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Methodology for Automatic Process 
of the Fired Ceramic Tile’s Internal 
Defect Using IR Images and Artificial 
Neural Network 
In the ceramic industry, rarely testing systems were employed to on-line detect the presence 
of defects in ceramic tiles. This paper is concerned with the problem of automatic inspection 
of ceramic tiles using Infrared Images and Artificial Neural Network (ANN). The 
performance of the technique has been evaluated theoretically and experimentally from 
laboratory and on line tile samples. It has been performed system for IR image processing 
and, utilizing an Artificial Neural Network (ANN), detecting defected or no defected tile. The 
system has been applied to detect on-line measurement results achieved at the exit of the 
press. The above automatic inspection procedures have been implemented and tested on a 
number of tiles using synthetic and real defects. The results obtained confirmed the efficiency 
of the methodology defect detection in raw tile and its relevance as a promising approach on-
line, as well as included in quality control and inspection programs. 
Keywords: ceramic tiles, defect detection, infrared images, neural network 
 
 
 

Introduction1

Ceramic tile is one of the most ancient building materials, 
numbering thousand-year history, and until now does not get out of 
fashion, and continues to be improved from year to year. In 
accordance with the growth in tile demand, there have been some 
shifts in the world ceramic tile industry. In 1990, Europe accounted 
for 54% of world ceramic tile production. By 2002, Europe was 
down to 25% of world ceramic tile production. In 2005, world 
ceramic tile production was about 7 billion sq. meters, of which 
China produced 35%, and Spain, Italy, and Brazil shared the next 
25%, with their production spaced neck and neck (Sezzi, 2006).  

Although tile production has increasingly been subject to the 
introduction of automated technology, with high speed lines now 
approaching production rates in the order of 200 tiles/min, the 
control of tile quality, considered fundamental to the maintenance of 
market share, has often remained essentially a manual operation. 
Potential, therefore, exists for the increased application of 
automated inspection, and the effective use of product quality data 
in the closed-loop control of automated production. The 
displacement of manual tile inspection procedures through the 
introduction of automated techniques offers a number of significant 
commercial and social advantages, including the elimination of 
human error and/or subjective judgment, improved operational 
efficiency, and the creation of timely statistical product data, 
improved safety, better working conditions and reduced labor costs. 
These important considerations are regarded as fundamental in order 
to secure a mechanism for competitive improvements within the 
world tile manufacturing market. 

In the production line of ceramic tile industry, several problems 
can turn into failures of the final product. Among these failures, one 
of the most important and difficult to monitor is delimitation or 
void. It manifests itself through layers of parallel air pockets of the 
pressed material that retain air. Since delimitation produces stress 
concentrations with high propagation of failures, timely detection of 
cracks in the structure may help in preventing such failures. Tiles 
are normally subject to a complete sorting operation at the end of 
the production cycle, in order to identify all defects, (Zanoni, 1999), 
or at the exit of kiln, exclusively for identifying the superficial 
defects (Paganelli, 1999). 
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An automatic control station for the non-contact detection of 
green tile delamination, based on IR imaging system, was 
previously developed (De Andrade et al., 1998; De Andrade et al., 
1999). A dynamic IR thermographic test usually involves heating of 
the target and recording of a sequence of IR images of the excited 
surface: the evolution of the temperature over time for each 
particular image element (pixel) of the surface is then analyzed to 
retrieve information about material defects. 

The use of infrared thermal images in an automated procedure 
for defect location and characterization has some drawbacks, 
because the first step requires the participation of an expert operator, 
and the time domain analysis is not always successful due to the 
difficulty in modeling the inversion problem in any real condition.  

In this paper, IR thermograph is connected with Artificial 
Neural Networks (ANN) for automatic process fault detection in 
ceramic tile. Artificial neural networks can be seen as highly parallel 
dynamical systems consisting of multiple simple units that can 
perform transformation by means of their state response to their 
input information. How the transformation is carried out depends on 
the Neural Network (NN) model and its way of learning the 
transformation. Neural network learns by example. In a typical 
scenario, a neural network is presented iteratively with a set of 
sample, known as the training set, from which the network can learn 
the values of its internal parameters. 

