considered. It is calculated for each parameter 

once at time. It is formulated as follows [57]:  

100%  (10)

When the parameter SI changes considerably, the parameter can be considered sensitive, thus influent. 

5.1.2. Differential Sensitivity Analysis 

Another simple method used for carrying out a sensitivity analysis is the Differential Sensitivity 

Analysis method (DSA) [64]. Each parameter is varied once at a time. The measure used for assessing 

the variation of the input on the studied output is the influence coefficient (IC). It is a non-dimensional 

measure calculated as follows:  

∆

∆  (11)

where  

OP is the output data value; 

IP is the input data value; and  

the subscript bc indicates the values referring to the baseline model. 

Usually DSA is employed in compliance with other screening techniques, like the Morris method [18,64]. 

5.1.3. Elementary Effects 

The most common screening technique is the Morris method, also known as method of the “Elementary 

Effects” (EE) [54,65]. It is an OAT method as well. It is one of the most effective local SA methods  
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due to its global approach. For this reason it also considered a global SA method rather than a local one. 

The model sensitivity to the parameter analyzed is investigated through two measures: the mean value and 

standard deviation of the computed EE for each factor investigated. They are both used to rank the 

parameters for their influence on the output considered. For this reason this method is also referred as the 

EE method. The EE of a given parameter Xi at a given point is formulated as follows [54,56]:  

	
, , ∆ , … , , … ,

∆
 (12)

where  

Y is the system output evaluated before and after the variation of the ith parameter; and 

Δ is an incremental effect that is a multiple of 1/(p − 1). 

As different trajectories are defined each time a new parameter is changed, the baseline value is every 

time different. 

For each factor k, r different elementary effects, as r different trajectories, are sampled. The mean 

values μi of the sample of r value of EEi, as measure of the overall effect of the input Xi on the output Y,  

is then assessed. Moreover, the standard deviation σi of each of the k distributions of values of EEi,  

as an expression of the interactions effects, is also computed. The formulation for μi and σi are, respectively, 

presented in Equations (12) and (13):  

μ
∑

 (13)

σ
∑ μ

 (14)

The results are usually plotted in the typical two-dimensional graph proposed by Morris [65].  

Mean values μ for each parameter (on the X-axe) are compared to the corresponding standard deviation 

σ (on the Y-axe). The points with the highest values of both the measures are the most critical for 

calibration. The parameters with high standard deviations but low mean have also to be considered 

influential for calibration, as the lower values of μ can be attributed to compensation errors (negative 

and positive values). 

A revised version of the Morris method has been developed by Saltelli et al. [18,54,56]. Instead of 
the mean value calculation, this version is based on the absolute value of the mean, μi

�, in order to 

avoid cancellation errors. 

μ∗
∑

 (15)

The EE method does not allow UA as it does not take into account the shape of probability density 

function of the parameters. It cannot be considered a quantitative analysis as it does not quantify the 

parameters influence. However this method can be used to isolate the very few influent parameters and 

rank them among a large number of studied parameters. For this reason it has been widely employed in 

building energy analyses and in the first stages of calibrated simulation [38,64,66,67]. 
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5.2. Regression Analysis 

Regression analysis are used both in the early design stages, for considering different design scenarios 

and their impact on the building energy consumption, and in post-construction stages, for assisting the 

calibration of building models. Regression equations are thus employed for carrying out global 

sensitivity analysis to identify the most influencing parameters in the energy consumptions of the 

building model to be calibrated [41]. It is a method commonly used to reduce the computational costs. 

As statistical method, it aims to estimate the relationships between different variables in a model, 

investigating how a dependent variable changes based on the variation of an independent variable. 

Specifically it aims to estimate the regression function, which is the function of the independent variable. 

In particular standardized regression coefficients are used in SA for applying sensitivity rankings to the 

input parameters [41]. They represent a mean of the parameter influence on the model. Based on the 

relative magnitude of the regression coefficients, a sensitivity ranking is assessed. 

Applications of similar mathematical models to the domain of building simulation can be found  

in literature [62,63,68,69]. 

5.3. Variance-Based Method 

Variance-based methods aim to decompose the uncertainty of the outputs over the input variables. 

Usually two main sensitivity measures are assessed within this type of technique:  

- first-order index, Si, which represents the effect of the input parameter Xi on output variation y;  

- total order index, STi, that measures the effect of the parameter alone and the sensitivity of the 

interaction of the parameter with all other parameters, as described in Equation (16). 

