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Abstract—In this work, a methodology for the analysis and de-

sign of robust, high bandwidth current controllers for three phase 

converters is presented. The overall goal is to demonstrate how the 

proposed model based control structure and the design method-

ology lead to an optimized digital current controller that exhibits 
fast and smooth dynamics as well as an excellent disturbance 

rejection ability.  First, accurate discrete time models are derived 

and used to review classical current control from the perspective of 

the synchronous and stationary reference frame. Then, implemen-

tation options for the synchronous frame proportional integral 

(SFPI) regulator and the proportional resonant (PR) regulator are 

discussed and systematically compared in the stationary frame 

leading to the formulation of a general controller framework 
based on space vector resonators. It embodies multiple complex 

resonators and can represent the SFPI regulator, the PR regulator 

and beyond that any higher order regulator structure. For this 

framework, a step by step design procedure based on the complex 
root locus is proposed that allows an insightful optimization of its 
feedback gains. Finally, the performance of the presented control 
design techniques is evaluated experimentally.

Index Terms—Control design, current control, digital control, 

PWM converter, root-locus method.

I. IntroductIon

THE aim of this work is to provide an insightful framework 

for the design and efficient implementation of discrete time 
current control structures for grid-tied three-phase PWM con-

verters. The synchronous-frame PI (SFPI) regulator [1] and the 

proportional-resonant (PR) regulator [2] are the most common 

regulators used for three-phase PWM converters, e.g. in active 

rectifiers or inverters for distributed power generation [3]. In a 
consistent control structure with proper state feedback decou-

pling and command feedforward [25], [29]  they provide high 

bandwidth current control with infinite stiffness and zero steady 
state error at grid frequency. 

For PWM converters operating at low switching frequencies 

accurate discrete time modeling is necessary for high bandwidth 

control design [24]. Basic discrete time modeling and control 
techniques for SFPI regulators and PR regulators have been 

explored in [4], [5]. They offer high accuracy, since they allow 
analyzing and designing the dynamics of a computer controlled 
system in its natural domain. For example, the latched charac-

teristics of the voltage pattern generated by a PWM modulated 

converter and the update delay can be modeled accurately. 

Based on these models widely explored design tools like state 
space control [6] or the root locus method [7] can be used to ob-

tain optimized feedback gains. This is not possible working with 
continuous time models where typically the open loop transfer 

function is used to design the controller. The optimization of the 
phase margin and the crossover frequency [8] only guarantee 

the stability of the closed loop system, but both cannot be di-

rectly related to certain closed loop characteristics e.g. damping, 

bandwidth or stiffness properties. 

With the stronger integration of power electronics in the dis-

tribution grid, the harmonic content of the grid voltage increases 

in many grid areas [26], [27]. Without any further measures, neither 

SFPI nor PR regulators can reject the effect of voltage compo-

nents of higher order and the emission of higher order current 

harmonics is the consequence. Thus, for the accurate control of 

the converter current at fundamental frequency and the rejection 

of higher order disturbance voltages multiple SFPI/PR regula-

tors are used in [9], [10], [26] and [32] or alternatively repetitive 

control structures are applied as in [11], [27], [28] and [12].

Especially at a small carrier to fundamental frequency ratio, it 

is important to design the current control structure strategically 

in such a way that the fundamental current is smoothly con-

trolled with high bandwidth and higher order voltage harmonics 

and disturbances are effectively rejected [25], [27]. In the litera-

ture most research approaches the control design in the contin-

uous time domain [3], [13], [14], [31], [32]. However, a control 
design in the discrete time domain allows more realistic insight 

in the converter operation if the control bandwidth reaches close 

to the sampling frequency of the system, as illustrated in [5],[29] 

and [30]. For this reason, this paper aims to present a consistent 

discrete time modeling and design methodology to optimize the 
control structure and feedback gains for current controllers in 

grid tied applications. 

This work, which is based on [22], firstly derives an accu-

rate discrete time model for grid tied converters. Based on this 

model suitable decoupling structures and a trajectory generator 

are implemented together with a SFPI regulator using classical 

design methods and assuming ideal decoupling. To compare 

the SFPI and the PR regulator, the SFPI regulator is first formu-

lated in the stationary frame [13]. It is demonstrated how the 
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root locus method can be generalized for complex single-input 
single-output (SISO) systems in order to make it an effective 

design tool for any three phase control design. With this tool, 

the PR and SFPI regulator are optimized and compared. Finally, 
it is demonstrated how multiple space vector resonators can be 

tied together in a regulator structure called “Resonant Space 

Vector (RSV) regulator”. This structure allows an efficient 

implementation and a consistent design of higher order current 

regulators. The discussed implementation and design concepts 

are validated in simulation and experiments.   

