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Abstract

Interactions between lipids and membrane proteins play a key role in determining the nanoscale 
dynamic and structural properties of biological membranes. Molecular dynamics (MD) 
simulations provide a valuable tool for studying membrane models, complementing experimental 
approaches. It is now possible to simulate large membrane systems, such as simplified models of 
bacterial and viral envelope membranes. Consequently, there is a pressing need to develop tools to 
visualize and quantify the dynamics of these immense systems, which typically are comprised of 
millions of particles. To tackle this issue, we have developed visual and quantitative analyses of 
molecular positions and their velocity field using path line, vector field and streamline techniques. 
This allows us to highlight large, transient flow-like movements of lipids and to better understand 
crowding within the lipid bilayer. The current study focuses on visualization and analysis of lipid 
dynamics. However, the methods are flexible and can be readily applied to e.g. proteins and 
nanoparticles within large complex membranes. The protocols developed here are readily 
accessible both as a plugin for the molecular visualization program VMD and as a module for the 
MDAnalysis library.

1 Introduction

Our concept of biological membranes has evolved over the last 40 years, from the “fluid 
mosaic model”1 to a more nuanced view of a laterally heterogeneous patchwork of proteins 
and lipids2,3. Membrane protein-lipid interactions are an area of intense research4,5 with a 
number of membrane characteristics currently under scrutiny, including lateral diffusion of 
lipids, formation of nano-domains, and local membrane curvature6,7. The nature of lipid 
diffusion within membranes remains a topic of active discussion, with two major models 
being proposed:
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- The rattle in a cage diffusion model describes short-range lipid movement: a 
lipid jumps from one location to another when it is able to escape from its 
immediate neighbours; and

- The flow-like diffusion model describes lipid movement at longer ranges: lipids 
can form loosely-packed clusters that move in concert, analogous to the 
movement of current.

While it remains difficult to experimentally assess the former theory, recent 
computational8,9 and experimental10 results tend to support the flow-like diffusion model. 
There has been a gap between the properties observable via computational approaches 
compared to those accessible via experiments11. However, this gap is now closing as 
increasing computational power provides access to simulations of biologically relevant 
times and length scales. To model large membrane systems, it is possible to use different 
levels of granularity in molecular dynamics (MD) simulations, ranging from all-atom12 (AT) 
simulations to coarse-grained13 (CG) models in which small numbers of atoms are grouped 
into representative particles, to Dissipative Particle Dynamics (DPD) simulations in which 
lipids may be modelled by just three14 to eight particles15. As a result, the size and the 
complexity of computationally-accessible membrane systems are also increasing16. The 
membrane simulation field has thus progressed from e.g. a single α-helix embedded in a 
small patch of membrane for a duration of 1–2 ns17 to the modelling of e.g. photosynthetic 
membrane vesicles18 and HIV virion membranes19,20. At this level, visual analysis becomes 
challenging21,22. Despite using the latest graphical hardware for efficient system 
display23–26, interpretation of very large membrane simulations by visual inspection is 
becoming unproductive due to their intrinsic complexity. There is therefore a substantial 
motivation to provide a simple and visually clear methodology to understand the complex 
dynamics of large-scale membrane systems. The challenge of computational visualization of 
very large systems has already been addressed in a number of areas of physics27,28. To some 
extent, visualization of very complex biomembrane systems, especially in the context of 
results from MD simulations, is less well developed. For example, the display of lipids is 
often limited to the representation of static states (i.e. simulation snapshots) and does not 
effectively render the complex dynamics of such systems. Progress has been made e.g. using 
arrows to depict discretised movements8 but approaches are needed to more fully capture 
complex dynamical processes.

Here, we describe methods for informative visualization of lipid motion in large and 
complex systems using approaches derived from biomolecular simulations, physics, and 
computer visualization. We have developed visual and quantitative analysis methodologies 
for both molecular positions and their velocity field using vector field and streamline 
techniques. This allows us to highlight substantial and transient flow-like movements of 
lipids and to potentially assess the effects of crowding within models of bacterial cell 
membranes29. We have evaluated and applied our methodology using two examples of large 
biomembrane systems recently simulated in our research group: First, a model of a crowded, 
planar bacterial membrane with lateral dimensions ~1200 Å and containing 256 copies of a 
simple bacterial outer membrane protein (OmpA); second, a 300 Å radius vesicle the lipid 
composition of which matches the influenza virion membrane as determined in recent 
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lipidomics studies30 (see Fig. 1). With membrane surfaces of more than 10,000 Å2 (~14,400 
Å2 and ~11,300 Å2 for the planar membrane and the vesicle respectively), these systems are 
representative of the largest currently simulated by CG approaches31–33. Furthermore, these 
systems provide two distinct test cases, namely a planar membrane with a simple lipid 
composition but with crowded membrane proteins compared with a vesicle system 
containing a more complex lipid mixture with a high concentration of cholesterol (see 
Methodology for full details). This allows us to test the robustness of our approach with 
rather different biomembrane model systems.

