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METHODOLOGY AND CONVERGENCE RATES FOR
FUNCTIONAL LINEAR REGRESSION

BY PETER HALL1 AND JOEL L. HOROWITZ2

Australian National University and Northwestern University

In functional linear regression, the slope “parameter” is a function.
Therefore, in a nonparametric context, it is determined by an infinite num-
ber of unknowns. Its estimation involves solving an ill-posed problem and
has points of contact with a range of methodologies, including statistical
smoothing and deconvolution. The standard approach to estimating the slope
function is based explicitly on functional principal components analysis and,
consequently, on spectral decomposition in terms of eigenvalues and eigen-
functions. We discuss this approach in detail and show that in certain cir-
cumstances, optimal convergence rates are achieved by the PCA technique.
An alternative approach based on quadratic regularisation is suggested and
shown to have advantages from some points of view.

1. Introduction. In functional linear regression, data pairs (Xi, Yi) are gen-
erated by the model

Yi = a +
∫
I
bXi + εi, 1 ≤ i ≤ n.(1.1)

The Xi’s are random functions, I denotes the interval on which each such function
is defined, the intercept a and the errors εi are scalars and the slope b, the main
object of our interest in this paper, is a function. The model (1.1) is applicable in
a wide range of settings, including many where data are becoming available only
through new developments in technology.

For example, in near-infrared spectroscopy applied to data on different cereal-
grain types (e.g., different varieties of wheat), Xi(t) denotes the intensity of re-
flected radiation recorded at the spectrometer when the wavelength equals t and
Yi denotes the level of a particular protein for the ith cereal type. By constructing
the linear regression at (1.1), we can predict, from data on a new function X, the
level of protein for that cereal type. This is especially useful in practice, since the
explanatory variables Xi are very easy and inexpensive to observe in the field us-
ing hand-held equipment, whereas direct calculation of the Yi requires expensive
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and time-consuming analysis in a laboratory. There is an extensive literature on
this problem; see, for example, [26, 31].

Once an estimator b̂ of the slope b is available, it is straightforward to estimate
the intercept a, for example, as the average of the values of Yi − ∫

I b̂Xi . Therefore,
much interest in the literature focuses on estimating b. The conventional approach,
discussed, for example, by Ramsay and Silverman ([24], Chapter 10 and [25]), is
based on principal components analysis or PCA. Although this method has been
widely discussed (e.g., [3, 7, 14]), relatively little is known about convergence rates
of estimators, apart from upper bounds. In this paper, we shall give optimal conver-
gence rates in this problem and discuss PCA-based estimators which attain those
rates. The known upper bounds for convergence rates are an order of magnitude
greater than the minimax-optimal rates derived in this paper.

An alternative approach based on Tikhonov, or quadratic, regularization [29]
will also be addressed. To the best of our knowledge, this approach has not been
considered before in functional data analysis, although it has been widely applied
to the solution of other ill-posed problems. In particular, quadratic regularisation
methods are increasingly studied in the statistics literature; see, for example, work
of Efromovich and Koltchinskii [11] and Cavalier et al. [5] on optimality proper-
ties.

We shall show that the Tikhonov regularisation approach is also able to achieve
optimal convergence rates and that it is robust against potential problems caused by
tied, or closely spaced, eigenvalues in the spectral decomposition on which PCA is
based. The difficulties that close eigenvalues can cause for PCA will be discussed
using an example.

The estimation of slope and intercept parameters in functional linear regression
has points in common with a range of smoothing and deconvolution problems
where dimension reduction is involved; see, for example, [9, 12, 13, 28]. Work on
statistical smoothing is particularly extensive and relatively well known to readers,
so we shall not attempt to survey it here. The problem of estimating the slope in
functional linear regression is also related to that of estimating the point-spread
function in image analysis when the true image, or test pattern, is known. Here,
too, significant work has been done; see, for example, [18, 32].

Of course, the literature on linear inverse problems is very much larger than this.
In the statistics setting, it includes the work of Donoho [10] and Johnstone [17],
who used wavelet and vaguelette methods, and that of van Rooij and Ruym-
gaart [30] on optimal convergence rates. There is also closely related work in
economics on the subject of panel data [16], covariate measurement error [19]
and estimation with instrumental variables (e.g., [2, 8, 15, 22, 23]. In statistics,
there is related work on errors-in-variables problems (e.g., [4]). There is a small,
but increasing, literature on applications of functional regression to longitudinal
data analysis; see, for example, [6, 27].



72 P. HALL AND J. L. HOROWITZ

2. Methodology. We shall assume that we observe independent and identi-
cally distributed data (X1, Y1), . . . , (Xn,Yn), where each explanatory variable Xi

is a square integrable random function on the compact interval I. The response
variables Yi are generated by the model (1.1). It will be supposed that the errors
εi are independent and identically distributed with finite variance and zero mean
and that the errors are also independent of the explanatory variables. Our goal is to
discuss estimators of b and to describe the rate at which they converge to the true
function.

We begin by describing standard functional linear regression methodology, as
discussed by, for example, Ramsay and Silverman ([24], Chapter 10). It is founded
on spectral expansions of both the covariance of X and its estimator and is con-
structed as follows.

Let (X,Y, ε) denote a generic (Xi, Yi, εi) and put K(u, v) = cov{X(u),X(v)},
X̄ = n−1 ∑

i Xi and

K̂(u, v) = 1

n

n∑
i=1

{Xi(u) − X̄(u)}{Xi(v) − X̄(v)}.

Write the spectral expansions of K and K̂ as

K(u, v) =
∞∑

j=1

κjφj (u)φj (v), K̂(u, v) =
∞∑

j=1

κ̂j φ̂j (u)φ̂j (v),(2.1)

where

κ1 > κ2 > · · · > 0, κ̂1 ≥ κ̂2 ≥ · · · ≥ 0(2.2)

are the eigenvalue sequences of linear operators with kernels K and K̂ , respec-
tively, and φ1, φ2, . . . and φ̂1, φ̂2, . . . are the respective orthonormal eigenvector (in
fact, eigenfunction) sequences. We interpret (κ̂j , φ̂j ) as an estimator of (κj , φj ).

