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Abstract

This research effort focuses on methodology for quantifying the effects of

model uncertainty and discretization error on computational modeling and

simulation. The work is directed towards developing methodologies which

treat model form assumptions within an overall framework for uncertainty

quantification, for the purpose of developing estimates of total prediction un-

certainty. The present effort consists of work in three areas: framework devel-

opment for sources of uncertainty and error in the modeling and simulation

process which impact model structure; model uncertainty assessment and

propagation through Bayesian inference methods; and discretization error esti-

mation within the context of non-detmninistic analysis.
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1. Introduction

●

To meet the goals of the scientifically-based stockpile stewardship program,

significantly improved confidence must be established in the wide variety of

methodologies and approaches associated with numerical simulations. The goal of these

simulations is to accurately characterize the response of the complete system with high

fidelity three-dimensional, unsteady, coupled physics, together with uncertainty bounds on

the response predictions. Quantifying the uncertainties in computational physics-based

simulations is also critical to the verification and validation of these simulations; without

uncertainty quantification, validation is. highly subjective and arbitrary. Total uncertainty

in computational analysis is understood to arise from a full range of modeling and

simulation activities which can be broadly classified as variabilities, errors, and

uncertainties. Similarly, the computational activities which comprise uncertainty

quantification can be broadly classified as nondeterministic analysis, numerical error

estimation, and assessment and propagation of model uncertainty.

Nondeterministic analysis refers to methods which propagate variabilities in model

parameters (usually defined in terms of a probability distribution) through one or more

models with the goal of estimating some statistics of interest on the predicted quantities of

the models. These methods include such well-known techniques as Monte Carlo analysis,

as well as reliability methods, stochastic finite element analysis, and response surface

methods. Numerical error estimation refers to methods which seek to estimate errors in a

numerical solution of differential equations, usually on the basis of an underlying model

for the error space. Finally, assessment and propagation of model uncertainty refers to

methods which address the form and assumptions underlying the mathematical model. This

is also sometimes referred to as structural uncertainty in that it concerns the structure, rather

than the parameters, of the model in question [1-2].

The vast majority of the research efforts in uncertainty quantification, both at Sandia

and throughout the larger computational modeling and simulation community, has been

directed towards analysis methodology for non-deterministic parameters. In

nondeterministic analysis, the code itself through which variabilities are propagated is

treated as a given deterministic fi.mction. Nondeterministic analysis does not therefore treat

the effects of uncertainties and errors inherent in the conceptual modeling, mathematical

modeling, discretization, programming, and discrete numerical phases of modeling and

simulation. These issues are the concern of the numerical error estimation and model

uncertainty phases of uncertainty quantification, and are the focus of the present research

project. While numerical error estimation has been researched extensively, model

uncertainty issues have lacked significant investigation. Uncertainty quantification

methods related to errors and structural uncertainties are the least mature as they address
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theoretical and conceptual issues, simplifications and trade-offs which are not only

mathematically difficult to define, but are also difficult to order in terms of their impact on

the solution. Furthermore, the coupling between parametric sources of variability,

numerical solution error, and model uncertainty has not been studied. This document

details work to develop methods to quantitatively estimate the errors or uncertainties due

to the mathematical form of the partial differential equations and the errors due to the

discretization of the equations.

Sandia is in an excellent position to development methods for model uncertainty

quantification. The DOE ASCI program is funding the development of high fidelity physics

simulation codes and computational platforms for those codes. ASCI will provide the

computational resources necessary for analysts to estimate numerical error through mesh

convergence studies, as well as problem solving environments which should enable

analysts to quickly remodel problems while varying the level of feature fidelity in the

partial differential equations, and the subgrid constitutive models used in the equations.

Furthermore, the ongoing development of uncertainty and reliability analysis tools for non-

deterministic analysis should help analysts to efficiently estimate the contribution from

parametric sources to prediction uncertainty, and enable them to spend more time focusing

on model uncertainty issues.

This research effort has initiated a collaboration with Professor Daniel Kammer at

the University of Wisconsin at Madison. His contributions to this work on model

uncertainty has heightened interest in response surface methods for uncertainty

quantification throughout the engineering analysis community at Sandia. Furthermore, his

well-recognized work in D-optimality experiment design should help to advance this aspect

of uncertainty quantification, which still requires additional development. The research

effort has also resulted in the development of a graduate-level university course, offered by

the University of New Mexico (UNM) through the departments of Mechanical Engineering

and Mathematics, on uncertainty estimation in computational modeling and simulation.

This course was also offered as an elective in the UNM Scientific & Engineering

Computation Certification Program, which was developed with Sandia for retraining of

technical staff personnel in the discipline of computational modeling and simulation.

This Lab Directed Research and Development (LDRD) effort focuses on methods for

characterizing modeling uncertainties and discretization errors in modeling and simulation.

This report will summarize the results of this effort. While this project was considered high

risk from the beginning, some noteworthy progress has been made. Furthermore, a number

of publications have resulted from this work, including one accepted peer-reviewed

publication, three papers in or being prepared for peer-reviewed journal review, four

conference papers, and one invited presentation at a University of Minnesota-sponsored

symposium on usability of mathematical models. Finally, this research effort, as part of a

multi-disciplinary uncertainty quantification program involving two other ESRF-funded

LDRD projects and numerous ESRF tech-base projects, has raised the stature of Sandia in

2
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the ASCI Verification and Validation Program, and helped lead to the development of new

departments in both Engineering Sciences and Computational Sciences directed towards

uncertainty quantification and validation.

.



2. Concepts of Uncertainties and Errors

Introduction and Background

This section provides a discussion of significant sources of uncertainty and error

which are relevant to modeling and discretization. Primarily these are mathematical

modeling uncertainties and acknowledged errors that occur in the mathematical modeling

process and in computing the discrete numerical solution, Mathematical modeling

uncertainties arise due to lack of knowledge of the appropriate mathematical representation

of the conservation equations, auxiliary equations and bounday/initial conditions. These

can be referred to as model “form” uncertainties, or structural uncertainties, to distinguish

them from the continuous parametric uncertainties and variabilities treated via

nondeterrninistic analysis. Acknowledged errors occur in the mathematical modeling and

numerical solution activities, and to some extent in the discretization activities. This

discussion will focus mainly these sources of prediction uncertainty.

The remainder of this section proceeds as follows. First, specific definitions are

offered for variabilityy, uncertainty and error, which are regarded as general categories into

which specific contributors to prediction uncertainty can be grouped. Then the concepts of

model form uncertain y are introduced, which deal with prediction uncertain y contributors

arising from the conceptual and mathematical form of the equations used in modeling and

simulation. Important issues discussed within the context of model form uncertainty

include the trade-off between sirnplitlcation errors, which affect the choice of continuous

partial differential equations, and numerical errors, which affect the conversion of the

continuous equations into solvable algebraic equations. This leads to the concept of

realizations of the modeling process, from which alternative structural choices in modeling

can arise. Within the context of structural realizations of the modeling process, parameters,

uncertainties and errors are discussed and a decision tree-like structure for visualizing the

propagation of structural errors and uncertainties through model realizations is introduced.

Finally, specific project activities related to the identification of uncertainty and error

sources in computational simulation are summarized.

Definitions: Variability, Uncertainty and Error

In [3] and Appendices A and C, specific definitions of variability, uncertainty and

error are developed in order to understand the sources of total modeling and simulation

uncertainty. In the present context of mathematical modeling and numerical solution,

variability is not generally encountered since it arises from replicated random phenomena

or processes and not from the modeling process itself- However, there is a need to consider

4
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uncertainties and errors and their similarities and differences. Uncertainty is defined as a

potential deficiency which is due to lack of knowledge. An example is energy dissipation

in vibrating systems, such as structures and machinery. Energy dissipation is thought to

arise primarily from friction and slippage at material interfaces. These phenomena are not

well understood, and so there is a lack of knowledge regarding the models for predicting

these effects. Error, on the other hand, is defined as a recognizable deficiency in any phase

of modeling and simulation which is not due to lack of knowledge. Furthermore, errors can

be categorized as either acknowledged or unacknowledged. Unacknowledged errors are

mistakes or blunders, whereas acknowledged errors are those deviations from a more

accurate modeling and simulation process which are consciously made for reasons of

economy or necessity. The motivation for identifying all sources is that acknowledged

errors are documented so that their presence in the analysis can be reviewed and considered

by peers, and possibly treated via quantification methods. Acknowledged errors which are

not typicilly documented are almost as troublesome as unacknowledged errors in terms of

their effect on the modeling and simulation process.

Genuine model form uncertainty arises when there is lack of knowledge about the

appropriate form of the model equations. This could occur when competing theories exist

for the mathematical description of some phenomenon, such as in the example of energy

dissipation in vibrating systems. A more common example is when an empirical submodel

is used within a simulation model. Then there may be uncertainty on the form of the

submodel equations because severid plausible equations are available to fit the empirical

data. An example of this would be constitutive modeling for many materials, particularly

when describing material behavior outside the linear elastic range. Most of the issues which

arise in what is often

uncertainties at all but

simplification errors.

termed “model form uncertainty,” however, are not genuine

instead are related to acknowledged errors, and in particular,

One example of acknowledged error in simulations which involve the numerical

solution of partial differential equations is discretization error. This error is the result of

using a discretization method with a finite number of degrees of freedom to solve the set of

differential equations. These errors lead to a bias in the computed solution with respect to

the true solution of the continuous differential equations. Discretization errors area special

class of acknowledged errors because they can be understood and ordered by use of an error

model, which describes the simulation error in terms of the parameter which accounts for

the enor. For discretization error in the finite element method, where the elemental

interpolation functions are polynomials, the appropriate error model is one where the error

is proportional to the characteristic mesh spacing taken to some power. The value of that

exponent is related to the interpolation or shape functions used for the elements, and the

relationship between the predicted quantity and the field variable which is being

discretized.

5



Simplification errors are the most common form of acknowledged error and are

distinct from discretization errors because they cannot generally be ordered and modeled.

One example of simplification error is any sort of geometrical simplification incorporated

into a mathematical model, such as ignoring a small geometric feature of a body. It is

clearly an error as a model which does not incorporate this simplification is more accurate,

at least ideally, than the chosen approach, independent of the magnitude and direction of

other errors. But what happens when two or more models differ by a variety of

simplification errors, such as might occur when different analysts build models of the same

system according to their own judgments? If one model is clearly inferior its results can

be discarded or down-weighted for the final analyses. But when multiple models have both

advantages and disadvantages in treating the conceptual model, it is impossible to

distinguish which is more accurate without either empirical data or quantification of the

effects of each modeling error. In this case there are a number of competing mathematical

models which are in error with respect to the conceptual model, but whose accuracy relative

to one another is uncertain. This is a situation in which uncertainty and error can appear

very similar.

It might seem that the proper approach to simplification error is to simply eliminate

it by modeling in more and more detail. But modeling is always an abstraction and there

are always additional levels of simplification and complexity. Since resources are finite, at

some point there must be an acceptance of the remaining simplifications and an attempt to

understand their gross effects on prediction. Furthermore, it usually is the case that analysis

capabilities are “playing catch-up” with systems design. As soon as predictive modeling

and simulation is a reality for a certain class of systems (by an understanding of the

appropriate level of simplification in modeling), the systems of interest to designers have

grown more complex and have introduced new material and physics uncertainties. For

example, Sandia is already at the forefront of the development of microelectronic-

mechanical systems (MEMS) and rnicromachines, to be inevitably followed by

nanotechnology. Finally, the progressive removal of simplifications inevitably leads to the

coupling of micro and macro-scale effects, which significantly complicates the numerics

and may often lead to the emergence of localized chaotic behavior. Again, the example of

darnping in vibration comes to mind. It is thought that the primary mechanisms at play in

this case are friction between surfaces, changes in contact surfaces, dynamic impacts, and

micro-slip. Understanding the slip and friction phenomena alone from “first principles”

would require modeling the surface profile, which is a stochastic function.

Ultimately, the key relationship between model form uncertainty and error is the

trade-off between them which occurs when determining the level of complexity in the

model. This is illustrated somewhat crudely in Figure 1, which illustrates the level of model

uncertainty and solution error inherent in five models which vary in complexity. This is a

notional illustration and is not based upon actual results. Here the models are compared

under the assumption that the same fixed level of computational effort is devoted to all the

models. Technically, it could be said that what is being traded off is simplification error and
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Figure 1: Trade-off between Model Uncertainty and Solution Error

solution error, but the practical impact of simplification error is a relative level of model

uncertainty as was discussed above. The higher the level of simplification, the higher the

resultant uncertainty in the applicability of the model and the higher the number of

plausible alternative assumptions. But removing simplification errors does not necessarily

improve predictive accuracy, since reducing the simplification of the model inevitably

leads to higher numerical solution error (from discretization, for example) when resources

are limited. Thus, at each level of modeling complexity, as well as across a range of

complexity levels, it is possible to develop a suite of models whose ordered accuracy

cannot be established. This relative model uncertainty arising from the lack of ordered

accuracy amongst a suite of simplified models is practically no different than the case of

“genuine” model uncertainty arising from a lack of physics knowledge.

Notwithstanding these analogies between model simplification and model

uncertainty, simplifications will continue to be referred to as errors because it is important

to the interpretation of an uncertainty analysis, regardless of the methodology used for

quanti~ing their contribution to uncertainty. To clarify, suppose an analyst treats a set of

competing models in a quasi-probabilistic fashion by assigning probabilities to each model

and combining the results of the set of models according to those probabilities. If the

underlying source of multiple models is true uncertainty (lack of knowledge of the

7



physics), if might be reasonable to treat the distribution of model set results as a best

estimate of the real world, conditioned on the phenomenological experiments available.

Furthermore, the set of models can only be expected to be refined and improved by

collecting additional information; i.e. by performing some additional experiments which

directly address the lack of knowledge. On the other hand, if the set of models differ by a

set of acknowledged errors from the conceptual model, then it should be acknowledged that

the distribution of the model set is not necessarily the best estimate given the knowledge

base, but simply the best available given a constraint on resources. Furthermore, the model

set will not necessarily bound in any sense the real world and it could have a bias with

respect to more accurate models. Improving the results of this analysis in this case would

then entail devoting more resources to the computational analysis effort.

In summary, true model uncertainties involve a lack of knowledge of the appropriate

physics. In practice, however, many sources of so-called model uncertainty result from

acknowledged errors and in particular simplifying assumptions. The existence of plausible

alternative assumptions, as well as other levels of modeling complexity with varying levels

of solution error, result in a potentially large set of plausible models whose relative

accuracy cannot be modeled or even ordered. Therefore, there is a blurring between error

sources and uncertainty sources. And while methodologies for dealing with genuine

uncertainty and relative uncertainty (due to simplification errors) may be similar, it is

important to segregate these sources as much as possible so that the analyst and policy

maker can understand the nature of the uncertainty and how best to reduce its effects.

Realizations of the Modeling Process

It is critical to view any mathematical model in a broad context, as a particular

intersection of assumptions in a larger pool of potential models. Only then can the analyst

step back and consider that other models probably exist with equal (or nearly equal)

validity but perhaps different behaviors. Unfortunately, the current state of algorithms and

software for defining mathematical models and their discretization is an impediment

toward understanding and assessing model uncertainty. Simply defining, discretizing and

programming a mathematical model can be such a labor intensive task that often the end

product of that effort is thought of as THE model, right down to the nodes and elements of

the mesh. But even if the modeling task required six months of effort, it is still only one

realization of the modeling process.

The term realization is borrowed from systems theory, where Krippendorff [4]

defines it as:

“The production of an object or system according to specific instructions, plans or pro-

grams, e.g., building a house according to blueprints, replicating a scientific experi-

ment published previously, cooking by recipe, realizing an artistic idea.”

In the context of computational physics simulations, a mathematical model is a realization

8
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of the mathematical modeling process. A model is never unique unless the process used to

derive, estimate, or develop the model constrains it to take on only one form. Although the

modeling process can have a infinite number of realizations, it is not necessarily true that

those modeIs predict different behaviors for a pre-selected set of inputs and outputs. In

fact, equivalent realizations are a set of realizations for which the input-output mapping

functions are identical, despite differences in the model parameters. It is also possible for

realizations to have different orders of dynamic complexity and yet be equivalent.

Just as understanding of uncertainty in physical processes is ultimately grounded in

an understanding of the variability in the environment, an understanding of model

uncertainty begins with the reality that modeling is approximation, and that the process

used to arrive at a model is itself not deterministic. At all levels of modeling complexity,

simplifying assumptions exist which are the result of trade-offs between accuracy and

efficiency. The fl.mction used to measure and optimize this trade-off is defined by the

analyst, usually in an intuitive and non-explicit fashion. A natural question arises: what

kinds of models are important to the understanding, and assessment, of model uncertainty?

The brief &iswer is that one should seek models which are plausible from the standpoint of

the system description and a knowledge of physics, and are diverse in their underlying

assumptions. The desire for model diversity arises from the fact that it is the difference

between the input-output behaviors over the entire response space of the considered models

which is evidence of model uncertainty. That is, in the absence of model uncertainty, all

plausible models would predict the same system response for the same model parameter

set. Therefore, if an analysis goal is to estimate the magnitude of model uncertainty from

the least number of models, it is important to consider plausible models whose responses

deviate the greatest from one another. The measure of model diversity, however, must be

based upon the modeling assumptions since one does not know a priori the responses of

potential model choices. Ultimately, plausibility and diversity must be traded off in arriving

at a set of considered models.

The proposed approach for dealing with model uncertainty is to consider multiple

realizations of the modeling process which produce different forms of the model. The

analyst can then perform simulations with these different models and compare their

outputs. Thus, it is similar to nondeterministic analysis, where simulations are performed

for multiple values of a variable parameter. In nondeterministic analysis, however,

enormous efficiencies are gained by using the same programmed discrete model for all

values of a variable parameter. Essentially the costs of nearly the entire modeling and

discretization process are leveraged in most nondeterministic analyses. In assessing model

uncertainty this is usually not the case. The discretization and programming of a model can

be a user-intensive and time-consuming task which is highly dependent on the

mathematical model form. Each model form considered requires a new set of definition,

discretization and programming tasks. Hence, the cost of developing, discretizing and

programming multiple models is a significant barrier to treatment of model uncertainty.

Because of limited resources, the analyst must be judicious in his or her choice of models.

9



Model structure, continuous and discrete parameters

To best proceed with this treatment of model uncertainty, the following definitions

are offered. A model Mi is a mapping which describes how input variables x and output

variables y are related. Mi consists of two parts: a structure Si which is founded on

modeling assumptions, and parameters { e }i which have meaning based on a given

structural choice Si. The set of all model structures relevant to the problem is termed the

model space S. The model space is effectively infinite with each discrete point in the space

representing a structural choice with some level of plausibility. The set of models which

result from an understanding of the modeling and simulation process are necessarily a

subset of all possible model structures. The more thorough and comprehensive the

understanding of the modeling and simulation process is, the more representative the model

realizations will be of the total model space. Without such an understanding, an assessment

of “total” uncertainty could be potentially misleading. A taxonomy of uncertainty and error

sources is a necessary guide to understand the limits of a numerical assessment of total

prediction uncertainty.

Model parameters have meaning within the context of a given model structure. Many

parameters of interest, however, will transcend a specific model structure. Normally, many

of the model parameters in first principles-based engineering simulation will be parameters

of the conceptual model, derived directly from properties of the physical system being

studied. Therefore, these parameters will probably have the same meaning under all model

structures being considered and can be termed global parameters for the present

discussion. Other parameters will be dependent on the structure of auxiliary submodels,

such as constitutive parameters or fluid dynamics turbulence model coefficients. These

shall be referred to as subm@el parameters. Finally, some parameters will be defined as

part of a numerical solution method, such as a grid clustering parameter. These shall be

termed numerical parameters.

Global parameters will typically have variability arising from manufacturing

processes, environment, and other uncontrolled external influences to the system.

Submodel parameters are somewhat different in that their variability, in addition to being

driven by the same factors as global parameters, are also a function of the quality of their

empirical estimation. That is, submodel parameters are usually estimated from

experimental data within the context of the submodel form. For example, a submodel

parameter might be the exponent in a material model of a braze alloy. Then load-strain and

strain rate data would be used to estimate the exponent, whose estimated value would have

variability arising from variability in physical specimen behavior, uncertainty in the

measured data, and differences between the data and the best model fit. Numerical

parameters will not have variability but are subject to uncertainty, although that uncertainty

is rarely modeled.

*
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There can be a certain lack of distinction between model structure and parameters.

Some might include within structural assumptions such issues as a linear relationship

versus a cubic nonlinear relationship. Others might simply generalize the problem to

include the exponent in question as a continuous parameter, thereby replacing a structural
9 uncertainty with a parametric uncertainty. A more useful distinction can be drawn by

considering as parameters those elements of the model which are continuous. That is,

parameters which can take on a continuum of values. Then model structures are defined by

discrete structural assumptions. Therefore, model structures are not related to one another

in a continuous sense; that is, by infinitesimal perturbations.

Types of uncertainties and errors in model structure

A diagram of the framework (presented in Appendix A) for the sources of

uncertainty and error in simulation is shown ‘in Figure 2. Before proceeding, it is helpfid to

consider the types of uncertainties and errors which bear on model structure or arise from

the modeling process. As mentioned previously, this research is focused mainly on the

mathematical modeling, discretization and numerical solution phases. This taxonomy of

uncertainty and enor sources drives the assessment of model uncertainty since it defines

the scope or dimension of the model space.

Mathematical Modeling

● Conservation equations - (2D vs. 3D), competing plausible conservation laws

c Submodels - form of law/equation, linear vs. nonlinear, etc.

● Loads, Boundary conditions, Initial conditions - infinite vs. finite boundary

Discretization

● Spatial - element selection, mesh topology

● Temporal - integration rule

● Loading - lumped vs. consistently integrated

● Boundary conditions - infinite element formulation

● Coupled fields - fully coupled vs. partitioned, stabilization

Numerical Solution

● It could be argued that parameters such as mesh size are discrete because they cannot

take on a continuum of values except in the limit as the mesh size approaches zero. The

same could be said of the time step if an integral number of time steps are required

between two fixed times.

.
Propagation tree structures for model realizations

,
It is helpful to visualize the impact of model uncertainty, as well as other error

sources, in terms of a propagation tree. Here it is suggested that each “leaf” of the tree

includes a deterministic model structure in which some continuous parameter variability

may be implicit. Therefore, each leaf implies a nondeterministic analysis with respect to

11
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Figure 2: Framework for Sources of Uncertainty and Error in Computational Simulation
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some set of continuous model parameters, and the methodologies developed for non-

deterministic systems, such as sampling and reliability methods, would be applicable to

each of these systems. Figure 3 illustrates a section of this tree, in which at each phase of

the modeling and simulation process only one configuration of assumptions is expanded
*

upon. Note that each level of the tree corresponds to a phase of the modeling and simulation

process, illustrated in Figure 2. Note also that the errors due to spatial and temporal mesh
.

size are not treated as leading to different model structures because of the specific error

models available for these sources. The need to quantify these errors may lead to a specific

number of analyses performed on different meshes, but these analyses can be regaxded as

similar to the parameter sampling used to address continuous parametric variabilities via

Monte Carlo analysis or in building response surfaces.

EEi!iJEEfiJ ‘--------- Esi2!sJ

EEE3 :k$p~e,.‘----- mMath Model 1113

EiqK! Ezi!2El-------EEiE51

-Lmil
.