2 Methods

2.1 CG MD simulations

We have used two systems that differ in terms of shape and composition: a planar lipid 
bilayer with embedded OmpA proteins that mimics a crowded bacterial membrane, and a 
vesicle mimicking the cholesterol-rich lipid bilayer component of an influenza virion 
membrane but without any embedded proteins. Due to these intrinsic differences, the two 
systems are expected to exhibit distinct dynamic behaviour. Hence, they provide realistic 
test cases to evaluate our approach.

2.1.1 Planar membrane—This model mimics a large patch of a crowded bacterial 
membrane. The initial system size was 1180 × 1180 × 104 Å3 and contained 37,680 lipids 
(1:3 POPG to POPE) and 256 OmpA proteins, giving a protein:lipid ratio of roughly 1:150 
(see Table 1). The total number of particles is ~1,202,500 (~577,900 excluding solvent). The 
system was modelled using GROMACS 4.5.3 in combination with a modified in-house 
version of the MARTINI forcefield34,35 at a temperature of 313K. Bilayers of this size 
cannot be readily self-assembled directly due to system instability caused by pressure 
coupling and initial fluctuations. Instead we self-assembled and equilibrated a smaller patch 
containing approximately 150 lipids which was then replicated. POPE and POPG do not 
phase separate and are randomly distributed within the bilayer during this initial 
equilibration. The small lipid patch was then analyzed for leaflet asymmetry and corrected 
such that the numbers of lipids in the two leaflets were balanced. The patch was then tiled to 
form a 4×4 patch containing ~2,500 lipids followed by a second equilibration and another 
round of tiling, resulting in a final patch containing ~38,000 lipids. The final equilibration 
was performed for 100 ns. During each round of equilibration after membrane tiling, the 
system was observed to shrink modestly in the x–y plane and expand slightly in the z plane. 
The final system was simulated for 1 µs, during which frames were saved every 0.2 ns 
giving a 5000-frame trajectory for subsequent analysis.

2.1.2 Vesicle—In the course of constructing a full-scale computational model of a human 
influenza A virion, a vesicle with lipid composition matching the experimentally-determined 
influenza A lipidome30 was produced. The details of this construction process will be 
described in more detail elsewhere (Reddy et al., ms. in preparation). In brief, the vesicle 
construction process starts off with random placement of lipids within two leaflets of a 
spherical system with an outer diameter of ~740 Å. The random seeding of lipid positions 
within a set of spherical geometric constraints was handled by employing the Packmol 
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program36 for addition of lipids interleaved with energy-minimization in GROMACS. The 
asymmetric lipid distribution in the vesicle was based on the data of Gerl et al.30. Thus the 
inner leaflet contains POPS, DOPX (ether-linked DOPE) and DOPE with an approximate 
3:2:1 ratio, while the outer leaflet contains sphingomyelin (SM) molecules (with saturated 
C16 chains). Cholesterol (CHOL) molecules were distributed between the two leaflets and 
comprise >50% of all lipid molecules in the vesicle. Some mixing (i.e., flip-flop) of leaflet 
components occurred during the equilibration process. An inner core of restrained CG 
particles was employed to mimic the interior of the virion which was not modelled 
explicitly. The system contained ~3,006,000 CG particles in total (~500,000 without 
solvent). Lipids were initially somewhat sparsely packed, forming a well-packed lipid 
vesicle (~600 Å outer diameter) after a 300 ns equilibration in water at 323 K using 
GROMACS 4.5.537 and the MARTINI 2.1 forcefield38,39. The resultant lipid vesicle model 
was simulated for 5 µs at 295K, with the final microsecond being analysed in the current 
study.

2.2 System pre-processing

It is necessary to perform a series of pre-processing operations on the MD simulation data 
prior to employing our analysis methodologies. First, for each system, the motion of the 
centre of mass was removed to avoid possible artefacts. Subsequently, we performed low-
pass filtering to remove high frequency noise using the GROMACS g_filter function. The 

filter shape is  between −N and +N, where N is the number of frames, as 
detailed in Affentranger et al.40. In order to study the effect of such filtering on visual 
results, we have filtered the two systems over a series of time scales: 10 frames, 20 frames 
and 40 frames corresponding respectively to 2 ns, 4 ns and 8 ns. The largest window used 
corresponds to 0.8% of the simulation. To study the behaviour of each lipid membrane 
leaflet independently they were separated using in-house python code with the MDAnalysis 
library41.

