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Abstract  This paper describes the powerful statistical technique one-way ANOVA that can be used in many 
engineering and manufacturing applications and presents its application. This technique is intended to analyze 
variability in data in order to infer the inequality among population means. The application data were analyzed using 
computer program MATLAB that performs these calculations. 
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1. Introduction 
Analysis of variance (ANOVA) is a statistical 

procedure concerned with comparing means of several 
samples. It can be thought of as an extension of the t-test 
for two independent samples to more than two groups. 
The purpose is to test for significant differences between 
class means, and this is done by analysis the variances.  

The ANOVA test of the hypothesis is based on a 
comparison of two independent estimates of the 
population variance [3]. 

When performing an ANOVA procedure the following 
assumptions are required: 
  The observations are independent of one another. 
  The observations in each group come from a normal 

distribution. 
  The population variances in each group are the same 

(homoscedasticity). 
ANOVA is the most commonly quoted advanced 

research method in the professional business and 
economic literature. This technique is very useful in 
revealing important information particularly in 
interpreting experimental outcomes and in determining the 
influence of some factors on other processing parameters. 

The original ideas of analysis of variance were 
developed by the English statistician Sir Ronald A. Fisher 
(1890-1962) in his book “Statistical Methods for Research 
Workers” (1925). Much of the early work in this area 
dealt with agricultural experiments [1]. 

2. One-way ANOVA Test Procedure 
The simplest case is one-way ANOVA. A one-way 

analysis of variance is used when the data are divided into 
groups according to only one factor. 

Assume that the data 11 12 13 1 1, , , , nx x x x  are sample 

from population 1, 21 22 23 2 2, , , , nx x x x  are sample 

from population 2,   , 1 2 3, , , ,k k k knkx x x x  are sample 

from population k. Let i jx  denote the data from the ith 
group (level) and jth observation. 

We have values of independent normal random 
variables ,i jX 1,2, ,i k=   and 1,2, , ij n=   with 

mean iµ  and constant standard deviation ,σ  i jX  ~ 

( ),iN µ σ . Alternatively, each i j i i jX µ ε= +  where i jε  

are normally distributed independent random errors, i jε  ~ 

( )0,N σ . Let 1 2 kN n n n= + + +  is the total number of 
observations (the total sample size across all groups), 
where in  is sample size for the ith group. 

The parameters of this model are the population means 
1 2, , , kµ µ µ  and the common standard deviation .σ  
Using many separate two-sample t-tests to compare 

many pairs of means is a bad idea because we don’t get a 
p-value or a confidence level for the complete set of 
comparisons together. 

We will be interested in testing the null hypothesis 
 0 1 2: kH µ µ µ= = =  (1) 
against the alternative hypothesis 
 1 : 1 , : i lH i l k µ µ∃ ≤ ≤ ≠  (2) 
(there is at least one pair with unequal means). 

Let ix  represent the mean sample i ( 1, 2, ,i k=  ): 
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i i j
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x x
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x  represent the grand mean, the mean of all the data 
points: 
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is  represent the sample variance: 
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and 2s MSE=  is an estimate of the variance 2σ  common 
to all k populations, 

 ( )2 2

1

1 1 .
k

i i
i

s n s
N k =

= − ⋅
− ∑  (6) 

ANOVA is centered around the idea to compare the 
variation between groups (levels) and the variation within 
samples by analyzing their variances.  

Define the total sum of squares SST, sum of squares for 
error (or within groups) SSE, and the sum of squares for 
treatments (or between groups) SSC: 

 ( )2
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Consider the deviation from an observation to the grand 
mean written in the following way: 

 ( ) ( ).i j i j i ix x x x x x− = − + −  (10) 

Notice that the left side is at the heart of SST, and the 
right side has the analogous pieces of SSE and SSC. It 
actually works out that: 

 .SST SSE SSC= +  (11) 
The total mean sum of squares MST, the mean sums of 

squares for error MSE, and the mean sums of squares for 
treatment MSC are: 

 ,
( ) 1
SST SSTMST

df SST N
= =

−
 (12) 

 ,
( )
SSE SSEMSE

df SSE N k
= =

−
 (13) 

 .
( ) 1
SSC SSCMSC

df SSC k
= =

−
 (14) 

The one-way ANOVA, assuming the test conditions are 
satisfied, uses the following test statistic: 

 .MSCF
MSE

=  (15) 

Under H0 this statistic has Fisher’s distribution 
( )1,F k N k− − . In case it holds for the test criteria 

 1 , 1, ,k N kF F α− − −>  (16) 

where 1 , 1,k N kF α− − −  is ( )1 α− -quantile of F-distribution 

with 1k −  and N k−  degrees of freedom, then hypothesis 
H0 is rejected on significance level α [1,3]. 