Figure 3: Propagation Tree of Model Structures
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Project Activities and Contributions in Identification of Uncertainty and

Error Sources in Computational Simulation

The present LDRD project, leveraged with an Engineering Sciences Tech Base

project on framework definition for uncertainty quantification, performed literature

searches and brainstorming on such problems as the prediction of outcome for a weapon in

an aircraft crash and fire. The result of this work is a framework for uncertainty and error

sources detailed in Appendices A and C and used in the previous discussion on the concepts

of uncertainty and error in model structure. Appendix C provides the most thorough and

detailed discussion on this work.

.

.
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3. Assessment and Propagation of Model Uncertainty

Introduction

In Section 2and Appendices Aand C, the problems associated with selectionof

mathematical model form and the errors and uncertainties which arise from it were

discussed. Furthermore, the different forms of acknowledged errors and how simplification

errors can result in effective model uncertainty were also addressed. Finally, an approach

for treating or assessing model uncertainty which involves the consideration of different

model forms arising as different realizations of the modeling process was proposed. In

order to proceed, it is now necessary to develop a mathematical framework for the

consideration of multiple models. This mathematical framework is based on probability

and statistics, specifically Bayesian statistical inference [1,5,6,7,8,9,10, 11]. The

development here follows from work first presented by Draper [1]. This section begins by

studying the use of statistical inference for propagation of uncertainty in a single model

with continuous parameters. This result is then extended to the treatment to a continuous

space of models, and from there to a discrete set of models. In Bayesian inference, prior

probabilities are utilized to make inferential predictions regarding future events for which

there is no data. These prior probabilities are often based on experimental data but maybe

subjective, or a combination of subjective judgement and statistical results. Furthermore,

by employing Bayes Theorem, it is possible to revise the probabilities for uncertain

elements of the problem when new data, such as that obtained by phenomenological and

validation testing, becomes available. The revised or posterior probability distributions

generaIly improve the predictive accuracy of the inference, assuming that the uncertainties

in the data are handled properly.

Statistical Inference using Prior Probabilities

Consider a simple, linear, single output-single parameter model, viz.

Y = yo+lk!e e - ~(pe> 6;) (1)

where M can be thought of as a sensitivity arising from the functional form for the model,

perhaps from an integral over a physical domain. 9 is a parameter whose variation is

described by a normal distribution with mean we and variance a:, y is the system output

which the model predicts, and y. is a constant. Statistical inference rests on determining

the probability density function (p.d.f.) of the predicted quantity y, p(y). Determining

P(Y), which characterizes the

of y given fl (which is called

prediction uncertainty, requires the conditional probability

the likelihood function), the p.d.f. of e, and an integration
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over the domain of e

P(Y) = JP(YI oP(we

The likelihood function p(y 16) is given as

{

1 ify= y~ + Me
P(YI0 =

o otherwise

The (prior) probability for 0 is

Then p(y) is given by

P(Y) =
[

1 (Y– (Y. + W4J)2--

1
2

M* o; 1
e

(2)

(3)

(4)

which is just a normal distribution with mean (y. + Mpe) and variance M20~. It can be

proved, in fact, that linear operations on Gaussian random vectors produce Gaussian ran-

dom vectors. Therefore, it is also possible to solve the above problem by deriving the

mean and variance of y:

E[y] = E[yO + iwe] V[y] =

= l?[y~] + E[k?e] =

= y(j + k?E[e] =

= y~ + ik?p~
=

E[(y-E[y])2]

E[M2(0 - P*)2]

M2E[(e-p9)2]

(6)

.

?

Before proceeding, note that the previous analysis is nothing more than a closed form

solution to a nondeteministic analysis problem. These results could have equivalently

been obtained using numerical techniques such as Monte Carlo sampling, response sur-

face methodology, or analytictireliability methods. This example is presented in some

detail so that meanings of the probability density functions would be clear, and so that the

reader can begin to develop a working understanding for these types of problems.
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Revising Prior Probabilities to Account for New Data

Now suppose that a single test is performed yielding a value x which can be

predicted using a version of the model modified to account for the variance in the test.

Therefore

x=yo+Me+& (7)

where the test variance is modeled as &- N(O, o:), a normal distribution with zero mean.
and variance c:. The objective is to compute a new distribution for y

the additional data x; that is, the conditional probability density

desired:

P(YIX) = J’P(Y[ e,melode

which accounts for

function p(y Ix) is

(8)

This however requires the so-called posterior distribution for 0, p((l lx), which is the

probability distribution for 0 conditioned on the new data x. This is determined by

employing Bayes rule:

P(elx)=
P(X[ e)p(e)

p(x)

These elements are given by

P(X1 e) - AT(YO+ Me, +

(9)

(lo)

Plugging Eq. (10) into Bayes rule and simplifying, the posterior distribution is given as12

p(elx) = fwlhJ*> (4)*) (11)

where

(12)

Finally, for the prediction y,
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P(YI4 - ~(Y() +wPe)*7~2(d)*) (13)

Before proceeding, consider what this result represents. T~e mean of the revised distribu-

tion for y is the previous mean plus a correction M( (pe) – PO) due to the change in the

mean of the distribution of 0. Also exarn@e the revised variance for the distribution of 0.

The inverse of the revised variance (o:) , which can be thought of as an absolute confi-

dence parameter, is equal to the previous confidence plus a measure of the increase in

information provided by the new data. The information in the new data is the square of the

sensitivity of x to 0, times the confidence in the data, given as the inverse of the variance

in the data. Thus, the incorporation of additional data adds information (if the confidence

in the data is relatively high) to the knowledge of the parameter 0, which is reflected by a

narrowing of the distribution and possibly a shift in the mean.

A number of questions can be posed: is it reasonable to update the distribution of 0

in light of the new data? On what basis is this new data judged relative to the bulk of

previous data or experience inherent in the prior distribution? And what about the values

of M and y.? Is there enough certainty in those values that ill the “blame” in the predictive

error should be assigned to the distribution on 0 ? Now there is new data which provides an

updated mean and variance of 0 which might be significantly different than the prior

distribution. What does this imply about the true distribution of 0 and about the model?

To address these questions, first examine the assumptions in the previous analysis.

Basically, the assumptions are the distributions on the model parameters and the data, and

the form of the model which is implied in M. The origin of the distribution for 0 was not

stated; ideally it was determined from an extensive quantity of data which reflects all of the

physical sources of variability in the parameter, and is free of bias in the measurement of

the data. It is very possible, however, that the mean of the distribution is a “nominal” value

taken from a handbook of physical or material parameters, or from a design document for

the system. The variance of the distribution might be based on a dimensional tolerance or

simply on an estimate by the analyst. Suppose that the values for the prior mean and

variance of 0 came from an reliable database of experiments designed to measure 0 and

account for experimental uncertainty and bias.

The other assumed distributions are for the data and the parameter y.. The

distribution in the data should be viewed as the distribution of many tests for which the

value of 0 is known but the noise and all other unmodeled variabilities take on values in

accordance to their distribution functions. If these other sources of variabilities (and errors)

are not either modeled and estimated, or if an insufficient number of actual tests are

performed to experimentally quantify crc, it is very possible to overestimate the confidence

in the data and thus to “overilt” the model. Even if the data are accompanied by a reliable

expert opinion about the variance of the data, there could be significant uncertainty about

18
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the mean. After all, if only one data point is known, it might be two or more standard

deviations away from the actual mean.

Finally there is the parameter y. and the model which determines M. The

distribution for the parameter y. is in fact not distributed at all but simply a delta function;

the potential for error and overconfidence given this assumption is probably obvious. Then

there is the assumption of model form, or in this simplistic case the value of S. It could

potentially take on a different value if different modeling assumptions were used. The fact

is that uncertainty in the model is the most likely cause of a posterior distribution for 9

which is significantly different than a prior distribution based on a reliable database. So, if

there is a lack of confidence in the form of the model, how should this uncertainty analysis

proceed? Draper’s approach is to treat the model structure itself as an additional source of

uncertainty (modeled in a probabilistic fashion), and to perform inference in the same

Bayesian fashion as presented herein. This is detailed in the next section.

Propagation of Model Uncertainty: Bayesian approach

Draper [1] demonstrated that the previous Bayesian treatment of parametric

uncertainty can be extended to the problem of model uncertainty. To begin, simply reverse

the roles of M and 8 in the previous discussion. If M can take on a continuous range of

values based upon changes in the model structural assumptions, then there is a need only

to assignor determine a prior probability density function for M, p(itf), and proceed using

exactly the same methodology. Therefore

P(Y) = JP(YPOWW (14)

Note that since in the previous discussion M was assumed to be deterministic, and the

roles of M and fl are now reversed, it is now assumed that the parameter 0 is determinist-

ic. Shortly the treatment will be generalized such that both M and 0 are treated as nonde-

terministic quantities. First, however, it is necessary to adjust the prior analysis for the

case where there is a discrete and finite set of model structures-

Forafinite set S = {S1, . . .. Sm } of model structures with only deterministic (i.e.

not variable) parameters

P(YIS) = ~ P(Y]s~, ‘)P(sjls) (15)

i=]

where it is noted that the prediction y is conditioned on the finite set S of model structures

considered. Here we have dropped the parameter M, which is simply the sensitivity of y

with respect to the model structure Si and is assumed to be deterministic. The resultant
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distribution for the predicted quantity y might look like that in Figure 4. Here there are 5

model structures considered with probabilities (0.30, 0.25, 0.20, 0.15, 0.05, 0.05). As

required, the sum of the model probabilities is unity. What about other possible model

1 ,

yl y3 y6 model output y

Figure 4: A distribution of a discrete set of deterministic models

structures beyond the 6 considered in this example? The probabilistic interpretation is that

all other possible model structures have been assigned a probability of zero.

When the inference is also conditioned on some new data x

P(Yp> s) = ~ P(ylx,‘i, ‘)P(S,IX,‘)
,=1

(16)

The determination of posterior probabilities P(Sil x, S) (i.e. the updated probabilities con-

ditioned on the new data) is again from Bayes Rule:

P(XI ‘i> ‘)P(s~l ‘)
~(SilX> S) =

p(x[s)
(17)

where p(x IS) = ~p(x \S,, S)p(Si S). Note that if a model is assigned a prior probability

of zero, its posteridr probability will also be zero. Thus, no matter how well a model struc-

ture might accurately fit some new data, if its prior probability is zero (possibly because

the model structure is completely implausible from what is known of the physics), it can-

not gather support from the new data. This can be a good feature of the Bayesian treat-

ment, because it precludes giving weight to empirical data models simply because they

optimally fit a limited data set. On the other hand, model structures with small but nonzero

prior probabilities might gain significant support from new validation testing, but if those

models are not treated (effectively setting their probabilities to zero) thk change in support

for the models cannot be determined. This is why the probability density functions in the

preceding equations are dependent on the assumed discrete model space S.

20
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To summarize, the Bayesian treatment of model uncertainty involves

● the treatment of the mathematical model structure or form as a nondeterministic

quantity

● the selection of a discrete set of models to consider

● the modification of statistical inference mathematics from’ continuous variables and

distributions to discrete variables and probabilities

Clearly, the value of this formulation and the results it provides rests on the model proba-

bilities p(Sil S) assumed for the space of models. The problem of assigning model proba-

bilities will be discussed in more detail near the end of this section. First, this treatment

must be generalized to include both parametric and structural uncertainties. This is the

subject of the next subsection.

Combining model uncertainty with parametric variability

The most general case is where both structural uncertainty and parametric

uncertainty are present. Parametric uncertainty is often conditioned on the model structure.

To propagate these uncertainties, it is necessary to integrate over the parameter variations

and then sum over the model structures. This suggests a nested uncertainty structure where

the model uncertainty generates a higher level of uncertainty analysis into which the

nondeterministic analysis of each model provides distributions:

m

{ 1P(Y14s) = ~ J’P(Y]& ‘i>e,9P(O lx, ‘i>we P(silx>s)

i=] e

m
(18)

= ~ P(YIX>‘i>‘)lis~lx, ‘)
i=l

where

P(Y1% Si>$ = Jp(ylx,s,,e,s)ptelx,si,we (19)

Compare Eq. (19) to Eq. (8). This is exactly the same treatment of parametric uncertainty

as was developed previously except that now all quantities are explicitly conditioned on

the structural choice Si and the model space S. Furthermore, by assigning relative proba-

bilities to the Si and summing the results of all models in the model space, a general treat-

ment for both model structure and parameter uncertainty is obtained. This formulation is

sometimes referred to as Bayesian Model Averaging (BMA) [9]. The inferential distribu-

tion with model uncertainty is given by a weighted average of the inferential distributions

of all the considered models, where the weights are the prior or posterior model structure

probabilities p(Si IS). The resultant distribution is shown in Figure 5. Here each of the
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I model output y

Figure 5: A distribution of a discrete set of nondeterrninistic models

models provides a distribution for the predicted output, weighted by the models’ probabil-

ity weights. These are shown in the dashed curves. The composite distribution of the

model set is the sum of these and shown in the solid curve. Compare the effective uncer-

tainty in the output (the spread of the distributions) of the composite distribution to the

uncertainties of the individual models. Generally, the total uncertainty, including model

uncertainty, is much greater than the uncertainty predicted by any single model. This is not

guaranteed to be true, however. In the model averaging approach, it is possible to have a

considered model which predicts a higher variance than the composite distribution. This

only occurs, however, when that model has a very small structural probability. Given this

fact, that model would not be the chosen model if only a single deterministic model form

were chosen.

Finally, for updating prior probabilities, Eq. (17) is used with the generalization

P(xlsi> ‘) = JP(xJsi> ‘i> ‘)p($ilSi> $dei (20)

The formula for updating the prior model probability Eq. (17) can also be written as

where
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P(+3)
Pij =

~(x[si>s)
(22)

is the Bayes factor for comparing structure Sj against structure Si. Although the Bayesian

model averaging approach is a relatively new development in applied statistics, Bayes fac-

tors have been used for a much longer time as a basis for selecting competing models or

theories. Hence, some literature exists on efficient computation or approximation of Bayes

factors for the purposes of model selection. The applicability of these techniques for the

present purposes is not yet clear. What is clear is that, given sufficient resources, the ana-

lyst can apply the same nondeterministic analysis techniques for single model forms

within the framework of Bayesian model uncertainty analysis.

Once model probabilities are determined, or assumed, it is straightforward to apply

them to the assessment of model uncertainty. The resultant distribution for the predicted

quantity y is simply a weighted average of the distributions resulting from each of the

model structures considered. The weighings for the space of considered model structures

always sum to unity. Note that while the distributions from each model maybe normal or

at least unimodal (having only one maximum), the superposition of a number of

distributions is likely to appear non-nomml as in Figure 5 and possibly multimodal. Some

simple statistics can be computed, however. For example, the mean and variance of the

prediction y is given asl

E[~lx, S] = ~ ~(SilXj S)E[y\X> Si>S]

i=l

m m
(23)

V[ylx, s] = ~ ~(SilX> ‘)v[y/x> Si, S] + ~ ~(SilX> S)(E[y[X, Si>S] ‘E[y\X> S])2

The uncertainty in the prediction y, as measured by its variance, is decomposed into the

sum of two terms. The first is the weighted average of the variances predicted by each con-

sidered model (the expected internal model variability). The second term is more or less a

direct measure of the model uncertainty itself, as it is a measure of the spread in the esti-

mated means across the space of considered models (the model-to-model variability).

Assignment of prior subjective model probabilities

To make the preceding treatment of model uncertainty effective, there is a need to

develop ways of determining prior model probabilities. After all, these are fundamental

assumptions which underlie the Bayesian methodology for model uncertainty. In fact, since

the probabilistic interpretation of multiple models maybe viewed somewhat critically, its

more helpful to view this methodology as model averaging, and to view the model
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probabilities as weights which reflect the relative plausibility of each model. These

plausibility weighings are highly subjective, even when conditioned on some body of data.

Model plausibility is a function of accuracy, consistency, and completeness. Model

accuracy is a judgement of how the sum total of all sources of error affect the predictive

quality of the model. Discretization error may or may not play a role in this judgement,

depending on whether it is treated by other error quantification methodologies. Model

consistency refers to whether the model form is consistent with what is known about the

governing physics in the system response. It is possible for an empirical model to possess

apparently high accuracy with respect to known data but to have a form which is

completely unrelated to the physics. Extrapolation, and even interpolation, with this model

might lead to significant errors. Therefore, given two models of apparently equal accuracy

with respect to known data, one should prefer for predictive purposes the model which is

the most consistent with the mathematical form of the physics (subject to the trade-off

between simplification error and numerical solution error mentioned in Section 2). Finally,

model completeness refers to a model’s ability to treat the important sources of variability

in a system. There might, for example, be a closed form solution for a system of interest

which is highly accurate and consistent. The model’s drawback, however, may be that its

form does not admit certain physical variations in a problem. In a sense, both consistency

and completeness are issues of accuracy, but they are stressed as separate issues because it

is easy to misinterpret a model’s accuracy by neglecting to consider all potential sources of

error when extrapolating from a region of quantified accuracy.

Another consideration in the assignment of model probabilities is ensuring that they

are decomposed consistently at each level in a propagation tree. In fact, the propagation tree

itself can help guide the assignment of model probabilities because of this constraint. To

illustrate, consider Figure 6, in which a single scenario is considered, with alternate models

arising at the mathematical modeling and discretization phases. It can be seen that the

probabilities of each model structure must sum to the probability of the higher level model

it supports- Alternate mathematical models would be assigned probabilities in accordance

to the issues of accuracy, consistency and completeness described previously. Then if those

mathematical models are further decomposed into competing discretizations, those

structures “inherit” the probability of their parent model.

Selection of Models

Selecting models

selecting input locations

to consider in a model uncertainty assessment is not unlike

in an experiment design. If the problem is viewed from a Monte

Carlo-like standpoint, models should be selected purely on the basis of relative plausibility.

As with Monte Carlo, however, it may take a high number of model “samples” or “trials”

to begin to arrive at a useful assessment of model uncertainty. For this reason, the aspects

of diversity and efficiency are also important. Think of diversity as a subjective judgement

of how different a model is from other models on the basis of its structural assumptions.

Efficiency simply refers to the amount of effort required to perform uncertainty analysis on

>
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Figure 6: Decomposing model probabilities in a propagation tree structure

a particular model space. When all other considerations are equal, models should be chosen

which can be assessed with the least expenditure of resources.

Given limited resources, it is inefficient to evaluate models with probabilities below

some user-defined threshold. For those models above the critical threshold, models could

be fhrther prioritized and the accuracy level of the nondeterministic analyses adjusted in

accordance to the model probabilities. This should be done, however, while keeping in

mind the relative diversity and efficiency of each model, especially if some models are

predicting responses close to a failure region for the system.

Project Activities and Contributions on Assessment and Propagation of

Model Uncertainty

The present LDRD project investigated the use of Draper’s Bayesian approach to

assessment and propagation of model uncertainty by application to a modal analysis of a

neutron generator mounting bracket. This analysis included both forward propagation and

inverse analysis (through the determination of the posterior model probability distribution)
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and is detailed in Appendix A. In addition, under project finding, an investigation was

performed on the use of metarnodels for the assessment of model uncertainty. In this work,

discrete model form parameters were introduced to the response surface methodology of

uncertainty quantification, and then used to propagate model uncertainty. An interesting

aspect of this work was the nesting of continuous metarnodel parameters to reflect their

model forrn-dependent definition. This work is detailed in Appendix D. Finally, a detailed

uncertainty analysis of a missile in flight was performed and is detailed in Appendix C. Part

of this analysis considered issues of model form arising from differing propulsion system

models, as well as comparing 3 degree-of-freedom and 6 degree-of-freedom models of

rigid body flight response with associated continuous parameter variabilities and numerical

solution error. This analysis did not consider the use of model probabilities, but rather a

small range of model forms individually.

Three additional aspects of model uncertainty were considered but have not yet been

investigated. One aspect is how differing model forms can be treated within the Bayesian

framework when the models treat different and incomplete regions of the total variability

space; that is, the models have different parameter sets. The proposed approach is to define

a master response surface which characterizes the entire variability space of the problem.

The coefficients of this master response surface would be determined via analysis of each ~

considered model form. In the regions where multiple models are defined, the coefficients

of the master metarnodel would have two components of uncertainty. One component

would be due to the fitting of the coefficient to the response space. The other component

would be due to model uncertainty and would express the difference between the value of

the coefficient as determined by the multiple models. A variation of this approach is

currently being investigated in a small project at the University of Wisconsin funded by this

LDRD. In this approach, an alternate response surface methodology is proposed in which

multiple metamodels are synthesized into a master response surface. The goal is to

integrate multiple models which fit different regions of the variability space into a global

model for uncertainty propagation. While this approach is more oriented towards

improvement of response surface methodology, the implementation can equally apply to

the aforementioned problem of integrating multiple model forms with different parameter

sets.

Another important aspect of model uncertainty which remains to be investigated is

the issue of model space diversity and completeness. As noted in this section, alternative

model structures are assigned a probability of zero in the Bayesian model uncefiainty

propagation “approach if the models are not being considered. In order to converge most

quickly to an estimate of model uncertainty, it is important to stake out the extremes of the

model space. There is, however, no metric to measure the adequacy of the model space

considered. There is a need to determine metrics for the model space based on the relative

correlations between alternate model predictions, as well as the posterior likelihood

relevant physical data given the predictive distribution provided by the model space.

of

.

,
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Finally, non-probabilistic approaches to modeling structural uncertainty have been

identified but not yet investigated. Foremost amongst these are convex nested sets of

models (as proposed by Ben-Haim [13,14,15]), in which uncertainty could be defined as a

region of prediction space relative to the deterministic model. Thus, the model prediction

is defined as any point within the convex set, which is itself parameterized by a model

uncertainty coefficient of undetermined size. The model uncertainty coefficient can either

be estimated in an inverse sense as the degree of model uncertainty for which inferences

are “robust”, or in a forward sense as the norm of prediction error indicated by validation

experiments.

Additional approaches which are attempting to span the chasm between probability

theory and set theory are generally grouped into evidence theory [16]. This encompassing

theory, which is still under major development, was originally discovered by Dempster

[17] and Shafer [18]. Corning from the probabilistic root of evidence theory is Bayesian

inference and imprecise probability theory [19]. Coming from the set theory root of

evidence theory is possibility theory [20] and fuzzy set theory [21]. Of all the various

theories under the umbrella of evidence theory, only Bayesian inference is mature and in

widespread use. We simply call the reader’s attention to other approaches to representing

model uncertainty. The present research effort, however, did not pursue these other

approaches in any depth.
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4. Estimation of Discrete Numerical Solution Errors

The problem of interest is the solution of partial differential equations (PDEs) over

continuous spatial and temporal domains. An analytical solution to these equations and the

associated initial and boundary conditions is generally not known, so the solution must be

approximated by some numerical approach. The basis for the finite difference methods is

the construction of a discrete grid and the replacement of the continuous derivatives in the

governing PDEs with equivalent finite difference expressions. For example, the governing

equation for unsteady heat conduction in a rod is [22]

(24)

This can be solved by replacing the time derivative with a forward difference approxima-

tion and the spatial derivative with a centered difference approximation. This is then the

classic forward time, centered space (FTCS) scheme at spatial grid location Xj and time

step t~ is given as

T;+l = sT; _ ~+(1–2s)T; +s~;+I (25)

where s = (cxAt)/(Ax2), and the spatial and temporal grid spacings are Ax and At,

respectively. To determine the truncation error for this approximation, each term of the

FTCS approximation is expanded by a Taylor series:

Simplifying leads to
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or equivalently

-7 -n--7-n 4 -n

Comparing this result to the original PDE, the truncation error for the FTCS scheme has

leading terms proportional to At and (Ax)z. Thus, the truncation error is said to be

O(At, AX2). This error will be small if $ and $ are bounded and if At and (Ax)2 are

sufficiently small.