2.3 Diffusion analysis and clustering

The mean square deviation (MSD) was calculated using the g_msd module in the 
GROMACS 4.5.4 package37,42. This module was previously employed to calculate lipid 
diffusion coefficient43,44 using the Einstein relation. “Restart” parameters of 2 ns and 5 ns 
were compared to measure their influence on the MSD curve and diffusion coefficient. 
Protein clustering was quantified using an in-house tcl script. To do so, the distance between 
the centre of mass of each protein was calculated and if this distance was smaller than the 
radius of the protein plus 5 Å we assumed that the two proteins were in contact. Each 
protein neighbour at time t was stored and the clusters were identified by a connectivity test. 
The calculations were performed every 10 ns on the 1 µs trajectories.

2.4 Algorithm implementation and availability

The algorithms presented here are primarily implemented in both Tcl and Python. The Tcl 
code will be incorporated as a plugin for the molecular visualization program VMD45 while 
the Python code is designed to be a module for the MDAnalysis library41. Scripts as well as 
documentation are available at the address: http://sbcb.bioch.ox.ac.uk/flows/
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2.4.1 Path line visualization—The path line visualization is currently only implemented 
in VMD. We have used VMD 1.9 to display and calculate the performance of such 
rendering. In the case of the planar membrane we used a tail of 5 frames (1 ns) and a mean 
displacement value of 1.2 Å. To obtain an equivalent rendering for the vesicle system, we 
chose a window size of 20 frames (4 ns) and a mean displacement value of 0.5 Å.

2.4.2 Vector field visualization—The vector field visualization is executable from 
within either VMD or a Python module depending on MDAnalysis. For VMD, it is based on 
Tcl code launchable from the VMD plugin. For this representation, two pieces of code are 
available: a 2D version and a 3D version. The 2D version flattens all the z values on one 
layer while the 3D version use the complete 3D coordinates. Plotting in the MDAnalysis 
module (written in Python) leverages the matplotlib library in 2D46 and the MayaVi47 

package in 3D.

2.4.3 Streamline visualization—Streamline visualization is executable from within 
either VMD or a Python module depending on MDAnalysis. Our in-house Python code used 
the matplotlib46 streamploti function to produce 2D streamlines and, for the 3D streamlines 
visualization, we used the MayaVi package47.

3 Results and Discussion

In parts 3.2 to 3.4 we focus on the movement of lipid phosphate headgroup particles for one 
leaflet to demonstrate our method on a simple case. However, the method can be applied to 
other cases like water molecules diffusion.

3.1 Global analysis of dynamic behaviour of lipids and proteins

Prior to applying our flow analysis tools, we will briefly describe the dynamic and clustering 
behaviour of lipids and proteins in our simulation systems.

3.1.1 Clustering of proteins—The planar membrane model (1:150 protein-lipid ratio or 
ca. 15% of the surface occupied by proteins) provides an example of a relatively crowded 
membrane system (see Fig. 2). Our final snapshot at 1 µs depicts a crowded membrane 
environment with numerous clusters of OmpA proteins, qualitatively consistent with recent 
results from high-speed AFM48 studies of protein clustering in bacterial outer membranes. 
Visual inspection reveals approximately linear clusters within the bilayer plane. Comparable 
chains of interacting proteins were recently highlighted by computational work for smaller 
systems29. At the end of the simulation, the system consists of 24 single proteins, 27 dimers, 
25 trimers and 9 tetramers (see Fig. 2–C). There are also 11 clusters formed by more than 
four proteins. The largest cluster (of 9 proteins) is highlighted in Fig. 2–A.

We also calculated the clustering of these proteins as a function of time (see Fig. 2 B, C). 
Analysis reveals that the number of monomeric OmpA proteins decreased rapidly (also see 
Sup. Movie 1), with conversion of monomers to dimers reaching a maximum after ~250 ns. 
Dimers recruit additional monomeric proteins to form trimers, and may also aggregate to 

ihttp://matplotlib.org/examples/images_contours_and_fields/streamplot_demo_features.html
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form larger clusters. After 200 ns, we observed the formation of tetramers followed by the 
formation of higher order clusters at ~300 ns. The clusters continued to evolve reaching a 
nearly steady state by the end of the simulation.

3.1.2 Diffusion of lipids and proteins—We have estimated the diffusion coefficients 
for proteins and for lipids in the two systems (see Table 1). As anticipated, the OmpA 
proteins diffuse more slowly than lipids in the planar membrane, with the two lipid species, 
POPE and POPG, showing similar diffusion characteristics. We have also calculated the 
diffusion coefficient of these lipids in each leaflet separately and the results were equivalent 
to the ones in Table 1. The diffusion coefficient for OmpA proteins is in agreement with the 
value of ~1.5 × 10−7 cm2.s−1 obtained recently for a matching system composition of 
smaller membrane size29.