II. model deVeloPment

In this section, a discrete time model of a PWM converter 

with LCL filter (Fig. 1) is developed. In a first modeling step, 
the converter circuitry is replaced by ideal voltage sources, which 

represent the average voltage applied to the filter (Fig. 3). The 

control bandwidth of most converters is significantly below the 
resonance frequency of the LCL filter. Thus, in the frequency 
range of the control loops the capacitor Cf behaves like an open 

circuit and can be omitted in the control model (Fig. 4). This mod-

el only consists of an inductance Lf = Lconv + Lgrid and a parasitic 

resistance Rf = Rconv + Rgrid, which form a so called L-filter mod-

el The neutral point of the converter system is isolated. Thus, 

the three phase currents and voltages can be transformed to two 

orthogonal space vector components [3] via the αβ-transform 
resulting in the simplified equivalent circuit of the three phase 
converter shown in Fig. 5. The αβ-space vectors can be formu-

lated as complex quantities to reduce the system complexity. 
Thereby, the converter, which is oritignally a scalar multiple-in-

put multiple-output (MIMO) system is reduced to a complex 

single-input single-output (SISO) system like it is presented in 

[14] and [15].
Most control analysis and synthesis tools in the Laplace- and 

z-domain can be adopted for these complex systems as it is il-
lustrated in [16] and [17]. Based on the differential equation of 

the simplified system 

 (1)

which describes the dynamics of the current iLf

αβ
 in the induc-

tance Lf and the resistance Rf as a function of the modulated 

converter voltage vm

αβ
 and the grid voltage vgrid

αβ
, the transfer 

function Gfilter(s)
αβ

 (2) of the L-filter can be determined as a 

function of the time constant τf = Lf /Rf.

(2)

For the voltage modulation, a classical asymmetrical regular 

sampled PWM [18] is used to realize a space vector modulation 
[20], which allows applying an arbitrary three-phase average 

voltage to the filter. The voltage modulation process for one 

half bridge of the converter is depicted in Fig. 2. At the top and 

bottom of the carrier signal scarrier the duty cycle dPWM is updated 

and the converter current iLf is measured and sampled. This syn-

chronous sampling allows capturing the average current. The 

computer control system can be operated at a sampling frequen-

cy of twice the PWM frequency. However, as the duty cycle is 

only updated twice per PWM interval, there is a constant update 

delay of Tupdate = Ts.

Fig. 3.  Simplified model of the converter with LCL filter.
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Fig. 5.  Model in the αβ frame.
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Fig. 1.  Three-phase PWM converter with LCL filter. 

Fig. 2.  Pulse width modulation of one converter half-bridge.
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A. Discrete Time Converter Model

The discrete time model of a PWM converter connected to 

the utility grid is developed based on the state block diagram of 

the plant depicted in Fig. 6. It takes into account the low band-

width filter dynamics of the LCL filter (2), the update delay of 
the controller Gupdate(z) = z

-1
, and the modulator dynamics. The 

low-pass characteristic of the inductive load ensures that only 

the average voltage contributes to the average rate of change of 

the current. Therefore, the applied voltage pulses are approxi-
mated as a latch with a zero-order hold model in the stationary 
frame [5]. The zero-order hold model is applied according to (3) 
following [23].

(3)

For a negligible small resistance, the plant time constant τf = Lf /

Rf approaches inifity and the discrete time transfer function can 
be simplified via (4) using L’Hopital’s rule. The same results 
can also be obtained by directly discretizing the transfer func-

tion of an inductance and can be found in [24].

(4)

The discrete time model of the plant is completed by adding the 

update delay Gupdate(z), which takes into account the delay be-

tween the sampling of the currents and voltages and the update 

of the PWM duty cycle.

(5)

For most common control designs, the plant is transformed 

into the synchronous reference frame, which rotates with the 

grid frequency ωe, to design a PI regulator for dc-quantities. 