The results of the computations that lead to the 
F-statistic are presented in an ANOVA table, the form of 
which is shown in the Table 1. 

Table 1. Basic one-way ANOVA table 
Variance 
source 

Sum of 
squares 

SS 

Degrees of 
freedom df 

Mean 
square 

MS 

F-statistic Tail area 
above F 

Between SSC k − 1 MSC MSC/MSE p-value 
Within SSE N − k MSE — — 
Total SST N − 1 — — — 
In statistical softwares is used to be in this table column 

with p-value. This p-value says the probability of rejection 
the null hypothesis in case the null hypothesis holds. In 
case p α< , where α is chosen significance level, is the 
null hypothesis rejected with probability greater than 
( )1 100α− ⋅ % probability. 

3. Post Hoc Comparison Procedures 
Post hoc comparisons (or post hoc tests, multiple 

comparison tests) are tests of the statistical significance of 
differences between group means calculated after (“post”) 
having done ANOVA that shows an overall difference. 
Multiple comparison methods are designed to investigate 
differences between specific pairs of means. This provides 
the information that is of most use to the researcher. 

One possible approach to the multiple comparison 
problem is to make each comparison independently using 
a suitable statistical procedure. For example, a statistical 
hypothesis test could be used to compare each pair of 
means, Iµ  and Jµ , , 1, 2, ,I J k=  ; I J≠ , where the 
null and alternative hypotheses are of the form 

 0 1: , : .I J I JH Hµ µ µ µ= ≠  (17) 

An alternative way to test for a difference between Iµ  
and Jµ  is to calculate a confidence interval for I Jµ µ− . 
A confidence interval is formed using a point estimate a 
margin of error, and the formula 

 (point estimate) ± (margin of error). (18) 
The point estimate is the best guess for the value of 

I Jµ µ−  based on the sample data. The margin of error 
reflects the accuracy of the guess based on variability in 
the data. It also depends on a confidence coefficient, 
which is often denoted by 1 α− . The interval is calculated 
by subtracting the margin of error from the point estimate 
to get the lower limit and adding the margin of error to the 
point estimate to get the upper limit [6]. 

If the confidence interval for I Jµ µ−  does not contain 
zero (thereby ruling out that I Jµ µ= ), then the null 
hypothesis is rejected and Iµ  and Jµ  are declared 
different at level of significance α. 

The multiple comparison tests for population means, as 
well as the F-test, have the same assumptions. 

There are many different multiple comparison 
procedures that deal with these problems. Some of these 
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procedures are as follows: Fisher’s method, Tukey’s 
method, Scheffé’s method, Bonferroni’s adjustment 
method, Dunn-Šidák method. Some require equal sample 
sizes, while some do not. The choice of a multiple 
comparison procedure used with an ANOVA will depend 
on the type of experimental design used and the 
comparisons of interest to the analyst [8]. 

The Fisher (LSD) method essentially does not correct 
for the type 1 error rate for multiple comparisons and is 
generally not recommended relative to other options. 

The Tukey (HSD) method controls type 1 error very 
well and is generally considered an acceptable technique. 
There is also a modification of the test for situation where 
the number of subjects is unequal across cells called the 
Tukey-Kramer test.  

The Scheffé test can be used for the family of all 
pairwise comparisons but will always give longer 
confidence intervals than the other tests [6]. Scheffé’s 
procedure is perhaps the most popular of the post hoc 
procedures, the most flexible, and the most conservative. 

There are several different ways to control the 
experiment-wise error rate. One of the easiest ways to 
control experiment-wise error rate is use the Bonferroni 
correction. If we plan on making m comparisons or 
conducting m significance tests the Bonferroni correction 
is to simply use mα  as our significance level rather than 
α. This simple correction guarantees that our 
experiment-wise error rate will be no larger than α. Notice 
that these results are more conservative than with no 
adjustment. The Bonferroni is probably the most 
commonly used post hoc test, because it is highly flexible, 
very simple to compute, and can be used with any type of 
statistical test (e.g., correlations), not just post hoc tests 
with ANOVA. 