The vesicular lipid diffusion coefficients are clearly lower by a factor of 20 compared to the 
planar membrane. Although this may be explained in part by the lower temperature (295K 
for vesicle; 313K for planar membrane) it is mainly due to the high content (> 50% 
molecular species) of cholesterol49. These diffusion coefficients are not far the value of 0.7 
× 10−7 cm2.s−1 obtained using magic angle spinning NMR spectra experiments on an 
influenza lipid vesicle at 290 K50. If we compare between lipids, the differences in diffusion 
coefficients relate to the asymmetry in the vesicle. The inner leaflet is mainly composed of 
POPS, DOPE and DOPX lipids while the outer leaflet is largely comprised of SM, with 
CHOL present in both leaflets but at a higher level in the outer (62%) relative to the inner 
(38%) leaflet. So, the diffusion coefficients reveal an inner leaflet which is ca. 2–3 times 
more diffusionally mobile than the outer leaflet.

Whilst the calculation of average diffusion coefficients can provide insights into the overall 
lateral fluidity of a membrane it does not reveal more complex spatial and temporal 
variations in behaviour for a given species in different regions of the membrane (e.g., 
proximal versus distal to proteins). Furthermore, analysis of e.g. lipid clustering is complex 
due to their loose, dynamic packing8,9,51. For these reasons, we have applied specialized 
visualization methodologies to our MD simulation systems to provide a more detailed 
insight into the dynamic properties of lipids in membranes. Thus the dynamic dissimilarities 
of the two membrane systems we have simulated provide test cases to assess the robustness 
of our approach.

3.2 Following each lipid by path line visualization

Current published methodologies to visualise the displacement of lipids fall in two 
categories:

1. Using arrows to represent individual lipid displacement between a time t and a time 
t+dt 8,9,52,53.

2. Using lines to connect the different positions of individual lipids over time8,54,55.

The latter is generally used to present an overview of the global region explored by a lipid 
while the former is used to depict lateral displacements of lipids in a dedicated area between 
time t and t+dt.
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We have combined these two representations to a single depiction that can evolve as a 
function of time to enhance visual interpretation of molecular mobility in a membrane. In 
practice, lines (or cylinders) depict the path of lipids over time like a tail. For a defined time 
window, positions of a lipid at different times (ti through tn) are linked to the current time, t 
(see Fig. 3 A). At time t+dt the earliest element is removed while a new line is added at the 
front of the tail segment (see Fig. 3). We have coloured segments and set the thickness of the 
tail based on the displacement between two time steps (see Fig. 3 C). This highlights 
changes to lipid motion over time and removes the noise of quasi-static lipids.

This first approach allows visualizing large and transient correlated lipid movements for the 
planar system (see Fig. 4 A and Sup. Movie 1). These transient movements can be linear as 
well as rotational - i.e. vortices. This behaviour has been reported in previous 
computational56,57 and experimental58 studies. Furthermore, Sup. Movie 1 highlights 
transient correlation between the lipid movements and the displacements of proteins. The 
translational and rotational motions of the lipids appear to be correlated with comparable 
motions of the proteins. A more detailed analysis of such phenomena will be presented 
elsewhere (Goose, Chavent & Sansom, in preparation). In contrast, the vesicle system 
presents only small changes and did not exhibit large well-defined coherent lipid motions 
(Fig. 4 B and Sup. Movie 2). Instead, this system appeared to present large patches of 
motionally stable lipids.

In some respects, analysing the membranes in these systems may be likened to analysing 
macroscopic systems such as oceans or atmosphere in which transient flows appearii. To 
study such flow formation, it is common to use evenly-spaced probes depicting the 
underlying vector field.

3.3 Approaches for following a group of lipids

3.3.1 Vector field visualization—In material physics, vector field visualization has been 
used to detect phase transitions in large ferroelectric materials27. In computational biology, 
vector fields can be used to depict evolution of regulatory networks59 or to study the role of 
water molecules in protein folding processes 60,61. Here, we use a vector field approach to 
follow a group of lipids and thereby simplify the representation of their dynamics.

Fig. 3D presents the simple steps used to create a vector field:

1. The systems were divided into grids. For each cell i (square in 2D or cube in 3D), 
we calculate the centre of mass, CoMi(t), of the constituent lipids at a time t.

2. Then, we calculate CoMi(t+dt) the centre of mass of the same selection at time t+dt,

3. These two centres of mass are used to define the vector at time t following the 
equation:

(1)

iiFor a comparison see http://www.nasa.gov/topics/earth/features/perpetual-ocean.html or http://hint.fm/wind/
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The vector origin is the centre of mass of the lipids at time t. In this paper, we have chosen a 
dt = 0.2 ns (i.e. 1 frame). This value is quite small as we wish to avoid potentially large 
spread of the lipid selection at t+dt. For the examples presented below we have used a grid 
with a resolution of 20 Å.