⋯ ⋯ (16)

The variance-based method can cope with non-linear and non-monotonic models and appreciate the 

interaction effects among input factors. 

5.3.1. ANOVA 

The Analysis Of Variance (ANOVA) technique is a variance-based method used for global sensitivity 

analysis purpose [70,71]. This is a statistical technique where the output variance is divided over the 

input variables. The variance is a measure of the output dispersion, used to assess the relevance of each 

input design variable. This technique is based on the decomposition of the model variance into  

first-order index, second-order or higher-order indices and the total effect index. 

5.3.2. FAST 

The Fourier amplitude sensitivity test (FAST) was first introduced by Cukier et al. [72] in the 1970s 

and used for carrying out global SA of mathematical models. The classical FAST method [72] was used 

to compute only the first order sensitivity index Si, while an extended version has been later proposed 

by Saltelli et al. [73] for the simultaneous estimation of the first and total sensitivity index, respectively, 

Si and STi, for a given factor Xi [41]. 
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The FAST method is considered superior to other local SA methods as it allows apportioning the 

output variance to the variance in the input parameters [73]. It computes the individual contribution of 

each input factor, referred as “main effect” in Statistics, to the output variance [41,73]. 

Sobol [41,73] has developed a global SA method, which is considered a natural and more general 

extension of the FAST approach. In this case, the main effect, Si, and the interaction terms, Sij, are 

calculated together with higher-order terms computed by means of MCA. Both FAST and Sobol’s 

method allow the evaluation of each parameter contribution to the variance caused by the main effect, 

however FAST is computationally faster than Sobol’s that decomposes all the output variance indeed. 

5.4. Monte Carlo Method 

Monte Carlo analysis (MCA) is one of the most commonly used techniques for carrying out global 

sensitivity and uncertainty analysis [43,59,67,74–78]. It is based on a repeated number of simulations 

with a random sampling of the models input. Each uncertain model input is defined through a probability 

distribution. All input parameters are then varied simultaneously. MCA assesses an estimate of the 

overall uncertainty in the model predictions based on the uncertainties in the input parameters. 

Different techniques may be used for sampling the data: random, stratified sampling and Latin 

Hypercube Sampling [79]. In the first case the input values are a random sample from the probability 

distribution. Stratified sampling is an improvement of the random technique that, based on the 

subdivision of the probability distribution of the input factor into different strata of equal probability, 

force the sample to conform to the whole distribution studied [80]. Latin Hypercube sampling is a stratified 

sampling where the values generated for each input factor come from a different stratum. 

MCA is based on a matrix that contains, for N model runs, the randomly generated sample values of 

each of the input parameters under examination. MCA allows a better coverage of the sample space of 

the input parameters [77] as, for example with a Latin Hypercube Sampling, N, then evaluated N times, 

once for each row of the sample, creating an input-output map within the parameters. 

6. Calibrated Simulation Applications 

A list of the main and most recent applications of CS is reported in Table 4. All studies are classified 

according to some criteria characterizing the calibration process:  

- the calibration methodology adopted; 

- the calibration level pursued; 

- the model complexity; 

- the simulation tool used; and 

- the integration of SA/UA in the calibration process. 

Reddy et al. [6] presented a four-step general methodology for calibrating building models, which is 

accompanied by a detailed review of calibration techniques [17] and applied to three case studies [16]. 

The methodology proposed does not aim to find a unique and best calibrated solution but it rather aims 

to find a small set of most plausible solutions indeed. Although tested with the DOE-2, in the ASHRAE 

research project 1051-RP, the methodology can be applied to any simulation program. It was developed 

as a robust but flexible methodology for calibrating building models. The core of the methodology is 
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represented by the sensitivity analysis for identifying the parameters that influence the most the model 

outputs during calibration. First a set of influential parameters are defined with their best-guess value; 

secondly Monte Carlo simulations are run to filter and to identify the more sensitive parameters to be 

tuned for calibration. The case studies were investigated for the calibration level 4. After sensitivity 

analysis is performed, a set of the most plausible solutions for the parameters tuning is defined to make 

the measured consumption match the predicted ones from the simulation program. The methodology has 

also been applied to other case studies [81] and used for research activities [82]. 

Bertagnolio et al. [18] developed an evidence-based calibration methodology intended to be manual 

but systematic [83] and applied it to a real office building. The application of the developed methodology 

is quite detailed, and ranges from the calibration level 1 to level 4 (see Table 1 for further specifications). 