The Šidák method has a bit more power than the 
Bonferroni method. So from a purely conceptual point of 
view, the Šidák method is always preferred.  

The confidence interval for I Jµ µ−  is calculated using 
the formula: 

 2
1 2,

1 1 ,I J N k
I J

x x t s
n nα− −

 
− ⋅ + 

 
  (19) 

where 1 2, N kt α− −  is the quantile of the Student’s 
t-probability distribution, by Fisher method (LSD − Least 
Significant Difference); 
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where , ,k N kqα −  represents the quantile for the 
Studentized range probability distribution, by 
Tukey-Kramer method (HSD − Honestly Significant 
Difference); 
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by Scheffé method; 
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where 
c
αα∗ = , 

2
k

c  
=  
 

 is the number of pairwise 

comparisons in the family, by Bonferonni method; 

 2
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where ( )11 1 cα α∗ = − − and 
2
k

c  
=  
 

, by Dunn-Šidák 

method [2]. 

4. Tests for Homogeneity of Variances 
Many statistical procedures, including analysis of 

variance, assume that the different populations have the 
same variance. The test for equality of variances is used to 
determine if thtion of equal variances is valid. 

We will be interested in testing the null hypothesis 

 2 2 2
0 1 2: kH σ σ σ= = =  (24) 

against the alternative hypothesis 

 2 2
1 : 1 , : .i lH i l k σ σ∃ ≤ ≤ ≠  (25) 

There are many testse assump of homogeneity of 
variances. Commonly used tests are the Bartlett (1937), 
Hartley (1940, 1950), Cochran (1941), Levene (1960), and 
Brown and Forsythe (1974) tests. The Bartlett, Hartley 
and Cochran are technically test of homogeneity. The 
Levene and Brown and Forsythe methods actually 
transform the data and then tests for equality of means.  

Note that Cochran's and Hartley's test assumes that 
there are equal numbers of participants in each group. 

The tests of Bartlett, Cochran, Hartley and Levene may 
be applied for number of samples 2k > . In such situation, 
the power of these tests turns out to be different. When the 
assumption of the normal distribution holds for 2k >  
these tests may be ranked by power decrease as follows: 
Cochran  Bartlett  Hartley  Levene. This preference 
order also holds in case when the normality assumption is 
disturbed. An exception concerns the situations when 
samples belong to some distributions which have more 
heavy tails then the normal law. For example, in case of 
belonging samples to the Laplace distribution the Levene 
test turns out to be slightly more powerful than three 
others [7]. 

Bartlett’s test has the following test statistic: 

 ( ) ( )1 2 2

1
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meaning of all the others symbols is evident (see section 
2). The hypothesis H0 is rejected on significance level α, 
when 

 2
1 , 1kB αχ − −>  (27) 

where 2
1 , 1kαχ − −  is the critical value of the chi-square 

distribution with 1k −  degrees of freedom. 
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Cochran’s test is one of the best methods for detecting 
cases where the variance of one of the groups is much 
larger than that of the other groups. This test uses the 
following test statistic: 

 
2
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k

i
i

s
C

s
=

=

∑
 (28) 

The hypothesis H0 is rejected on significance level α, 
when 

 , , 1k nC Cα −>  (29) 

where critical value , , 1k nCα −  is in special statistical tables. 
Hartley’s test uses the following test statistic: 
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The hypothesis H0 is rejected on significance level α, 
when 

 , , 1,k nH Hα −>  (31) 

where critical value , , 1k nHα −  is in special statistical 
tables [2]. 

Originally Levene’s test was defined as the one-way 
analysis of variance on ,i j i j iz x x= −  the absolute 

residuals i j ix x− , 1, 2, ,i k=   and 1,2, , ,ij n=  where  
k is the number of groups and ni the sample size of the ith 
group. The test statistic has Fisher’s distribution 
( )1,F k N k− −  and is given by: 
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To apply the ANOVA test, several assumptions must be 
verified, including normal populations, homoscedasticity, 
and independent observations. The absolute residuals do 
not meet any of these assumptions, so Levene’s test is an 
approximate test of homoscedasticity [5].  