This visualization has some advantages over the path line visualization. Reducing the 
number of graphical objects (i.e. vectors representing a group of lipids here instead of lines 
corresponding to each lipid in the previous representation) evidently clarify the 
representation (Fig. 5 and Sup. Fig. 2). It is especially valuable for the creation of a static 
picture. Furthermore, this representation provides more insights because it is possible to 
track the direction of the lipid movements using arrows. This vector field can be then used 
as input to perform more advanced rendering.

3.3.2 Streamlines visualization—Mathematically, streamlines are curves 
instantaneously tangent to the motion vectors. Streamline curves have been used for several 
decades to represent flow patterns62. A streamline is a curve that describes the trajectory of a 
particle in a stationary vector field at a given time. More formally, given a 2D time-

dependent vector field v(x,t) = (vx,vy), a streamline S is a parametric curve S(τ) defined at 
time t and initiated from a seed point p. S(τ) is given by the equation:

Any sample point of the streamline S is given by:

with the curvilinear coordinate l ∈[−l1, l2] and l1, l2 ≥ 0. A standard Runge-Kutta integration 
schemeiii is used to sample a streamline backward (l ∈[−l1, 0]) and forward (l ∈[0, l2]) from 
its seed point. We can notice that in function of the algorithm used the streamlines can be 
integrated in one direction or in both directions. Then, the placement of the streamlines 
constitutes a key step and has been studied for a long time63.

An analogous approach, display of field lines, is used in computational biology to depict 
electrostatic fields calculated with algorithms such as the Adaptive Poisson-Boltzman Solver 
(APBS)64. Streamlines were also recently used to describe water flows revealed by MD 
simulations of photosystem II65.

It is possible to display streamlines in 2D or 3D. This streamline representation can combine 
the advantages of the two previous representations. Like the vector field, it follows a group 
of lipids but not all the lipids while, like the path lines, the streamlines help to better 
delineate the “flow” pattern of the lipids creating continuous lines between discretised 
vectors (Fig. 6).

iiihttp://en.wikipedia.org/wiki/Runge-Kutta_method
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For the planar membrane, this visualization enables display of both linear and circular 
nanometer-scale movements of lipids (Fig. 7 A and B) as well as small protein-proximal 
vortices (see Fig. 7 C). Sup. Movie 3 shows that the correlated lipid patterns are transient 
(nanosecond scale lifetime) and constantly changing. Furthermore, visual inspection of the 
results tends to show that these flow patterns are correlated with areas of substantial lipid 
displacement. The streamlines rendering also highlight how the lipid flows can bridge 
several proteins far away from each other in large correlated motions (see Fig. 6 A and C 
and Sup. Movie 3) extending the model of protein and lipids dynamic complexes66 to 
transient networks of protein and lipids.

The streamline visualization did not depict very large nanometer-scale flow for the vesicle 
system. It was only possible to display little vortices (see Fig. 7 D and Sup. Movie 4). This 
result is in agreement with the path line visualization and the calculation of the diffusion 
coefficient. It is also possible to use streamlines to compare correlated lipid motions 
between the two leaflets of a membrane (see Fig. 7 D).

3.5 Analysis tool to complement the visualizations: leaflet correlations

Streamline visualization revealed interesting flow lipid patterns. However, the 
representations may contain considerable information and it is therefore important to be able 
to isolate selected regions for comparisons. There have been several proposals to filter 
streamline data to aid such analysis (for examples see refs67,68). We applied comparable 
methodology to our systems to simplify the streamline representation using calculations 
based on the vector fields. As noted above, streamline visualizations can highlight correlated 
lipid motions between two leaflets. Here, we filter the data to highlight only the areas where 
the lipid motions are correlated above a certain threshold.

One can define Cl(t), the leaflet correlation function at time t:

(2)

where · denotes the scalar product of vectors u⃗i(t) and v ⃗i(t) as defined by equation (1). u⃗i(t) 

and v ⃗i(t) are lower and upper leaflet vectors, respectively. N is the number of non-empty cells 
in the grid. This type of correlation was recently used to identify correlated intermolecular 
dynamics of short polymer chains69. Note that −1 ≤ Cl(t) ≤ +1, where −1 represents 
movements in opposite directions and +1 represents movements in the same direction. A 
Cl(t) value near 0 depicts no correlation between the leaflets.