To overcome this problem has been considered for a different 
analysis approach in defect characterization. The main reason for 
this choice is the defect identification of the problem, a kind of 
application for which neural networks have been extensively used. 
Network training is performed using a specimen containing a set of 
defects at known positions. The approach uses ANN’s for detection, 
defined the number of output nodes corresponding to the number of 
classes present. During training, the output node corresponding to 
the class of the input vector is kept clamped at state 1, while the 
others are clamped to state 0. During testing, a winner-take-all 
mechanism causes the input vector to be classified as belonging to 
that class corresponding to the output node with the highest 
activation. 

In this paper, the authors describe the integrated system HFDS – 
Hybrid Fault-Detection (IR Images processing and Neural Network) 
for the detection of defects in ceramic tiles.  
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Nomenclature 

Cp  = specific heat capacity, J/kg°C 
x, y, z  = space Cartesian coordinates, m 
k  = thermal conductivity, W/m°C 
T  = temperature, T(x,y,z,t), °C 
Q  = pulse of radiant energy, W/m3

Greek Symbols 
ρ  = density, kg/m3

ζ  = small depth, m 
Δt  = temperature difference, °C 
Δx  = length, m 

Description Defects Detection in Ceramic Tile 

As well as many other industries, surface inspection and quality 
classification is an essential stage in tile manufacturing. Due to the 
high cost of human inspection, speed of the production line, and 
repetitious nature of the activity, development of a suitable 
Automatic Defect Detection System (ADDS) would have an 
impressive impact on the overall performance of a tile production 
plant. The key point is eventually being at the performance zenith, 
which guarantees the success in a very competitive market. To be 
more specific, the advantages of automatic inspection in the tile 
industry can be listed as: 

Further development to the other stages of the production line: It 
is possible to spread a modular ADDS throughout the production 
line to gain a more effective and robust quality control process. 
Fault prediction and correction, and recycling the defective 
materials before the kiln will be some of the advantages of such an 
advanced system. 

Although several manufacturers have introduced their 
commercial inspection systems (see Lebrun (2001) for some 
examples) and also there have been massive investigations on that 
field across academics and research groups (to name a few: Baldrich 
et al., 1999; Boukouvalas et al., 1995; Boukouvalas  et al., 1997; 
Costa and Petrou, 2000; Smith and Stamp, 2000; Valiente et al., 
2001), it seems that still more efforts and studies are required to 
achieve high performance, robust and flexible defect detection 
algorithms and systems. Table 1 illustrates the typical defects for a 
ceramic tile. 

Table 1. Typical defects of ceramic tiles. 

Defect Characteristics 
Broken corners and edges Physical damages on corners 

and edges 
Colour grading Changes in color shades 
Cracks Thin and long random 

physical defects 
Dirt Small random particles on 

the surface 
Drops Include color and water 

drops 
Lines Wide visible direct lines on 

tile surface, mostly result of 
production line bars 

Pinholes Very small holes 
Textural problems Changes in density and shape 

of patterns 
 
Any defect changes the expected texture of the tile and hence 

can be interpreted as a textural abnormality. Thus, texture analysis 
is appropriate for normal and abnormal tile discrimination. 

Non-Destructive Thermal Evaluation Methods Principle 

In order to understand the NDTE in the direct problem, the 
related diffusion heat transfer problem must be analyzed. The 
structure to be considered is a flat plate containing an inclusion 
flaw, as shown in Fig. 1. The NDTE requires that a thermal pulse of 
short duration Q, incident on the surface, and the temperature of 
surface to be monitored as function of the space. The existence of 
the flaw alters the thermal resistance of the structure within the 
flawed region, thus resulting in different temperatures T on the 
surface of the structure in the unflawed and the flawed region. 
Mathematical models were presented in literature, but only for a 
one-dimensional condition (Williams et al., 1980; Boras et al., 
1998). The three-dimensional assumption permits a geometrical 
independent evaluation of the temperatures in the unflawed and the 
flawed regions. The diagnostic problem can therefore be faced 
through the evaluation of the surface temperature on the structure 
directly above the flaw, comparing it with the surface temperature 
away from the flaw, when the plate surface is subjected to spatially-
uniform step heat flux input. 
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Figure 1. Cross-section of model of plate containing delamination or 
inclusion flaw. 

 
The basis for theoretical model is differential equation for 

unsteady heat diffusion in Cartesian coordinates without heat source 
or sink:  
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A pulse of radiant energy Q is instantaneously and uniformly 

absorbed in a small depth ζ at the surface. Therefore, the initial 
conditions are: 
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Figure 2. Control volume P. 