The methodology builds mainly on an intensive use of a sensitivity analysis (Morris method) and  

(non-intrusive) measurements. The case study was modeled, based on the available measured energy use 

data, as a simplified building energy model. The accuracy of the building model was verified for each 

calibration level fulfilling the MBE and Cv(RMSE) statistical indices. 

Eisenhower et al. [13] developed a systematic and automated approach for calibrating building energy 

models. The methodology identifies critical and influential parameters and automatically tunes them to 

calibrate the building model. In particular, after a first sampling of all the model parameters (2063),  

a sensitivity analysis was run for ranking the parameters, in terms of their impact on the output results.  

A quasi-Monte Carlo approach was used as SA. From 2063 input data sampled, a set of top 10 parameters 

was defined for the calibration stage. In order to reduce the calibration computation time a meta-model 

of the case study was created within the EnergyPlus program. 

Heo et al. [34,38] applied a Bayesian calibration of normative energy models for accounting 

uncertainties during the retrofitting of existing buildings. Calibration was carried out to assess a set of 

energy retrofit measures to apply to the case study. The normative energy model of the case study was 

also compared with a detailed transient model created in EnergyPlus. CS is assisted by the Morris 

method, to screen and reduce the number of parameters to calibrate. From the results, it emerged that the 

calibrated normative model predicts as accurately as the calibrated transient model, but requires much 

lower computation time. 

Raftery et al. [84] presented an evidence-based method for CS and applied it to a real monitored 

building [85]. The method aims to improve the reliability of calibrated models classifying the changes 

made to the building model depending on a hierarchy of sources. This hierarchy impacts on the source 

reliability that brings to changes in the model. These changes are stored by a control program that allows 

the users to review the building model and the changes made to its. After the modeling is completed, an 

iterative calibration is carried out until the model can be considered calibrated and its accuracy verified. 

Taheri et al. [51] carried out an optimization-aided model calibration method and applied it to an 

existing university building for a five-month calibration period. Based on first monitored data, occupancy 

schedules were created and implemented in the EnergyPlus building model. An objective function, based 

on the difference between the measured and simulated zone mean air temperature was defined to 

calibrate the building model. The calibration process was divided into four steps in order to investigate 

and tune the most influent parameters, in the building model; starting from a number of eight parameters 

in the first calibration, the number of parameters investigated was reduced to two in the second and third 
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calibrations, and to one in the fourth and fifth calibrations. The same method was also applied to other 

case studies [86–88]. 

Maile et al. [20] developed a method, named Energy Performance Comparison Methodology (EPCM), 

for providing feedback in the building design and operation, and especially for investigating the 

buildings performance problems based on a comparison of measured and simulated energy performance 

data. The EPCM is a three-step method: preparation, matching, and evaluation steps. 

Another interesting two-step methodology was proposed by Palomo del Barrio et al. [89], with 

specific regard to the validation of empirical models. Based on the analysis of the model parameters 

space, the methodology first checks the model validity to detect significant disagreements between 

measurements and simulations in the model performance (sensitivity analysis), and then investigates the 

differences between model simulations and measurements (optimization of model parameters). 

7. Conclusions 

Due to recent interest both in studies concerning the disagreement between measured building energy 

consumption and predicted energy consumption by building energy simulation programs and in the 

assessment of the occupant behavior, the application of calibration has expanded. Assessment of 

occupant behavior also involves sensitivity and uncertainty analyses, since the occupancy related to the 

building usage is one of the main sources of uncertainty in the building simulation models. However, 

despite the increasing importance and use of CS, the lack of a harmonized and officially recognized 

procedure for performing calibration of building energy models still remains a major issue. 

This study reviews the most used calibration methodologies in the domain of building simulation, 

aiming to highlight the pros and cons of the calibration and pointing out criticalities and gaps of such 

methodologies. With regard to the model complexity, automated models, based on mathematical and 

statistical techniques, tend to use simplified models, rather than more detailed ones, in order to reduce 

computational time. Manual and graphical methods may also avoid the use of highly complex models. 

Complex models are in fact hard to handle and to tune when using both manual methods and automated 

procedures. Additionally, automated methods may bring a reduction on the computational time of the 

calibration process. Of course even if automated methods can provide guidance to “non-properly” 

experienced users towards calibration, they may represent procedures, which are too complex, bringing 

users to a confusing and unorganized process. User’s skills and knowledge constitute an essential and 

primary element for performing calibration; they thus directly impact on the calibration running time, 

regardless of the calibration method applied and the accuracy of the building models achieved. 