During the review process, it was suggested that the case where
∑

j κj diverges
might be explored. For example, the context κj ∼ j−α , with α close to either 0
or 1

2 , might provide particular challenges. We agree that this setting is of math-
ematical interest. However, it should be noted that if varX(t) is bounded in t ,
then

∑
j κj < ∞. The case of unbounded covariance does not commonly arise in

applied work.
Both sequences {φj } and {φ̂j } are complete in the class of square integrable

functions on I. The fact that each κj is strictly positive implies that the linear
operator corresponding to K , which takes a function φ to Kφ and is defined by
(Kφ)(u) = ∫

K(u, v)φ(v) dv, is strictly positive definite. (To simplify notation,
we use the symbol K for both the kernel and the operator.) We determine the signs
of φj and φ̂j , in cases where signs are important, by insisting that

∫
I φ̂jφj ≥ 0.

This can be done without loss of generality, for example, by changing the sign of
φ̂j to match that of φj , since switching the signs of φj and φ̂j results in commen-
surate changes of sign for generalized Fourier coefficients such as the quantities b̂j
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and ĝj which we shall introduce below. Therefore,
∫
I φ̂jφj > 0 can be assumed

without altering the values taken by estimators.
A model equivalent to (1.1) is

Yi − µ =
∫
I
b(Xi − x) + εi, 1 ≤ i ≤ n,

where x = E(Xi) and µ = E(Yi) = a + ∫
bx, with x denoting a deterministic

function on I. It follows that if we define g(u) = E[(Y −µ){X(u)−x(u)}], where
(X,Y ) represents a generic pair (Xi, Yi), then

Kb = g.

Moreover, if we write b = ∑
j bjφj and g = ∑

j gjφj , then bj = κ−1
j gj . This

suggests the estimator

b̂(u) =
m∑

j=1

b̂j φ̂j (u),(2.3)

where the truncation point m is a smoothing parameter, b̂j = κ̂−1
j ĝj , ĝj = ∫

ĝφ̂j ,

ĝ(u) = 1

n

n∑
i=1

(Yi − Ȳ ){Xi(u) − X̄(u)}(2.4)

and Ȳ = n−1 ∑
i Yi .

Next, we suggest an alternative method which uses a ridge parameter ρ rather
than the cutoff m as the smoothing parameter. Let K̂+ = (K̂ + ρI)−1 denote the
inverse of the operator K̂ + ρI , where ρ > 0 and I is the identity operator. Define

b̃ = K̂+ĝ = 1

n

n∑
i=1

(Yi − Ȳ )K̂+{Xi(u) − X̄(u)},(2.5)

where ĝ is as in (2.4). Then b̃ is an estimator alternative to b̂.

3. Theoretical properties. First, we treat the standard functional linear re-

gression estimator b̂, defined in (2.3). The Karhunen–Loève expansion of the ran-
dom function X is given by

X − E(X) =
∞∑

j=1

ξjφj ,

where the random variables ξj = ∫
I(X − EX)φj have zero means and variances

E(ξ2
j ) = κj and are uncorrelated. Let C > 1 denote a constant. Concerning the
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distributions of the random function X and the errors ε in the model at (1.1), we
shall assume that

X has finite fourth moment, in that
∫
I E(X4) < ∞; E(ξ4

j ) ≤ Cκ2
j for all j,

and the errors εi are identically distributed with zero mean and variance
not exceeding C.

(3.1)

Of the eigenvalues κj , we require that

κj − κj+1 ≥ C−1j−α−1 for j ≥ 1.(3.2)

This condition prevents the spacings between adjacent order statistics from being
too small. It also implies a lower bound on the rate at which κj decreases: κj must
not be less than a constant multiple of j−α . The importance of (3.2) in ensuring
Theorem 1, below, will be discussed following Theorem 2.

Of the Fourier coefficients bj and exponents α and β , we suppose that

|bj | ≤ Cj−β,

α > 1, 1
2α + 1 < β.

(3.3)

The first part of (3.3) can be viewed in at least two ways: as a definition of β , in
terms of a given sequence bj , or as a condition that the generalized Fourier co-
efficients bj do not decrease too quickly. The basis with respect to which these
coefficients are defined is determined by the context of the problem and, more par-
ticularly, by the covariance function K , rather than outside the problem. This is not
unnatural, for at least two related reasons. First, the basis φ1, φ2, . . . is canonical in
the functional-data problem since it is the unique basis with respect to which the
function X can be expressed as a generalized Fourier series (its Karhunen–Loève
expansion) with uncorrelated coefficients. It gives the most rapidly convergent rep-
resentation of X when speed of convergence is defined in an L2 sense. Second, as
discussed in Section 1, the representation with respect to this basis is fundamental
to the most popular method for estimating b and is therefore particularly deserving
of study.

Note that the assumption that K is bounded, or even the milder condition∫
I var{X(u)}du < ∞, entails

∑
j κj < ∞. Further, note that (3.2) implies κj ≥

Cj−α for some constant C > 0. Therefore, boundedness of K and (3.2) together
imply that α > 1, which is the second part of (3.3). The assumption 1

2α + 1 < β

in (3.3) requires that the function b be sufficiently smooth relative to K , where
smoothness of K is expressed relative to the spectral decomposition of this func-
tion. (More concisely, b should be sufficiently smooth relative to the lower bound
on the smoothness of K that is implied by the condition κj ≥ Cj−α .) Since α > 1,
a sufficient condition for 1

2α + 1 < β is α ≤ β , which can be interpreted as requir-
ing that the function b be no less smooth than the lower bound on the smoothness
of K implied by (3.2).
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Of the tuning parameter m, we assume that

m � n1/(α+2β).(3.4)

In (3.4), the relation rn � sn, for positive rn and sn, means that the ratio rn/sn is
bounded away from zero and infinity.

Let F (C,α,β) denote the set of distributions F of (X,Y ) that satisfy (3.1)–
(3.3) for given values of C, α and β . Let B denote the class of measurable func-
tions b̄ of the data (X1, Y1), . . . , (Xn,Yn) generated by (1.1). We shall frame our
next result in terms of minimax bounds. Below, the upper bound (3.5) shows per-
formance of b̂ and the lower bound (3.6) reflects performance of any estimator
of b. The fact that the convergence rate is the same in each instance implies that
the rate for b̂ is optimal in a minimax sense.