For the planar membrane we used the previously-defined Cartesian grid. Due to the shape of 
the vesicle, we used spherical coordinates (see Supplementary Material). To select the same 
areas of interest, we chose the same θ and φ between the two leaflets while changing the 
radial distance r to correspond to the average radius of phosphate headgroup particles in 
each leaflet. After obtaining these coordinates, we created cubes of dimensions 20 Å to 
select the lipids for vector calculations (as described in section 3.3).
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Fig. 8 presents the inter-leaflet lipid flow correlation results for each system using data 
filtered over an 8 ns time window. There is a high correlation between the two leaflets in the 
case of the planar membrane (with Cl(t) > 0.6) while, for the vesicle, the correlation values 
are lower, with Cl(t) ~ 0.4. These inter-leaflet correlations are rather more pronounced than 
those seen in simulations of a simple DOPC bilayer system70. The difference in the 
magnitude of the correlations between these two systems may be linked to the differences in 
their compositions. As noted above, the planar membrane has a symmetric, relatively simple 
lipid composition. In contrast the lipid composition for the vesicle system is highly 
asymmetric (see above), with a more slowly diffusing outer leaflet which is nearly twice as 
rich in cholesterol as the inner leaflet. We also note that the planar membrane correlation 
may be slightly overestimated due to the flattened 3D coordinates in the x–y plane.

The analysis of correlations may be used to filter the streamlines by using a cut-off threshold 
for these interleaflet lipid correlation values. For example, for the E. coli bilayer system, we 
can display the streamlines with a Cl(t) value superior to 0.8 (see Fig. 9). This represents 
around 50% of vectors used to define the streamlines. This highlights large inter-leaflets 
patterns visually correlated with the areas of high velocity. We postulate that the slower 
diffusion of the proteins can be, in part, explained by the fact that sometime the flows 
between leaflets are not correlated which can have an influence on trans-membrane proteins. 
So, using this filtering can help to select only high correlated parts of the membrane for 
further analysis.

3.7 Low pass filtering

In this article we have used the filtered data with the largest sampling window (8 ns) for 
clarity, but it is important to note that the filtering granularity can influence the results. 
Correlated lipid motions have previously been highlighted for different time scales: over 
picoseconds10,69, nanoseconds8,9, and hundreds of nanoseconds9. We have therefore tried 
different filters to see if this can highlight a particular flow pattern on a specific time scale. 
Here, we examine the effect of the filter window size on the representation of the data.

We have used low pass filtering with the GROMACS g_filter function to filter the two 
systems over a series of time scales: 10 frames, 20 frames and 40 frames corresponding 
respectively to 2 ns, 4 ns and 8 ns. This approach can remove high frequency motions of 
lipids and potentially influence the results of this study. This type of method has previously 
been employed to lipid membrane-based MD simulation systems71 and for polypeptide 
folding40. Recently, Gypsa and colleagues have also used a low pass filter to highlight 
different characteristics of membrane curvature72.

Filtering has no effect on the diffusion coefficients calculated for our simulations, with any 
discrepancies between filtered and unfiltered values falling within the bounds of the 
estimated error (data not shown). We calculated the leaflet lipid motion correlation values 
for different filter window sizes (see Sup. Fig. 3). The results for the planar membrane 
indicate that the leaflet correlation is affected by the filtering. The raw data presents a leaflet 
correlation value greater than 0 (Cl(t) ~ 0.3), consistent with some correlated lipid movement 
between leaflets in the absence of a filter. This value drastically increases with the addition 
of even a short time window filter (Cl(t) ~ 0.55 for 2 ns filter). Increasing the time window 
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size of the filter further does not lead to a substantial increase in calculated leaflet 
correlation, consistent with potential convergence to a consensus correlation value (Cl(t) ~ 
0.6 for 4 ns filter and Cl(t) ~ 0.63 for 8 ns filter).

We reused equation (2) to compare the data obtained with different filter time window sizes 
within a single leaflet. To do this, instead of comparing vectors from 2 different leaflets, we 
compare vectors for the same leaflet but with different filter windows. We called this 
function filter correlation: Cf(t). The raw data has a small correlation with 8 ns filtering (Cf(t) 

~ 0.1) but this value drastically increases even for a small filter over 2 ns (Cf(t) ~ 0.5) and is 
even higher for data filtered on a 4 ns timescale (Cf(t) ~ 0.75) (see Sup. Fig. 4). Indeed, 
visual inspection of the streamline plots indicates conserved patterns for all the filtered data 
(see Sup. Fig. 5). The effect of this filtering is to remove high frequency noise, which can 
potentially be related to jiggling motions of lipids around their positions. Thus, the filtering 
can allow focusing of the data representation over longer time scale motions rather than 
residual noise from local fluctuations.

3.8 Algorithm comparison and efficiency

We have tested our implementations on an Intel 6 cores (12 threads) i7-3930K with a 
Geforce GTX 680. The tcl code was used on 1 thread while the Python code, implemented 
to handle multithreads calculation, was tested on 1 and 12 threads (see Sup. Table 1). The 
calculation of vectors are clearly faster for the Python code than for the tcl code, this can be 
in part explained by the use of Numpy73 to efficiently deal with large arrays in the Python 
code. So, we believe that there is room for improvement for the tcl code in translating some 
parts of the calculation in C/C++ or CUDA language. At the inverse the visualization of 
streamlines is clearly faster using VMD: this is due to an implementation in C in the core of 
the program which is well optimized in comparison to the Matplotlib/MayaVi code. We can 
also notice that for our systems the use of multithread calculation with Python only 
improves the results by a small amount. The VMD visualization takes a little bit longer 
when high quality pictures (as presented in this article) are rendered using the VMD ray-
tracing engine called Tachyon74.