The finite element method is a different numerical approach to the spatial

discretization of PDEs. In the finite element method, the spatial domain is partitioned into

elemental domains and within each domain the solution is interpolated according to the

element shape functions. The mathematical basis for the finite element method is as a

weighted residual solution to a variational form of the PDEs. For time dependent problems,

application of the finite element method results in a system of ordinary differential

equations in time, which can then be solved by a number of time integration methods. Error

estimates in the finite element method are usually written in terms of error norms. For

example, in steady state (i.e. static) linear elasticity problems, in the absence of singularities

the solution error is bounded as [23]

U–uh =
I [J 1(u- uh)(u-uh)dQ 1’2< chk+ *ilu//

Q

(29)

where u is the exact solution, u~ is the finite element approximation to u, Q is the spatial

domain over which the PDEs are defined, h is the characteristic element size, k is the

order of the polynomial for the element shape functions, and c is a problem dependent

constant which is independent of h and u. Generally, the order of spatial convergence

depends on not only the polynomial order of the shape functions, but also the highest order

of derivatives which appear in the variational form of the problem. The convergence with

respect to time integration depends on the ordhuy differential equation solve~ i.e. the

time integration method chosen.
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Grid convergence and error estimation via Richardson extrapolation

Richardson [24], in 1910, described a method for increasing the rate of convergence

of a numerical solution to a partial differential equation. This method is commonly referred

to as Richardson’s extrapolation. The basic principle was to compute the solution on two

different grids and then to use those solutions to estimate an improved solution. The

relationship of the discrete numerical solution to the exact solution is described as

u exact = uD(k) + (XIIP+ O(?zp+1, (30)

where u~ is the discrete numerical solution with mesh spacing h, p is the formal conver-

gence rate for the method, and ct is a parameter which is independent of h. Then two dis-

crete numerical solutions on meshes with’ spacing h 1 and h2 yield the following

equations:

u
p+l

exacf = UD(hl) +cxhlP+ ~(hl )

u
p+l

exact = u#z2) + cth2P + 0(h2 )

Thus

et=

u =
exact

=

u~(hl) – u~(h2) + ~(hP + 1,

h; – h;

[

h;u~(hl) – h~u~(h2)

1+O(hp+ 1,
h; – h:

UE#t~, h2) + O(hp +1,

(31)

(32)

where uE~(h *, h2) is the extrapolated discrete numerical solution based on mesh spac-

ings h ~ and h2. Note that this solution is extrapolated towards the exact solution but is not

equivalent to the exact solution. The formal order of the extrapolation-based method is

equal to the order of the next leading error term in error model of the original discrete

numerical solution.

Richardson extrapolation carries with it three basic assumptions. First, the exact

solution must be sufficiently smooth so that the Taylor series expansion for the error is

justified. Second, the accuracy of the method, p, is known. Third, it is critical that both

mesh spacings are sufficiently small such that the computed solutions are in the formal

asymptotic range. This is equivalent to stating that the leading error terms truly dominate

the total discretization error. Given these assumptions, Richardson extrapolation is a

powerful technique for both finite difference and finite element solutions. It is sufficiently

.

,
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general that it can be applied to virtually any chosen output of the computational model,

and in addition can be applied to functional of the solution vector. Unfortunately, in the

presence of singularities, the formal convergence order might not be achievable, and the

actual convergence order may not be clear a priori. The singularities at issue here are not
<

just mathematical-physical oddities; they can occur throughout problems by such modeling

simplifications as sharp corners (neglecting small radii such as fillets). Thus, the presence
. of some singularities are likely to be the rule rather than the exception, and estimating their

influence on convergence can make Richardson extrapolation a far less accurate and

efiicient approach.

Richardson extrapolation has traditionally been used for improving convergence

order on time-independent problems, but can be extended to time-dependent problems also.

Richardson extrapolation is more commonly used as an error estimator of the fine mesh

solution. Roache [25] defines a grid convergence index (GCI), which is based on

Richardson extrapolation but accounts for uncertainty in the error estimate due to

uncertainty in various factors such as the effective convergence rate. The error estimates

for the grid with mesh spacing h is defined as

E(h) = uD(h) – ~~XaCt

E(h) = –cxhP + O(hp +1,

but is approximated as

[ 1
ztD(h2) – ~D(h1) hp

E(h) =
h; – h;

(33)

(34)

This approximation neglects the higher order terms. Therefore, for this to be a reliable

estimate of the error, the mesh must be sufficiently fine so that the error is truly dominated

by the leading term [26]. Furthermore, the convergence order p must also be known.

Roache then defines the GCI for the mesh with spacing h as

GCI(h) = F$IE(h)\ (35)

9

where F~ >1 is used as a safety factor. Roache suggests that Fs = 1 is analogous to a

50% error band on data, and so recommends F, = 3 as a more conservative bound on the

discretization error.
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In summary, Richardson extrapolation is a classical yet powerful technique for

improving convergence rate and estimating errors in discrete numerical solutions of partial

differential equations. It has been used more typically in conjunction with the finite

difference method, but it is equally applicable to finite element methods. The major

problem with Richardson extrapolation is that, in order for the method to yield reliable

results, it must be demonstrated that the discretizations are in the asymptotic region. This

is true in all cases and can be particularly troublesome in nonlinear problems or linear

problems with sharp solution gradients due to the influence of singularities.

Primarily for this reason, a number of researchers have developed an alternative

approach to error estimation: a-posteriori error estimation. This approach has its own

weaknesses, but is quite valuable because it gives an elemental decomposition of the error.

This decomposition provides a basis for adaptive mesh refinement, in which spatial

element sizes are adjusted in accordance to the local error. This allows errors to be

minimized for a given discrete problem size and for that error to be quantified (at least in a

global sense). Finally, numerical results suggest that mesh refinement in an optimally

adaptive sense can restore the formal convergence order of the numerical method in cases

of singularities. Since adaptive meshes are typically irregular, a-posteriori estimators and

adaptive mesh refinement are usually found within the context of the finite element

method.

A-posteriori error estimation in the finite element method

A-posteriori error estimation refers generally to the use of “post-processing” to

estimate numerical solution errors. By post-processing, it is meant that error estimates will

be computed based on some limited processing of the solution to a given mesh, rather than

by defining a new mesh spacing and computing a new solution for comparison. That is, in

Richardson extrapolation, a second (or third) global solution is obtained on a different mesh

spacing completely independent of other mesh solutions. In a-posteriori error estimation,

local “fine grid” solutions are estimated based on the existing solution through smoothing

or other techniques. While there is nothing conceptually which limits a-posteriori error

estimators to the finite element method, practically that is where they have had the greatest

impact.

The Zienkiewicz-Zhu Error Estimator (271

For a general linear equation of the form

L{u}+p=o

an energy norm of the solution error can be defined as

32

(36)



I[el]= (j/h?df-2)1’2=[J(uexac,-uD)~L(uexacl-uD)dQ]”2(37)

Q

where the error e is defined as e = u~XaC1– u~. For elasticity problems, this is equivalent

to

Ilell = [JQeT(~TCB)edQ]l’2 (38)

where B is the “strain-displacement” matrix or more generally a differentiation operator,

and C is a constitutive matrix which in elasticity problems is the stress-strain operator.

Finally, using the definitions of stress o and strain &

E =Bu o= CE=CBU (39)

the L2 error norm can be written as

where o is the exact stress solution and d is the discrete numerical solution. Other error

norms can also be defined, such as the L2 norms

[J
1/2

e
u L2 = (Uexac, - %) T(%X.C, - @~Q

Q
1

‘0 L2 [J 1
= (CT- 6)=(0-6)A2 1’2

Q

(41)

From this type of norm, root mean square (RMS) values for error can be estimated. For

example, the RMS error for displacement, IAuI, is given as

Finally, a relative energy norm error is computed as

hell ~ loo%

q - Ilull

1/2

(42)

(43)
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Ilul] = [JQ(BU)*C(BUM2]*’2 = [J#&dq”2 (44)

is the strain energy of the displacement field. q is a global error measure for the discrete

numerical solution, suitably normalized for comparison to other meshes.

At this point it is necessary to have an estimate of the exact displacement or stress to

compute the error estimate. The basic idea behind the Zienkiewicz-Zhu (ZZ) estimator is

to obtain an optimal improved estimate for the discrete numerical stress solution 6 and

then to assume this solution is sufficiently close to the exact solution to yield an acceptable

error estimate. That is, C* is estimated and then it is assumed that

Ib-ql = 116*-611 (45)

In elasticity, the stress function c is approximately proportional to the strain function &,

which is the spatial derivative of the displacement u. Therefore, the convergence order

and smoothness of the discrete numerical solution for stress is one order of magnitude less

than that of displacement. For example, if linear shape functions are used, the displace-

ment solution is second-order accurate and Co continuous, while the stress is first-order

accurate and discontinuous (i.e. the stresses at a node point are not equal among the ele-

ments sharing that node).

Now note that the Co displacement function ii is interpolated from the nodal

displacements 2 by the shape function matrix N, i.e.

G = Nii (46)

The same shape fi.mctions can be used for the improved stress function, viz.

G* = N@* (47)

where 5* is a vector of nodal stresses to be determined. Finally, the discontinuous stress

field 6 and the smoothed estimate cT* are equated in a weighted integral sense:

J(NT CT*– &)dL2 = O

Q

(48)

.

This gives a solution for the smoothed nodal stresses:
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6*= [pq-’(p%dsq
!2

(49)

with 6 = CBii. Thus, from Eq. (47) through Eq. (49), the stress error is estimated as

‘G = 6*–5

. ~~*–&

= ‘[JNTN’QI

=‘[~NTN’Ql-
CBii

(50)

= {N[~NTNdQ~’(,NTcBdQ)-cB}~
Q

Note the use of the computed discrete numerical solution for the nodal displacements in

the error estimate. The operator preceding the nodal displacement vector is roughly a pro-

jection matrix times the stress-strain and strain-displacement operators. The projection

acts to filter out the continuous component of the stress field, leaving the purely discontin-

uous component as indicative of the stress error.

Using the error estimate e., one can compute either the energy error norm given by

Eq. (40) or the Lz stress norm Eq. (41 ). Furthermore, note that any of these norms can be

expressed as a sum of elemental errors, viz.

NE

llej12= E{J e~C-1eadL2(i)

i = 1 Q(i) }

(51)

This is the elemental decomposition of error mentioned earlier which is used as the basis

for adaptive mesh refinement.

The accuracy of these or other a-posteriori error estimators is usually defined by the

effectivity index, given as

(52)
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An error estimator is said to be reliable if w is close to one as the finite element solution

converges to the exact solution. This is effectively equivalent to assuming the mesh spac-

ing is fine enough so that the solution is in the asymptotic range. Furthermore, the estima-

tor is said to be asymptotically exact if it converges to one in the limit as the finite element

solution converges to the exact solution.

The ZZ estimator just presented is an example of a recovery technique, where first

an improved solution is obtained by some type of projection or smoothing. This is then used

in place of the exact solution to compute the error estimate. This class of methods can vary

depending on the method of recovery. Usually the recovery takes the form of a local

problem, such that the computations involved in the post-processing/recovery phase are

roughly negligible compared to the finite element solution itself. In the ZZ estimator, the

operator

JNTNdS2 (53)

Q

which is inverted in the computation of 5* (see Eq. (49)) is usually approximated as diag-

onal (by lumping off-diagonal terms), and so the computations involving the inverse of the

. operator are local and negligible. A more sophisticated recovery is the Zienkiewicz-Zhu

superconvergent patch recovery (SPR), which is important in part because the theory of

superconvergence allows for a proof of convergence for the error estimator. Other types of

estimators exist, which Zhu [28] refers to as residual type error estimators. There are some

provable relationships between the recovery and residual types of methods. The recovery

methods have an additional attraction in that they may exploit existing post-processing

techniques for improving the numerical solution; the stress smoothing reviewed above is

often implemented already in linear elasticity finite element codes for reasons other than

error estimation.

Although a-posteriori error indicators have some attractive features, they are not

necessarily the clear choice for quantifying discretization error. First and foremost, they

can provide unreliable error estimates when there is insufficient grid resolution. The

estimators are at best demonstrated to be reliable only as the finite element solution

converges to the exact solution. This is a consequence of treating the locally smoothed

solution as the exact solution. Another major drawback is what has been referred to as

pollution error [29]. It is, most simply, the discretization error at some location which

propagates to other regions of the mesh. The local nature of a-posteriori error computations

implies that pollution errors are not estimated; i.e. they are not present in the estimated error

measure. While a-posteriori error indicators can be used to estimate and minimize the local

error in a particular region of the mesh, there is no measure of how errors throughout the

mesh might influence the global solution. The typical corrective measure taken is to

adaptively refine the mesh such that errors are uniformly small throughout the domain. This

can be a costly exercise, however. The presence of pollution error implies that, for many
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problems, it is difficult to develop a reliable a-posteriori error estimate for a specific output

quantity of the model as was done with Richardson extrapolation. For example, the local

error in displacement at the end of a cantilevered beam may be nearIy zero, but if the mesh

at the base of the beam is poorly resolved, the resulting error in the slope can be

geometrically amplified over the length of the beam. This results in a propagated emor, or

pollution error, which is not included in the local error captured by the a-posteriori

estimate. Finally, other drawbacks of a-posteriori error estimators are uncertainty about

their performance on nonlinear and transient dynamics simulations.

Researchers are currently investigating the direct application of a-posteriori error

estimates to quantitative error assessment, but in the meantime these estimators can be used

in a number of valuable ways. First, a-posteriori error estimates can be used as a basis for

optimal adaptive mesh refinement, so as to minimize discretization error for a given

discrete problem size. It has been shown that, when optimal meshes are then uniformly

refined, it is possible to retain the formal convergence rate of the numerical method even

in the presence of singularities. Furthermore, the total error norm can be used in

determining plausibility measures for competing models in a model uncertainty

assessment. Finally, the error norms can be used to estimate or verify formal convergence

rates of methods. Thus, one might use multiple meshes, each with computed a-posteriori

error norms, to determine convergence rates and then apply a Richardson extrapolation-like

method to compute an output quantity-specific error estimate.

Project Activities and Contributions on Estimation of Numerical Solution

Error

The present LDRD project developed a methodology for estimation of numerical

solution error within the context of non-deterministic analysis. The method integrates

response surface methodologies with Richardson extrapolation to provide estimates of

numerical solution errors or biases on statistics of the solution space. The first version of

this approach uses polynomial error models and is detailed in Appendix B. A second

version of the approach considers the use of rational function models for discretization

error in order to expand the sphere of convergence of the error estimate. This work is

detailed in Appendix E. In both investigations, it was found that relatively small bias error

in computational simulation, resulting from either discretization or modeling assumptions,

can have significant effects on system reliability estimates. The relative effects are most

important for systems with low inherent physical variability and small failure probabilities.

The integrated methodology is an effective approach to integrating different levels of

computational fidelity within the context of uncertainty quantification.
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5. Conclusions

This effort has investigated a variety of computational approaches to quantizing the

effects of modeling and discretization uncertainty in computational simulation and

uncertainty analysis. The primary methodology has been to separate ordered error sources

from uncertainties and non-ordered errors and quantify their effects independently. A key

computational strategy has been the use of response surfaces (or metamodels) for

developing algorithms to treat both modeling and discretization effects.

Ordered error sources, such as discretization error, typically produce a systematic

bias in the computational solution (relative to the solution of the underlying mathematical

model) which can be estimated via extrapolation with an ordered error model. The classical

technique of Richardson extrapolation was extended to non-deteministic analysis via

response surface methodology, using both polynomial and rational function error models.

The integrated approach allows for effective estimation of bias errors on probabilistic

measures such as reliability using design of experiments over a continuous parameter space

and a converging sequence of computational meshes.

Uncertainty in the structural assumptions of mathematical models, together with

non-ordered modeling errors, have been addressed through a Bayesian model averaging

approach. This methodology requires the definition of a space of model forms, with

associated prior model probabilities which reflect the relative plausibility of each model.

The Bayesian framework is easily generalized to a discrete space of model alternatives, and

propagation reduces to a weighted averaging of predictions from each model, with

uncertainties arising from both continuous model parameters and model-to-model

variation. Work was performed to incorporate discrete model form parameters into

metamodels, as well as to integrate multiple models via master response surfaces.

The following appendices, arranged in chronological order, include detailed reports

on the various tasks performed within the project. The work reported herein has raised new

questions and stimulated new ideas which should be pursued in subsequent uncertainty

research. First, the error estimation methods using extrapolation with rational functions

should be developed more completely and incorporated into an uncertainty quantification

code. These methods should also be extended to use a-posteriori error measures as much as

possible. Second, there should be an investigation of the use of convex sets and evidence

theory for modeling structural uncertainties in complex problems. Third, the Bayesian

model averaging approach should be applied to problems in constitutive modeling for

structural, thermal, and fluid mechanics. Fourth, the same model averaging approach has

potential for improving the robustness of linear and nonlinear model reduction methods, as
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well as response surface methods, and its application to these problems should be

investigated.

Finally, modeling and discretization uncertainty quantification, together with code

verification and validation methodologies, needs to be examined within the context of

system design qualification and certification activities. This is important because of the

potential costs involved in the development of model uncertainty quantification methods

and codes, as well as their use in qualification activities. Such an examination should study

the use of model uncertainty techniques in validation, and determine the proper mix of

validation activities and model uncertainty quantification activities to support weapon

system certification.
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ABSTRACT. We present an overview of new research efforts un-

derway at Sandia National Laboratories to understand the sources of

uncertainty and error in computational structural dynamics and other

physics simulations, and to quantify their effects on predictive accu-

racy. In order to establish confidence in computational simulations

as these simulations move further from the established experimental

database, a new approach to modeling and simulation validation is

needed. In particuhw, when simulations are used to qualify the safety

and reliability of systems, we believe that validation should be based

upon a comprehensive quantification of uncertainties and errors

from all phases of the modeling and simulation process. Uncertainty

and error quantification is a two-step process, the first step being the

identification of all uncertainty and errorsourcesin each phase of

modeling and simulation. The second step is the assessment and

propagation of the most significant uncertainties and errors through

the phases of the modeling and simulation process to the predicted

response quantities. This paper outlines the phases of modeling and

simulation, the distinction between uncertainty and error, and a cat-

egorization of uncertainty and error sources in each phase of model-

ing and simulation. We also address the question of how

uncertainties in the form or structure of the model might be assessed

using multiple models. Examples from linear structural dynamics

are given to illustrate these concepts.

1.Introduction

Model validation in structural dynamics is a well established disci-

., pline which bridges analysis and experiment. This field has tradi-

tionally focused on reconciliation of test-to-analysis results with the
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goal of improving the predictive accuracy of computational model-

based analysis. Model validation and “virtual testing” have played

key roles in the engineering development of advanced aerospace and

flight systems. This is because some qualification tests simply can-

not be performed (or it is absurd to do so); i.e. we don’t launch a sat-

ellite to see whether it will survive launch. Other tests can be

performed but are not because a completely test-based approach

would be prohibitively expensive. Therefore, to some extent, nearly

all advanced engineering systems rely on computational simulations

to not only improve designs but also to qualify, i.e. ensure the satis-

factory performance of, the system hardware and design. For this

reason, validation of the computational simulations is key to ensur-

ing the performance, safety and reliability of these systems.

In stmctural dynamics, the criteria typically set for validation of

anrdysis by experiment have been geared towards deterministic

analysis. These validation criteria, such as the correlation of numer-

ical model predictions to the frequencies and mode shapes estimated

from modal testing, are both qualitative and subjective. The error

threshold levels are intrinsically tied to what types of qualification

testing will be performed, the degree of extrapolation in the critical

analyses, and the notion of a factor of safety on all safety margin

stress calculations. This is not to discount the value of these thresh-

old= they have evolved over time and express a considerable degree

of expert knowledge and experience. For any particular modeling

and simulation analysis, however, this type of vrdidation does not

enhance our understanding of the predictive accuracy of the analysis

as we use the model to extrapolate from our measured database.

Some researchers in computational structural dynamics have used

statistical techniques in parameter estimation to begin to address un-

certainties [1], and have also considered the use of both uncertain

parameters and historical test-analysis comelation measures to deter-

mine predictive accuracy intervals for linear and nonlinear stmctural

dynamics modeling and simulation [2]. The primary motivations for
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addressing uncertainties are a.) the stochastic or uncertain nature of

key eiements in-engineering design and reliability problems, and b.)

the need to establish the credibility of computational simulations.

A convergence of trends are pushing the current “way of doing

things” and lead us to reconsider how computational simulation is to

be used in system qualification in the future, and how those analyses

are to be validated. “Smaller, cheaper, faster” implies less testing on

systems which are less easily analyzed than in the past. Computa-

tional technology provides tools for improving analysis predictions

by reducing discretization errors and reducing the degree of analysis

simplification by enabling more detail and better handling of cou-

pled mttltiphysics. Unfortunately, systematic improvements in anal-

ysis predictions have not been seen as computational technologies

have improved. We believe a key reason is that total errors are being

driven more by modeling simplification than by solution errors. It is

also possible that significant discretization and solution errors are

still present, but that they are not being detected because of a lack of

attention to mesh convergence issues. Finally, it may be that in-

creased grid resolution has simply replaced modeling and solution

errors at the macro scale with lack of knowledge (e.g. unknown joint

physics) at the micro level.

In order to establish corriidence in computational simulations as

these simulations move further from the established experimental

database, a new approach to modeling and simulation validation is

needed. In particular, when simulations are used to qualify the safety

and reliability of systems, we believe that validation should be based

upon a comprehensive quantification of uncertainties and errors

from all phases of the modeling and simulation process. This quan-

tification would consider uncertainties arising from both continuous

parametric uncertainties, such as variability in a geometric dimen-

sion or material property, and discrete modeling uncertainties, such

as uncertainty about the physics equations governing joint compli-

ance. In addition, quantification of errors would include numerical

solution errors, such as those arising from grid resolution, as well as

modeling errors, such as simplified modeling assumptions.

We believe there are two stages to uncertainty quantification: first,

identification of all error and uncertainty sources; and second. as-

sessment and propagation of uncertainty and emor effects through

the simulation to output quantities. This paper will present a general

classification of all sources of uncertainty and error necessary to de-

termine global estimates of uncertainty for predicted quantities of

interest. ‘17is framework will then be applied to a structural dynam-

ics problem: the prediction of peak acceleration on a circular plate

due to random force excitation. Also, the sensitivity of the predicted

quantity to some significant and nontraditional uncertainty and error

sources, such as the partial differential equations and spatial discret-

ization, will be examined via multiple numerical simulations.

2. SourcesofTJncertaintvand Error in ComtWationalMechan-
icsSimulations

In this section we discuss the sources of uncertainty and error in

computational simulations and propose an overall framework which

categorizes these sources and their interactions. This framework is

presented in greater detail in [3]. We begin by developing a new

structure of the general phases of modeling and simulation. This

new view is built upon combining modeling and simulation phases

recognized in the disciplines of operations research and the numeri-

cal solution of partial differential equations. Within this structure,

we believe that a cle~ distinction should be made between uncer-

tainty and error and we propose comprehensive definitions for these

terms. Specific classes of uncertainty and error sources are then de-

fined that can occur in each phase of modeling and simulation.