THEOREM 1. If (3.1)–(3.4) hold, then

lim
D→∞ lim sup

n→∞
sup
F∈F

PF

{∫
I
(b̂ − b)2 > Dn−(2β−1)/(α+2β)

}
= 0(3.5)

as n → ∞. Furthermore,

lim inf
n→∞ n(2β−1)/(α+2β) inf

b̄∈B
sup
F∈F

∫
I
EF (b̄ − b)2 > 0.(3.6)

It follows from (3.5) that for each F ∈ F ,∫
I
(b̂ − b)2 = Op(n−(2β−1)/(α+2β)).

The theorem is proved in Section 5. The fact that (3.5) is expressed in terms of a
probability rather than an expected value is not significant. By modifying the esti-
mator b̂ using a truncation point, to prevent b̂ taking values that are too large, we
may state and prove (3.5) in the more traditional form; compare (3.10) below. We
do not do this, since the present form of b̂ is the one actually used by statisticians.

Convergence rates of the form n−(2β−1)/(α+2β) are generic to a large class of
noisy inverse problems where the difficulty of inverting the operator is an increas-
ing function of α and the smoothness of the target function is an increasing func-
tion of β . For example, this rate arises in the context of problems discussed by
Cavalier et al. [5]. See equation (7) there and note that the appropriate values
of the components of that formula are λi = 1 for 1 ≤ λi ≤ m and λi = 0 other-
wise, θi = bi , σ 2

i = var(ξi) and ε2 = n−1. Of course, Theorem 1 cannot be derived
from the results of Cavalier et al. [5], but, since the problem is of the same broad
type, the rates enjoy the same form and have exactly the same formula if we make
the substitutions above. Connections of this nature are frequently highlighted in
the literature, for nonlinear inverse problems (see, e.g., [20, 21]) as well as linear
ones. In particular, similar remarks can be made about the rates given by Hall and
Horowitz [15].



76 P. HALL AND J. L. HOROWITZ

Next, we address the alternative estimator b̃ in (2.5), where the smoothing para-
meter is the ridge ρ, rather than the cutoff m. Assumptions (3.2)–(3.4) are replaced
by

j−α ≤ Cκj ,(3.7)

|bj | ≤ Cj−β, α > 1, α − 1
2 < β,(3.8)

ρ � n−α/(α+2β),(3.9)
respectively. Let G(C,α,β) denote the set of distributions F of (X,Y ) that sat-
isfy (3.1), (3.7) and (3.8) for given values of C, α and β .

The result below is a direct analogue of Theorem 1 in the case of b̃ rather than b̂,
except that we replace the probability bound (3.5) by one on expected value.

THEOREM 2. If (3.1) and (3.7)–(3.9) hold, then

sup
F∈G

∫
I
EF (b̃ − b)2 = O(n−(2β−1)/(α+2β))(3.10)

as n → ∞. Furthermore,

lim inf
n→∞ n(2β−1)/(α+2β) inf

b̄∈B
sup
F∈G

∫
I
EF (b̄ − b)2 > 0.(3.11)

A proof of (3.10) can be developed along the lines of that of Theorem 4.1 of
Hall and Horowitz [15] and so will not be given here; a proof of (3.11) is iden-
tical to that of (3.6). There is no close connection between the convergence rates
in (3.10) and those in [15]. In fact, the only significant linkage is that both rates
are obtained by using Tikhonov regularisation to solve a linear inverse problem.
From a conventional statistical viewpoint, our work is much closer to that of lin-
ear regression in a large number of dimensions than it is to instrumental variables
problems.

Condition (3.7) is weaker than (3.2). For example, the latter excludes cases
where two or more of the eigenvalues κj are close together, in particular, where
they are tied. [When employing the approach (2.5), it is not necessary to assume
strict inequality among the κj ’s.] Indeed, if closely spaced eigenvalues are permit-
ted, (3.5) in Theorem 1 can fail while (3.10) in Theorem 2 holds. This is perhaps
best illustrated by an example, which we give below, in a setting where there are
long strings of tied eigenvalues. The assumption of perfect ties can be relaxed by
permitting the κj ’s to be very close to one another, but not identical. The argument
there is more complex, however.

Let γ, τ denote constants satisfying 1 < γ ≤ ατ and let jk equal the least integer
not less than kkτ . Put Jk = {jk, jk + 1, . . . , jk+1 − 1} and define κj = k−kγ for all
j ∈ Jk . Then for j in this range,

κj = k−kγ ≥ k−kατ ≥ j−α
k ≥ j−α(3.12)
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and also, jk+1/jk ∼ eτ kτ as k increases. Property (3.12) implies (3.7), but (3.2)
fails because of the ties.

Those ties mean that the functions φj , for j in the block Jk , are not even iden-
tifiable. Indeed, any permutation of the function sequence φj , j ∈ Jk , is equally
appropriate, since within-block permutations of the φj ’s do not lead to violations
of the condition that the κj ’s are nondecreasing. For the same reason, while the
(unordered) set of function estimators, ̂k = {φ̂j : j ∈ Jk}, converges to the set
k = {φj : j ∈ Jk} as n → ∞, for each k, the individual estimators φ̂j are not
consistent for the respective functions φj .

If the sum in (2.3) is taken over a whole number of blocks Jk , this inconsistency
does not cause any difficulties in estimating the slope function b. There are prob-
lems, however, if the integer m in (2.3) falls midway through one of the blocks Jk .
For definiteness, take m to equal the integer part of n1/(α+2β), thereby satisfy-
ing (3.4). Define k0 = k0(n) to be the unique value of k such that m ∈ Jk . Then
along an infinite sequence, N say, of values of n, we have

1
2(jk0 + jk0+1) ≤ m ≤ jk0+1 − 1.(3.13)

Condition (3.13) ensures that the set of integers j ∈ Jk0 that lie between jk0 and
m comprises at least half of Jk0 . Moreover, since jk+1/jk ∼ eτ kτ , then for all
sufficiently large n ∈ N , the value of

1

m
#{j : j ∈ Jk0 such that 1 ≤ j ≤ m}

converges to 1 as n → ∞. We shall call these properties (P).
An argument based on symmetry shows that if p = p̂ is the random permutation

of Jk0 defined to minimize any given symmetric measure of performance of ̂ as
an estimator of j , for example, to minimize∑

j∈Jk0

∫
I
(φ̂j − φp(j))

2,

then p̂ is uniformly distributed on the set of all permutations of Jk0 . From this,
it may be shown, using properties (P) and letting n → ∞ through values in N ,
that (3.5) fails.