This model transformation can be done by back shifting of the 

coordinate transformation (6) and applying the z-transformation 
on the backshifted difference (7) resulting in (8).  

(6)

(7)

(8)

Consequently, a discrete time transfer function can be trans-

ferred from the stationary to the synchronous reference frame, 

which rotates at an angular frequency of ωe, by replacing all z-1
 

with z -1
e 

-jωeTs. The transfer function of the system in the syn-

chronous frame (9), which is derived following this procedure, 

exhibits complex coefficients due to the crosscoupling between 
d- and q-component which results from the reference frame 

transformation.

(9)

B. Discrete Time Grid Voltage Model

Another part of the converter model that needs to be derived 

is the discrete time system response to the grid voltage. It de-

scribes the impact of the sampled grid voltage vgrid(k) on the 

sampled current iLf(k). The discrete time grid voltage model 

cannot be developed from the stationary frame inductor model 

(5), because this does not accurately model the sinusoidal char-

acteristics of the grid voltage. Instead the grid voltage applied to 

the L-filter 

(10)

can be latched in the dq-frame (11). This corresponds to a per-

fect construction of a sinusoidal voltage in the stationary frame.

(11)

(12)

The resulting transfer function (12) can be simplified, as the 

sinc-function is approximately 1 for the cases of interest 

(13)

Comparing the converter and grid voltage model (9) and (13), 

it is important to realize that the sampled grid voltage and the 
converter voltage exhibit a different rotation in steady state.  

The knowledge about the discrete time dynamics of the 

system can be assembled to a discrete time converter model as 

depicted in the grey box in Fig. 7. 

III. current control ImPlementatIon In the dq-frame

The developed model is the basis for the current control im-

plementation, which is discussed in the following section. It is 

discussed in many publications, e.g. in [3] and [8], that it is im-

portant to make the dynamics of the d- and q-current unaffected 

Fig. 6.  State block diagram of the converter connected to the grid.
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from each other. The elimination of crosscoupling allows to 

reduce oscillations and increases the bandwidth and stiffness of 

the control system. However, this decoupling is typically done 

based on continuous time models, and does not take into ac-

count the discrete nature of the control algorithm. To overcome 

this limitation in the following section accurate discrete time 

decoupling measures are discussed, their performance is ana-

lyzed with a standard control design and the command tracking 
is improved with a command trajectory filter and a feedforward 
path.

A. State Feedback Decoupling Structure

The required decoupling structure can be developed based 

on the system model. If no additional predictor or observer 

structure is applied, due to the update delay introduced in (5), 

the decoupling can only be done quasi stationary, which was 

discussed in [21]. The forward decoupling path 

(14)

compensates for the phase shift of the delays, whereas the feed-

back vdec,iLf

dq
 decoupling compensates the current crosscoupling, 

while a minor error causes by the update delay remains.  

(15)

The grid voltage is decoupled in steady state with phase com-

pensation according to (16) 

(16)

taking into account the combined grid voltage converter model. 

The entire state feedback decoupling structure is depicted in the 

state block diagram of the controlled plant in Fig. 7 together 

with the SFPI regulator. 

B. Classical  SFPI Regulator Design and Performance Anal-

ysis

After the decoupling, the control design of Kp and Ki can be 

pursued in the dq-frame e.g. based on the phase margin [8], the 

root-locus method [5] or the technical or symmetrical optimum 

(SO) [19]. As the focus of this section is set on the control 

structure, the feedback gains are designed with the symmetrical 

optimum, which is a very common control design method. For 

this design the converter dynamics are assumed to be ideally 

decoupled and approximated by a 1st
 order lag element with 

the time constant Td = Tupdate + Tlatch = 1.5 Ts, which results from 

the update delay and the characteristics of the  modulator that 

is moded as a latch with Tlatch = 0.5 Ts. The open loop transfer 

function

(17)

for Rf = 0 is used for the control design. The symmetrical opti-

mum design for the continuous time model leads to the follow-

ing SFPI regulator gains: 

(18)

The gains obtained from this quasi continuous control design 

are used as feedback gains for the discrete time control structure 

depicted in Fig. 7. Typically, these gains are computed for a = 2 

as this optimizes the disturbance rejection ability and the robust-
ness of the simplified closed loop system. In Fig. 8 the closed 
loop poles and zeros for this particular control design are shown 
for 3 scenarios: The plant without any decoupling measures 

between d- and q-axis, the ideally decoupled plant (18), which 
does not exhibit cross coupling between d- and q-quantities, and 
the quasi-stationary decoupled plant as it is depicted in Fig. 7. 