2.1 PhasesofModelingandSimulation

We will use the definition of model given by Neelamkavil [4]: “A

model is a simplified representation of a system (or processor theo-

ry) intended to enhance our ability to understand, predict, and possi-

bly control the behavior of the system.” By modeling we mean the

construction or improvement of a model. We rdso use Neelamkavil’s

definition of simulation: “A simulation is the process of imitating

(appearance, effect) important aspects of the behavior of the sys-

tem.” In other words, simulation is the exercise of the model. Here

we are specifically interested in the exercise of computer models,

i.e., computer codes based on mathematical models.

After reviewing existing literature in both the operations research

and computational mechanics fields, we have developed a represen-

tation of the phases of modeling and simulation appropriate to sys-

tems or processes analyzed by the numerical solution of parnai

differential equations (PDE’s) as shown in Figure 1. These phases

are preceded by an initial phase which includes the definition of the

physical system and specification of the requirements or objectives

of the modeling and simulation. Following this initial phase are six

distinct phases which are described as follows.

Conceptual Modelirw The conceptual modeling phase determines

what physical events, or sequence of events, will be considered and

what types of coupling of different physical processes will be con-

sidered. During this phase, no mathematical equations are written,

but the fundamental assumptions of the events and physics are

made. Only conceptual issues are considered, with an emphasis on

determining all possible factors that could affect the requirements

set for the modeling and simulation. It is important in this phase that

all possible physics-couplings are listed that may influence the re-

sults even of they may not be considered later on in the analysis.

This is critical because if events or couplings are not considered in

this phase, they cannot be resurrected later in the process. This is

similar to the fault-tree structure in probabilistic risk assessment of

high consequence systems, such as in nuclear reactor safety analy-

ses. Even if a certain sequence of events is considered extremely re-

mote, it should still be considered as a possible event sequence in the

fault-tree. Whether the event sequence will eventually be amdyzed

is not a factor in including it in the conceptual modeling phase.

Mathematical Modeling During the mathematical modeling phase,

the precise mathematical, i.e., analytical, statement of the problem,

or series of event-tree-driven problems, to be solved is developed.

Any complex mathematical model of the problem, or physical sys-

tem, is likely to be composed of many submodels. The complexity

of the models depends on the physical complexity of each phenom-

enon be@ considered, the number of physical phenomena consid-

ered, and the level of coupling of different types of physics. The

mathematical model formulated in thk phase is considered to be the

complete specification of all of the PDEs for all components of the

system. Along with the PDE statement of the mathematical model,
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all of the appropriate initial and boundary values, and the required

auxiliary models must be specified for the physics considered.

Discretization of the Model The next phase is the conversion of the

PDE form of the mathematical model into a discrete numerical,

model. This phase takes into account the conversion of the mathe-

matics from a calculus problem to an arithmetic problem. In the dis-

cretization phase, all of the spatial and temporal differencing

methods, discretization of the boundary conditions, discretization of

the geometric boundaries, and grid generation methods are specified
. in analytical form. In other words, algorithms and methods are pre-

scribed in mathematically discrete form, but the spatial andtemporal

step sizes are not specified. This step focuses on the conversion from

continuum mechanics to discrete mathematics, not on numerical so-

lution issues. We believe that the continuum model and the discrete

model should be separately represented in the phases of modeling

and simulation. This phase deals with questions such as consistency

of the discrete equations with the PDEs, and conversion of mathe-

matical singularities in the continuum into discrete representations.

Prozrammin~ of the Discrete Model The next phase, which is com-

mon to all computer modeling and simulation, is the computer pro-

gramming phase. This phase converts the algorithms and solution

procedures defined in the previous phase into a computer program.

This phase has probably achieved the highest ievel of maturity be-

cause of many years of programming development and software

quality assurance efforts. These efforts have made a significant im-

pact in areas such as commercial graphics, mathematics, and ac-

counting software, telephone circuit switching software, and flight

control systems. Little impact, however, has been made in corporate

and university developed software developed for research applica-

tions in computational mechanics,

Numerical Solution of the Programmed Discrete Model The next

phase, individual numerical solutions are obtained. This phase is the

most specific of all phases of modeling and simulation. At the con-

clusion of this phase there are no quantities left arithmetically unde-

fined or continuous. For example, grid spacing is specified,

parameters such as material constants and damping coefficients are

specified, and time and space exist only at points. If uncertainty in

some inputs or physical parameters of the numerical model are

passed through to the numerical solution phase, as is commonly the

case in nondeterministic analysis, then multiple computational solu-

tions would be required. Consider, for example, a shock response

analysis where the material elastic modulus is specified by some

probability distribution. Then thousands of Monte Carlo solutions

may be required to address the problem definition.

Interpretation of Results The final phase concerns the interpretation

of computational results. This phase involves determining the meth-

ods for presentation of computed results into a usable form. This

phase can also be described as the construction of continuous ftmc-
. tions basedon the discrete solutions obtained in the previous phase.

Here the continuum mathematics formulated in the mathematical

modeling phase is approximately reconstructed. This phase is spe-
4 cifically called out because of the sophistication of the software that

is being developed to comprehend modem computational simula-

tions. This area includes graphical visualization of results, anima-

tion, and perhaps use of sound or virtual reality. Some may argue

that this phase is simply “post-processing” of the computational da-

ta. This description does not do justice, however, to the rapidly

growing importance of this area and its capability for introducing

unique forms of errors.

2.2 SourcesofUncertaintyand Error

We now discuss the sources of uncertainties and errors that are as-

sociated with each phase of modeling and simulation, as illustrated

in F@e 2. Essentially all of the individual sources of uncertainty

and error described below have been pointed out by researchers in

the past. Some, like computer round-off, are very well understood,

even to the point that most computational analysts do not make note

of it. Others are poorly understood or characterized, and it may be

unclear whether they should be treated as an uncertainty or an error.

For this we must first develop comprehensive definitions for uncer-

tainty and error that are appropriate for modeling and simulation.

Definitions of Uncertainty and Error The most developed definition

or understanding of uncertainty is in regard to experimental mea-

surements. Although this is helpful, we require definitions that apply

to the much broader topic of modeling and simulation. We define

uncertainty as a potential deficiency in any phase or activity of the

modeling process that is due to lack ofknowiedge. The first feature

which this definition stresses is “potential”, meaning that the defi-

ciency may or may not occur. In other words, there maybe no defi-

ciency, say in the prediction of some event, even though there is a

lack of knowledge. Whether the deficiency occurs is most common-

ly represented by some type probability distribution of occurrence.

The second key feature of uncertainty is that its fundamental cause

is incomplete information. Since the cause of uncertainty is lack of

knowledge, increasing the knowledge base can reduce uncertainty.

We define error as a recognizable deficiency in any phase or activity

of modeling and simulation that is not due to lack of knowledge.

This definition stresses the feature that the deficiency is identifiable

or knowable upon examination, that is, the deficiency is not deter-

mined by lack of knowledge. By this we mean that there is an

agreed-upon approach which is considered to be more accurate. If

divergence from the correct or more accurate approach is pointed

out, the divergence is either corrected or allowed to remain. This im-

plies a segregation of error types: error can be either acknowledged

or unacknowledged. Examples of acknowledged errors are: finite

precision arithmetic in a compute~ physical approximations made to

simplify the modeling of a physical process; a“specified level of it-

erative convergence of a numerical scheme; conversion of the gov-

erning PDE’s into discrete equations. When the analyst introduces

these acknowledged errors in the modeling or simulation process,

there is typically some idea of the magnitude of the error introduced.

Unacknowledged errors are blunders, or mistakes. That is, the ana-

lyst intended to do one thing in the modeling and simulation, but, for

example, due to human error, did another. There are no straightfor-

ward means to estimate or bound the contribution of unacknowl-

edged errors, although steps, such as independent checks and

reviews, can reduce their frequency of occurrence.

We will now detail the sources of errors and uncertainties in four of

the phases discussed previously. A discussion of error sources in the

pro=wmming and results interpretation can be found in [3].

Conceptual Modeling Uncertainties The dominant deficiency in the
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conceptual modeling phase is uncertainty, as opposed to error. Con-

ceptual modeling uncertainties arise in the formulation of the analy-

sis of the event, and in the lack of knowledge of the event. Fi~~re 2

shows the two types of uncertainties associated with conceptual

modelin~. scenario abstraction and lack of system knowledge. By

scenario abstraction we mean the determination of all possible phys-

ical events, or event sequences, that may affect the goals of the anal-

ysis. For relatively simple systems, such as low level vibration of a

thin circular plate in a vacuum, scenario abstraction can be straight

forward. For complex engineering systems exposed to a variety of

interacting factors, scenario abstraction is a mammoth undertaking.

The second class of uncertainty listed, lack of system knowledge, re-

fers to uncertainties that are primarily due to limited information

about the system. This class clearly affects and interacts with scenar-

io abstraction, but here we stress lack of knowledge for a specific

scenario, rather than the possible existence of the scenario. Two im-

portant examples for this class of uncertainty should be mentioned.

First is the lack of knowledge of the initial state of key elements of

the system. For complex engineered systems, knowledge of the fac-

tors, such as the following, becomes important: was the system cor-

rectly manufactured and assembled, how well was the system

maintained, and what level of uncertainty exists for the properties of

the components which are important in the analysis (such as dimen-

sions, densities, elastic moduli, etc.). The second example is lack of

knowledge of future conditions affecting the system. Examples of

these are environmental conditions and human interaction with the

system during the event. These are examples where it is not possible

to significantly reduce lack of knowledge, and reduce the uncertain-

ty, by improved sampling of past events.

Mathematical Modelirw Uncertainties and Emors Mathematical

modeling contains both uncertainties and errors. Uncertainties and

errors that occur in this phase arise from three mathematical sources

(Figure 2): the continuum equations for conservation equations of

mass, momentum, and energy; all of the auxili~ equations which

supplement the conservation equations; and all of the initial and

boundary conditions required to solve the PDEs. The primary un-

certainties that occur in mathematical modeling are two fold. First is

inadequate knowledge of parameters in known physics. Parameter

uncertainty is by far the most commonly analyzed in uncertainty

analyses. The second type of uncertainty is that due to limited, or in-

adequate, knowledge of the physics involved. For example, not

knowing the PDEs which govern friction in a mechanical joint. Er-

rors in the mathematical modeling phase can be equally significant.

The primary errors are those due to mathematically representing the

physics in a more simplified form than is known to be appropriate

for the results required from the modeling and simulation. The math-

ematical modeling uncertainties and errors together are sometimes

referred to “model form errors” or model structural errors”.

A primary example of uncertainty that occurs in the conservation

equations for structural dynamics is the localized nonlinear physics

of friction, contact, and impact in bolted joints. Auxiliary physical

equations in the mathematical model are equations such as the ma-

terial constitutive models and failure models. Examples of uncer-

tainties in initial and boundary conditions are: inaccurately known

initial velocity of a body, and imprecisely known geometry of mate-

rials because of manufacturing and assembly variances. Errors in

mathematical modeling can also exist. Some examples of acknowl-

edged errors are assumption that a plate can be modeled using thin

shell theory when three dimensional effects are important, assump-

tion of a constant beam cross-section when the section is actually not

constant, and assumption of material and geometric linearity when

stresses and displacements are not small. All of these examples are

of the character that physical modeling approximations were made

to simplify the mathematical model and the subsequent solution.

Discretization Errors The discretization phase converts the continu-

um model of the physics into a discrete mathematics problem. Since

this is fundamentally a mathematics approximations topic, errors -

and not uncertainties are the dominant issue in this phase. Some may

question why this conversion process should be separated from the

solution process, where the characteristic mesh size and time inte-

gration step sizes are set. We ar=we that this conversion process is

the root cause of more difficulties in the numerical solution of PDE’s

than is generally realized. This is particularly true in cases of nonlin-

ear phenomena such as fracture dynamics and frictional contact in

mechanical joints. It can also be evident in linear structural mechan-

ics and dynamics, where the presence of singularities in the contin-

uum model creates solution error which does to disappear as the grid

size approaches zero. It is becoming increasing clear that the math-

ematical features of strongly nonlinear and chaotic systems can be

fundamentally different between the continuous and discrete form,

regardless of grid size [5,6].

As shown in Figure 2, we identify three sources of discretization er-

ro~ discretization of the conservation laws, the boundary conditions,

and the initial conditions. The types of errors we are pointing out

here are typically very difficult to isolate. In finite differencing, one

method of identifying these type errors is to analytically prove

whether the method is consisten~ that is, do the finite difference

equations approach the continuum equations as the step size ap-

proaches zero. Related issues dealt with in this phase: are the con-

servation laws satisfied for finite grid sizes, does the numerical

damping approach zero as the mesh size approaches zero, and do

aliasing errors exist for zero mesh size. Discretization of PDE’s are

also involved in the conversion of von Neumann and Robin’s, i. e.,

derivative, boundary conditions to difference conditions. We in-

clude the conversion of continuum initial conditions to discrete ini-

tial conditions, not because there are derivatives involved, but

because spatial singularities may be part of the initial conditions.

Some may argue that these discontinuities and boundary singulari-

ties do not actually occur in nature, so the issue of accuracy of rep-

resentation of these is superfluous. This misses the point, however.

If these features exist in the mathematical model of the physics, the

issue is whether the discrete model represents them accurately; not

whether they exist in nature. This is an issue of verification (solving

the problem right) rather than validation (solving the right problem).

Numerical Solution Errors Numerical solution errors have been in-

vestigated longer and in more depth, than any of the errors associat-

ed with the numerical solution of PDE’s. Indeed, they have been -

investigated since the beginning of numerical solutions; Richardson

in 1910 [7]. These deficiencies in the solution of the discrete equa-

tions are properly called errors because they are approximations to ‘

the solutions of the original PDE’s. As shown in Fi=wre 2, we cate-

gorize these emors into four categories: spatial ~tid convergence,

time step convergence, iterative convergence, and computer round-

off. Of these, perhaps the only one that needs explanation is iterative
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convergence. By this we mean the finite accuracy to which algebraic

discrete equations are solved. In linear structural dynamics, iterative

convergence errors can occur when iterative methods, e. g. conju-

gate ~wadients,are used to solve the large matrix equation within a

time step. Iterative errors can also occur in most algorithms, such as

Lanczos, used to iteratively solve the generalized symmetric eigen-

value problem. In fact, since large matrix algebra problems are typ-
. ically posed at each iteration of an iterative eigenvalue method, we

can encounter both imer and outer loop iterative convergence errors

if iterative methods are used to solve the matrix equation. The use of

iterative techniques becomes even more necessary as nonlinear phe-

nomena are introduced into the physics; in that case many levels of

iterative convergence errors may be encountered.

Although we categorize four sources of solution error, it should be

noted that they are of two types. The first is due to the finite dk-

cretized solution of the PDEs; spatial grid convergence and time

step size convergence are of this type. The second type is due to the

approximate solution of the dkcrete equations, that is, what errors

are made in the solution of the resulting discrete equations. Iterative

convergence and round-off error are of this type and they account for

the difference between the exact solution of the discrete equations

and the computer solution obtained.

31Assessmentand ProDa~ationofModelUncertainty

In the previous section, we presented an overall framework for the

phases of modeling and simulation, and within that framework cat-
egorizedso~cesof uncertainties and emom which me importantin
modeling and simulation. Understanding the sources of uncertainty

or error in a particular analysis problem, however, is only the first

step in quantifying the total combined uncertainty and error in the

simulation. The second step is to propagate those uncertainties and

errors from their origin and through the subsequent phases of the

simulation to determine their impact on the output of the simulation.

While a great deal of attention has been given to ways of estimating

probability distributions of simulation outputs given the distribu-

tions of continuous, nondeterministic inputs, relatively little atten-

tion has been paid to the model itself. By the form of the model we

mean those attributes, such as simplifying assumptions, choice of

PDEs, computational mesh topology, and other non-parametenzed

features which determine the form of the PDE’s and ultimately the

order of the algebraic problem. We believe that, in order to quantify

the major sources of uncertainty and error in modeling and simula-

tion, we must develop procedures to quantify the effects of these

modeling errors and uncertainties.’

One approach to the assessment of mathematical model uncertainty,

as distinct from parameter uncertainty, is suggested by Draper [8].

This approach has been termed by Draper and others [9] as Bayesian

Model Averaging, because the approach uses the Bayesian concept

of prior probability densities which are then revised to incorporate

new data. In statistical parameter estimation, Bayesian methods are

similar to maximum likelihood estimates in that they consider the

relative uncertainty or reliability of the relevant data. They are dif-

ferent, however, in that they also consider prior beliefs or qualitative

information on the parameter being estimated, which serve to regu-

larize the estimation.

While probability concepts are appropriate for addressing uncertain-

ties, it is not yet clear how useful they maybe in assessing the effects

of modeling errors, such as acknowledged simplifying assumptions

and numerical errors caused by finite spatial discretization. As dis-

cussed in the preceding section, uncertainties and errors are not

equivalent. They are, however, similar in that we are interested in

the sensitivity of the simulation output to both. In the present discus-

sion and subsequent example, we will deal with multiple competing

models which differ in their simplifying assumptions, element to-

pology, and model size. While these model attributes are a combina-

tion of errors and uncertainties, we intend to apply the Bayesian

model averaging approach in order to both illustrate the methodolo-

gy and to begin assessing the effects of these errors and uncertainties

on the simulation output.

In the problem of assessing mathematical modeling uncertainty, we

must address aspects of the model which are not parameterized, at

least not in continuous terms. Draper proposes that, analogous to a

continuous expansion of models in a space measured by a vector of

continuous parameters, we instead consider a discrete expansion of

possible model structures. It is then required that the probabilities of

all the models considered together sum to unity. We know that we

necessarilyy cannot consider the potential infinity of model structures

which could potentially be applied, correctly or incomectly, to a giv-

en problem. Therefore, we seek models which are supported by ex-

pert knowledge, are supported by available diagnostic

experimentation, and differ markedly in their predictions. This is be-

cause, if a model has no prior support of expert opinion, it cannot

gain any support from new data. That is, the model’s probability will

always be zero. Similarly, if a particular model has some prior sup-

port, but no support from new data, it will eventually lose influence

in competition with other models that correlate better with the data.

Finally, if a number of models with nontrivial probabilities all pre-

dict the problem in the same way, they are not really contributing to

the quantified uncertainty, although their relative structural diversity

would enhance confidence in the uncertainty quantification itself by

their representation of a large model space.

After selection of the models to be considered in such an analysis,

we must then assign probabilities based on our relative beliefs in the

different competing models. These probabilities might be purely

subjective and qualitative, or they may begin with assumed subjec-

tive probabilities which are then updated quantitatively using rele-

vant existing data. Then we determine prediction statistics for each

model and use this information to determine prediction statistics for

the space of models. That is, if y is a response quantity of interest

given system input x, with a finite set S = {S1, . . . . Sm} of

structural model alternatives, we have

m

i=]

m
(1)

= ~ P(si Ix)p(ylx, ‘i)
j=l

where t3i are parameters of model ~. ‘lMs result consists of two key

quantities: p(y IX, Si) is the probability density function for there-

sponse given the known data from a particular single model Si;

P(Si Ix) is the probability of that model given the data. The result

obtained is that the expected value for a response quantity of interest

is weighted average of model means, and the variance is a weighted
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average of individual model variances plus the variance in the means

of the models across the entire model space.

The use of multiple models to determine measures of model uncer-

tainty is strongly dependent on the relative probabilities for the com-

peting models p(Si lx). These probabilities can be based on purely

subjective knowledge - assigning weights based on qualhative judg-

ments. That is,

.P(sjlx) = P(sj) i = 1,..., wI (2)

where ~(si) is based on qualitative judgments, with the constraint

m

~ p(s,) = 1 (3)

j=l

Another approach is to use relevant historical database, i.e. compute

probabilities for competing modelshssumptions using known data

as well as qualitative assessments. In this case, the desired probabil-

ities are given by

P(xl‘JP(sj)
p(si lx) = ~ (4)

j=]

Here again we must have some prior model probabilities p(Si)

which are assumed independent of the known data x and are subject

to the constraint given in Eqn. 3. Then these probabilities are updat-

ed via Eqn. 4, which accounts for how well each of the models cor-

relate with the data.

In conclusion, we note that the predictive distribution for a particular

model i is given by

PWl~7 ‘i) = JP(Ylxj ‘i, ei)p(ei ISO x)~ei (5)

This is what most of nondeterministic analysis methods such as

Monte Carlo and Latin Hypercube sampling, fast probability inte-

gration, stochastic finite elements, and reliability techniques attempt

to address. That is, they determine prediction statistics for model

output given uncertainty in the parameters of the model (li, condi-

tional on the data x and a particular model structural choice Si. The

present Bayesian model averaging approach extends this to a space

of models S using the structural probability weights p(Si IX).

4. Examt)les

In order to illustrate the ideas presented herein, we examine two

problems. The objective of the first problem is to identify the sourc-

es of uncertainty and error in the simulation of a simple stmctural

dynamics system. In the second problem, our objective is to illus-

trate the concept of modeling uncertainty assessment using a struc-

tural dynamics simulation with multiple models.

4.1 Uncertainty and Error Sources: Response of a Circular Plate

Our task in this problem is to prechct the peak acceleration response

of a free-free thin aluminum (6061-T6 alloy) circular plate at r=lU2

to applied vertical force at the center of the plate. Our objective, as

stated before, is to identify all sources of errors and uncertainties

likely to be encountered in the modeling and simulation of this sys-

tem to meet the requirement of the analysis. The following list, al-

though not complete, contains what we believe to be the primary

sources which will influence prediction of the peak response:

Conceptual modeliniz uncertainties

● condhion of the plate
● unknown variability in dimensions and material properties
. uncertainty in random force statistics

● environmental and system boundary conditions

Mathematical modeling uncertainties and errors

● Use of linear methods

● choice of PDE (2D or 3D)

● validlty of shell theory for 2D elements

● Extension/shear/bending coupling effects
. nonsymmetry in problem if using axisymmetric elements

● mass modeling (consistent versus lumped)
. micromechanics of applied force

● variability in dimensions and material properties

* Errors in statistical methods for estimating peak response

Discretization Errors

.

●

✎

✎

✎

●

element selection

force interpolation

damping dlscretization

time discretization (modal superposition vs. time integration)

substructure reduction effects

Promamminz and documentation errors

● Errors in closed-form solutions

● binary format conversions

* equivalencing emors
. uncertain code defaults
● code/memory emors
. inaccurate documentation

Numerical solution errors

● finite spatial resolution

● finite temporal discretization
● iterative tolerance for eigensolver

● stiff/compIiant elemenLsincreasing round-off errors

4.2 Assessment ofModelUncertainty:Frequenciesofa Bracket

Thesecond problem is to predict the free-free frequencies of vibra-

tion of a component mounting bracket and to determine confidence

bounds on the predicted frequencies due to considering multiple

models. In particular, we will consider variations in the geometric

features included in the model, the topology and fidelity of the spa-

tial mesh, and the types of elements used. In order to summarize the

results of the different models, we will use the Bayesian model av-

eraging approach detailed in Section 3.

The bracket, shown in Figures 3,4 and 5, is composed of a phenolic

material, whose properties are given as: ,

E - N(3.425x106 psi, 1.5667 x109psi2) COV = 1.116%

P= 0.0689 (lb\in3)
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That is, the elastic mor$lus is defined by a normal distributi~n with

a mean of 3.425xlO psi and a variance of 1.5667xlO psi2.