4. Numerical properties. This section summarizes the results of a Monte
Carlo investigation of the finite-sample performance of the estimators b̂ and b̃

discussed in Section 2. Samples of sizes n = 100 and 500 were generated from the
model (2.1), with I = [0,1], a = 0 and the errors εi distributed as normal N(0, σ 2

ε ),
where σε = 0.5 or 1. We took b = ∑

1≤j≤50 bjφj and X = ∑
1≤j≤50 γjZjφj ,

where (a) b1 = 0.3 and bj = 4(−1)j+1j−2 for j > 1, (b) the γj ’s were deter-
ministic coefficients, (c) φ1 ≡ 1 and φj+1 = 21/2 cos(jπt) for j ≥ 1 and (d) the
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Zj ’s were uniformly distributed on [−31/2,31/2]. In particular, each Zj had zero
mean and unit variance.

Two sets of the γj ’s were used. In the first, γj = (−1)j+1j−α/2, with α = 1.1,
1.5, 2 or 4. For these coefficients, the eigenvalues of the operator K were κj =
j−α and were distinct. In the remainder of this section, we label these eigenvalues
“well-spaced.” In the second set, γ1 = 1, γj = 0.2(−1)j+1(1 − 0.0001j) if 2 ≤
j ≤ 4, and γ5j+k = 0.2(−1)5j+k+1{(5j)−α/2 − 0.0001k} for j ≥ 1 and 0 ≤ k ≤ 4.
This set of γj ’s generated blocks of κj ’s that were nearly equal when j was not
too large and we refer to it as the “closely spaced” case. The theoretical arguments
presented in Section 3 suggest that the performance of b̂ can be poor in this setting.

All our results represent averages over 1000 Monte Carlo replications for each
parameter setting. The quantities denoted by Bias2, Var and MISE in Tables 1 and 2
are Monte Carlo approximations to integrated squared bias, integrated variance
and mean integrated squared error, respectively, computed on a grid of 50 equally
spaced points on I. The values of m and ρ, for given n, σε , α and a given set
of γj ’s, were chosen to minimize MISE.

Table 1 shows that in the case of well-spaced eigenvalues, the MISE of b̂ is
smaller than that of b̃ for almost all values of the other design parameters. How-
ever, it follows from Table 2 that in the closely spaced case, the MISE of b̃ is nearly
always smaller than that of b̂. Thus, in terms of MISE, neither estimator dominates
the other.

TABLE 1
Results of Monte Carlo experiments for well-spaced eigenvalues

σε n α ρ an Bias2(b̂) Bias2(b̃) Var(b̂) Var(b̃) MISE(b̂) MISE(b̃)

0.5 100 1.1 2 0.4 0.158 1.150 0.843 1.340 1.001 2.490
1.5 2 0.38 0.148 1.289 0.718 0.759 0.866 2.048
2.0 2 0.28 0.140 1.202 0.676 0.622 0.816 1.824
4.0 2 0.10 0.134 1.344 2.225 0.611 2.359 1.955

500 1.1 3 0.28 0.016 0.717 0.236 0.480 0.251 1.197
1.5 3 0.22 0.015 0.663 0.254 0.364 0.269 1.027
2.0 2 0.12 0.139 0.416 0.146 0.441 0.285 0.857
4.0 2 0.032 0.139 0.460 0.409 0.493 0.548 0.953

1.0 100 1.1 2 1.0 0.161 2.709 2.034 1.203 2.195 3.913
1.5 2 0.75 0.149 2.401 2.221 1.019 2.370 3.420
2.0 2 0.50 0.139 2.047 2.395 1.034 2.534 3.081
4.0 1 0.25 3.257 2.302 0.501 0.788 3.758 3.090

500 1.1 2 0.50 0.142 1.438 0.408 0.758 0.549 2.197
1.5 2 0.35 0.138 1.164 0.425 0.702 0.563 1.866
2.0 2 0.10 0.139 0.314 0.514 2.279 0.654 2.593
4.0 2 0.10 0.139 1.386 1.647 0.472 1.786 1.858
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TABLE 2
Results of Monte Carlo experiments for closely spaced eigenvalues

σε n α m ρ Bias2(b̂) Bias2(b̃) Var(b̂) Var(b̃) MISE(b̂) MISE(b̃)

0.5 100 1.1 1 0.22 3.526 2.502 0.141 0.585 3.398 3.087
1.5 1 0.22 3.257 2.487 0.131 0.455 3.389 2.942
2.0 1 0.20 3.259 2.403 0.126 0.454 3.385 2.857
4.0 1 0.20 3.260 2.402 0.130 0.433 3.390 2.835

500 1.1 5 0.08 0.002 1.463 2.510 0.574 2.512 2.037
1.5 5 0.06 0.002 1.212 2.604 0.623 2.606 1.835
2.0 5 0.04 0.006 0.846 2.528 0.783 2.535 1.629
4.0 5 0.04 0.006 0.780 2.500 0.640 2.506 1.420

1.0 100 1.1 1 0.42 3.260 3.127 0.533 0.856 3.793 3.983
1.5 1 0.42 3.271 3.031 0.512 0.706 3.783 3.736
2.0 1 0.32 3.260 2.822 0.540 0.937 3.799 3.759
4.0 1 0.36 3.262 2.954 0.496 0.760 3.758 3.713

500 1.1 1 0.20 3.258 2.379 0.109 0.532 3.367 2.911
1.5 1 0.14 3.262 2.078 0.109 0.729 3.372 2.807
2.0 1 0.12 3.262 1.922 0.103 0.762 3.366 2.684
4.0 1 0.12 3.256 1.818 0.107 0.695 3.363 2.514

Both tables reveal that there is a general tendency for MISE to decrease as α

increases. This does not contradict (3.5) or (3.10) since those results describe the
behavior of MISE as a function of n for fixed α and β , not the behavior of MISE
as a function of α or β for fixed n.

5. Derivation of Theorem 1.

5.1. Proof of (3.5). We begin by defining notation to be used in the proof.
Given a sequence cn of positive constants, we shall use Op(cn) and op(cn) to
denote random variables Rn and rn, respectively, which satisfy

lim
D→∞ lim sup

n→∞
sup
F∈F

PF (|Rn| > Dcn) = 0,

lim
n→∞ sup

F∈F
PF (|rn| > Dcn) = 0 for each D > 0.