3.9 Grid size and time scale parameters

We tried different grid sizes for the presented CG models (data not shown). A resolution of 
20 Å seems appropriate. This value is coherent with the work of Roark et al. defining 
correlated lipid motions with a length of 25 Å70. Furthermore, this resolution value can be 
linked to the average number of lipid headgroups in each grid cell. This value is 5.7 for the 
planar membrane. The use of a higher grid resolution of 10 Å resulted in very few lipid 
headgroups in a given cell, which can defeat the purpose of analysing lipids in unison. 
Conversely, a lower grid resolution of 40 Å produced reasonable results, albeit less accurate 
than at 20 Å resolution. So, a minimum 2D system size for use of the streamline 
visualization with lipids is approximately 200 Å2 - giving a maximum grid of 100 cells. As 
we have seen with the planar membrane example system, far greater dimensions are well 
suited for such a visualization. For the vesicle system, the number of lipid headgroups per 
cell is 21,5 on average (18 for the outer leaflet and 25 for the inner leaflet). So, we could 
have diminished the cube size to increase the resolution but we preferred to keep the same 
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grid (20 Å side) to compare the two systems with the same conditions. Furthermore, at this 
resolution, the MayaVi program has difficulty rendering the scene.

In terms of the time scale over which visualizations are produced, in this paper we have 
observed that two consecutive frames (0.2 ns) produce an acceptable result. We have not 
tested our analyses over much longer time scales but we will investigate this in a future 
study.

3.10 Combining the streamline visualization with other analyses: example with membrane 

undulations

Correlating diffusional streamlines with visualization of other membrane parameters can be 
used to highlight subtle dynamic behaviours. In Fig. 10, we have colour-mapped the vertical 
displacement (z coordinate values along bilayer normal) of the membrane in the presence of 
streamlines. By inspection, the diffusional streamlines seem to evolve in a manner which 
correlates with the membrane undulations (See Sup. Movie 5) and can circulate around 
vertical undulations of the membrane (see Fig. 10). The influence of the surface shape on 
lipid dynamics has been highlighted by experimental results75,76. This could be related to 
membrane tension and pressure with the less curved parts of the membrane presenting fewer 
constraints and allowing the lipids to circulate more easily. It will therefore be of interest to 
examine complex membranes by combining visualization of streamlines with analyses such 
as the calculation of pressure fields and tension lines77, area per lipid visualization78 or lipid 
phase analysis79.

3.11 Future Directions

We have focused this study on the collective behaviour of lipids in bilayer membranes, and 
are extending this work to analyse the effects of such lipid flows on the diffusion and the 
clustering of membrane proteins (Goose et al., in preparation). We suggest that these nano-
flows can be a more general phenomenon. As the visualisation and analysis method we have 
described is flexible, it should be possible to apply this approach to other large-scale 
ensembles of molecules. For example, one might analyse data from simulations of water or 
solutes (e.g. ions) in the vicinity of transbilayer pores to explore possible nano-flows. In 
particular, as larger scale membrane simulations become more practicable (and common) it 
will be important to model such a systems using all-atomistic simulations in order to 
evaluate the robustness of our approach to different levels of granularity. We also plan to 
develop a new GPU-accelerated streamline integration and rendering engine for VMD using 
CUDA, in order to improve the interactive calculation and rendering performances.

4 Conclusion

We have presented a new visualization approach to aid our understanding of the complex 
dynamic properties of biological membranes. We have illustrated our analysis via two 
different systems with contrasting lipid compositions, shapes and dynamics. Our 
methodology has been successfully applied to render lipid motions for these two systems, 
and allows us to highlight large concerted lipid motions within the plane and between the 
two leaflets of a membrane. The lipid motions were seen to be linear as well as circular (i.e. 
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vortices) in nature and may be linked to membrane deformations perpendicular to the bilayer 
plane. Finally, we have shown that the leaflet asymmetry in lipid composition can be related 
to an asymmetry in term of dynamics.

Our set of tools is not intended to solve by itself the complex question of transient lipid 
flows, but it can be used to focus attention on particular aspects of the dynamic behaviour of 
membrane prior to more detailed statistical analysis. As larger and more complex lipid 
bilayer simulations become the norm, we anticipate that these visualization techniques will 
help us to better define the complexities of lipid movements. This, in turn, will enable 
improved parameterization of more coarse grained (e.g. DPD) and/or mesoscopic models of 
biological membranes. If they can accurately capture the key elements of complex 
membrane dynamics, such higher level models will then allow us to relate molecular 
properties of complex biological membranes to e.g. super-resolution microscopy imaging of 
the dynamics of membrane in cells80.