The coefficient of variation (COV), which is the standard deviation

as a percentage of the mean, is 1.11690. The density is as given

without any associated variability.

The thres models considered areas folIows:
4 ●

. .

.

.

Model I: This model was spatially discretized using surface ele-

ments with a paving algorithm. The surface elements were then

extruded into 8-noded hexahedral solid elements. The surfaces

contain all of the thru holes, but fillets were not modeled. There-

sulting model has 31554 degrees of freedom (DO~.

Model II: This model was meshed from a ProEngineer solid ge-

ometry definition, which contained all holes and major fillets.

The solid was meshed using 10-node tetrahedral elements. The

resulting model has 50565 DOF.

Model III: This model was defined geometrically using tripara-

metric solid regions. No holes or fillets were included in the ge-

ometry definition. These solids were then meshed with 8-node

hexahedral elements. The resulting model has 53202 DOF.

Note that these three models have different levels of simplifying as-

sumptions in their PDE form, as well as different spatial meshes and

different model orders (i.e. number of discrete solution variables).

Model II is the least simplified model as compared to the design

problem, but it probably contains the largest solution errors. This is

because tetrahedral elements are generally known to possess much

poorer accuracy than hexahedral elements for the same number of

@d points. Model I is the next best mathematical model and utilizes

hexahedral elements to improve mesh accuracy, but the mesh size is

coarser than the other models. Model III has the most significant

modeling simplifications, but is superior to the other models both in

terms of grid spacing and grid regularity.

In order to integrate the results of the three models together, we

chose equal weighings for the modeis. This reflects the mixture of

subjective judgments on the relative merits of the models. In addi-

tion to the three models considered, the uncertainty in the elastic ma-

terial modulus was also propagated through the analysis via linear

sensitivity. The results are summarized in Fi=wre 6. The solid line

represents the mean value for the predicted modal frequencies, while

the dashed lines represent the +2 standard deviation interval due to

the uncertainty in the elastic modulus. Finally, the dot-dash lines are

the total *2 standard deviation “uncertainty” interval due to both

the modulus and the difference between the model predictions. Note

that for some modes, there is a negligible contribution from the mod-

eling variance, while for other modes this variance is larger than the

uncertainty caused by the elastic modulus. As might be expected, the

model “uncertainty” increases as the mode number increases. This

type of analysis could be valuable in determining where the predic-

tive accuracy of a set of models begins to break down.

* 5. Conclusions

Thispaper has presented a framework for the phases of modeling
< and simulation in structural dynamics and other computational me-

chanics disciplines. Using this framework, sources of uncertainties

and errors have been categorized. Documenting these sources is the

first step towards the goal of quantifying their effect on the accuracy

of the simulation. Quantification of uncertainties and errors is, we

believe, a proper context for developing new principles for code ver-

ification and model validation and for ultimately enhancing the pre-

dictive accuracy of modeling and simulation. Furthermore, this

paper begins to address the problem of assessing and propagating

modeling errors and uncertainties; which are significant contributors

to total simulation errors. This work is closely aligned with other on-

going research in nondetenninistic methods, so that ultimately a

comprehensive methodology for uncertainty quantification can be

developed which applies to strttcmral dynamics, as well as other

computational mechanics, heat transfer, and coupled field problems.
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Figure 1: Proposed Phases of Modeling and Simulation
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A METHOD FOR TREATING DISCRETIZATION ERROR

IN NON-DETERMINISTIC ANALYSIS

Kenneth F. Alvin*
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Abstract

A response surface methodology-based technique is presented for treating discretization error in non-

deterministic analysis. The response surface, or metarnodel, is estimated from computer experiments

which vw both uncertain physical parameters and the fidelity of the computational mesh. The resultant

metamodel is then used to propagate the variabilities in the continuous input parameters, while the mesh

size is taken to zero, its asymptotic limit. With respect to mesh size, the metamodel is equivalent to Rich-

ardson extrapolation, in which solutions on coarser and finer meshes are used to estimate discretization

error. The method is demonstrated on a one dimensional prismatic bar, in which uncertainty in the third

vibration frequency is estimated by propagating variations in material modulus, density, and bar length.

The results demonstrate the efficiency of the method for combining nondeterministie analysis with error

estimation to obtain estimates of total simulation uncertainty. The results also show the relative sensitivity

of failure estimates to solution bias errors in a reliability analysis, particularly when the physical variability

of the system is low.
.
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I. introduction

Nondeterministic analysis methods are applied to simulations of physical systems in order to quantify

the effects of random variations in system parameters and inputs on the predicted output of the simulation.

Typically, nondeterministic methods are used to propagate probability or frequency distributions of con-

tinuous “physical” variables through a deterministic mapping, such as the discretized numerical solution

of a system of partial differential equations (PDEs), plus boundary and initial conditions and auxiliary sub-

models. In this case, it is important to have a verified and validated model structure through which to prop-

agate these continuous variabilities. However, all finite discretized models possess some degree of

discretization error, and often little or no attempt is made to estimate the magnitude of discretization error

in the model. Furthermore, even when some error estimate is available, it is unclear how to apply that es-

timate to the ensemble of results computed during a nondeterministic analysis. Thus, the effect of discret-

ization error in nondeterministic analysis is practically never treated at the present time.

There has, however, been a significant amount of attention devoted to the problem of estimating errors

in numerical methods for solving deterministic partial differential equations. Among these methods are a

posteriori error estimators 1’2, as well as such classical methods as Richardson extrapolation3-5. Of partic-

ular interest in this study is Richardson extrapolation, in which discretization errors are estimated from the

numerical solution. Richardson extrapolation is extremely general in that it can be applied to any output

of the model, as well as functional of the solution. Its primary drawback is that it depends on knowledge

of the formal convergence rate of the numerical method and requires that the mesh size used is fine enough

that the higher-order terms of the error are negligible compared to the lowest-order term. For this reason,

it often requires more that two mesh spacings on the same model to verify the convergence order and thus

establish the validity of the extrapolation.
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A conservative approach to accounting for discretization error in a nondeterministic analysis (which

relies on the numerical solution of PDEs) would be to use Richardson extrapolation (or some other error

. estimator) for every combination of input values to the model. For example, we might perform a structural

dynamics simulation in which the elastic modulus of some material in the design model has some inherent

variability. Then, for each particular value of that parameter we could compute the response on two or

more spatial discretizations and use these results in some to-be-determined way in our nondeterministic

analysis. This approach would then increase the number of analyses to be performed by a factor of two to

three. On the other hand, we might consider performing error estimation for only one particular value of

the variable parameter (such as its mean value) and then apply that error estimate in a relative or absolute

sense to the analyses performed for other values of the input. This approach would require only a modest

increase in computational cost compared to the cost of the nondeterrninistic analysis itself, but cannot ac-

count for the dependence of the error estimate on the values of the parameters of the model. It should be

noted that the investment in generating multiple discrete models with different mesh spacings might be

much more significant than the cost of computing solutions on each of the meshes.

In the present study, an alternative approach is considered in which solutions are computed on different

mesh sizes, but not for every parameter value in the nondeterrninistic analysis. Instead, both mesh size and

parameter values are varied for the purpose of building a surrogate model, or metamodel, for interpolation.

Once solutions are computed to build the metamodel, a regression is performed to obtain the coefficients

of the metamodel. The metamodel can then be used in the nondeterministic analysis in place of the com-

plex full-order model. For example, frequency distributions on input variables can be easily propagated

+
through the metamodel via Monte Carlo analysis, since the cost of computing a response based on the

x
metamodel is negligible. The treatment of discretization error is accomplished by extending traditional re-
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sponse surface methods (RSM) for determining metarnodels to include mesh size as a variable input pa-

rameter. Then the nondeterministic analysis can be performed for a mesh size of zero, which conforms to

a higher-order accurate solution of the governing PDEs.

In this study, it has been found that including mesh size in the metarnodel can be an efficient way to

estimate discretization error while performing nondeterministic analysis. For example, a traditional meta-

model with 3 continuous input variables might require 13 evaluations of the complex simulation with dif-

ferent parameter values to determine the coefficients of the metarnodel. If we wished to minimize

discretization error, we would perform those 13 evaluations on a fine mesh (i.e. with small element edge

lengths). By extending that model to include element edge length as an input variable of the metarnodel,

we must now perform 25 evaluations of the complex simulation. However, only 6 of those evaluations are

performed on the fine mesh model, while the other evaluations are performed on coarser meshes which

require much less time to solve. Therefore, it is possible to determine the extended metamodel with less

overall computational effort. Furthermore, the extended metarnodel can be used to estimate the converged

continuum solution, while the traditional metamodel determined strictly from evaluations of the fine mesh

model still suffers some overall unquantified error due to the discretization.

The remainder of the study is organized as follows. First, the theory for estimating the effect of dis-

cretization error in the numerical solution of differential equations is reviewed. Secondly, the technique

for using response surface methodology for nondeterministic analysis is presented. Then, this methodolo-

gy is extended to include the dependence of the simulation on mesh size. Finally, results are presented for

linear dynamics of a prismatic bar with 3 uncertain input parameters. The results demonstrate the impor-

tance of treating discretization error when estimating system reliability measures such as probability of

failure: In the example, discretization error on the order of 1% of the response quantity

bility of failure estimate which is more than one order of magnitude smaller than the

results in a proba-

exact solution, an

.

.

*

>
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error of more than 90Y0.Thus, the bias caused by small discretization errors can result in a significant over-

prediction of reliability. The technique developed herein yielded an accurate estimate of the error in the

T probability of failure measure due to the discretization.

II. Discretization Error Models and Extra~olation-Based Error Estimation

Quantifying the effects of approximations on the numerical solutions of ordinary and partial differen-

tial equations has been a focus of research and analysis ever since numerical solution procedures were first

developed. In Richardson’s classic paper from1910 on a finite difference solution to the partial differential

equations associated with stresses in a dam structure, he introduces a very general extrapolation procedure

which estimates the leading error term from multiple solutions using different differencing steps. This pro-

cedure, since referred to as Richardson extrapolation, does not exactly estimate the desired continuum so-

lution but rather, by eliminating the leading error term, increases the order of convergence of the numerical

method. Richardson extrapolation is still used extensively as both an error estimation technique and as a

verification tool for numerical solution methodss. The error estimate is simply taken as the difference be-

tween the basic numerical solution and the higher-order solution developed from multiple meshes, and has

the same order of accuracy as the higher-order solution. It is therefore a reliable estimate as long as the

leading error term is the primary source of error. Its strengths are that it estimates the total discretization

error, including both the local and global effects of discrete approximations (including finite element ap-

proximations) throughout the entire problem domain and boundary conditions. Furthermore, it can also

estimate errors not only on the solution field variables but also on many linear functional of the solution

. field. Its drawback is that it requires uniform mesh refinement with at least three mesh spacings. Such a

d
requirement may be difficult to meet for some complex problems.
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With the advent of the finite element method, other approaches to discretization error estimation have

been developed. Most of these procedures are broadly classed as a posteriori error estimation methodsl-2,

because they locally post-process the numerical solution in order to estimate certain norms of the solution

error. These methods, which were developed primarily as indicators for adaptive mesh refinement proce-

dures, are usually based on multiple local mesh refinement problems using such techniques as supercon-

vergent patch recovery to estimate local higher-order accurate estimates of solution gradients. These

estimates can be compared the recovered solution gradients from the normal finite element interpolation

functions and the differences used to estimate local or global solution error measures. The relative local-

ized contributors to the error measure help identify mesh regions which require more refinement, while

the global norm measure is used in some sense as a stopping criterion for mesh refinement. One drawback

of a posteriori error estimation for global error, however, is that since it relies on local computations it can-

not account for so-called pollution error; that is, the propagation of local errors through the global domain

of the problem. These errors cannot be detected and, if significant, will reduce the reliability of the error

estimate.

It should be noted that the underlying polynomial model for global discretization error is the same re-

gardless of the error estimation procedure and has been developed repeatedly in the various texts on finite

element and finite difference methodsG-lO. It is written as

yD = y+ahq+o(hq+l)

where y is the solution to the given differential equation defined

(1)

on a continuous domain in space ardor

time, yD is the approximate numerical solution on a mesh with characteristic size h, q is the order of ac-

curacy for the numerical method, and ct is a sensitivity parameter of the solution which is independent of

h. The order of accuracy q is a characteristic of the numerical method which reflects the quality of the

interpolation functions for the solution quantity of interest. For example, typical low-order finite elements
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for structural mechanics with linear shape functions lead to displacement solutions which are second-order

accurate, while the corresponding stress solutions based on the gradient of the displacement interpolation

* functions are first-order accurate. The order of accuracy of the numerical method is independent of the spe-

. cific problem only to the extent that we acknowledge the existence of higher-order terms in h. The mag-

nitude of these higher-order terms are very much problem dependent and determining their importance is

a necessary consideration in error estimation. This error model is also independent of the dimensionality

of the problem, it is equally valid for 1-D and 3-D calculations, although it is not equally easy to estimate

errors for 1-D and 3-D problems. That is, for a uniform doubling of the mesh fidelity, the number of alge-

braic equations for the 1-D problem would approximately double, while the size of the 3-D problem would

increase by a factor of 8 (since the mesh would double in each of the 3 spatial directions).

Extrapolation-based estimation of discretization error proceeds as follows. Calculations are performed

on at least 3 meshes, where the finer meshes are uniformly refined with respect to the coarser meshes.

Then, the error on the finest mesh is given as the difference between that solution and the extrapolated

solution

e = Yfine – J’extrap = ~h~ine

where ct is estimated from the difference between the nominal and

~ = Yfine – Ynoininal

hq
fine -h;oininal

(2)

fine mesh solutions, viz.

(3)

At least 3 mesh solutions are required in order to verify the order of accuracy of the method, q, which is

assumed in the previous equations. This is verified by estimating q, which for mesh doubling is given by
.

.

[

Ynominal –Y
log

coarse

Yfine – Ynominal )
q=

log2
(4)
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Verifying the assumed value of q is equivalent to showing that the higher order terms in the error model

are negligible compared to the leading q-order term. One might also seek to estimate two error terms using

more than three mesh solutions in order to either improve the error estimate or enable it to be computed

on a coarser set of meshes.

.

.

III. Res~onse Surface Methodoloizv for Non-Deterministic Analvsis

Montgomeryll notes that

Response surface methodology, or RSM, is a collection of mathematical and statistical techniques that

are useful for the modeling and analysis of problems in which a response of interest is influenced by

several variables and the objective is to optimize the response ....

The process yield is a function of the levels..., say

Y = f(xp Q+e

where e represents the noise observed in the response y

EIYI = $(x1, X2) = h, then the surface represented by

If we denote the expected response by

is called the response surface.

In the present context, we will use RSM as a surrogate or metamodel for the complex physics model

of interest, and we will estimate the coefficients of the response surface by performing a limited number

of analyses of the complex model. Our goal is to use the response surface to propagate uncertainties in the -

variables to determine a distribution of the response quantity. From this distribution we can make esti- .

mates of failure probability or other statistics of interest.
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The use of RSM is logically coupled to Design of Experiments (DOE). In order to apply RSM we must

determine a selection of input vectors for the complex simulation. Designing the input vectors for the suite

T of simulations to be run is the objective of experiment design. A logical goal of DOE is to minimize the

. variance of the error between the response surface and the discrete responses of the complex model. It is

important, however, to also consider the frequency distributions of the input parameters, as well as the type

of statistic to be computed from the distribution of the output. Finally, as noted by Sacks 12there are fun-

damental differences between physical experiments and computer experiments which influence the issue

of experiment design.

In this study, we focus on a simple global surface model which includes second-order terms in the pa-

rameters. The model response is given by

(5)

where PO,pi>Bij are coefilcients of the metamodel to be estimated from analyses performed on the com-

plex model. It should be noted that this metamodel form is just one possibility; other functions could be

considered as well as the finite element lattice sampling approach of Romero13. In addition, a metamodel

could be constructed using solution derivatives obtained from the analysis code, although to obtain qua-

dratic term coefficients it would be necessary to compute the second-order derivatives also.

To this standard metamodel form we will apply the well-known Box-Behnken experiment design14,

which dictates a set of input vectors for which the parameters pi take on nominal, high, or low values. It

is suggested that these levels be taken as the mean and the mean plus or minus one to two standard devia-

tions, respectively. Furthermore, the number of simulation runs is somewhat greater than the number of

. coefficients being estimated, so that a least-squares estimate for the metamodel coefficients is obtained.

The Box-Behnken designs for 3 and 4 input variables are given in Table 1 and Table 2, where O, +1, -1

represent the nominal, high and low values, respectively. Other possible designs are Central composite and
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sub-optimal iterate selection algorithms such as Effective Independence15 and Subset selectionlG. Once an

experiment design has been determined, and the computer experiments are performed, the coefficients ~ij

of the metarnodel are estimated, typically using a least-squares method.

IV. Extension of RSM to include Mesh Size

From Section II, the model for spatial discretization error is given as

y(h) = yexact + Cdiq+ O(h? + 1, (6)

where h is the characteristic mesh spacing or element length, y(h) is the numerical solution resulting from

the mesh, yexact is the exact solution of the corresponding continuum model, q is the formal order of the

method, and a is some unknown factor. Assuming knowledge of method order q, we could easily con-

struct a metamodel from a small number of simulation runs with different values of h. Since the only un-

knowns are et and yexact, we require only two different mesh spacings. With three different mesh

spacings, we could also confirm the method order q. This approach of estimating the terms of the error

model using the results from different mesh spacings is in fact just the classical Richardson extrapolation

method.

Thus, given the similarity between RSM and Richardson extrapolation, it is reasonable to combine the

two methods into a larger metamodel form in order to treat discretization error within the context of non-

deterrninistic analysis. The form of the extended metamodel is taken to be

,

Y(P>h) = PO+ ~~ipi + ~,~{~ijpipj + ~ohq + ~aipihq (7)

i ij i

which allows for the metarnodel to account for the coupling between the constant and linear terms of the -

nominal metamodel and the discretization error, but neglects the terms of 0(p2hq) and above. .
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A. Ex~eriment Desire for Extended Metamodel

For experiment design purposes, we will again use the Box-Behnken design, where the number of in-

V

put variables is increased by one for input value h. This requires that we develop discretized models with

f
3 different mesh spacings. As with Richardson extrapolation, it is usually desirable to perform mesh dou-

bling. The values -1,0, +1 with respect to h are strictly qualitative and correspond to coarse, nominal and

fine mesh models, respectively. For example, re-interpreting Table 2 for the case of 3 input parameters

plus variation in mesh fidelity, we have the experiment design given in Table 3. The value h/hnom im-

plicitly assumes the use of mesh doubling, but this is not specifically required.

The efficiency of the present method can be seen in examining Tables 1 and 3. When the metamodel

is extended by one input variable in order to include the mesh size parameter h, the total number of anal-

yses increases, but the number performed with a fine mesh is only a small fraction of the total and less than

the total number of runs of the non-extended metamodel. Thus, a traditional response surface (without h )

estimated by analyses performed using the fine mesh can actually be less efficient than extending the mod-

el to include h, since the total computational effort is dictated by the number of fine mesh analyses per-

formed. This comparison is summarized in Table for different numbers of continuous input variables.

Note that as the number of input parameters increase, the efficiency gains become dramatic.

B. Verification of the Assumed Order of Accuracy

In a real sense, the nominal mesh model, together with the coarse mesh model, is being used to infer

or interpolate the effects of the parameter variations which would seen at the fine mesh level. The mech-

i anism for performing this inference is the form of the response surface, which is grounded in the error

. model Eqn. (6). This error model is valid, however, only in the asymptotic range and thus imposes a re-

striction on the fidelity of the meshes considered. In a sobering demonstration of the limitations of Rich-

ardson’s method, Oberkampf and Blottner17 showed that for a particular system of nonlinear equations
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with large local gradients, reaching the asymptotic range for Richardson’s method required very fine grids

with relative errors on the order of 0.1 %. Therefore, computational meshes which simply meet an analyst’s

subjective criteria for “goodness” cannot be immediately assumed to meet the asymptotic range require- v

ments of Richardson’s method and the present extended response surface technique. It is important to as- ,

sess the convergence characteristics for the range of meshes considered and demonstrate the formal

convergence of the method before proceeding with extrapolative procedures.

There are two approaches to veri~ing the convergence order using the experiment design procedure

discussed above. Examining Table 3 for the particular case of 3 metamodel input parameters, there are 6

points in the design space where solutions are computed using both the coarse and fine meshes of the mod-

el. Two mesh sizes are not sufficient, however, to independently estimate both the mesh error and the con-

vergence order q. In order to independently estimate q we also require a solution at these design points

for the nominal mesh. These can be obtained by performing additional computer experiments using the

nominal mesh at these design points (corresponding to extreme values of each parameter). Alternatively,

we could use the results from the runs on the nominal mesh to build a traditional metamodel with respect

to the input parameters conditioned on the nominal mesh, and then use that metamodel to interpolate the

response for the nominal mesh at the design points where coarse and fine mesh runs have been performed.

V. Non-Deterministic Analvsis with Extended Metamodel

The final stage of the non-deterministic analysis involves the use of the metamodel to propagate the

parametric uncertainties through to the simulation output. From the distribution of the output, probabilistic

or statistical quantities such as probability of failure, expected output value and variance can be estimated. .

One straightforward approach is what Romero13 terms decoupled Monte Carlo (DMC) analysis. Decou- -

pled refers to the fact that the building of the response surface from complex simulation runs and the Monte

Carlo analysis using the response surface are separate activities. For the Monte Carlo analysis, we would
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generate a very large number of samples from the joint distribution finction of the uncertain variables and

compute the metamodel response for each sample to build the output distribution. The only modification

* required for the extended metamodel is determining how to sample the mesh spacing parameter h.

. Of course, as a solution method parameter, h is not a physical variable and has no associated distribu-

tion. Instead, we will use variations in h to estimate bias error in the non-deterministic solution. The nom-

inal or fine mesh-based non-deterministic solution is obtained by holding h fixed at hnominal or hfine

respectively. Then an extrapolated non-deterministic solution is obtained by holding h fixed at zero. Fi-

nally, the biases in the nominal or fine mesh-based non-deterministic solutions are given by the differences

between these solutions and the extrapolated (h = O) solution. While this procedure involves extrapola-

tion of the metamodel, which is a practice normally avoided in such use of function approximations, the

potential problems related to extrapolation are mitigated in two ways. First, by the verification of accuracy

order q, which specifically addresses the validity of the error model form for use in extrapolation, and sec-

ond, by the use of the extrapolation strictly as a means to estimate solution error, rather than as a means to

obtain a more exact solution.

VI. Example: 1-D Prismatic Bar

The first example is a uniform prismatic bar with fixed-free boundary conditions as shown in Figure

1. The objective of the analysis is to estimate the probability of failure of the bar, where failure is defined

by the condition ~3 <16,000 Hz, where f ~ is the frequency of the third mode of vibration. The physical

parameters defining the system are given in Table 5, where the coefficient of variation is equal to the stan-

. dard deviation of the distribution divided by the mean. The mesh chosen for the nominal model is also

. shown in Figure 1. Note that the mesh was chosen to be non-uniform. There are two reasons for this. First,

in most complex problems it is difficult or impossible to achieve a uniform grid, and often the mesh is re-

fined in some areas to enhance accuracy for some output of the model. Secondly, it is understood that nu-
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merical methods tend to behave better in a theoretical sense on uniform grids, thus the non-uniform grid

in this problem is intended to make a very simple problem somewhat more difficult. From the fixed end

to the free end, the element lengths are: 4 elements @ 1.25 in, 4 elements @ 1.00 in, 4 elements @ 0.75

in, 4 elements @ 0.50 in, 4 elements @ 0.25 in. Thus there is a total of 20 elements and 20 degrees of

freedom (d.o.f.) in the nominal model. The coarse and fine meshes for this problem are related to the nom-

inal mesh by doubling and halving the element lengths, respectively. Therefore, the coarse mesh has

d.o.f. and the fine mesh has 40 d.o.f.

o

The experiment design given in Table 3 was used for estimating the extended metamodel, with the in-

terpolation function given by Eqn. (7) and q = 2 as the formal order of the method. Then the decoupled

Monte Carlo analysis was performed with 100,000 samples of the joint density function of E, p, and L.