Similarly, a deterministic quantity An = An(F ), written as An = O(cn), will be
understood to satisfy

sup
n≥1

c−1
n sup

F∈F
|An(F )| < ∞.

Next, we state subsidiary results concerning distances between the spectra of
two operators. Let L denote a general positive semidefinite linear operator as well
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as the kernel of that operator. Let the spectral decomposition of L be

L(u, v) =
∞∑

j=1

λjψj (u)ψj (v).(5.1)

We assume that the terms are ordered in such a way that λ1 ≥ λ2 ≥ · · · ≥ 0.
Given univariate functions p, q and a symmetric bivariate function M , let |||M||| =
(
∫∫

I2 M2)1/2. Write
∫

pq and
∫

Mpq for∫
I
p(u)q(u)du and

∫ ∫
I2

M(u,v)p(u)p(v) dudv,

respectively. Further, denote by
∫

Mp the function of which the value at u is∫
I M(u,v)p(v) dv and define δj = min1≤k≤j (κk − κk+1).

The following pair of results may be derived from theory developed by Bhatia,
Davis and McIntosh [1]:

sup
j≥1

|κj − λj | ≤ |||K − L|||, sup
j≥1

δj‖φj − ψj‖ ≤ 81/2|||K − L|||.(5.2)

In framing the second bound here, we use the convention that
∫

ψjφj ≥ 0. This
determines the sign of ψj in those cases where choice of sign has an impact on the
validity of (5.2).

The following lemma will be proven in Section 5.2:

LEMMA 5.1. If we are able to write ψj − φj = χj + �j for functions χj and
�j , then ∣∣∣∣(κj − λj )

(
1 +

∫
χjφj

)
−

∫
(K − L) (φj + χj )φj

∣∣∣∣
≤ ‖�j‖

{
|κj − λj | +

∥∥∥∥∫
(K − L)φj

∥∥∥∥}
.

(5.3)

Furthermore, if infk : k 
=j |λj − κk| > 0, then

ψj − φj = ∑
k : k 
=j

(λj − κk)
−1φk

∫
(L − K)ψjφk + φj

∫
(ψj − φj )φj .(5.4)

Put �̂ = |||K̂ − K||| and define the event Em by

Em = Em(n) = {1
2κm ≥ �̂

}
.

That is, Em denotes the set of all realizations such that for sample size n, 1
2κm ≥ �̂.

Below, when we say that a bound is valid when Em holds, this should be interpreted
as stating that the bound is valid for all realizations for which 1

2κm ≥ �̂. It is not a
statement that relates to a conditioning argument in the sense that conditioning is
usually interpreted in probability theory.
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Write b̂j = b̌j + κ̂−1
j (Sj1 +Sj2 +Sj3), where κ̂j b̌j = ∫

gφj , Sj1 = ∫
(ĝ −g)φj ,

Sj2 = ∫
g(φ̂j − φj ) and Sj3 = ∫

(ĝ − g)(φ̂j − φj ). In this notation,

m∑
j=1

(b̂j − b̌j )
2 ≤ 3

m∑
j=1

κ̂−2
j (S2

j1 + S2
j2 + S2

j3)

≤ 12
m∑

j=1

κ−2
j (S2

j1 + S2
j2 + S2

j3)

≤ 12
m∑

j=1

κ−2
j (S2

j1 + S2
j2) + 12‖ĝ − g‖2

m∑
j=1

κ−2
j ‖φ̂j − φj‖2,

(5.5)

where the first inequality holds universally; the second inequality, obtained using
the first part of (5.2), is valid provided the event Em holds; and the third inequality
employs the bound |Sj3| ≤ ‖ĝ − g‖‖φ̂j − φj‖.

Note that provided Em holds, we have
m∑

j=1

(b̌j − bj )
2 =

m∑
j=1

(
κ̂j − κj

κ̂j κj

)2(∫
gφj

)2

≤ 4
m∑

j=1

(
κ̂j − κj

κ2
j

)2(∫
gφj

)2

= 4
m∑

j=1

κ−2
j b2

j (κ̂j − κj )
2.

(5.6)

Define �̂j = ‖ ∫
(K̂ − K)φj‖. Using (5.3) with χj ≡ 0 and then applying both

parts of (5.2), we obtain∣∣∣∣κ̂j − κj −
∫

(K̂ − K)φjφj

∣∣∣∣ ≤ ‖φ̂j − φj‖(|κ̂j − κj | + �̂j )

≤ δ−1
j �̂(�̂ + �̂j ).

(5.7)

Combining (5.6) and (5.7) and defining �̂jj = | ∫ (K̂ − K)φjφj |, we deduce that
if Em holds, then

m∑
j=1

(b̌j − bj )
2 ≤ 8

m∑
j=1

κ−2
j b2

j �̂
2
jj + 16�̂2

m∑
j=1

(δjκj )
−2b2

j (�̂
2 + �̂2

j ).(5.8)

We shall prove in Section 5.3 that under the conditions of the theorem,

E(�̂2) + E(�̂2
j ) = O(n−1), E(�̂2

jj ) = O(n−1κ2
j ),(5.9)

uniformly in j . In particular, (5.9) entails �̂ = Op(n−1/2). Now, (3.2) and (3.4) im-
ply that n1/2κm → ∞ as n → ∞, so the first part of (5.9) implies that P(Em) → 1.
Therefore, since the result (3.5) that we wish to prove relates only to probabili-
ties of differences (not to moments of differences), it suffices to work with bounds
that are established under the assumption that Em holds, since the contrary case
contributes only o(1) to the probability on the left-hand side of (3.5).
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In our arguments below, we shall use the property �̂ = Op(n−1/2) without
further reference. Now, the conditions in Theorem 1 imply that δ−1

j ≤ C1j
α+1,

whence it follows that

n−1
m∑

j=1

κ−2
j b2

j κ2
j ≤ C2n

−1
m∑

j=1

j−2β ≤ C3n
−1,

n−2
m∑

j=1

(δj κj )
−2b2

j ≤ C4n
−2

m∑
j=1

j4α−2β+2 ≤ C5n
−2s(n),

(5.10)

where C1, . . . ,C5 are positive constants and s(n) equals n(4α−2β+3)/(α+2β) if the
exponent is strictly positive, equals 1 + logn if the exponent vanishes and equals 1
otherwise. Combining (5.8)–(5.10), we deduce that

m∑
j=1

(b̌j − bj )
2 = Op{n−1 + n−2s(n)} = op(n−(2β−1)/(α+2β)).(5.11)

Observe, too, that

∫
I

{
m∑

j=1

bj φ̂j (u) − b(u)

}2

du ≤ 2
∫
I

[
m∑

j=1

bj {φ̂j (u) − φj (u)}
]2

du

+ 2
∞∑

j=m+1

b2
j

≤ 2m

m∑
j=1

b2
j‖φ̂j − φj‖2 + 2

∞∑
j=m+1

b2
j .