The control-volume method, developed by Patankar (1980), has 
been utilized for the derivation of discretization equation. Then, for 
each control volume P, Fig. 2, considering fully implicit and 
piecewise-linear temperature profile between two neighboring grid 
point (North (N), South (S), East (E), West (W), Top (T), Bot (B)): 
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A combination of the line-by-line method and a block-

correction scheme presented by Patankar (1991) is adopted for 
solution of Eq. 10. The thermal proprieties K and ρCp have been 
measured by Flash Method (Parker et al., 1961). 

To illustrate the previous theoretical considerations, we 
present the model considering ceramics of real dimensions (320 x 
320 x 7 mm) that was made with a rectangular defect with 
dimensions 120 x 120 x 1 mm, Fig. 3. 

The theoretical simulations results are presented in Fig. 4. 
 
 

320 mm

7 mm

7 mm1 mm

120 mm

120 mm 320 mm

 
 

Figure 3. Geometry representation of defected tile for theoretical model. 

 

 
Figure 4. Results of theoretical simulation of NDTE at (a) no defected tile; 
(b) defected tile. 

The presence of the defect generates an increase of the 
superficial temperature of 5°C in the zone of the defect, for the 
simulated conditions had to the increase of the thermal resistance to 
the diffusion of heat in the orthogonal direction to the surface. 

Artificial Neural Network for Defect Detection 
Detection is the process of sorting pixels into a finite number of 

individual classes or categories of data based on their original 
values. If a pixel satisfies a certain set of criteria, then the pixel is 
assigned to the class that corresponds to that criterion. 

The most widely used neural classifier is multilayer perceptron 
network which has been extensively analyzed and for which many 
learning algorithms have been developed. The MLP belongs to the 
class of supervised neural networks. The multi-layer perceptron 
neural network model consists of a network of processing elements 
or node arrangement in the layers. Typically, it requires three or 
more layers of processing nodes: an input layer which accepts the 
input variables used in the classifier procedure, one or more hidden 
layers, and an output layer with one node per class. A number of 
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neurons in the input layer depend on the features’ vector, and in the 
output layer are based on the number of classes. In this study, a 
three-layer network has been constructed with 72 neurons in input 
layer, 40 neurons in hidden layer and 5 neurons in output layer. 

There are several training algorithms for feed forward networks. 
All of these algorithms use the gradient of the performance function 
to determine how to adjust the weights to optimize performance. 
The gradient is determined using a technique called back 
propagation, which involves performing computational backwards 
through the network. 

In this paper, resilient back propagation training algorithm has 
been used. The algorithm Resilient Back-propagation (RPROP) is a 
local adaptive learning scheme, performing supervised batch 
learning in feed-forward neural networks. M. Riedmiller introduced 
it in 1993. For a detailed discussion see (Riedmiller et al., 1993; 
Riedmiller, 1994; Riedmiller and Braun, 1993). The basic principle 
of RPROP is to eliminate the harmful influence of the size of the 
partial derivative on the weight step. As a consequence, only the 
sign of the derivative is considered to indicate the direction of the 
weight update. To achieve this, we introduce for each weight wij(t), 
its individual update-value Δij(t), which solely determines the size 
of the weight-update. 

It is introduced a second learning rule, which determines the 
evolution of the update-value Δij(t). This estimation is based on the 
observed behavior of the partial derivative during two successive 
weight-steps:  
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In words, the adaptation rule works as follows. Every time the 

partial derivative of the corresponding weight wij(t) changes its sign, 
which indicates that the last update was too big and the algorithm 
has jumped over a local minimum, the update-value Δij(t) is 
decreased by the factor η−. If the derivative retains its sign, the 
update-value is slightly increased in order to accelerate convergence 
in shallow regions. 

Once the update-value for each weight is adapted, the weight-
update itself follows a very simple rule: if the derivative is positive 
(increasing error), the weight is decreased by its update-value, if the 
derivative is negative, the update-value is added: 
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However, there is one exception. If the partial derivative 

changes sign, that is, the previous step being too large and the 
minimum missed, the previous weight-update is reverted: 
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Due to that ‘backtracking’ weight-step, the derivative is 

supposed to change its sign once again in the following step. In 
order to avoid a double punishment of the update-value, there 
should be no adaptation of the update-value in the succeeding step. 
In practice this can be done by setting ∂E/∂wij(t-1) = 0 in the Δij 
update-rule above. 