Brown and Forsythe subsequently proposed the 
absolute deviations from the median ix  of the ith group, so 

is .i j i j iz x x= −   

5. Example from Technical Practice 
What follows is an example of the one-way ANOVA 

procedure using the statistical software package, 
MATLAB. 

One important factor in selecting software for word 
processing and database management systems is the time 
required to learn how to use a particular system. In order 
to evaluate three database management systems, a firm 

devised a test to see how many training hours were needed 
for six of its word processing operators to become 
proficient in each of three systems [9]. The data from this 
experiment are in the Table 2. Using a 5 % significance 
level, is there any difference between the training time 
needed for the three systems? 

Table 2. Experiment data in hours 
System 1 20 17 15 19 14 13 
System 2 18 17 14 20 13 12 
System 3 23 25 20 21 19 20 

5.1. Testing the Assumption of Normality 
One of the first steps in using the one-way ANOVA test 

is to test the assumption of normality. Even if the 
distribution is somewhat different from normal, one-way 
ANOVA can still work good if the sample sizes are large 
enough. However, when sample sizes are small, one-way 
ANOVA can be unreliable if the data in one or more of 
the groups comes from a highly non-normal distribution. 

For evaluating normality there are graphical and 
statistical methods. For example normal probability plot is 
a graph specifically designed to check for normality. If the 
data comes from a normal distribution the points should 
form a line. The statistical methods include diagnostic 
hypothesis tests for normality, where the null hypothesis is 
that there is no significant departure from normality for 
each of the groups/levels. The alternative hypothesis is 
that there is a significant departure from normality. The 
main tests for the assessment of normality are 
Kolmogorov-Smirnov (K-S) test, Lilliefors test (corrected 
K-S test), Shapiro-Wilk test, Anderson-Darling test, 
Cramer-von Mises test, D’Agostino test and Jarque-Bera 
test. 

For the above example we are using MATLAB with 
functions [4]: 
 [h,p]=lillietest(x,0.05,'norm') for Lilliefors test, 
 [h,p]=swtest(x,0.05) for Shapiro-Wilk test. 
For example the Shapiro-Wilk test using significance 

level 0.05 give these results: 0.6599p =  for system 1, 
0.6643p =  for system 2, and 0.4044p =  for system 3. 

We would conclude that each of the levels of the 
independent variable are normally distributed.  

5.2. Testing the Assumption of Homogeneity 
of Variances 

We seek to test equality of variances (see part 4) and 
have run Bartlett’s test in MATLAB: 
X=[20,17,15,19,14,13;18,17,14,20,13,12;23,25,20,21,... 
19,20]';[p,stats]=vartestn(X) 

From the following analysis in MATLAB, the p-value 
for Bartlett’s test (significance level 0.05 is here default) is 

0.7769 0.05p α= > = . 
Therefore, we would fail to reject the null hypothesis 

2 2 2
0 1 2 3:H σ σ σ= = . 

5.3. Hypothesis Testing Using ANOVA  
Letting µ1, µ2, and µ3 be the mean for the three systems, 

the null hypothesis is 0 1 2 3:H µ µ µ= = . The alternative 
is 1 : i lH µ µ≠  for at least one i, l pair ( , 1, 2,3i l = ). 
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In MATLAB we use command: 
[p,tbl,stats]=anova1(X) 

This will return an ANOVA table, showing the value of 
the F-statistic and p-value, and a boxplot of three different 
groups. The results of the calculations for this case are 
summarized in Table 3 and Figure 1. 

Table 3. Summary table of the one-way ANOVA for experiment data 

Variance 
source 

Sum of 
squares 

SS 

Degrees 
of 

freedom 
df 

Mean 
square 

MS 
F-statistic p-value 

Between 115.1111 2 57.5556 7.5731 0.0053 

Within 114.0000 15 7.6000 — — 

Total 229.1111 17 — — — 

Since p-value is less then given significance level 0.05 
for this problem, we reject the null hypothesis. There is a 
difference between the mean learning times for at least 
two of the three database management systems. 