(5.12)

Combining (5.5), (5.11) and (5.12), we find that∫
(b̂ − b)2 ≤ 3

m∑
j=1

(b̂j − b̌j )
2 + 3

m∑
j=1

(b̌j − bj )
2

+ 3
m∑

j=1

∫ (
m∑

j=1

bj φ̂j − b

)2

≤ 36
m∑

j=1

κ−2
j (S2

j1 + S2
j2)

+ 36
m∑

j=1

(mb2
j + ‖ĝ − g‖2κ−2

j )‖φ̂j − φj‖2

+ 6
∞∑

j=m+1

b2
j + op(n−(2β−1)/(α+2β)).

(5.13)
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Simple moment calculations show that E‖ĝ − g‖2 = O(n−1) and, clearly,∑
j≥m+1 b2

j = O(n−(2β−1)/(α+2β)). It will be proved in Section 5.3 that

E(S2
j1) = O(n−1κj ),(5.14)

whence it follows that
∑

j≤m κ−2
j S2

j1 = Op(n−(2β−1)/(α+2β)). Combining these
results and (5.13), we see that (3.5) will follow if we prove that

m∑
j=1

j2α

{∫
g(φ̂j − φj )

}2

+
m∑

j=1

(mj−2β + n−1j2α)‖φ̂j − φj‖2

= Op(n−(2β−1)/(α+2β)).

(5.15)

Derivation of this property requires bounds on φ̂j − φj , which we now discuss.
Take L = K̂ , λj = κ̂j and ψj = φ̂j in Lemma 5.1. Formula (5.4) yields ‖φ̂j −

φj‖2 = û2
j + v̂2

j , where

û2
j = ∑

k : k 
=j

(κ̂j − κk)
−2

{∫
(K̂ − K)φ̂jφk

}2

and v̂2
j = {∫ (φ̂j − φj )φj }2. Now, ûj equals the length of the projection of φ̂j − φj

into the plane perpendicular to φj ; hence, it also equals the projection of φ̂j into
that plane. Also,

∫
φ̂jφj equals the length of the projection of φ̂j onto φj . There-

fore, by Pythagoras’ Theorem, (
∫

φ̂jφj )
2 + û2

j = ‖φ̂j‖2 = 1, whence it follows

that
∫

φ̂jφj = (1 − û2
j )

1/2. Hence,

v̂2
j =

(
1 −

∫
φ̂jφj

)2

= {
1 − (1 − û2

j )
1/2}2 = 2

{
1 − (1 − û2

j )
1/2} − û2

j ,

which implies that

‖φ̂j − φj‖2 = 2
{
1 − (1 − û2

j )
1/2} ≤ 2û2

j .(5.16)

Let C > 0 and define

Fm = Fm(n) = {(κ̂j − κk)
−2 ≤ 2(κj − κk)

−2 ≤ Cn2(α+1)/(α+2β)},
that is, the set of realisations such that, for sample size n, (κ̂j − κk)

−2 ≤ 2(κj −
κk)

−2 ≤ Cn2(α+1)/(α+2β). Observe that{∫
(K̂ − K)φ̂jφk

}2

≤ 2
{∫

(K̂ − K)φjφk

}2

+ 2ŵ2
jk,(5.17)

where ŵ2
jk = {∫ (K̂ − K)(φ̂j − φj )φk}2. Note, too, that uniformly in 1 ≤ j ≤ m,

max(κj − κj+1, κj−1 − κj ) ≥ C1j
−(α+1) ≥ C2n

−(α+1)/(α+2β),
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where C1,C2 denote positive constants, and that since β > 1
2α + 1, it follows

that n−1/2 = o(n−(α+1)/(α+2β)). These properties, and the fact that |κ̂j − κj | ≤
�̂ = Op(n−1/2), imply that if the constant C in the definition of Fm is chosen
to be sufficiently large, then P(Fm) → 1 as n → ∞. Therefore, as in the case
of En, since (3.5) relates only to probabilities of differences, it suffices to work
with bounds that are established under the assumption that Fm holds. In this case,∑

k : k 
=j

(κ̂j − κk)
−2ŵ2

jk ≤ Cn2(α+1)/(α+2β)
∞∑

k=1

ŵ2
jk.(5.18)

Using Parseval’s identity and the Cauchy–Schwarz inequality, we may prove
that

∞∑
k=1

ŵ2
jk =

∫
I

[∫
I
(K̂ − K)(u, v)(φ̂j − φj )(v) dv

]2

du ≤ �̂2‖φ̂j − φj‖2.(5.19)

Combining (5.17)–(5.19), we deduce that provided Fm holds, we have

û2
j ≤ 2

∑
k : k 
=j

(κ̂j − κk)
−2

{∫
(K̂ − K)φjφk

}2

+ 2Cn2(α+1)/(α+2β)�̂2‖φ̂j − φj‖2.