For the ideally decoupled plant, which is purely a reference 

scenario for the control design and not a realizable scenario, 
complex conjugated poles with a damping of ξ = 1/  are real-

ized. This placement is desirable, as the so called optimal damp-

ing of ξ = 1/  provides the strongest disturbance rejection pos-

sible without overshoot, which can be observed in Fig. 9. If only 

a PI regulator in the synchronous reference frame is used and 

Fig. 7.  State block diagram of the discrete time current control structure with command filter in the synchronous frame.
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no decoupling measures are applied, the dominating pole pair is 

significantly shifted and rotated. In addition, both poles are not 
complex conjugated anymore. This phenomenon of complex 
poles without conjugated counterparts occurs as a consequence 

of the complex SISO system with significant crosscoupling 
between d- and q-axis. This crosscoupling between d- and q- 
current and voltages can be observed from the disturbance step 

response of the system in Fig. 9. If the quasi stationary decoupling 

structure proposed on Fig. 7 is applied, the poles in Fig. 8 slightly 

move back towards their ideal complex conjugated placement. 
As a result, the excitation of the current in the q-axis is signifi-

cantly reduced and also the d-axis current settles much faster. A 
similar effect can be observed looking at the command response 

of the regulator in Fig. 9. 

This investigation shows that the proposed decoupling struc-

tures significantly improves the system dynamics, but cannot 

entirely eliminate the crosscoupling between d- and q-axis. To 
optimize the PI regulator feedback gains, in the next section it is 
shown dynamics of the cross coupled system can be taken into 

account in the regulator design, which is not possible following 

the symmetrical optimum design rule.

C. Trajectory Generation and Command Feedforward

Before the focus is set to the more accurate design of the 

regulator, for the improvement of the command tracking per-

formance a consistent command trajectory filter is added to the 
control, which is depicted in Fig. 7. It consists of a model of the 

physical system, in this case an inductor, with a feedback path. 

The feedback gain Kf is selected to adjust the bandwidth of the 

generated current reference and command feedforward voltage. 

The command trajectory is constraint to the available voltage 

margin to ensure that any voltage command from the controller 

remains within the system limits, i.e. | vm

dq
|< Vdc /  . Conse-

quently, the resulting current reference is always feasible. In ad-

dition, a voltage command vcff

dq
  is generated, which is directly 

passed as a feedforward to the voltage modulator. Note that it is 

very important to delay the current reference by one sampling 

step, as shown in Fig. 7, to ensure that the applied command 

feedforward voltage vcff

dq
 leads to the desired current at the 

exact time instant when the corresponding current reference is 

applied. 

 As a result of the command filter and the feedforward path, 
the control error stays zero during command tracking transients. 
Consequently, the controller just needs to compensate distur-

bances and model inaccuracies and it can be designed for distur-

bance rejection only. The command tracking bandwidth can be 

set with the gain of the command trajectory filter independent of 
the controller. In Fig. 10 the command response with and with-

out command filter and command feedforward are compared. It 
can be seen that these measures eliminate the overshoot during 

transients and allow to achieve deadbeat command tracking 

within 2 time steps.

IV. dIscrete tIme regulator desIgn

 In this section, the efficient implementation of synchro-

nous-frame proportional integral (SFPI) regulators, proportion-

al-resonant (PR) regulators and higher order current regulators 

is discussed. It is illustrated how to optimize the design of these 
control structures. After an optimization, the PR and SFPI reg-

ulator are compared to outline advantages and disadvantages of 

both for different application areas.

A. Implementation Options for Current Regulators

The SFPI regulator (19) is usually designed and implemented 

in the synchronous reference frame 

(19)

However, the design and the implementation of the regulator 

can be done in any other reference frame achieving identical 

system dynamics: For example, in [13], the continuous time do-

main SFPI regulator has been implemented in the stationary ref-

erence frame. This can also be done for the discrete time control 

structure, presented in Fig. 7 using the discrete time coordinate 

transformation given by (8). The entire control structure from 

Fig. 7 implemented in the stationary frame is shown in Fig. 8. 