Among the methods presented some are emerging more than others, being applied in many studies. The 

current trend, based on the literature review hereby presented, is the search for and use of automated 

methods, based on the implementation of sensitivity and uncertainty analysis, to fine-tune the models 

and improve thus their accuracy. This is particularly true for complex dynamic models of buildings that 

are used by professionals. In many cases, it is possible to have large sets of measured data, however, due 

to the high number of parameters of a dynamic model and the computational time necessary, the process 

of calibrating the model is done merely with a trial error approach. Application in the design 

professionals’ community is the challenge that calibrated simulation will face in the next future. 
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Table 4. List of the most recent published application CS in the domain of building simulation. 

Author Title Year 
Journal/ 

Conference 
Ref. 

Calibration Characterization 

Model type 
Calibration 

level 
Calibration Method SA/UA 

Monitoring 
period 

Simulation 
tool or 

Standard 

Palomo del Barrio, E.; 
Guyon, G. 

Application of parameters 
space analysis tools for 
empirical model validation 

2004 
Energy and 
Buildings, 36,  
23-33 

[89] - 
whole 

building 
model 

- - 
Optmi-
zation 

SA - CLIM2000 

Liu, S.; Henze, G.P. 
Calibration of building models 
for supervisory control of 
commercial building 

2005 

9th International 
Building Simulation 
Association (IBPSA) 
Conference 2005 

[48] Detailed 
whole 

building 
model 

- Automated 
Optmi-
zation 

- - 
EnergyPlus, 

GenOpt 

Pan, Y.; Huang, Z.;  
Wu, G. 

 Calibrated building energy 
simulation and its application 
in a high-rise commercial 
building in Shanghai 

2007 
Energy and 
Buildings, 39,  
651-657 

[12] Detailed 
whole 

building 
model 

Level 3 Manual Iterative - - DOE-2  

Reddy, T.A.;  
Maor, I.; 
Panjapornpon, C. 

Calibrating Detailed Building 
Energy Simulation Programs 
with Measured Data–Part II: 
Application to Three Case Study 
Office Buildings (RP-1051) 

2007 
HVAC and 
Research, 13,  
221-241 

[16] Detailed 
whole 

building 
model 

Level 4 
Mathema-

tical 
- Montecarlo N.A. DOE-2  

Hassan, M.A.;  
Shebl, S.S.;  
Ibrahim, E.A.;  
Aglan, H.A. 

Modeling and validation of the 
thermal performance of an 
affordable, energy efficient, 
healthy dwelling unit 

2011 
Journal of Building 
Simulation 4,  
255-262 

[24] Detailed 
whole 

building 
model 

Level 4-5 Manual Iterative - Short-term 
Visual  
DOE-4 

Liu, G.; Liu, M. 

A rapid calibration procedure 
and case study for simplified 
simulation models of commonly 
used HVAC systems 

2011 
Building and 
Environment 46, 
409-420 

[28] - 
whole 

building 
model 

Level 4 Graphical 
Calibration 
Signature 

NA Short-term - 

Raftery, P.;  
Keane, M.;  
Costa, A. 

Calibrating whole building 
energy models: Detailed case 
study using hourly measured data 

2011 
Energy and 
Buildings 2011, 43, 
3666-3679 

[85] Detailed 
whole 

building 
model 

Level 4 Manual Iterative - Long-term EnergyPlus 

Bertagnolio, S.; 
Randaxhe, F.;  
Lemort, V. 

Evidence-based calibration of a 
building energy simulation 
model: Application to an office 
building in Belgium 

2012 

12th International 
Conference for 
Enhanced Building 
Operations, 
Manchester, UK 

[83] 
Normative 

(quasi-
steady) 

whole 
building 
model 

Level 1 to 4 - 
evidence-

based 
Morris 
Method 

Short-term ISO 13790 

Heo, Y.; Choudhary, R.; 
Augenbroe, G.A. 

Calibration of building energy 
models for retrofit analysis 
under uncertainty 

2012 
Energy and 
Buildings 47,  
550-560 

[38] 
Normative 

(quasi-
steady) 

whole 
building 
model 

- 
Mathema-

tical 
Bayesian 

Morris 
Method 

- ISO 13790 

Fontanella,G.; 
Basciotti, D.;  
Dubisch, F.; Judex, F.; 
Preisler, A.; 
Hettfleisch, C.; 
Vukovic, V.; Selke, T. 