Substituting into (5.16), we find that

(1 − 4Cn2(α+1)/(α+2β)�̂2)‖φ̂j − φj‖2

≤ 4
∑

k : k 
=j

(κ̂j − κk)
−2

{∫
(K̂ − K)φjφk

}2

.
(5.20)

Recall that �̂ = Op(n−1/2) and observe that since β > 1
2α + 1, we have

n2(α+1)/(α+2β) · n−1 → 0. Therefore, noting that P(Fm) → 1, we deduce that
(5.20) implies

‖φ̂j − φj‖2 ≤ 4{1 + op(1)} ∑
k : k 
=j

(κ̂j − κk)
−2

{∫
(K̂ − K)φjφk

}2

≤ 8{1 + op(1)} ∑
k : k 
=j

(κj − κk)
−2

{∫
(K̂ − K)φjφk

}2

,

(5.21)

where the op(1) terms are of that order uniformly in 1 ≤ j ≤ m. We shall show in
Section 5.3 that

n
∑

k : k 
=j

(κj − κk)
−2E

{∫
(K̂ − K)φjφk

}2

= O(j2),(5.22)

uniformly in 1 ≤ j ≤ m. Results (5.21) and (5.22) together imply that
m∑

j=1

(mj−2β + n−1j2α)‖φ̂j − φj‖2 = Op(mn−1 + m2α+3n−2)

= op(n−(2β−1)/(α+2β)).

(5.23)



FUNCTIONAL LINEAR REGRESSION 85

Next, observe that∫
g(φ̂j − φj ) = ∑

k : k 
=j

gk(κ̂j − κk)
−1

∫
(K̂ − K)φ̂jφk

+ gj

∫
(φ̂j − φj )φj

= Tj1 + Tj2 + Tj3 + Tj4,

(5.24)

where
Tj1 = ∑

k : k 
=j

gk (κj − κk)
−1

∫
(K̂ − K)φjφk,

Tj2 = ∑
k : k 
=j

gk{(κ̂j − κk)
−1 − (κj − κk)

−1}
∫

(K̂ − K)φjφk,

Tj3 = ∑
k : k 
=j

gk(κ̂j − κk)
−1

∫
(K̂ − K)(φ̂j − φj )φk

and Tj4 = gj

∫
(φ̂j −φj )φj . Let C1,C2, . . . denote positive constants. Since |gk| ≤

C1k
−(α+β), then if Fm holds, we have

T 2
j2 ≤ C2

{ ∑
k : k 
=j

k−(α+β) |κ̂j − κj |
(κj − κk)2

∣∣∣∣∫ (K̂ − K)φjφk

∣∣∣∣}2

≤ C3

{ ∑
k : k 
=j

k−2(α+β) (κ̂j − κj )
2

(κj − κk)4

}[ ∞∑
k=1

{∫
(K̂ − K)φjφk

}2
]

= C4(κ̂j − κj )
2�̂2

j

∑
k : k 
=j

k−2(α+β)(κj − κk)
−4.

Now, ∞∑
k=2j

k−2(α+β)(κj − κk)
−4 ≤ C5κ

−4
j

∞∑
k=2j

k−2(α+β) ≤ C6j
2α−2β+1,

j/2∑
k=1

k−2(α+β)(κj − κk)
−4 ≤ C7

j/2∑
k=1

k−2(α+β)κ−4
k ≤ C8

j/2∑
k=1

k2α−2β

≤ C9


1, if α + 1

2 < β,

1 + log j, if α + 1
2 = β,

j2α−2β+1, if α + 1
2 > β,

2j∑
k=j/2

k−2(α+β)(κj − κk)
−4 ≤

2j∑
k=j/2

k−2(α+β)(j/κj )
4(1 + |j − k|)−4

≤ C10j
2α−2β+4.
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Therefore, ∑
k : k 
=j

k−2(α+β)(κj − κk)
−4 ≤ C11(1 + j2α−2β+4 + log j),(5.25)

whence, using (5.2) and (5.9), we have

m∑
j=1

j2αT 2
j2 ≤ C12

m∑
j=1

(κ̂j − κj )
2�̂2

j (j
2α logn + j4α−2β+4)

= Op

{
n−1

m∑
j=1

E(�̂2
j )(j

2α logn + j4α−2β+4)

}

= Op

{
n−2

m∑
j=1

(j2α logn + j4α−2β+4)

}
= Op{n−2(m2α+1 logn + m4α−2β+5)} = op(n−(2β−1)/(α+2β)).

(5.26)

If Fm holds, then

|Tj3| ≤ C13
∑

k : k 
=j

k−(α+β)|κj − κk|−1
∣∣∣∣∫ (K̂ − K)(φ̂j − φj )φk

∣∣∣∣
≤ C14

∑
k : k 
=j

k−(α+β)|κj − κk|−1‖φ̂j − φj‖

×
∫

|φk(u)|
[∫

{K̂(u, v) − K(u, v)}2 dv

]1/2

du

≤ C15�̂‖φ̂j − φj‖
∑

k : k 
=j

k−(α+β)|κj − κk|−1

≤ C16�̂‖φ̂j − φj‖,

(5.27)

where the last inequality follows using the argument leading to (5.25). From (5.27),
using (5.21) and (5.22), it may be shown that

m∑
j=1

j2α T 2
j3 = Op

(
n−2

m∑
j=1

j2α+2

)
= op(n−(2β−1)/(α+2β)).(5.28)

More simply,

m∑
j=1

j2αT 2
j4 ≤ C17

m∑
j=1

j−2β‖φ̂j − φj‖2 = Op(n−1).(5.29)

Combining (5.24), (5.26), (5.28) and (5.29), we deduce that

m∑
j=1

j2α

{∫
g(φ̂j − φj )

}2

≤ 4
m∑

j=1

j2αT 2
j1 + op(n−(2β−1)/(α+2β)).(5.30)
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We shall prove in Section 5.3 that

m∑
j=1

j2αE(T 2
j1) = O(n−(2β−1)/(α+2β)).(5.31)

The desired result (5.15) follows from (5.23), (5.30) and (5.31). This completes
the proof of (3.5).

5.2. Proof of Lemma 5.1. To derive (5.3), observe that on subtracting the ex-
pansions of K and L in (2.1) and (5.1), respectively, we obtain an expansion of
K −L. Multiplying both sides of this by ψj(u)φj (v) and integrating over u and v,
we deduce that

(κj − λj )

∫
ψjφj −

∫
(K − L)ψjφj = 0.(5.32)

Since ψj = φj + χj + �j , we have∣∣∣∣∫ ψjφj − 1 −
∫

χjφj

∣∣∣∣ =
∣∣∣∣∫ �jφj

∣∣∣∣ ≤ ‖�j‖,(5.33)

∣∣∣∣∫ (K − L)(ψj − φj − χj )φj

∣∣∣∣2
=

∣∣∣∣∫ (K − L)�jφj

∣∣∣∣2
≤

(∫
�2

j

)∫
I

[∫
I
{K(u, v) − L(u, v)}φj (u) du

]2

dv.