For the SFPI regulator the transformation leads to

(20)

This expression exhibits a resonator for space vectors, which 

Fig. 10.  Command tracking with different command filter bandwidths.  
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is therefore called space-vector resonator. It results from the 

integrator which is shifted from the dq- into the αβ-coordinate 
system and guarantees the control of the current at its resonant 

frequency with infinite stiffness and zero steady state error due 
to the internal model principle. It can be efficiently implement-
ed on a DSP similar to a discrete time integrator as complex dif-
ference equation using the backshift operator of the z-transform:

(21)

The stationary frame implementation of grid current regula-

tors brings the benefit of a very simple and efficient implemen-

tation without any reference frame transformation.

Based on this concept, a PI regulator on the positive se-

quence and one on the negative sequence of the current can be 

combined in the stationary frame resulting in the discrete time 

implementation of the so called proportional-resonant (PR) reg-

ulator [2], which ensures the rejection of positive and negative 

sequence voltage disturbances:

(22)

Consequently, an arbitrary number of SFPI regulators can be 

implemented in the stationary frame as space-vector resonators, 

which guarantee infinite stiffness and zero steady state error on 
multiple harmonics e.g. on the dominant -5

th
, 7

th
, -11

th
 and 13

th
 

grid harmonic. This controller framework is referred to as reso-

nant space-vector (RSV) regulator in the following:

(23)

For a digital implementation, the difference equations of the 

RSV regulator can be formulated analogously to (21). To com-

pensate the delay of the update and latch at higher harmonics it 

is advisable to include a phase shift into the gain of each resona-

tor, which results in (24). This measure enhances damping and 
stability of the closed loop system.

(24)

B. Design and Comparison of SFPI and PR regulators

It has been discussed in section III that the regulator design 

only needs to focus on providing robustness as well as a fast 

and strong disturbance rejection ability. This requires the feed-

back regulator design to include the correct model as well as 

the already discussed quasi stationary decoupling measures. In 

most publications, a quasi-continuous design of the regulator, 

which has conveniently been used in section III, is applied. This 

is usually based on the symmetrical optimum [3] or the phase 

margin [8]. Unfortunately, this does not allow insight into the 

design process if a system with certain crosscoupling between d- 

and q-components is given. 

To overcome this limitation, this work proposes the gen-

eralization of the root-locus method, which has previously 
only been used for transfer functions with scalar coefficients, 

to transfer functions with complex coefficients. Thereby, it is 
applicable for the discussed design task. In case of the SFPI reg-

ulator, a state feedback decoupling according to Fig. 11 is ap-

plied. However, if the PR regulator  is used, a decoupling is not 

meaningful, because typically neither negative nor positive se-

quence should not be preferred. The following regulator design 

of the three phase PWM converter, modeled as complex SISO 
system, picks up on the root-locus design metric presented in [7]. 

To achieve insights into the regulator design options for SFPI 

(20) and PR regulator (22) in Fig. 12 the root loci of the open 

loop transfer function (25) is plotted for various gains rτ = KiTs /

Kp of both regulators. 

(25)

Due to the complex transfer function of plant and regulator 
the root loci are not complex conjugated with respect to each 
other. It is the design goal to find a controller with high band-

width and disturbance rejection ability that does neither causes 

significant overshoot nor excites resonances. Thus, it is required 
to

•  Maximize the dynamic stiffness |Vgrid

dq
(jω)/ILf

dq
(jω)|

•  Keep the damping in the range of ξopt > 1/ . 

To optimize the regulator with respect to these design goals 
for each root locus the open loop gain is maximized via Kp un-

til the damping constraint ξopt > 1/  is hit. The resulting final 
poles are marked with black crosses in Fig. 12. They all lead to 

a design of the proportional state feedback gain with Kp ≈ Lf /

(3Ts). For these designs the dynamic stiffness and the distur-

bance step response are also plotted in Fig. 12. The dynamic 

stiffness is used to evaluate the disturbance response proper-

ties in the frequency domain, as it indicates what disturbance 

voltage it takes at each frequency to change the current at that 

frequency by 1 A. To find the optimal regulator, the design sce-

nario with the highest tuning factor that still keeps the damping 

constraint is selected. Thereby, it is guaranteed that the stiffness 

around grid frequency is maximized, which is desired to ensure 
a fast rejection of disturbances at the fundamental frequency 