All samples were evaluated at h = O. For comparison, a direct Monte Carlo analysis was performed using

the exact continuum solution18:

(8)

Also for comparison, two approximate solutions are treated. First, a direct Monte Carlo analysis was

performed using the nominal mesh model. Second, a decoupled Monte Carlo analysis was performed for

the fine mesh model, where the response surface was estimated with respect to the 3 physical variables E,

p, and L using Eqn. (5) and the experiment design given in Table 1. Finally, histograms of each of the 4

Monte Carlo analyses were computed using 1000 bins, and the results input to a kernel density estimator

to arrive at estimates of the output probability density functions. These final results are shown in Figure 2.
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VII. Discussion of Results

The results from this example are summarized in Table 6 and Table 7. In Table 6, for each of the ap-

V’
preaches, the total number of finite element analyses are given, as well as the number of analyses using

,
the fine resolution grid. This is important because the computational effort is primarily associated with the

number of finite element analyses performed on the most refined grid. Then the total number of computa-

tions required for the nondeterministic analysis are given in Mflop ( 106 floating point operations). Finally,

the error in the estimated mean of the distribution is given, as well as the estimated probability of failure,

which is the statistic of interest in the problem. The extended metamodel result given is the estimated so-

lution at h = O obtained via extrapolation using the extended response surface methodology (ERSM).

Note first of all that the continuum solution is the exact result, subject to Monte Carlo sampling errors

(which are small because of the number of samples). The rest of the methods are given down the table in

order of their accuracy.

The extended RSM method is not only the most accurate approximation, but is also the most efficient.

There is some remaining bias in this solution since extrapolation does not calculate the exact solution, but

rather a high-order accurate estimate of the exact solution. This bias could be further reduced by either

refining the set of meshes considered or by performing additional mesh variations and using the results to

estimate higher-order error terms. The extrapolated solution is sufficiently accurate, however, for the pur-

pose of error estimation. The more traditional RSM based on the fine mesh is still a reasonable result, al-

though it requires more computations and is somewhat less accurate than the extended RSM. Finally, the

direct Monte Carlo method based on the nominal mesh is not only very inefficient, but also leads to a sig-
.

nificant error in the probability of failure estimate. It should be noted that all of the results have negligible

.
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sampling errors, and the errors introduced by the limitations of the metamodel forms were also small. The

errors shown on both the estimated mean and failure probabilities are primarily due to the biases in the

finite element solutions caused by the fidelity of the discretizations. v

In Table 7, the results are presented in terms of estimating the bias error on the non-deterministic so- .

lution using the extended metamodel. The first result given for the fine mesh is obtained from the extended

metamodel by fixing k at hfine. The estimated bias on this solution is then obtained by comparison to the

extrapolated solution using the extended metamodel. The true bias is given by comparison to the continu-

um solution. The second result given for the fine mesh is that obtained by estimating a traditional response

surface without the mesh size parameter. For this approach, there is no estimate of the bias error due to

discretization because there are no other mesh solutions considered. The true bias is again obtained by

comparison to the continuum solution. Note that the fine mesh solutions obtained from both response sur-

face models are essentially identical, but, referring back to Table 6, the solution obtained using the extend-

ed metamodel not only required less finite element computations on the fine mesh, but also ~lowed for

the estimation of the discretization bias error on the solution. The last two rows of the table give similar

results for the nominal mesh size. Again, the accuracy of the extended metarnodel is seen by its similarity

to the direct Monte Carlo results for the nominal mesh (i.e. with no function approximation employed).

Finally, estimates for the order of accuracy of the set of discretizations is given in Table 8. These esti-

mates were obtained by fitting an independent response surface model to the nominal mesh experiments

and then using this model to interpolate the nominal mesh results to the experiments performed on the

coarse and fine meshes. Then the three different mesh solutions for each of 6 points in the continuous pa-

.

rameter space were used with Eqn. (4) to estimate q, the exponent of the characteristic mesh size h in the -

discretization error model. These results veri~ that the set of discretizations are within the sphere of con- ‘

vergence of the numerical method, for which q = 2.
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Apart from the comparison of methods, one of the most interesting aspects of these results is the effect

the prediction error, as measured by the error in the estimated mean of the distribution, has on the relative

< error in the probability of failure estimate. In the case of the direct Monte Carlo analysis based on the nom-

. inal mesh, the discretization error results in a prediction error of about 1YO of the exact solution. This would

normally be considered more than adequate for engineering purposes. However, this error leads to a prob-

ability of failure estimate which is over one order of magnitude smaller than the exact solution. Thus, the

reliability of the system might be judged to be more than 10 times higher than its actual reliability. The

heightened sensitivity is a function of the probability of failure magnitude we are trying to estimate, as

well as the coefficient of variation (the ratio of the standard deviation of the distribution to the mean value)

of the simulation output used in the failure calculation.

This can be seen by considering the effect of a relative bias error on the value of a standard normal

random variable z at the point of failure, viz.

)’F-k
z—= (9)

0

where ~ is the mean of the distribution of the response y, ~ is the standard deviation of the distribution

of y, and yF is the value of the response which defines the failure boundary. If the computational predic-

tion of y is given by yc and suffers a relative bias errors, we have

Y. = y(l +&)

P. = p(l+s)

Gc = 6(1 +&)

Substitution into Eqn. (9) yields.

.
yF–~ –—z C%=z &

Zc = —= ——
CJ l+& Cov

(10)

(11)

for small &, where COV = cJ/y is the coefficient of variation of the distribution y. Using this result, we
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can estimate the relative error in the probability of failure due to the computational bias. Using a fust-order

Taylor series expansion of the cumulative distribution function, we have

@(zc) ()
d@(z)

= @(z- *V)= @(z) - *V ---&

( c%%)).“.@(zc)= o(z) 1 –

So the relative error in the failure probability is

-m’-(a(m%z
A@(z)

>

(12) ‘

(13)

w)
— = –Z is a reasonably good approximation for z < –3 and a lower bound for all z <O. Thiswhere ~(z)

approximation to the relative error in the probability of failure clearly demonstrates that the sensitivity of

the probability of failure to bias error is exacerbated by two factors: a small coefficient of variation (or one

which is of similar magnitude to the bias error &), and a small failure probability for the exact solution.

For the sample problem on the fine mesh, with CO V = 1.22%, & = 0.27%, and z = – 1.92, the relative

error in the probability of failure approximated by Eqn. (13) is -42.5Y0, which is equivalent to the results

in Table 7.

Although the example problem studied herein is relatively simple, there are no issues which limit the

present procedure to 1-D problems or to few parameters. Richardson extrapolation has been used exten-

sively in 2-D and 3-D computational fluid dynamics, both for verification of codes and calculations. Fur-

thermore, as noted previously and in Table, there is a potential for improvement in efficiency by utilizing

multiple meshes over a large dimensional parameter space, rather than limiting a probabilistic analysis to

function evaluations on fine meshes alone. It should be noted that not every potential response quantity -

will use the same error model; stress and displacement for example differ in their order of accuracy and .
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require different coefficients for h in the error models. But the basic approach is the same, given an un-

derstanding of the formal order of accuracy of the numerical methods employed in the computational anal-

ysis.

VIII. Surnmarv and Conclusions

A technique has been presented for treating discretization error in nondeterministic analysis. The tech-

nique involves the use of response surface methodology (RSM), in which a metamodel representation of

a complex simulation model is estimated from a limited number of computer experiments on the complex

model. The metarnodel is then extended to include the characteristic element edge length as an model input

parameter. The extended metamodel is used to propagate the variabilities in the continuous input param-

eters, while the effect of discretization error is estimated by taking the mesh size to zero, its asymptotic

limit. The technique is demonstrated on a one dimensional prismatic bar, in which the uncertainty in the

frequency of the third mode of vibration is estimated by propagating variations in the elastic modulus and

mass density of the material, together with variation in the total length of the bar. Results are compared to

the closed-form solution, a direct Monte Carlo analysis using a nominal mesh size, and a traditional re-

sponse surface without a mesh size parameter built from computer experiments using a fine mesh size. The

results demonstrate the importance of treating discretization error when estimating system reliability mea-

sures such as probability of failure, and the efficiency of the present technique for combining nondeter-

rninistic analysis with error estimation to obtain more accurate estimates of total simulation uncertainty.
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Table 1: Box-Behnken Design for 3 Input Variables

I 5-8 0 +/- 1 I +/- 1 I
I 9-12 I +/- 1 I 01 +/-11

13 0 0 0

Table 2: Box-Behnken Design for 4 Input Variables

Runs p(1) I p(2) p(3) p(4)

1-4 +/- 1 +/- 1 0 0

5-8 0 +/- 1 +/- 1 0

9-12 0 0 +/- 1 +/- 1

13-16 +/- 1 0 +/- 1 0

17-20 0 -1-1-1 0 +/- 1

I 21-24 I +/- 1 I 01 01 +/- 1 I
I 25 I 01 01 01 01

Table 3: Box-Behnken Design for 3 Input Variables plus Mesh Fidelity Variation

Runs p(1) p(2) p(3) Mesh hlhno~

1-4 +/- 1 +/- 1 0 nominal 1.0

5-8 0 +/- 1 +/- 1 nominal 1.0

9-1o 0 0 +/- 1 coarse 2.0

11-12 0 0 +/- 1 fine 0.5

13-16 +/- I o +/- 1 nominal 1.0

17-18 0 +/- 1 0 coarse 2.0

19-20 0 +/- 1 0 fine 0.5

21-22 +/- 1 0 0 coarse 2.0

23-24 +/- 1 0 0 fine 0.5

25 0 0 0 nominal 1.0
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Table 4: Efficiency Gains by using Extended Metamodel with Mesh parameter and Box-Behnken

Experiment Design

Number of Metamodel

inputs (not including h )
Efficiencya

3 2.2

4 3.1

5 6.7

8.3

[

# fine mesh runs in extended model ‘1

a“ total # runs in non-extended model 1
Table 5: Parameter Information for 1-D Bar

Parameter Distribution
Mean Coefficient

Value of Variation

Elastic

Modulus

Mass

Density

Total

Length

I

E Normal
10X106

1.0%

psi

r Normal 0.000259 1.0%

lb-s2/in2

1.0%

Table 6: Nondeteministic Analysis Results for 1-D Bar Example

Method

Total # # Fine

FEM Grid FEM

Analyses Analyses

nfa nla

Extended RSM 25 6

(with h=O)

RSM on fine mesh 13 13

Direct MC on 100,000 0

nominal mesh
1 I !

a“pfailure
= P($3 c 16,000 Hz)

#

Computations

(MFlop)

n/a

59

94

90,000 (est)

% &o~ in Estimate of

mean~~) ‘failure a

nla 2.75V0

0.01% I 2.69%

0.27% 1.61%

1.09% 0.23%

I

77



Table 7: Bias Error Estimation for Non-Deteministic Analysis

Estimated Actual bias Estimated Actual bias

Mesh bias error in error in bias error in error in

mean~3) meanf$3) ‘failure ‘failure

Fine (using ERSM) 0.27’% 0.27% -41.3% -42.5%

Fine (using RSM) unknown 0.27% unknown -41.5%

Nominal (using ERSM) 1.07% 1.08% -9 1.6% -91.7%

Nominal (using DMCS) unknown 1.0970 unknown -91 .6%

Table 8: Order of Accuracy Estimates from Experiments used to Estimate Extended Metamodel

Reference

Runs
p(1) p(2) p(3) q

9,11 0 0 +1 1.9816

10,12 0 0 -1 1.9813

17,19 0 +1 o 1.9817

18.20 0 -1 0 1.9811

21,23 +1 o 0 1.9810

22,24 -1 0 0 1.9819

.

,
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Figure 1: 1-D Prismatic Bar Model with Nominal Mesh
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APPENDIX C:

A New Methodology for the Estimation of Total

Uncertainty in Computational Simulation

presented at the 1999 AlAA Forum on

Non-deterministic Approaches,
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A New Methodology for the Estimation of

Total Uncertainty in Computational Simulation

< William L. Oberkampf*
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Albuquerque, New Mexico 87185-0825

1. INTRODUCTION

This paper develops a general methodology for

estimating the total uncertainty in computational

simulations that deal with the numerical solution of a

system of partial differential equations. A comprehensive,

new view of the general phases of modeling and

simulation is proposed, consisting of the following

phases: conceptual modeling of the physical system,

mathematical modeling of the conceptual model,

discretization and algorithm selection for the

mathematical model, computer programming of the

discrete model, numerical solution of the computer

program model, and representation of the numerical

solution. In each of these phases, general sources of

variability, uncertainty, and error are identified. Our

general methodology is applicable to any discretization

procedure for solving ordinary or partial differential

equations. To demonstrate this methodology, we describe

a system-level analysis of an unguided, rocket-boosted,

aircraft-launched missile. In the conceptual modeling

phase, a wide variety of analysis options are considered,

but only one branch of the analysis is computed: rigid

body flight dynamics. We choose two parameters as

nondeterministic elements of the system: one has

variability that is treated probabilistically and one has

uncertainty that is represented as a set of possible

alternatives. To illustrate mathematical modeling

uncertainty, we pursue two models with differing levels

of physics: a six-degree-of-freedom and a three-degree-of-

freedom model. We also examine numerical solution

error in the analysis, which is ubiquitous in

computational simulations.

*Distinguished Member Technical Staff, Associate Fellow

** Principle Member Technical Staff

7 Senior Member Technical Staff

?j’Manager

$ Senior Member Technical Staff, Senior Member

Copyright O 1999 The American Institute of Aeronautics

and Astronautics Inc. All rights reserved.

Historically the primary method of evaluating the

performance of a proposed system design has been to

build the design and then test it in the use environment.

This testing process is often iterative, as design flaws are

sequentially discovered and corrected. The number of

design-test iterations has been reduced with the advent of

computer simulation through numerical solution of the

mathematical equations describing the system behavior.

Computational results can identify some flaws and they

avoid the difficulty or safety issues involved in

conducting certain types of physical tests. Examples

include the atmospheric entry of a space probe into

another planet, structural failure of a full-scale

containment vessel of a nuclear power plant, failure of a

bridge during an earthquake, and exposure of a nuclear

weapon to certain types of accident environments.

Modeling and simulation are valuable tools in

assessing the survivability and vulnerability of complex

systems to either natural, abnormal, and hostile events.

However, there still remains the need to assess the

accuracy of simulations by comparing computational

predictions with experimental test data through the

process known as validation of computational

simulations. Experimental validation, however, is

continually increasing in cost and time required to

conduct the test. For these reason modeling and

simulation must take increasing responsibility for the

safety, performance, and reliability of many high

consequence systems.

Uncertainty estimation in computational simulation

has been conducted in certain engineering and science

disciplines for a number of y;zwsgExamples of these are

nuclear , reactor civil and marine

engineering,lO-l 3 anJ32&mentrd engineering. 14-18

The emphasis in these fields has been directed toward

representing and propagating parameter uncertainties in

mathematical models. The vast majority of this work has

used probabilistic methods to represent the uncertainty

and then sampling methods, such as Monte Carlo

sampling, to propagate the uncertainty.
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Our focus is on the estimation of total modeling and

simulation uncertainty composed of variabilities,

uncertainties, and errors from many sources. The issue of

numerical solution error is generally ignored in

uncertainty estimation. Neglecting numerical solution

error is particularly detrimental to total uncertainty

estimation when the mathematical models of interest are

cast in terms of partial differential equations (PDEs).

Types of numerical error that are of concern in the

numerical solution of PDEs are: spatial discretization

error in finite element and finite difference methods,

temporal discretization error in time dependent

simulations, and error due to discrete representation of

strongly nonlinear features. It is fair to say that the field

of numerical error estimation is considered to be

completely separate from uncertainty estimation.

Although many authors in the field of numerical error

estimation refer to solution error as “numerical

uncertainty,” we believe this confuses the issue.

Also of concern in the present work is a type of

uncertainty that occurs in complex modeling and

simulation: uncertainty resulting from the model itself,

which is also referred to as “model form uncertainty” or

“structural uncertainty.” Recent work is beginning to

address the issue of competin
8

models set in a

probabilistic framework. 19>2 We believe that

nonprobabilistic mathematical representations may be

more appropriate when the uncertainty derives from lack

of knowledge or from errors, such as numerical solution

errors. In this paper we provide definitions that

distinguish variability (i.e., irreducible uncertainty),

uncertainty, and error in the modeling and simulation

process.

This paper proposes a new framework, or structure,

of the general phases of modeling and simulation. This

structure is composed of six phases, which represent a

synthesis of the tasks recognized in the operations

research community; the methods associated with

uncertainty estimation; and the activities appropriate to

the numerical solution of PDEs. It extends the recent

work of Ref. 21 by addressing the nondeterministic

aspects of the modeling and simulation phases. By

“nondeterrninistic” we mean that the response of the

system is not precisely predictable because of the

existence of variability or uncertainty in the system or

the environment. With our proposed structure one can

more clearly identify where and how in the modeling and

simulation process the various sources of variability,

uncertainty, and error might occur, and also determine

their effect on the total estimate of uncertainty. To

demons~ate this new framework, we describe a system-

level analysis of an unguided, rocket-boosted, aircraft-

Iaunched missile. We consider the missile to be a

relatively short ranoe i e 20 n.m., air-to-ground rocket.a, ...
In the conceptual modeling phase for this example, we

discuss alternative systemfenvironment specifications,

scenario abstractions, physics coupling specifications,

and nondeterministic specifications. After discussing

varying conceptual models, only one branch of the

analysis is pursued: rigid body flight dynamics. Of the

large number of possible nondeterministic phenomena,

we consider only two: variability of the initial mass of

the missile and uncertainty in the performance of the

rocket motor because of ambiguity or non-specificity. To

illustrate mathematical modeling uncertainty, we pursue

two models with differing levels of physics: a six-degree-

of-freedom and a three-degree-of-freedom model. Each of

these models is solved through multiple simulation runs

to accommodate the mass variability and the motor

performance uncertainty. In each case we include the

effect of error due to numerical solution of the equations

of motion for each model.

2. MODELING AND SIMULATION

2.1 Review of the Literature
The operations research (OR) community has

developed many of the general principles and procedures

for modeling and simulation. Researchers in these fields

have made significant progress in defining and

categorizing the various phases of modeling and

simulation .2~22-25 The areas of emphasis in OR include

definition of the problem entity, definition of the

conceptual model, assessment of data and information

quality, and usage of simulation results as an aid in

decision making. From a computational sciences

perspective, many feel this work is extraneous because it

does not deal with solving PDEs. However, we have

found that the OR work is very helpful in providing a

constructive philosophical approach for identifying

sources of uncertainty and error, as well as developing

some of the basic terminology.

In 1979 the Technical Committee on Model

Credibility of the Society for Computer Simulation

developed a diagram identifying the primary phases and

activities of modeling and simulation.26 Analysis is used

to construct a conceptual model of reality; programming

converts the conceptual model into a computerized

model; and computer simulation simulates reality.

Although simple and direct, the diagram clearly captures

the relationship of two key phases of modeling and

simulation to each other, and to reality. The diagram also

includes the activities of model qualification, model

verification, and model validation. However, the diagram

does not address the detailed activities required for the

solution of PDEs describing the system nor the activities

necessary for uncertainty estimation.

Throughout the 1980s, improvements were made

toward generalizing the concepts of modeling and
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simulation.27’28 A significant extension of the phases

of modeling and simulation was made to include the

concept of the life cycle of a simulation.29~30 Major

phases added by Nance and Balci were System and

Objectives Definition, Communicative Models, and
3 Simulation Results. The emphasis in this work was on

assessing and improving the credibility of the modeling

. and simulation. Jacoby developed a framework with the

following phases of modeling and simulation: modeling

purpose, prototype, preliminary model, mathematical

model, solution technique, computer program, model,

and modeling result.24 We have incorporated some of the

concepts from this framework into the present work, The

present emphasis, however, is on two additional

requirements. First, we wanted to stress the estimation

of total modeling and simulation uncertainty. This focus

requires that one be able to clear]y identify where sources

of variability, uncertainty, and error might originate, and

also how these sources will propagate through the

modeling and simulation process. Second, our framework

stresses systems whose mathematical formulation is

given by a system of PDEs. We can then directly include

the errors caused by the numerical solution of PDEs into

the uncertainty estimation process.

2.2 Sources of Variability, Uncertainty, and

Error

Sources of variability, uncertainty, and error are

associated with each phase of modeling and simulation.

Examining the literature in OR, uncertainty estimation,

and numerical error estimation, one finds that most

authors do not carefully distinguish between what they

mean by variability, uncertainty, and error, or worse,

their definitions contradict one another. Even when these

terms have been defined, their definitions are typically

couched in the restricted context of the particular subject,

or they do not address the issue of error.2>31 Some

authors have dealt with the distinctions between some of

these sources.2~15!16~31’33 The present paper follows

the recent work of Ref. 21 in carefully distinguishing

between variability, uncertainty, and error.

We use the term variability to describe the inherent

variation associated with the physical system or the

environment under consideration. Sources of variability

can commonly be singled out from other contributors to

total modeling and simulation uncertainty by their

. representation as distributed quantities that can take on

values in an established or known range, but for which

the exact value will vary by chance from unit to unit or
.

from time to time. Some literature refers to our

definition of variability as “irreducible uncertainty.” An

exampIe of a distributed quantity is the exact dimension

of a manufactured part, where the manufacturing process

is well understood but variable and the part has yet to be

produced. Variability is generally quantified by a

probability or frequency distribution when sufficient

information is available to estimate the distribution.

We define uncertainty as a potential deficiency in

any phase or activity of the modeling process that is due

to lack of knowledge. The first feature that our

definition stresses is “potential,” meaning that the

deficiency may or may not occur. In other words, there

may be no deficiency, say in the prediction of some

event, even though there is a lack of knowledge if we

happen to model the phenomena correctly. The second

key feature of uncertainty is that its fundamental cause is

incomplete information. 15,~6,34 Incomplete information

can be caused by vagueness, nonspecificity, or

dissonance .32~35 Vagueness characterizes information

that is imprecisely defined, unclear, or indistinct.

Vagueness is characteristic of communication by

language. Nonspecificity refers to the variety of

alternatives in a given situation that are all possible, i.e.,

not specified. The larger the number of possibilities, the

larger the degree of nonspecificity. Dissonance refers to

the existence of totally or partially conflicting evidence.

Dissonance exists when there is evidence that an entity or

elements belong to multiple sets that either do not

overlap or overlap slightly. Some literature refers to our

definition of uncertainty as “reducible uncertainty.”