(5.34)

Result (5.3) follows from (5.32)–(5.34).
The expansions of K and L in (2.1) and (5.1) may be used to prove that

λj (ψj − φj ) =
∫

K(ψj − φj ) +
∫

(L − K)ψj − (λj − κj )φj .

Multiplying both sides by φk and integrating, we deduce that

λj

∫
(ψj − φj )φk = κk

∫
(ψj − φj )φk +

∫
(L − K)ψjφk − (λj − κj )δjk,

where δjk denotes the Kronecker delta. Equivalently, provided λj 
= κk , we have∫
(ψj − φj )φk = (λj − κk)

−1
∫

(L − K)ψjφk − δjk.

Result (5.4) follows from this formula and the fact that

ψj − φj =
∞∑

k=1

φk

∫
(ψj − φj )φk.
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5.3. Proofs of (5.9), (5.14), (5.22) and (5.31). Direct calculation shows that
E(K̂ − K)2 = O(n−1), uniformly on I × I. It follows that E(�̂2) = O(n−1).
Note, too, that by Parseval’s identity, �̂2 = ∑

j �̂2
j and so supj E(�̂2

j ) = O(n−1).
This gives the first part of (5.9). To derive the second part, assume without loss

of generality that E(X) = 0 and observe that∫
(K̂ − K)φjφk = n−1

n∑
i=1

(ξij ξik − Eξj ξk) − ξ̄j ξ̄k,(5.35)

where ξij = ∫
Xiφj , ξ̄j = n−1 ∑

i ξij and ξj denotes a generic ξij . Therefore, using
the fact that E(ξ4

j ) ≤ C1(Eξ2
j )2, where C1 > 0 does not depend on j , we deduce

that

E(�̂2
jj ) = E

{
n−1

n∑
i=1

(ξ2
ij − Eξ2

j ) − ξ̄2
j

}2

≤ n−1C2(Eξ2
j )2 = n−1C2κ

2
j ,

where C2 does not depend on j . This implies the second part of (5.9).
To prove (5.14), observe that∫

(ĝ − g)φj = n−1
n∑

i=1

{
ξij

∫
bXi − ξ̄j

∫
bX̄ − E

(
ξij

∫
bXi

)}

+ n−1
n∑

i=1

(ξij εi − ξ̄j ε̄),

where ε̄ = n−1 ∑
i εi . It may thus be proved that

nE

{∫
(ĝ − g)φj

}2

≤ C3

{
var

(
ξj

∫
bX

)
+ var(ξj )

}
≤ C4(Eξ4

j )1/2 ≤ C5κj ,

which implies (5.14).
To obtain (5.22), note that by (5.35) and the fact that E(ξ4

j ) ≤ C1(Eξ2
j )2, we

have

nE

{∫
(K̂ − K)φjφk

}2

≤ C6E(ξ2
j ξ2

k ) ≤ C7(Eξ4
j · Eξ4

k )1/2 ≤ C8κjκk,

uniformly in j and k. Result (5.22) follows directly on substitution and employing
the argument leading to (5.25).

Again using (5.35), we have

Tj1 = n−1
n∑

i=1

∑
k : k 
=j

gk(κj − κk)
−1{ξij ξik − E(ξij ξik) − ξ̄j ξ̄k},
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from which it may be proved that since E(|ξk1 . . . ξk4 |) ≤ ∏
�(Eξ4

k�
)1/4,

nE(T 2
j1) ≤ C9E

{
ξj

∑
k : k 
=j

gk(κj − κk)
−1ξk

}2

≤ C10(Eξ4
j )1/2

{ ∑
k1 : k1 
=j

. . .
∑

k4 : k4 
=j

E(|ξk1 . . . ξk4 |)

×
4∏

�=1

|gk�
(κj − κk�

)−1|
}1/2

≤ C11κj

( ∑
k : k 
=j

∣∣∣∣ gkκk

κj − κk

∣∣∣∣)4

≤ C12κj ,

uniformly in j . Therefore,
∑

j≤m j2αE(T 2
j1) ≤ C10n

−1mα+1, which implies (5.31).

5.4. Proof of (3.6). Let I ≡ [0,1], φ1 ≡ 1 and φj+1(t) = 2−1/2 cos(jπt) for
j ≥ 1. Put bj = θj j

−β for Ln+1 ≤ j ≤ 2Ln and bj = 0 otherwise, where Ln de-
notes the integer part of n1/(2β+1) and each θj is either 0 or 1. Let κj = j−α and
write Z1,Z2, . . . for independent random variables, all with the uniform distrib-
ution on [−31/2,31/2]. Note that E(Zj ) = 0, E(Z2

j ) = 1 and that the Zj ’s are

observable if X is observable since Zj = jα/2 ∫
I Xφj .

Set X = ∑
j j−α/2Zjφj and

Y =
∫
I
bX + ε =

2Ln∑
j=Ln+1

θj j
−(α+2β)/2Zj + ε,

where the error ε is taken to be Gaussian with zero mean. Then we may write
b = ∑

Ln+1≤j≤2Ln
θj j

−βφj and if b̄ is an estimator of b, it follows that

θ̄j = jβ
∫
I
b̄φj(5.36)

is an estimator of θj . An argument based on the Neyman–Pearson lemma shows
that

lim
n→∞ inf

Ln+1≤j≤2Ln

inf
θ̄j

sup∗ E(θ̄j − θj )
2 > 0,

where sup∗ denotes the supremum over all 2Ln different distributions of (X,Y )

obtained by taking different choices of θLn+1, . . . , θ2Ln , and infθ̄j
represents the

infimum over all measurable functions θ̄j of the data. Therefore, if an estimator
b̌ is given and θ̌Ln+1, . . . , θ̌2Ln are the respective estimators of θLn+1, . . . , θ2Ln
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obtained by substituting b̌ for b̄ in (5.36), then for constants D1,D2 > 0 which do
not depend on the choice of the measurable function b̌,

sup∗
∫
I
EF (b̌ − b)2 = sup∗

2Ln∑
j=Ln+1

j−2βEF (θ̌j − θj )
2

≥ D1

2Ln∑
j=Ln+1

j−2β ≥ D2n
−(2β−1)/(α+2β).

This proves (3.6).
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