and a certain robustness with respect to grid frequency varia-

tions. The design shown in red for rτ,SFPI = 0.16 and rτ,PR = 0.08 

is a design optimum. A bigger rτ would lead to undesirable low-

er damping and overshoot. The resulting optimized feedback 
gains, which are universally applciable for this current control 

structure, are summarized in TABLE I. 
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An important question to be answered is if there is any bene-

fit from using the PR or the SFPI regulator. From the optimized 
design it is clear that if no control of the negative component is 

necessary, the SFPI regulator is always a better choice. The rea-

son for this is that, given similar damping constraints, the SFPI 

regulator can be built with a higher resonant gain Ki and thus 

provides as faster settling time after disturbances in the funda-

mental grid voltage. If both regulators are analyzed over a sam-

pling frequency range from 1 kHz to 20 kHz, which is used in 
most medium and high power application, the advantage of the 

SFPI regulator over the PR regulator nearly entirely vanishes at 

very low sampling frequencies. which has been illustrated in [22] 

in detail.

C. Design and Implementation of the RSV Regulator 

The introduced RSV regulator is a compact way to formulate 

a regulator on multiple harmonics. One limitation of higher 

order regulator structures is that it is not intuitive to design mul-

tiple state feedback gains such that the overall system dynamics 

are stable, provide reasonable bandwidth and are well behaved. 

To overcome this limitation, it is shown how the root-locus 

method for complex SISO systems can be used to optimize 
the state feedback gains of multiple space vector resonators. A 

properly tuned SFPI regulator is used as a starting point that is 

augmented by space vector resonators achieving infinite stiff-
ness at the -5

th
, +7

th
, -11

th
 and +13

th
 grid harmonic. 

The design goal for the entire regulator is to augment the 

bandwidth of high stiffness around the desired frequencies 

while keeping the effective damping of the system above a cer-

tain level such that resonance do not become dominant. First, 

the RSV regulator state feedback gains rejecting the -5
th
 and 

+7
th grid voltage harmonic are synthesized. The gain on -5th

 and 

+7
th
 harmonic are kept identical (Ki,+5 = Ki,-7 = Kr,-5,+7) to limit the 

complexity of the design. The root locus in Fig. 13 (left) shows 
the possible pole placements for an increasing Kr,-5,+7. For the red 

and black marked poles two design options are shown in detail, 

whose dynamic stiffness plot is shown below in comparison to 

the dynamic stiffness of the pure SFPI regulator used as start-

ing point. The poles resulting from the space vector resonators 

on the –5
th
 and +7

th
 harmonic, which are close to the stability 

margin, are balanced by zeros and are not critical for the design 
as long as they remain stable. The same is true for the critical-

ly damped pole on the real axis.  However, when increasing 
the Kr,-5,+7 gains the poles resulting from the proportional state 

feedback path are further pulled to weaker damping. Thus, the 

design decision for Kr,6 is a compromise between high system 

damping and a bigger bandwidth of the resonant state feedback 

Fig. 11.  State block diagram of the discrete time current control structure implemented in the stationary frame.

Stationary Frame
Converter Model

vgrid ( )k

iLf ( )kTs

Lf

z
-1

e
- e sj T
2

-

-

Kp

iLf *( )k

vcff ( )k

1
Lf

z
-1
e
j eTs

vcff ( )k

vinj ( )k

vm ( )kvc ( )k

vdec,i ( )k

vdec,v (k)

-

Kf

iLf,ref ( +1)k |vmax| T zS
-1

1 e- z
j eTs -1

iLf ( +1)k vgrid ( )k^

iLf *( +1)k

n = -k

k
K Ti s

n
e

j2 -1) sn T

1 - e
j s -1nT
z

z
-1

(1 - e )
-j e sTLf

Ts

2e
- e sj T

e
2 sj T

Controller with RSV Regulator (Stationary Frame Implementation)

TABLE I

oPtImIzed feedBacK gaIns for sfPI and Pr regulator

Gains SFPI Regulator PR Regulator

Kp Lf /(3Ts) Lf /(3Ts)

Ki = Kr 0.16∙Kp /Ts 0.08∙Kp /Ts

Fig. 12.  Control design of the complex SISO system based on  (a) Root 
locus plot of the complex SISO system, (b) double sided dynamic stiffness 
plot, (c) disturbance  response to 1 V step in the d-axis.