We define error as a recognizable deficiency in any

phase or activity of modeling and simulation that is not

due to lack of knowledge. Our definition stresses the

feature that the deficiency is identifiable or knowable

upon examination; that is, the deficiency is not caused by

lack of knowledge. Essentially there is an agreed-upon

approach or ideal condition that is considered to be more

accurate. If divergence from the correct or more accurate

approach is pointed out, the divergence is either corrected

or allowed to remain. It may be allowed to remain

because of practical constraints, such as the error is

acceptable given the requirements, or the cost to correct it

is excessive. This implies a segregation of error types: an

error can be either acknowledged or unacknowledged.

Examples of acknowledged errors are finite precision

arithmetic in a computer, approximations made to

simplify the modeling of a physical process, and

conversion of PDEs into discrete equations. When

acknowledged errorsare introduced by the analyst into the

modeling or simulation process, the analyst typically has

some idea of the magnitude of such errors.

Unacknowledged errors are blunders or mistakes, that is,

the analyst intended to do one thing in the modeling and

simulation but, for example, as a result of human error,

did another. There are no straightforward methods for

estimating, bounding, or ordering the contribution of

unacknowledged errors. Sometimes an unacknowledged

error can be detected by the person who committed it;

e.g., a double-check of coding reveals that two digits

have been reversed. Sometimes blunders are caused by
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inadequate human interactions and can only be resolved

by better communication. Redundant procedures and

protocols for operations depending on a high degree of

human intervention can also be effective in reducing

unacknowledged errors.

2.3 Proposed Phases of Modeling and

Simulation

Figure 1 depicts our representation of the phases of

modeling and simulation appropriate to systems analyzed

by the numerical solution of PDEs. The phases represent

collections of tasks required in a large scale simulation

analysis. The ordering of the phases implies an

information and data flow indicating which tasks are

likely to impact decisions and methodology occurring in

later phases. These phases follow the recent work of Ref.

21. The paragraphs below provide brief descriptions of

each of these phases. The modeling and simulation

process is initiated by a question or set of questions,

posed by a designer or decision maker, for which the

information to address the question can be provided by

exercise of a computer simulation.

Figure 1

Proposed Phases for Computational Modeling and

Simulation

Conceptual Modeling of the Phvsical Svstem. Our

initial phase encompasses developing a specification of

the physical system and the environment. It also includes

determining which physical events, or sequence of

events, and which types of coupling of different physical

processes will be considered. These determinations must

be based on the general requirements for the modeling and

simulation effort. The physical system can be an existing

system or process, or it can be a system or process that

is being proposed. During the conceptual modeling

phase, no mathematical equations are written, but the

fundamental assumptions of the possible events and

physical processes are made. Only conceptual issues are .

considered, with heavy emphasis placed on determining

all possible factors, such as physical and human

intervention, that could possibly affect the requirements
.

set for the modeling and simulation. Identifying possible

event sequences, or scenarios, is similar to developing a

fault-tree structure in the probabilistic risk assessment of

highconsequence systems, such as in nuclear reactor

safety analyses. Even if a certain sequence of events is

considered extremely remote, it should still be included as

a possible event sequence in the fault tree. After the

system and environment is specified, options for various

levels of possible physics couplings should be identified,

even if it is considered unlikely that all such couplings

will be considered subsequently in the analysis. If a

physics coupling is not considered in this phase, it

cannot be resurrected later in the process. Another task

conducted in this phase of the analysis is the

identification of all of the system and environment

characteristics that might be treated nondeterrninistically.

Consideration is given as to whether these characteristics

are to be treated as fixed, stochastic, or unknown.

However, details concerning their representation and

propagation are deferred until later phases.

Mathematical Modelirw of the Conce~tual Model.

The primary task in this phase is to develop precise

mathematical models, i.e., analytical, statements of the

problem (or series of event-tree-driven problems) to be

solved. Any complex mathematical model of a problem,

or physical system, is actually composed of many

mathematical submodels. The complexity of the models

depends on the physical complexity of each phenomenon

being considered, the number of physical phenomena

considered, and the level of coupling of different types of

physics. The mathematical models formulated in this

phase include the complete specification of all of the

PDEs, auxiliary conditions, boundary conditions, and

initial conditions for the system. For example, if the

problem being addressed is a fluid-structure interaction,

then all of the coupled fluid-structures PDEs must be

specified, along with any fluid or material-property

changes that might occur as a result of their interaction.

Another function addressed during this phase of

analysis is selecting appropriate representations and

models for the nondetenninistic elements of the problem.

Several considerations might drive these selections.

Restrictions set forth in the conceptual modeling phase

of the analyses may put constraints on the range of

values or types of models that might be used further in

.

,
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the analysis: Within these constraints the quantity and/or

limitations of available or obtainable data will play an

important role. A probabilistic treatment of nondeter-

ministic variables generally requires that probability

distributions can be established, either through data

. analysis or through subjective judgments. In the absence

of data, qualified “expert opinion” or similar type

information from other sources regarding the relative
. likelihoods may be incorporated. If there is a significant

lack of information, it is possible that only bounding or

set representations may be appropriate for uncertainties.

Discretization and Al~orithm Selection for the

Mathematical Model. This phase accomplishes two

tasks related to converting the mathematical models into

a form that can be addressed through computational

analysis. The first task involves conversion of the PDE

form of the mathematical model into a discrete, or

numerical, model. SimpIy stated, the mathematics are

translated from a calculus problem to an arithmetic

problem. In the discretization phase all of the spatial and

temporal differencing methods, discretized boundary

conditions, discretized geometric boundaries, and grid

generation methods are specified in analytical form. In

other words, algorithms and methods are prescribed in

mathematically discrete form, but the spatial and

temporal step sizes are not specified. The discretization

phase focuses on the conversion from continuum

mathematics to discrete mathematics, not on numerical

solution issues. We strongly believe that the continuum

mathematical model and the discrete model should be

separately re resented in the phases of modeling and

simulation.;6 The discretization phase deals with

questions such as consistency of the discrete equations

with the PDEs, stability of the numerical method,

approximations of mathematical singularities, and

differences in zones of influence between the continuum

and discrete systems.

The second task of this phase of the analysis is the

specification of the methodology that will dictate

computer runs to be performed in a later phase of the

analysis in order to accommodate the nondeterministic

aspects of the problem. For example, a Monte Carlo

method or response surface method could be chosen for

propagating variabilities. Nondeterministic sources

include system parameters, boundary conditions, and

initial conditions that may vary randomly from

component-to-component andlor system-to-system.
,

Modeling too can be nondeterministic in nature when

alternative models are constructed to address the same

. aspects of the problem. Presumably only one model is

correct (or more correct) for the task, but this is not

generally known beforehand, i.e., in a prediction. In

addition, a preferred model may be too expensive to be

used exclusively in the analysis and, as a result, less

accurate models would be used in portions of the

analysis.

Comrmter Prosrammin~ of the Discrete Model.

This phase is common to all computer modeling:

algorithms and solution procedures defined in the

previous phase are converted into a computer code. The

computer programming phase has probably achieved the

highest level of maturity because of decades of

programming development and software quality assurance

efforts.37~38 These efforts have made a significant

impact in areas such as commercial graphics,

mathematics, and accounting software, telephone circuit-

switching software, and flight control systems. On the

other hand, these efforts have had little impact on

corporate and university-developed software for

computational fluid dynamics, solid dynamics, and heat

transfer simulations, as well as most applications of

massively parallel processing.

Numerical Solution of the Comrmter Program

Model. In this phase the individual numerical solutions

are actually computed. No quantities are left

arithmetically undefined or continuous; only discrete

parameters and discrete solutions exist with finite

precision. For example, a spatial grid distribution and a

time step is specified; space and time exist only at

discrete points, although these points may be altered

during subsequent computer runs.

Multiple computational solutions are normally

required for nondeterministic analyses. These multiple

solutions are dictated by the propagation methods and

input settings determined in the discretization and

algorithm selection phase. Multiple solutions can also be

required from the mathematical modeling phase if

alternative models are to be investigated. For some

propagation methods the number and complete

specification of subsequent runs is dependent on the

computed results. When this is the case, these

determinations are made as part of this phase of the

analysis.

Remesentation of the Numerical Solution. The final

phase of the modeling and simulation process concerns

the representation and interpretation of both the

individual and collective computational solutions. The

collective results are ultimately used by decision makers

or policy makers, whereas the individual results are

typically used by engineers, physicists, and numerical

analysts. Each of these audiences have very different

interests and requirements. The individual solutions

provide detailed information on deterministic issues such

as the physics occurring in the system, the adequacy of

the numerical methods to compute an accurate solution

to the PDEs, and the system’s response to the

deterministic boundary and initial conditions. For the

individual solutions the primary task is the construction

of continuous functions based on the discrete solutions

obtained in the previous phase. Here the continuum

89



mathematics formulated in the mathematical modeling

phase is approximately reconstructed based on the discrete

solution.

The collective solutions provide information on the

nondeterrninistic response of the system. For the

collective solutions the primary task is the assimilation

of individual results to produce summary data, statistics,

and graphics portraying the nondeterministic features of

the system. These results are utilized to assess the

simulation results from a high-level perspective and

compare them to requirements of the analysis.

3. MISSILE FLIGHT ANALYSIS
EXAMPLE

3.1 Description of the Problem

The proposed new framework for conducting

modeling and computational simulation is applicable to

an extremely wide range of complex engineering

systems. To demonstrate how this framework can be

useful for large-scale, real world system analyses, we

apply it to an example problem. We consider an analysis

of the flight of a rocket-boosted, aircraft-launched

missile. We make the following assumptions concerning

the missile:

1) The missile is unguided during its entire flight, i.e.,

only ballistic flight is considered.

2) The missile is propelled by a solid fuel rocket motor

for the initial portion of its flight, and it is

unpowered during the remainder of the flight.

3) The missile is fired from a launch rail attached to

the aircraft in flight.

4) The only aerodynamic surfaces on the missile are

fins to provide flight stability.

The analysis considers the missile flight to be in the

unspecified future, i.e., the analysis is an attempt to

predict future plausible events, not analyze an event in

the past.

Figure 2 illustrates the activities that are conducted

in each of the six phases of modeling and simulation.

Also shown for each activity are the dominant sources of

variability, uncertainty, and error that typically occur in

each activity. Figure 2 extends the ideas presented in Ref.

21 by stressing the nondeterministic features of modeling

and simulation. For the remainder of the paper we will

refer to the aggregation and propagation of variability,

uncertainty, and error simply as total uncertainty. We

now discuss in detail the activities that are conducted in

each of the phases and how these activities are applied to

the missile flight example problem.

3.2 Conceptual Modeling Activities

As seen in Fig. 2, we have identified four major

activities that are conducted in the conceptual modeling
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Figure 2

Activities Conducted in the Phases of Computational

Modeling and Simulation

phase: system/environment specification, scenario

abstraction, coupled physics specification, and

nondeterministic specifications. The system/environment

specification activity consists primarily of careful

specification of what physical or conceptual elements are

considered as part of the system and what is considered

part of the environment. When we say physical or

conceptual elements are part of the system we mean that

it is possible that any of the elements can interact with

one another. This concept is similar to a system as

defined in thermodynamics. The state of a system is

influenced by processes internal to the system, i. e.,

endogenous processes, and also processes or activities

external to the system, i. e., exogenous effects.

Exogenous processes or activities are considered to be

part of the environment. A system is influenced by the

.

.

.
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environment, but the environment cannot be influenced

by the system.39 In other words, the system and the

environment do not interact; the system can respond to

the environment, but the environment cannot respond to

the system. System/environment specifications are a

matter of engineering judgement and are not unique. As a

result, they are one of the most difficult conceptual

issues in modeling and simulation.

Figure 3 shows three possible systern/environment

specifications for the example problem. They are listed

from the most inclusive to least inclusive.

Systemlenvironment Specification 1 considers the

missile and the atmosphere near the missile to be part of

the system, whereas the launching aircraft and target are

considered part of the environment. An example of an

analysis that would be allowed with this specification is

the flow field of the missile and the rocket exhaust

coupled to flow field of the launching aircraft, i.e., the

missile and rocket exhaust could interact with the aircraft

flow field. Another example allowed by this

systern/environment specification would be the analysis

of the missile flight inside an enclosure or tunnel, e.g.,

near the target. System/environment Specification 2

considers the missile and the aerothermal processes

occurring on the missile to be part of the system,

whereas the atmosphere near the missile, the launching

aircraft, and the target are considered part of the

environment. This specification allows analyses that

couple the missile and its aerothermal effects. For

example, one could consider the deformation of the

missile due to aerodynamic loading and thermal heating,

and then couple these deformations into recomputing the

aerodynamic loading and thermal heating.

System/environment Specification 3 considers the

missile to be the system, whereas the aerothermal

processes, the atmosphere near the missile, the launching

aircraft, and the target are considered part of the

environment. Even though this is the simplest

specification considered, it still allows for significant

complexities in the analysis.

Scenario abstraction, Fig. 2, attempts to identify all

possible physical events, or sequences of events, that

may affect the goals of the analysis. For relatively

simple systems, isolated systems, or systems with very

controlled environments or operational conditions,

scenario abstraction can be straightforward. Complex

engineered systems, however, can be exposed to a variety

of natural and abnormal operating conditions, hostile

environments, or a myriad of human-caused or

accidentally caused failure modes. Scenario abstraction for

these complex systems is a mammoth undertaking. The

field of engineering that has achieved the highest

development of scenario abstraction is probabilistic risk

assessment (PRA) of nuclear power plants. PRA

techniques construct a many-branched event tree for

/

Figure 3

Conceptual Modeling Activities for the Missile Flight

Example

complex operating and failure scenarios. Even though the

probability of occurrence of certain events may be

extremely low, these events must be considered and

analyzed for failure of nuclear power plants and other

high consequence systems. The scenario abstraction

considered here includes both event tree construction and

decision tree construction, that is, decision tree

construction does not necessarily depend on events, but it

can identify possible results based on decisions or

analyses that could be pursued.

As shown in Fig. 3, the missile flight example

identifies three broad classes of scenarios; missile flight

under normal, abnormal, and hostile conditions. By

normal conditions we mean missile flight under

reasonably expected conditions, such as typical launch

conditions from aircraft that are expected to carry the

missile, near nominal operation of the propulsion

system, and reasonably expected weather conditions.

Examples of flight under abnormal conditions would be
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improperly assembled missile components; explosive

failure of the propulsion system; and flight through

adverse weather conditions, such as snow or lightning:

Examples of flight under hostile conditions would be

detonation of near by explosive systems, damage to

missile components due to small arms fire, and damage

from laser or microwave defensive systems. The three

scenario categories considered here have been commonly

used for military systems, e.g., nuclear weapons. With

the increasing concern of terrorist attacks on civilian

systems, such as buildings, commercial aircraft, bridges,

and dams, this categorization may, unfortunately, prove

to be more broadly useful in the future.

Coupled physics specification, Fig. 2, clarifies and

carefully distinguishes the possible alternatives for

physics (and chemistry) coupling for the

systemlenvironment specification and scenario

abstraction under consideration. A clear statement of the

possible levels of physics coupling is required because of

the wide variety of physics that may occur in a complex

system. In the missile flight example, Fig. 3, we

identify three levels of physics coupling, although more

alternatives could be identified. Coupled physics

Specification 1 couples essentially all of the physics that

could exist in the problem. For example, this

specification could couple the structural deformation and

dynamics with the aerodynamic loading and thermal

loading due to atmospheric heating. It could also couple

the deformation of the solid fuel rocket motor case due to

combustion pressurization, the heat transfer from the

motor case into the missile airframe structure, and the

non-rigid body flight dynamics on the missile. Coupled

physics Specification 2 couples the missile flight

dynamics, aerodynamics, and structural dynamics,

neglecting all other couplings.”This coupling permits the

computation of the deformation of the missile structure

due to inertial loading and aerodynamic loading and then

the aerodynamic loading and aerodynamic damping due to

the deformed structure. This would be a coupled, time

dependent, fluids/structures interaction simulation.

Coupled physics Specification 3 assumes a rigid missile

body; not only is physics coupling disallowed, but the

missile structure is assumed rigid. The missile only is

allowed to respond to inputs or forcing functions from

the environment. Structural dynamics is removed from

the analysis; i.e., only rigid body dynamics is considered.

Before we consider the last activity, nondeterrninistic

specification, consider the possible sources of total

uncertainty that could occur in the three activities

discussed so far. System/environment specification and

scenario abstraction activities introduce uncertainties into

the modeling and simulation process. This occurs

primarily because of what is not included, or scenarios

not imagined. The wider the scope of the analysis or the

more complex the system, the more possibilities there

are for uncertainties due to lack of knowledge about

aspects of ’the modeled system and environment. Indeed,

an underlying weakness of modem technological analysis

is events, effects, and possibilities not initially

considered.40 For example, automatic control systems .

designed to ensure safe operation of complex systems

during normal operation or during maintenance of the

system can fail, or the safety system can be overridden. “

During coupled physics specification, the primary source

of total uncertainty introduced into the analysis is

acknowledged error. A hierarchal ordering of levels of

physical coupling in conceptual models can commonly

be constructed. Based on experience with similar

systems, previous analyses, risk of adverse safety,

performance, economic consequences, and budget and

schedule considerations, decisions are then made

concerning which physics coupling is chosen. However,

when physics couplings are neglected, an acknowledged

error is introduced.

In the nondeterministic specification activity, Fig. 2,

decisions are made concerning what aspects of the system

and environment will be considered deterministic or

nondeterministic. By a deterministic system and

environment we mean one which exhibits one system

response given a specification of all mathematical models

and parameters of the system. Certain nonlinear systems,

even when all models and parameters are specified, can

yield multiple responses or even chaotic responses. We

include these types of systems in the class of

nondeterministic systems, although they are not addressed

in the present work. The predominant cause of

nondeterministic system response is inherent randomness

in model parameters, initial conditions, or parameters

specifying the environment. We have referred to these

types of sources producing nondeterministic features as

variabilities. Uncertainties in model parameters, initial

conditions, or the environment also occur because of a

lack of knowledge about these factors. The uncertainty

can often be reduced by obtaining relevant data or through

actions taken that limit the state of key elements of the

system or the environment. Often these are policy or

procedural decisions. Examples of these cases are: Was

the system incorrectly manufactured or assembled? Has

inadequate or improperly conducted system maintenance

significantly altered certain system characteristics? Was

the system damaged in the past, but the damage is ,

unknown? In other situations it may not be possible to

reduce the lack of knowledge, and reduce the uncertainty.

For the missile flight example we list only two .

alternative nondeterministic specifications shown in Fig.

3. Nondeterministic Specification 1 includes the
following variabilities (indicatedby a V in Fig. 3): mass

properties of the missile, aerodynamic force and moment

coefficients, aerothermal heating characteristics, and
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initial conditions at missile launch. These are considered

variabilities because they are usually associated with

random variation due to manufacturing processes or

physically random processes. If a large number of

missiles are manufactured, for example, sufficient
. inspection data would normally exist so that a

representative probability distribution for each parameter

could be constructed. Nondeterministic Specification 1
●

also includes the following as variabilities and/or

uncertainties (indicated by a V,U in Fig. 3): propulsion

characteristics, atmospheric characteristics, and target

characteristics. These quantities could be considered as

variabilities, but their nondetexministic feature is usually

dominated by lack of knowledge. For example,

propulsion characteristics of solid rocket motors can vary

substantially with age and temperature of the propellant.

Suppose that statistical models which incorporate age and

temperature of the propellant have been constructed. If

the age of the propellant in a particular motor is not

known or the temperature of the propellant is not known,

a statistical model is of little value in estimating the

variation in the performance of the motor. A similar

argument can be made for estimating the uncertainty in

atmospheric characteristics, for example, wind

conditions. Without specifying additional knowledge,

such as location on earth, month of the year, or even

time of the day, statistical models are of limited value.

For nondeterministic Specification 2, Fig. 3, we

chose one parameter of the mass properties of the missile

as a variability, and one characteristic of the propulsion

system as an uncertainty. We pursue Specification 2 in

the example problem to distinguish the characteristics of

each and to show how they might be represented

differently in a computational simulation. All other

parameters are considered deterministic (indicated by a D

in Fig. 3).

3.3 Mathematical Modeling Activities

As shown in Fig. 2, we have identified four major

activities in the mathematical modeling phase:

formulation of the partial differential equations, choice of

all the auxiliruy equations that supplement the differential

equations, formulation of all the initial and boundary

conditions required to solve the PDEs, and selection of

the mathematical representation of nondeterministic

elements of the analysis. The PDEs commonly represent

. conservation equations for mass, momentum, and energy,

but they can originate from any mathematical model of

the system. The auxiliary equations are equations which
. are required to complete the PDEs. Examples of these

would be turbulence modeling equations in fluid

dynamics, equations of state in hydrodynamics, material

constitutive equations in solid dynamics, and neutron

cross-sections in neutron transport. The auxiliary

equations can be of any type, e.g., algebraic equations,

integral equations, or PDEs. The boundary and initial

conditions provide the required closure equations needed

for all PDEs.

Formulation of the nondeterministic representations

is based on the needs of the analysis together with the

quantity and quality of relevant information available.

When the nondeterministic specification indicates that a

range of values are of interest for a parameter or

characteristic of the analysis, it may or may not include

constraints on this range. Within these constraints an

appropriate representation for the nondeterministic

element will depend on available and/or obtainable

relevant information. Probabilistic models (distributions

or frequency functions) are appropriate only when enough

information is available to determine relative likelihoods

of different values over a range. In the absence of this

information, one attempts to produce bounding values, or

may hypothesize distributions for these elements and

perform further analysis conditional on these bounding

values or hypothesized distributions.

Variabilities commonly dominate the

nondeterministic features of the auxiliary physical

equations and boundary and initial condition activities.

The most common variabilities are those due to inherent

randomness of continuous parameters in these equations.

Variabilities are nearly always represented by probability

distributions. In some cases the form of these

distributions are inferred from first principles of the

processes involved in determining the parameter values.

In most cases the distributions are chosen based on

convenience. Parameters associated with the probability

distributions are then estimated when sufficient data are

available or assigned values based on a subjective

assessment.

Uncertainties can have a large impact on the

nondeterrninistic formulation of the PDEs because the

key issue can be limited, or inadequate, knowledge of the

physical processes involved. Examples of uncertainties

that occur in the PDEs are limited knowledge of the

equations for turbulent reacting flow, conflicting models

for crack propagation in materials, and competing models

for elastic deformation of composite materials. For

physical processes that are relatively well understood,

deficiencies in certain models should be considered as

errors rather than uncertainties. This is based on the

argument that if sufficient knowledge of the process

exists, a set of alternative models can be ordered in terms

of increasing accuracy. For example, in the modeling of

fluid dynamic turbulence, the models can be ordered in

terms of increasing accuracy as follows: algebraic

models, two-equation models, Reynolds stress models,

and large eddy simulation models. In general, this

ordering is appropriate, but for individual flow fields

there is no guarantee that any one model will be more
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accurate than afiy other because certain lower order

models can be very accurate for specific cases.

Acknowledged errors in PDE models are those due to

mathematically representing the physics in a more

simplified or approximate form than the best available. It

is invariably the case that for any mathematical model

chosen to represent some physical process, one can

identify higher fidelity models that are known to exist. In

our definitions given in Section 2.2, this is precisely

what is meant by acknowledged error. Higher fidelity

models are usually not chosen because of the higher

computational costs associated with their solution. The

ratio of computational cost for a higher fidelity model to

a lower fidelity model is commonly high, sometimes

exceeding a factor of a 100. Analysts ordinarily choose a

given level of model fidelity based on practical issues,

such as computational resources available, options in

computer codes they are familiar with, and schedule

constraints, as well as technical issues. Some examples

of acknowledged errors in mathematical modeling are the

modeling of a process in two spatial dimensions when

three spatial dimensions may be needed; the assumption

of a steady state when unsteady effects may be important;

and the assumption of homogeneous material properties

when mesoscale features play a substantial part. These

examples of acknowledged errors are all characteristic of

situations in which physical modeling approximations

were made to simplify the mathematical model and the

subsequent solution.