Calibration and validation of  
a solar thermal system model 
in Modelica 

2012 
Journal of Building 
Simulation 5,  
293-300 

[25] Detailed Solar System Level 4 - 
Optmiza-

tion 
- Short-term 

Modelica 
(Dymola), 
GenOpt 
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Table 4. Cont. 

Author Title Year 
Journal/ 

Conference 
Ref. 

Calibration Characterization

Model type 
Calibration 

level 
Calibration Method SA/UA 

Monitoring 
period 

Simulation 
tool or 

Standard 

Maile, T.;  
Bazjanac, T.;  
Fischer, M. 

A method to compare 
simulated and measured data to 
assess building energy 
performance 

2012 
Building and 
Environment 56, 
241-251 

[90] Detailed 
whole 

building 
model 

N.A. Manual Iterative - Long-term Not specified 

Parker, J.;  
Cropper, P.;  
Shao, L. 

A calibrated whole building 
simulation approach to 
assessing retrofit options for 
Birmingham airport 

2012 

IBPSA-England,  
1st Building 
Simulation and 
Optimization 
Conference, 
Loughborough, UK 

[91] Detailed 
whole 

building 
model 

Level 2 
Manual 
(Raftery  

et al.) 
Iterative - Long-term IES 

Kim, Y.; Yoon, S.; 
Park, C. 

Stochastic comparison between 
simplified energy calculation 
and dynamic simulation 

2013 
Energy and 
Buildings 64,  
332-342 

[59] 

Simplified 
(A), 

detailed 
(B)  

whole 
building 
model 

- 
Matema-

tical 
Bayesian 

SA-Morris 
Method 

- 

ISO 13790 
(A), 

EnergyPlus 
(B) 

Manfren, M.;  
Aste, N.;  
Moshksar, R. 

Calibration and uncertainty 
analysis for computer models–
A meta-model based approach 
for integrated building energy 
simulation 

2013 
Applied Energy 
103, 627-641 

[39] 
Simplified 

and 
detailed 

whole 
building 
model 

Level 4 
Mathema-

tical 

Bayesian, 
Meta-

modelling 

with 
Bayesian 

calibration 
Short-term - 

O’Neill, Z.; 
Eisenhower, B. 

Leveraging the analysis of 
parametric uncertainty for 
building energy model 
calibration 

2013 
Journal of Building 
Simulation 5,  
365-377 

[13] 
meta-
model 

whole 
building 
model 

Levels 4-5 Automated 
Optmi-
zation 

quasi-
Montecarlo 
approach 

Long-term 
EnergyPlus,

Design-
Builder 

Taheri, M.; 
Tahmasebi, F.; 
Mahdavi, A. 

A case study of  
optimization-aided thermal 
building performance 
simulation calibration 

2013 
13th Conference of 
IBPSA Chambéry, 
France 

[51] Dynamic 
whole 

building 
model 

Level 4 Automated 
Optmi-
zation 

- Short-term 
EnergyPlus, 

GenOpt 

Mihai, A.;  
Zmeureanu, R. 

Calibration of an energy model 
of a new research center building 

2014 
13th Conference of 
IBPSA Chambéry, 
France 

[92] Dynamic 
whole 

building 
model 

Level 4 Manual 
evidence-

based 
- Short-term eQuest 

Mustafaraj, G.;  
Marini, D.;  
Costa, A.;  
Keane, M. 

Model calibration for building 
energy efficiency simulation 

2014 
Applied Energy 
130, 72-85 

[93] Dynamic 
whole 

building 
model 

Level 3-4 Manual 

Iterative 
(based on 

Bertagnolio 
and Raftery 
methods) 

SA Short-term 
Design-
Builder, 

EnergyPlus 

Penna, P.;  
Gasparella, A.; 
Cappelletti, F.; 
Tahmasebi, F.; 
Mahdavi A. 

Optimization-based calibration 
of a school building based on 
short-term monitoring data 

2014 

10th European 
Conference on 
Product and Process 
Modeling 

[88] Detailed 
whole 

building 
model 

Level 3-4 Automated 
Optmiza-

tion 
- Short-term 

TRNSYS, 
GenOPt 
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