0.05

0.115

0.16

0.22

= 0.57
KTi s

Kp

0.05
0.115
0.16
0.22

=
KTi s

Kp

Kp
Kp

Lf

3Ts

Lf

3Ts

in Hzf

= =

Lf =  0.5 mH

Ts =  100 s
=    50 Hzfs

Lf =  0.5 mH

Ts =  100

(a)

(b)

(c)

s
=    50 Hzfs

= 120 Hzf= 140 Hzf

D
y

n
a
m

ic
 S

ti
ff

n
e
ss

  
  

  
  

  
  

  
  

  
 i

n
V

d
is

td
q
(j

)

I l
fd

q
(j

)

t in ms t in ms

in Hzf

i L
f

d
q

in
A

d - - -
q

d - - -
q

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
-1 -0.5 0

-600 -400 -200

0 1 2 3 4 5 0 1 2 3 4 5

0 200 400 600 -600 -400 -200 0 200 400 600

0.5 1 -1 -0.5

101

100

101

100

0 0.5 1

SFPI regulator PR regulator



261

loop. This is illustrated for two cases: Kr,5,6 /Ki = 1/2 and 1/6. As 

Kr,5,6 /Ki = 1/2 reduces the damping quiet significantly resulting 
in a reduction of the worst case stiffness by a factor of 2, a de-

sign with Kr,6 /Ki = 1/6 is a reasonable choice.

After the successful resonant state feedback loop design of 

the –5
th
 and +7

th
 harmonic, the resulting closed loop system 

dynamics are used as starting point to design the –11
th
 and +13

th
 

harmonic resonant feedback loop. The root locus for an increas-

ing (Ki,-11 = Ki,+13 = Ki,-11,+13) depicted in Fig. 13 (right) shows 

that this time the complex conjugated pole pair corresponding 
to the proportional state feedback loop is not leading to weak 

damping. The critically damped pole and also the poles result-

ing from the space vector resonator on 5
th
 and 7

th
 harmonic do 

not limit the feedback gain. However, the pole resulting from 

the additional space vector resonators on the -11
th
 and +13

th
 

harmonic reveal a low system damping for higher values of 

Ki,-11,+13. This effect is a result from the growing distance and 

weaker balancing between pole and zero. Thus, a design with 
Kr,-5,+7 /Ki = 1/6, marked in red, is not desirable as it results in 

a very weakly damped pole close to the unity circle, whereas 

state feedback gains of Ki,-11,+13 /Ki = 1/12 seem to be a good 

design compromise. This exemplary design shows how a RSV 
regulator structure is designed systematically and consistently 

generalizing the root locus method for complex SISO system.  

V. sImulatIon and exPerImental results

Based on the introduced control framework a current control 

structure according to Fig. 11 has been designed and imple-

mented in C++. It was first tested on a Software-in-the-Loop 

(SiL) test bench using MATLAB Simulink and PLECS. After-

wards, the control classes were implemented on an AixControl 
XCS2000 rapid control prototyping system to evaluate the con-

trol algorithm experimentally. 

A. Evaluation of the Command Tracking Performance

First, the performance of the SFPI regulator and the com-

mand filter is investigated for the system parameters summa-

rized as Setup I in TABLE II. The simulation in Fig. 14 shows 
the system command response. The trajectory generator, which 

includes the voltage limit, shapes a feasible current command 

and applies a consistent command feedforward leading to a 

high command tracking bandwidth without overshoot. With the 

gain of the trajectory generator Kf the bandwidth of the system 

can be properly adjusted independent of the regulator gains. 

The simulation results can nearly perfectly be transferred to the 

experiment, which is shown in Fig. 15. The major difference 
in current between simulation and experiment occurs due to a 
small grid voltage imbalance and minor pulsations of the dc-

link. This shows that an accurate simulation of a grid tied PWM 

converter reaches nearly the precision of an experimental setup. 

B. Comparison of SFPI and PR Regulator

It has been discussed in Section IV B that the PR regulator 

gains needs to be detuned compared to the SFPI regulator to 

keep a desired damping level. As a consequence, the regulator 

analysis showed that the SFPI regulator can provide a higher 

stiffness compared to the PR regulator. The PR and the SFPI 

regulator are designed according to section IV for an experi-
mental demonstration. To keep the damping at ξ = 0.707 the 
resonant feedback gain of the PR regulator needed to be set to 

approximately ½ of the resonant feedback gain of the SFPI reg-

ulator. 