Scripts are available at the address: http://sbcb.bioch.ox.ac.uk/flows/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 

Membrane simulation systems discussed in this study. (A) A planar membrane containing 
256 OmpA proteins (cyan) in a bilayer of 28,260 molecules of POPE (brown) plus 9,420 
molecules of POPG (red). (B) A spherical lipid vesicle comprised on 45,349 lipids (see 
Table 1 for details) including sphingolipids (grey), zwitterionic (brown) and anionic (red) 
phospholipids and cholesterol (green).
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Fig. 2. 

Protein clustering analysis for the planar bacterial membrane model. (A) VMD snapshot of 
the planar membrane at the end of the 1 µs, with the proteins shown in orange. (B) 
Aggregation of proteins as a function of time. Each line represents a unique protein and the 
colours illustrate each protein’s association to a cluster of a certain size. A cluster of size one 
corresponds to a single, unclustered protein. (C) The frequency of occurrence of clusters of 
different sizes as a function of time.
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Fig. 3. 

Path lines and vector field construction. (A) Construction of path lines. (B) Evolution of a 
path line in function of the time. (C) Lipid path lines around proteins. For (B) and (C), 
colour and thickness of the tail are function of lipid displacement between 2 time steps. (D) 
Simple 2D schematic of the creation of the vector field. After defining a grid, the centre of 
mass of each lipid selection (in each grid square) is calculated at time t. Then, the centre of 
mass of the same selection is calculated at time t+dt, and the two centres are used to define 
the vector.
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Fig. 4. 

Path line visualization of a filtered (8 ns time window) dataset. (A) Path line rendering of the 
upper leaflet of the large planar membranes containing 256 OmpA proteins. (B) Path line 
rendering of the outer leaflet of the large vesicle membrane. Movies of (A) and (B) are 
available in the Supplementary Material. Snapshots were captured with the tcl plugin in 
VMD.
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Fig. 5. 

Vector field visualization using a 20 Å grid resolution. (A) 2D results on the planar 
membrane. (B) 3D results on the vesicle system, for which a transparent sphere was added 
to clarify the visualization. Snapshots were captured with the tcl plugin in VMD.

Chavent et al. Page 20

Faraday Discuss. Author manuscript; available in PMC 2015 October 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 6. 

Streamline visualizations for the planar membrane and the vesicle system. (A) and (C) 2D 
visualization of the upper leaflet of the planar membrane system. (B) and (D) 3D 
visualization of the vesicle outer leaflet. (A) and (B) are rendered using in-house Python 
code employing the MDAnalysis module and matplotlib/MayaVi while (C) and (D) are 
displayed using VMD program. For (A) and (D) associated movies are available in 
Supplementary Material.
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Fig. 7. 

Lipid motions patterns highlighted by the streamline visualization. (A) Large linear 
correlated motions crossing the entire system (for y~300 Å and y~900 Å). (B) Large circular 
correlated motions (from 0 to 800 Å in x and 400 to ~1100 Å in y). Same snapshot than Fig. 
4 A and Fig. 5 A. (C) Vortex around a protein. (D) Comparison of upper and lower leaflets 
highlighting correlated areas across the bilayer. On left, upper leaflet; on right, lower leaflet; 
in the middle superimposition of the lower and the upper leaflet. Snapshots made with the 
MDAnalysis Python plugin.
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Fig. 8. 

Inter-leaflet lipid flow correlation assessment for the planar bilayer (blue) and the vesicle 
(red) systems. The bold lines depict the averaged values on 10 steps.
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Fig. 9. 

Examples of correlated dynamics for the planar membrane visualized using VMD. Coloured 
streamlines depict the correlated parts between the two leaflets (with Cl(t) > 0.8) while the 
remaining streamlines are coloured in gray.
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Fig. 10. 

Streamline visualization coupled with height map for the planar membrane. The colours 
represent the vertical z values of the membrane. This representation highlights the 
undulations of the membrane in the z direction. High displacement parts of the streamlines 
are coloured in white. An associated movie is available in Supplementary Material.
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Table 1

Lateral diffusion coefficients for the membrane constituents of both systems. The values of Dxy were derived 

from the MSD curves shown in Supporting Information Fig. S1, by fitting these curves between 100 and 900 
ns for each system. The error estimates are included in brackets.

Components Number of molecules Dxy(10−7 cm2.s−1)

Planar membrane

OmpA 256 2.04 (±0.26)

POPE 28260 5.16 (± 0.14)

POPG 9420 5.14 (±0.14)

Vesicle

POPS 6802 0.23 (±0.01)

DOPX 4081 0.24 (±0.01)

DOPE 2268 0.24 (±0.01)

CHOL 23804 0.17 (±0.01)

SM 8389 0.08 (±0.01)
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