The partial derivative of the total error is given by  
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Hence, the partial derivatives of the errors must be accumulated 

for all P training patterns. This means that the weights are updated 
only after the presentation of all training patterns. It is a training 
algorithm that eliminates the harmful effect of having a small slope 
at the extreme ends of the sigmoid "squashing" transfer functions 
(Riedmiller, 1993).  

Experimental Laboratory 
A laboratory test bench, Fig. 5, has been set in order validation 

of a theoretical model and to obtain the superficial temperature 
profile for real tiles from the industrial press. Samples with a 
dimension of 320 x 320 x 7 mm with known induced defects have 
been investigated. A sample without defects has been used as a 
reference. Because of its non-contact nature and full-field 
measurement capabilities, the IR thermographic technique is a 
convenient approach to measure the superficial temperature of the 
sample and for the rapid visualization of shallow surface defects, 
(Bichard et al., 1976). 

 
PC with software for

image acquire and
analysis

IR camera

Monitor

Digital signal

Analogical signal

Ceramic tile
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Optical
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Figure 5. Experimental set-up for infrared thermography experiments. 

 
The superficial thermal energy distribution of tiles has been 

measured by a Stirling cooled IR camera, with a 256 x 256 CCD 
array of photo-voltaic InSb detectors working in the 3 to 5 μm 
spectral range (short wave). This system has a Noise Equivalent 
Temperature Difference (NEΔT) of about 0.025 K. On line infra red 
NDTE technique measurements require a fast and precise 
positioning of the measurement objects, in order to compare spatial 
distributions of temperature. Therefore, the developed facility has 
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been realized with an automatic system for moving, heating and 
positioning tiles, which simulates the production line. In the tests 
here presented the samples have been heated with a 2 kW infra red 
lamp. The signal from a reflection optical switch, checking the 
position of the tile, has been used as a trigger for image acquisition.  

Figure 6 shows the temperature profiles of experimental 
simulation of NDTE at no defected and defected tiles. As previewed 
from theoretical simulation results, the measured temperature 
difference between the delaminated regions in correspondence with 
the no defected area is in the order of 5°C. 

 

 
Figure 6. Results of experimental simulation of NDTE at no defected tile 
(a) and defected tile (b). 

Proposed Method 
Once the thermal image has been acquired using the IR camera, 

a processing procedure must be used in order to generate the input 
vector for the neural network. This procedure, called “features 
extraction”, aims to extract from the data the features which better 
highlight the differences between the two classes to be separated 
and, furthermore, to reduce the amount of data. The procedure here 
utilized is the following: 

The 16 bits grey scale infrared image of the ceramic tile, 
acquired by the IR camera Radiance (256 x 256 pixel), is converted 
into an 8 bits grey image. The contrast of the image is enhanced 
using image processing software. 

The image is integrated along the Y direction, which is the 
direction of the tile movement on the production line. 

This operation transforms a 256 x 256 pixels image in a 256 
points line profile. The Y direction has been chosen because, if the 
line is momentarily stopped, the presence of the rolls under the tile 
will cause temperature gradients in correspondence with the rolls. 
Integrating along a direction orthogonal to the rolls, this effect will 
be reduced and it will just appear in the line profile as a slight 
increase of the general temperature level, without the introduction of 
local gradients. On the contrary, if the integration is performed 
along the rolls’ direction (X direction), the temperature gradient due 
to the rolls would be recognized by the ANN as a defect. 

The line profile is normalized between 0 and 1. It permits to 
eliminate the dependence of the results from the temperature level, 
which could vary significantly for the different types of tiles and 
during the different seasons of the year.  

The curve is filtered using a linear digital filter in order to 
eliminate the noise. 

From the 256 points line profile, a 26 points line profile was 
sampled in such a way as to reduce the amount of data to be 
processed by the ANN.  

Results 

Tests of the Performances of the Automatic Diagnostic System  

Using the curves extracted, the ANN has been trained and tested 
using images taken both from the lab and on the line at the 
Leonardo’s plant. The results are illustrated in the two following 

paragraphs. The coefficient of convection, chi, and environment 
temperature, T∞, has been considered constants. XL, YL and ZL are 
the dimension of x, y and z direction, respectively, Fig. 2. 

Laboratory Tests 

Figure 7 shows the laboratory acquired images and the 
projection profiles in the Y direction. The feature, which allows to 
automatically recognizing the eliminations, is the irregularity of the 
profiles achieved by processing the images of the defected tiles (see 
Fig. 7(b)).  