To analyze and compare the disturbance rejection perfor-
mance of both regulators a chopped load resistance is transient-

ly applied in series to the filter of the converter. The parameters 
of the experimental setup are summarized in TABLE II. (Setup 

Fig. 14.  Simulation of the command response with a trajectory generator 
gain Kf = Lf/(3Ts) (a) and Kf = Lf/Ts.
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II) and the measurement resutls are illustrated in Fig. 16. The 

current sag ΔiLf that can be observed for both controllers are 

identical. This is because of the equal proportional feedback 

gains. However, the PR regulator needs more than twice the set-

tling time ts compared to the SFPI regulator due to the reduced 

resonant feedback gain. This reveals, that the SFPI regulator is 

more effective for most current controllers. Only if the rejection 

of negative sequence voltages is required, e.g. in the case of grid 

imbalances, the PR regulator is a better choice, as it can entirely 

reject negative sequence voltage disturbances.

C. Multiple Harmonic Rejection With the RSV Regulator

Finally, the ability of the resonant space vector regulator to 

reject multiple harmonics is evaluated experimentally. There-

fore, the active converter (TABLE II Setup III) is paralleled 

with a passive three phase rectifier, as illustrated in Fig. 17. This 

Fig. 15.  Measurement results of the command response with a trajectory 

generator gain Kf = Lf/(3Ts) (a) and Kf = Lf/Ts.
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Fig. 16.  Measured response of the SFPI (Ki = 2500 Ω/s) and the PR regu-

lator (Kr = 1400 Ω/s) to a chopped resistive load of 1 Ω that is transiently 
connected in series to the inductance.
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TABLE II

Parameters of the three exPerImental setuPs

Lf Lgrid / Rchop fpwm Ts Vdc Vgrid,l-n Kp Ki

Setup I 2 mH 0.2 mH 1 kHz 500 μs 300 V 130 V 1.33 Ω Ki = 426 Ω/s

Setup II 0.5 mH 1 Ω 5 kHz 100 μs 250 V - 1.7 Ω variable

Setup III 2 mH 0.2 mH 4 kHz 250 μs 420 V 200 V 2.6 Ω 1750 Ω/s

Fig. 17.  Experimental setup for performance evaluation of the resonant 
space vector.
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specific setup allows operating the PWM converter at a grid 

with artificially excited grid harmonics. 
In Fig. 18 the performance of the SFPI regulator structure 

and the resonant space vector regulator structure are com-

pared under these grid conditions with artificially excited grid 
harmonics. In case of the SFPI regulator, the grid voltage har-

monics excite the current, in particular the 5th
, 7

th
, 11

th
 and 13

th
 

harmonic. This is because the SFPI current regulator exhibits 
a finite stiffness at these harmonics, which can be seen in Fig. 
12. Therefore, it cannot entire reject this disturbance voltage. 

However, the fundamental harmonic is controlled such that it 

accurately follows the current reference in amplitude and phase.

 In contrast, the space vector regulator structure, which en-

hances the single space-vector resonator of the SFPI regulator 

by additional higher order space-vector resonators, rejects the 

higher order voltage harmonics due to the infinite stiffness at 

the higher order harmonics. As a consequence, the regulated 

current is purely sinusoidal and smoothly follows the reference. 

This elimination of the high order current harmonics is of great 

importance, especially if multiple converters are operated at a 

weak utility grid, because it prevents a stronger excitation of the 
voltage harmonics that is reflected at the coupling point of the 
converters.

VI. conclusIon

In this work, an insightful design and implementation meth-

odology for discrete-time current control of PWM converters 

has been proposed and analyzed. Therefore, an accurate dis-
crete-time model for the control of a three-phase converter has 

been derived. This has been used to develop proper decoupling 

paths and a consistent command filter structure. The root-locus 
method has been generalized for the control design of SISO sys-

tems with complex coefficeints and used to optimize the SFPI 
and the PR regulators for three-phase current control. Thereby, 

both regulator structures have been compared systematically. 

Based on the SFPI implementation in the stationary frame, the 

resonant space-vector regulators concept has been developed. It 

allows to handle various regulators e.g. SFPI, PR and regulators 

on multiple harmonic in one framework leading to consistent 

tuning and an efficient implementation. Experimental results are 
presented to validate the introduced control implementation and 

design framework.
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