 

Figure 1. Boxplot of three different group 

5.4. Pair-wise Comparison 
When the null hypothesis is rejected using the F-test in 

ANOVA, we want to know where the difference among 
the means is. To determine which pairs of means are 
significantly different, and which are not, we can use the 
multiple comparison tests.  

MATLAB implements for example the Tukey-Kramer 
procedure, the Bonferroni procedure, Dunn-Šidák 
procedure and reports the results in terms of the 
confidence interval.  

Now we can make the 95 % confidence interval for 
differences in pair of population group means I Jµ µ− , 

, 1, 2,3I J = ; I J≠ . 
In MATLAB we use the following series of commands: 

multcompare(stats,'alpha',.05,'ctype','tukey-kramer') 
multcompare(stats,'alpha',.05,'ctype','bonferroni') 
multcompare(stats,'alpha',.05,'ctype','dunn-sidak') 

The statistical outputs are, respectively, shown in Table 
4, Table 5, Table 6 and Figure 2. 

Table 4. Results using Tukey-Kramer method 

pairs I, J difference . I Jx x− . lower limit upper limit 

1, 2 0.6667 −3.4676 4.8009 

1, 3 ∗ −5.0000 −9.3185 −0.8657 

2, 3 ∗ −5.6667 −9.8009 −1.5324 

Table 5. Results using Bonferroni method 

pairs I, J difference I Jx x−  lower limit upper limit 

1, 2 0.6667 −3.6208 4.9541 

1, 3 ∗ −5.0000 −9.2875 −0.7125 

2, 3 ∗ −5.6667 −9.9541 −1.3792 

Table 6. Results using Dunn-Šidák method 

pairs I, J difference I Jx x−  lower limit upper limit 

1, 2 0.6667 −3.6073 4.9406 

1, 3 ∗ −5.0000 −9.2740 −0.7260 

2, 3 ∗ −5.6667 −9.9406 −1.3927 

Figure 2 represents an interactive figure. By clicking on 
the group symbol at the bottom, in part of the figure is 
displayed the group from which the selected one 
statistically differs. 

 

Figure 2. The interactive figure 

Using all of the three multiple comparison methods, we 
discover that system 3 takes significantly longer to learn 
than systems 1 and 2 which are similar. 

6. Conclusion 
In many statistical applications in business 

administration, psychology, social science, and the natural 
sciences we need to compare more than two groups. For 
hypothesis testing more than two population means 
scientists have developed ANOVA method. 

The ANOVA test procedure compares the variation in 
observations between samples (sum of squares for groups, 
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SSC) to the variation within samples (sum of squares for 
error, SSE). The ANOVA F-test rejects the null hypothesis 
that the mean responses are equal in all groups if SSC is 
large relative to SSE. 

The analysis of variance assumes that the observations 
are normally and independently distributed with the same 
variance for each treatment or factor level [3]. If the 
normality assumption of the one-way ANOVA F-test is 
not met, we can use the Kruskal-Wallis rank test. 

Acknowledgement 
This article was created by implementation of the grant 

project VEGA no. 1/0102/11 Experimental methods and 
modeling techniques in-house manufacturing and non 
manufacturing processes. 

References 
[1] Aczel, A.D., Complete Business Statistics, Irwin, 1989. 
[2] Brown, M., Forsythe, A., “Robust tests for the equality of 

variances,” Journal of the American Statistical Association, 364-
367. 1974. 

[3] Montgomery, D.C., Runger, G.C., Applied Statistics and 
Probability for Engineers, John Wiley & Sons, 2003. 

[4] Ostertagová, E., Applied Statistic (in Slovak), Elfa, Košice, 2011. 
[5] Parra-Frutos, I., “The behaviour of the modified Levene’s test 

when data are not normally distributed,” Comput Stat, Springer, 
671-693. 2009. 

[6] Rafter, J.A., Abell, M.L., Braselton, J.P., “Multiple Comparison 
Methods for Means,” SIAM Review, 44 (2). 259-278. 2002. 

[7] Rykov, V.V., Balakrishnan, N., Nikulin, M.S., Mathematical and 
Statistical Models and Methods in Reliability, Springer, 2010. 

[8] Stephens, L.J., Advanced Statistics demystified, McGraw-Hill, 
2004. 

[9] Taylor, S., Business Statistics.www.palgrave.com. 
 

 