 

 
Figure 7. Laboratory IRTI of green tiles: (a) no defected tile, (b) defected tile. 

 
This behavior was found to be extremely repeatable. In these 

tests a set of 33 samples has been employed for ANN testing. 
Among these 33 images, 11 have been used as training set and 22 
for classification. The classifier system performance was 100% 
correct. The laboratory tests have been done in order to optimize the 
measurement set-up and the ANN architecture before performing 
the on-line tests. 

On-line Tests 

In the press, the temperature of the matrix is higher than the 
temperature of the powder and, therefore, the tile is heated by the 
pressing process. This allows performing the IR image acquisition 
without the application of external thermal pulses. The IR camera 
has been installed between press and drier, as showed in Fig. 8. A 
set of 105 images has been acquired with different delaminating 
typologies. 
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Figure 8. On-line measurement system. 

 
Figure 9 shows examples of results from the on-line tests (the IR 

thermal images of a no-defected tile (a) and of a defected tile (b) and 
the projection profiles in the Y direction of the images).  
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Figure 9. IRTI from on-line tests: (a) no defected tile, (b) defected tile. 

 
In this case, the differences between the two classes seem to be 

more evident with respect to the laboratory results. Because of the 
heating procedure from the press matrix, the profiles of the non-
defected tile from the on-line tests present higher temperature on the 
edge and lower in the centre. This behavior (which is opposite from 
the one observed in the lab, where the tile is heated using the IR 
lamp) makes the delaminating-induced temperature gradient very 
well visible. Therefore, the developed feature extraction procedure 
seems to be appropriate also for on line tests and it is confirmed by 
the results achieved. 

The influence of the temperature level (which can be 
significantly different in summer and in winter) and the number of 
pressing executed was eliminated by training a neural network using 
a training set containing winter and summer thermal images and two 
and three pressing. 83 images were used for the training set and 22 
images for the validation set. In Fig. 10, a result of the feature 
extraction algorithm is reported. 

 

 
Figure 10. Example of result of the features extraction algorithm from the 
256 x 256 IR images to the sampled vector. 

 
Figure 11 shows the features of a non-defected tile measured in 

summer and in winter respectively. Results had proved to be 100% 
correct. 

The experimental tests show the ability of defect detection in 
raw tile ceramic in localizing small or large defects in ceramic tiles. 

We evaluated our defect detection with 95.87% sensitivity, 89.47% 
specificity, and 92.67% overall accuracy. 
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Figure 11. Features extracted from the IR images of a non-defected tile 
measured in summer and in winter respectively. 

Conclusions 
This paper is concerned with the problem of detection of the 

surface defects included on the fired ceramic tiles using the IR 
images processing and Artificial Neural Network. The methodology 
is based on two steps: infrared thermal measurements of the ceramic 
tile at no defected and defective; processing of the images for 
generating the input vector for the neural network 

 By analyzing the theoretical simulation of NDTE at no defected 
tile and defective tile, it has been concluded that defect generates an 
increase of the superficial temperature of 5°C in the zone on the 
defect, for the simulate conditions, having to the increase of the 
thermal resistance to the diffusion of heat in the orthogonal direction 
to the surface. 

The use of Artificial Neural Network for detection defects in 
ceramic tile is a process of sorting pixels into a finite number of 
individual classes or categories of data based on their original 
values. If a pixel satisfies a certain set of criteria, then the pixel is 
assigned to the class that corresponds to that criterion. In 
conclusion, the performance of the neural network for detection 
defects in ceramic tile is very encouraging. 

The laboratory acquired images and the projection profiles show 
irregularities of the profiles achieved by processing the images of 
the defected tiles. 

The on-line measurement system and the differences between 
the two classes seem to be more evident with respect to the 
laboratory results. Because of the heating procedure from the press 
matrix, the profiles of the non-defected tile from the on-line tests 
present higher temperature on the edge and lower temperature in the 
centre. 

By using this technique, we can develop the sorting system in 
the ceramic tiles industries from depending on the human which 
detects the defects manually upon his experience and skills which 
varies from one to one to the automated system depending on the 
computer apparatus. Automated sorting systems would bring 
numerous benefits to the entire sector with major economic 
advantages, guarantee product quality, increase plant efficiency and 
reduce fixed and periodic investments. The continuous measurement 
of surface defects leads line production operators to optimize 
temperature profile, speed and other operating parameters. 
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