For the missile flight example, two mathematical

models are chosen; a six-degree-of-freedom (6-DOF)

model and a three-degree-of-freedom (3-DOF) model, Fig.

4. Both of these models are consistent with the

conceptual model being analyzed: systemJenvironment

Specification 3, scenario Specification 1, coupled physics

Specification 3, and nondeterministic Specification 2

(Fig. 3). The translational equations of motion can be

written as

(1)

where m- is the mass of the vehicle, V is the velocity,

and z ~ is the sum of all forces acting on the vehicle.

l%e rotational equations of motion can be written as

(2)

[
where Z] is the the inertia tens~r of the vehicle, ~ is

the angular velocity, and ~ ~ is the sum of all

moments acting on the vehicle. Eq. (1) represents the 3-

DOF equations of motion, and Eqs. (1) and (2) represent

the 6-DOF equations of motion. Although these are

ordinary differential equation models instead of the PDE
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Figure4
Mathematical Models for the Missile Flight Example

models stressed in the present work, key aspects of the

present framework can still be exercised.

For these two mathematical models of flight

dynamics, one can unequivocally order the models in

terms of fidelity. Indeed, the physics and mathematics of

the 6-DOF equations are so well understood that there is

no need for experimental validation of these models.

Their accuracy is only limited by the accuracy of the

assumption of a rigid body, accuracy of the measured

mass properties, and accuracy of the forces and moments

acting on the vehicle. However, as mentioned above, for

models of complex physical processes or systems this

.

.
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ordering is commonly not possible.

Figure 4 lists all of the auxiliary equations and

initial conditions that are needed for each mathematical

model. As is to be expected of higher fidelity models, the

6-DOF model requires physical information beyond that

which is required by the 3-DOF model. This poses the

question: When does the lack of information of the

additional needed parameters in a higher fidelity model

counteract its accuracy when compared to a lower fidelity

model? Although this question is not addressed in the

present work, it is an issue that must be weighed in

many analyses. It is fallacious to claim that the higher

the fidelity of the physics model, the better the results.

Uncertainty of parameters and greater computer resources

needed to solve higher fidelity models are critical factors

in total uncertainty estimation. In addition, constraints

on computer resources can obviate the usefulness of a

higher quality model.

Two nondeterministic parameters will be considered

in the missile flight example: the initial mass of the

missile and the propulsion thrust characteristics. Both

parameters appear in each of the mathematical models

chosen so that direct comparisons of their effect on each

model can be made. It is assumed that sufficient

inspection data of manufactured missiles is available for

the missile mass to justify a normal distribution with

known mean and standarddeviation. Thrust characteristics

are considered to be an uncertainty that derives from

nonspecificity, i.e., multiple situations are possible.32~35

We assume the nonspecificity is due to the temperature

of the solid propellant. We choose a nominal value and

two bounding values: normal operating temperature,

highest allowed temperature within the manufacturer’s

specification, and the lowest allowed temperature. The

high temperature condition causes the thrust to be higher

and the burn time to be shorter, and the low temperature

condition causes the thrust to be Iower and the bum time

to be longer. We assume that the thrust versus time

profiles of the high and low temperature motors are

accurately known from experimental data. It is clear that

the uncertainty in propulsion thrust can be steadily

reduced as information is added to the analysis. For

example, if the temperature at launch could be specified

within some experimental measurement uncertainty, then

the propulsion uncertainty could be greatly reduced or

eliminated. If age of the specific motor to be fired were

known, then the uncertainty in performance due to age of

the propellant could be eliminated. With this combined

level of information, one could characterize the

propulsion characteristics as a variability.

3.4 Discretization

Activities

The discretization

and Algorithm Selection

and algorithm selection phase

accomplishes two related tasks. First, it converts the

continuum mathematics model, i.e., the differential

equations, into a discrete mathematics problem suitable

for numerical solution. Second, it provides the

methodology that will be used to determine how a

discrete set of computer solutions can be most

appropriately used to accommodate the nondeterministic

features of the analysis. The conversion from continuous

to discrete mathematics is fundamentally a mathematics-

approximation topic; errors and not uncertainties are the

dominant loss-of-confidence issue in this phase. (Note

that for the remainder of the paper when we refer to

“errors,” we will only be referring to acknowledged

errors, unless otherwise stated.) Some may question why

this conversion process should be separated from the

solution process. We argue that this conversion process

is the root cause of more difficulties in the numerical

solution of nonlinear PDEs than is generally realized.41Y42

When traditional nondeterministic methods are applied to

systems described by differential equations, then one is

dealing with stochastic differential equations. The discrete

solution to these type equations, however, is much less

developed than for deterministic differential equations.43

As shown in Fig. 2, we identify four activities in

the discretization and algorithm selection phase:

discretization of the PDEs, discretization of the boundary

conditions and initial conditions, selection of the

propagation methods, and design of computer

experiments. The types of errors that should be identi~ed

in the discretization of the PDEs, BCS, and ICS are those

associated with possible inconsistencies between the

discrete form of the equations in the limit and the

continuum form of the equations. This normally is

evaluated by analytically proving that the numerical

algorithm approaches the continuum equations as the

discretization size approaches zero. For simple

differencing methods, this is straightforward. For

complex differencing schemes, such as essentially non-

oscillatory schemes, flux limiter schemes, and second-

order, multidimensional upwind schemes, determining

the consistency of the schemes can be difficult. For

complex multiphysics in coupled PDEs, it is impossible

to prove. Related issues are also treated in the

discretization activities of differential equations, such as:

Are the conservation laws satisfied for finite spatial ~tid

sizes, or are mass, momentum, and energy only

conserved in the limit? Does the numerical damping

approach zero as the mesh size approaches zero? Note

that discretization of PDEs are also involved in the

conversion of Neumann and Robin’s, i.e., derivative,

boundary conditions into discrete equations. We have

included the conversion of continuum initial conditions

to discrete initial conditions not because there are

derivatives involved, but because spatial singularities

may be part of the initial conditions. An example is the
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time dependent decay of a vortex for which the initial

condition is given as a singularity. Our point is also

valid, indeed much more common, when singularities or

discontinuities are specified as part of the boundary

conditions.

The selection of propagation methods and design of

computer experiments in Fig. 2 both address the

conversion of the nondeterministic elements of the

analysis into multiple runs, or solutions, of a

deterministic computational simulation code. Selection

of a propagation method involves the determination of an

approach, or,approaches, to propagating variabilities and

uncertainties through the computational phases of the

analysis. Examples of methods for ropagating

variabilities include: reliability methods;
“ ‘amf%methods such as Monte Carlo or Latin Hypercube; ~

or statistical design approaches.47 Methods for the

propagation of uncertainties defined using non-

probabilistic representations, e.g., possibility theory and

fuzzy sets, are a subject of current research.48-51 The

design of computer experiments task performed as a part

of this phase is driven to a large extent by the

availability of resources and by the requirements of the

analysis. Establishing an experimental design often

involves more than just implementation of the

propagation method specified above. The problems

associated with large analyses can often be decomposed in

a way that permits some variables and parameters to be

investigated using only portions of the code or, perhaps,

simpler models than are required for others. This

decomposition of the problem and selection of

appropriate models, together with the formal

determination of inputs for the computer runs, can have a

major effect on the uncertainty introduced into the

analysis in this phase. This activity is performed here

because this detailed specification of inputs and models

will impact programming requirements, as well as the

running of the computer model in the numerical solution

phase. These tasks may be performed differently for

different mathematical models and may involve the

specification of probabilities associated with different

model choices.

For the missile flight example, the same

discretization method was applied to both 6-DOF and the

3-DOF mathematical models. This resulted in two

discretized models, but they only differ in the differential

equations being solved. A Runge-Kutta-Fehlberg 4(5)

method was chosen to solve each system of 0DEs.52

The RKF method is fifth order accurate at each time step,

and the integrator coefficients of Cash and Karp were

used.58 The method provides an estimate of the local

truncation error, i.e., at each step, so that the estimated

numerical solution error can be directly controlled by

adjusting the step size as the solution progresses. The

local truncation error is computed by comparing a fourth

order accurate

solution. The

variability was

method. LHS is

solution with the fifth order accurate

method chosen for propagation of

the Latin Hypercube Sampling (LHS)

a random sampling method for choosing

discrete values from a probabilistically defined

nondeterministic variable or parameter, and often provides

an advantage in efficiency over strict Monte Carlo

sampling. For propagation of the uncertainty, we simply

chose three possible propulsion characteristics to bound

the solution and provide a nominal result. The

experimental design task for this example is simple

because one of our objectives is to compare models of

different fidelity. Hence, the experimental design calls for

performing the same number of Latin Hypercube

calculations for both the 3-DOF and 6-DOF models. In

an actual analysis this phase would include selecting how

to mix computer runs between the 3-DOF and 6-DOF

models and determination of how results from both

models might be combined to maximize the value of the

computations. This maximization process is a research

topic of major importance for complex systems.

3.5 Computer Programming Activities

Figure 2 identifies three activities in the computer

programming phase: input preparation, module design

and coding, and compilation and linkage. Input

preparation refers to the analyst’s conversion of the

mathematical and discrete model elements into equivalent

data elements usable by the application code. The second

and third activities relate to the building of the

application code itself. Here subroutine modules are

designed and implemented through a high-level

programming language. This high-level code is then

compiled into object code and linked to the operating

system and libraries of addhional object code to produce

the final executable code.

The correctness of the computer programming phase

is most influenced by unacknowledged errors, i.e.,

mistakes. The potential for mistakes in all three of these

activities is enormous. In addition to the most obvious

programming bugs (which still occur frequently, despite

being obvious), there is the more subtle problem of

undefined code behavior. This occurs when a particular

code syntax is undefined within the programming

language, leading to executable code whose behavior is

compiler-dependent. Compilation and linkage introduce

the potential for further errors unbeknownst to the

developer. Primary among these are bugs and errors in

the numerous libraries of object code linked to the

application. These libraries can range from the

ubiquitous, such as trigonometric functions, to matrix

inversion and the solution of special classes of ODES and

PDEs. Such libraries allow the developer to reuse

previously developed data handling and numerical

analysis algorithms. Unfortunately, the developer also

I

.

.
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inherits the undiscovered or undocumented errors in these

libraries. There is also the possibility that the developer

misunderstands or makes an error in the values passed to

the library routines.

The recognition and elimination of programming

errors, although not generating much excitement with

computational physicists, remains a major cost factor in

producing highly verified software. Even with the

maturity of the software quality assurance methods,

assessing software quality is becoming more difficult

because of massively parallel computers. In our opinion,

the complexities of optimizing compilers for these

machines, of message-passing and of memory-sharing,

are increasing faster than the capabilities of software

quality assessment tools. As a case in point, debugging

computer codes on massively parallel computers is

moving toward becoming a nondeterministic process.

That is, the code does not execute identically from one

run to another because of other jobs executing

simultaneously on the massively parallel machine. It is

still a fundamental theorem of programming that the

correctness of a computer code and its input cannot be

proven except for trivial problems.

The computer code that was used for the missile

flight example was the TAOS code.54 This is a general-

purpose flight dynamics code that can be used for a wide

variety of guidance, control, and optimization problems

for flight vehicles. We used only the ballistic flight

option to solve both the 6-DOF and 3-DOF equations of

motion. Concerns with coding, compilation, and linkage

on massively parallel computers were not a factor in this

example problem because program execution was

performed only on Unix workstations.

3.6 Numerical Solution Activities

As shown in Fig. 2, we have identified four

activities occurring in the numerical solution phase:

spatial and temporal convergence, iterative convergence,

nondeterministic propagation convergence, and computer

round-off accumulation. Spatial and temporal converg-

ence addresses the accuracy of numerical solutions using

finite spatial grids and finite time steps. These two can

be grouped into the general category of truncation error

due to the discrete solution of PDEs. By iterative

convergence we mean the finite accuracy to which

nonlinear algebraic, or transcendental, discrete equations

are solved. Iterative convergence error normally occurs in

two different procedures of the numerical solution: 1)

during the iterative convergence which must be achieved

within a time step and 2) during the global iterative

convergence of an elliptic PDE, i.e., a boundary value

problem. Examples of the iterative convergence which

must be achieved during a time step are: intra-time step

iteration to solve the unsteady heat conduction equation

when the thermal conductivity depends on temperature,

and the iterative solution of nonlinear constitutive

equations. Iterative convergence error is different from

error caused by finite precision arithmetic, i.e., round-off

error.

Nondeterministic propagation convergence refers to

activities related to adjustments in, or further

specification of, inputs determining specifics of the

multiple deterministic computer runs. Some methods for

uncertain y propagation and experimental design rely on

run-time results to help direct further computer

experimentation. Reliability methods, for example, focus

on finding a specific point (for functional expansion) that

provides a ‘best approximation’ to system performance.

Convergence to this point is determined by the change in

the movement of the approximation to this point from

one computer run to the next. It is clear that the

nondeterministic propagation convergence error, as well

as those discussed in the previous paragraph, are all

acknowledged errors.

For the flight dynamics example, the numerical

solution method used a variable time step so that the

local truncation error could be directly controlled at each

step. The local truncation error is estimated at each step

for each state variable for each system of differential

equations. For the 6-DOF model there are 12 state

variables, and for the 3-DOF model there are 6 state

variables. Before a new time step can be accepted in the

numerical solution, a relative error criterion must be met

for each state variable. If the largest local truncation error

of all the state variables is less than 0.6 of the error

criterion, then the step size is increased. Quantification of

local solution error is important not only to measure its

impact on an individual solution, but also to precisely

determine its interaction with the variability and

uncertainty in the problem. In the solution of PDEs for

complex systems, general procedures for estimating

solution error are very difficult to develop and compute.

Global estimates of a posteriori solution error are

commonly made with finite element methods, but local

error estimates are not available. For finite difference and

finite volume methods Richardson’s method can be used

to estimate local truncation error, but this becomes quite

computationally expensive for complex problems.

3.7 Solution Representation Activities

In the solution representation phase shown in Fig.

2, we have identified five activities: input preparation,

module design and coding, compilation and linkage, data

representation, and data interpretation. The first three

activities are very similar to those discussed in the

computer programming phase. The data representation

task includes two types of similar activities: first, the

representation of individual solutions over the

independent variables of the PDEs and, second, a
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summary representation that combines elements of the

multiple individual deterministic computer runs.

Representation of individual solutions refers to the

construction of a continuum solution based on the

numerical solution at discrete points in space and time.

Data representation errors originate as a result of the

inaccurate or inappropriate construction of continuous

functions from the discrete solution of the PDEs in the

post processor. Examples are oscillations of the

continuous function between discrete solution points due

to the use of a high-order polynomial function in the

post processor and interpolation of the discrete solution

between multiblock grids such that conservation of mass,

momentum, and energy are not conserved. Note that we

mean inaccurate construction with respect to the discrete

solution, not with respect to the continuum PDEs. To

clarify this point, consider the numerical solution of a

shock wave passing through a fluid or a solid and the

shock wave is physically modeled as a discontinuity in

the continuum PDEs. If the discretization method

approximates the discontinuity with a continuous

function, e.g., a shock capturing method, then in the

discrete representation the shock wave is no longer

discontinuous. As a result, the construction error should

be judged with respect to the continuous function

approximation of the discrete solution; the discontinuity

was lost in the discretization and it cannot be recovered

here.

Representation of a nondeterministic simulation

from the individual deterministic computer runs refers to

the compilation of these multiple solutions into

statistical or probabilistic measures that can be used to

address the requirements of the analysis. This can include

developing summary descriptions of the solution and

discriminating which parts of the represented solutions

will be reported through tables and figures. Errors can

occur in the representation of a nondeterministic solution

as a result of integrating the ensemble of individual

solutions in a way which is inconsistent with the

specified propagation method. Data representation errors

are principally acknowledged errors in that a correct or

consistent discrete-to-continuum mapping is known fkom

the choice of discretization methods.

The data interpretation activity refers to the human

perceptions or impressions that are formed based on the

observation of the represented solutions. If the

perceptions or impressions are correct, then knowledge or

understanding is generated. If they are incorrect, then an

unacknowledged error has occurred. In other words, data

interpretation errors occur when a user incorrectly

interprets the numerical solutions. Examples of

interpretation errors are: concluding that a computed

solution is chaotic when it is not, or interpreting a

computed flow as turbulent when it is only a spurious

numerical solution. Importantly our definition of data
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Tree-Structure for Models, Solutions, and

Representations in the Missile Flight Example

interpretation errors does not include inappropriate

decisions made by the user based on the interpretation,

such as incorrect design choices or inept policy decisions.

.
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3.8 Summary Comments

Figure 5 illustrates the multiple models, numerical

solutions, and solution representations that are addressed

in the missile flight example. For this example problem

six conceptual models are identified, many more are
Y implied, but only one is selected for further development

and amdysis. This single conceptual model spawns two

alternative mathematical descriptions, both of which are
;

carried through the remaining phases of the modeling and

simulation process. For simplicity Figure 5 then shows

the further development of only one of these

mathematical models, although it is understood that

identical development of the mathematical Model 1 is

taking place in parallel with the mathematical Model 2.

The discretization and programming phases identify

alternative model choices that are not considered fin-ther.

Continuing into the numerical solution phase,

nondeterministic effects that were identified in the

conceptual model and further defined in the mathematical

modeling phase are computed via multiple deterministic

numerical solutions. How these solutions were computed

was specified in the propagation method identified in the

discretization and algorithm selection phase. Finally, in

the solution representation phase, the multiple solutiQns

are reintegrated in order to represent the nondeterrninistic

solution.

It is clear from this example that the m,odeling and

simulation process for complex systems is fundamentally

the identification and use of multiple scenarios, analyses,

and computations. At each phase of this process it is
frequently ,possible to identify more than one viable

choice of models or parameters that can be used to obtain

a computational result. As these multiple model choices

propagate through subsequent phases, a tree structure of

potential computational results is developed.

4. COMPUTATIONAL RESULTS

Before the computational results from the missile
flight example are presented, a few details must be given

concerning the calculations. The missile is assumed to be

launched from an aircraft flying straight and level at an

altitude of 30 kft. above sea level and at a speed of 700

ftlsec. Assume a spherical, non-rotating earth. Define an

earth fixed, three-dimensional, cartesian coordinate

system, where x is vertical, z is in the direction of the
*

aircraft flight, and y is normal to the xz plane. Let the

origin of the xyz coordinate system be at sea level.

. Assuming zero disturbance of the aircraft on the missile

during launch and assuming uniform freestream flow

approaching the missile, then the initial conditions for

the 6-DOFequationsof motion are

x=30, 000 ft., y=z=o.

Vx = Vy = O,, Vz = 700 ftfsec.

cx=p=+=o.
p=q=r=().

CL ~, and @ are the pitch, yaw, and roll angles of the

missile, respectively. p, q, and r are the roll rate, pitch

rate, and yaw rate of the missile, respectively. The initial

conditions for the 3-DOF equations of motion are given

by the x, y, z and Vx, Vy, and v= conditions given

above. Assume the fluid properties of the atmosphere are

given by the 1976 U.S. Standard Atmosphere and that

the winds are zero over the entire trajectory .55 The

trajectory calculation is terminated when x = O., i.e., at

sea level.

For convenience, detailed missile characteristics were

taken to be those of the Improved Hawk missile, since

these were readily available.56 Missile moments of

inertia, center of mass, rocket motor thrust, and mass

flow rate of the rocket motor are given in Ref. 57. All of

these parameters are functions of time during rocket

motor operation but are constant after motor burnout.

The rocket motor nominally operates for 24.5 sec.,

which is about half of the total flight time of the

missile. The aerodynamic force and moment coefficients

are assumed constant with pitch, yaw, and roll angle of

the missile, i.e., linear aerodynamics is assumed.

However, the aerodynamic force and moment coei%cients

are functions of Mach number. The system response

presented is the range of the missile, since it captures

most of the trajectory characteristics of interest.

Complete flight dynamics results are given in Ref. 57.

To illustrate the combined effects of variability,

uncertainty, and error in the example, we select 500

values of initial mass through the LHS method. We then

compute 500 values of range using combinations of the

two mathematical models, the three thrust models, and

five selected values of solution error. Our purpose is to

study and understand the effects and interactions of these

sources of total uncertainty. We do not address in this

paper how all possible sources, many of which have be

suggested earlier, could be represented and propagated in

this flight dynamics example nor do we address the most

appropriate way to summarize the effects of these total

uncertainty sources for decision makers.

4.1 Effects of Mass Variability

The first source of total modeling and simulation

uncertainty examined was the variability of the initial

mass of the missile. The mean initial mass was 1378.98

lbs, of which 732 lbs was inert mass and 647 lbs was

propellant. As mentioned in Section 3.3, a normal

probability distribution for initial mass variability was

assumed. The standard deviation, crw, was assumed to be

10 lbs. Although it is not important for this example

problem, Ow = 10 lbs is consistent with actual missile
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systems of this size.58 We investigated the effects of

numerical solution error for both the 6-DOF and 3-DOF

models to be certain that this error was not entering into

the mass variability results. We computed solutions with

per step, relative, truncation error criteria of 10-12, 10-9,

and 10-6. Comparing these solutions at the end of the

trajectory we found that error criterion of 10-12 and 10-9

produced the same values of the final range to seven

significant digits. As a result, we used 10-9 for all

remaining calculations when solution error was not of

interest. Using this error criterion the computer run time

on a SUN Spare 20 workstation was 49 sec. and 1 sec.,

respectively, for one 6-DOF and one 3-DOF solution.

Since computer run time was not an issue, we

computed 500 Latin Hypercube Sample (LHS) solutions

for both the 6-DOF and 3-DOF models. Shown in Fig. 6

is the histogram from the LHS centering the weight at

1379 Ibs and using bins of width 5 lbs. As can be seen

with this number of samples, the histogram is a good

approximation to the assumed normal distribution. Using

LHS and 500 samples, the mean value was computed to

be 1378.984 lbs, and c$w = 9.993 lbs. The 500 samples

is roughly a factor of 10 higher than is normally needed.

We chose this large number so that we could essentially

eliminate any sampling error in the analysis. Since the

same random number generator and the same seed were

used on both the 6-DOF and 3-DOF models, each model

computed trajectories using exact]y the same missile

weights. Indeed, for all results given in this paper,

exactly the same sampled initial missile weights were

used.
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Figure 6

Histogram from LHS for Mass Variability

Figure 7 shows the computed range of the missile as

a function of the initial mass for both the 6-DOF and 3-

DOF models. The nominal thrust profile for the rocket

motor was used. For both models, the missile range is

linear for this small variation in initial weight. However,

the lower fidelity model (3-DOF) introduces a bias error

of 0.040 nm in range which is constant for all weights

sampled. The generation of a bias error in the response of

the system is disturbing because it might go undetected if

the higher fidelity model results or experimental
measurements were not available. One does not, in
general,expectthis result.Lower fidelity models are used

with the hope that the computational results will at least

be distributed around the correct answer. For this

relatively simple physics system one can easily see how

this bias error in range occurs. The arching trajectory of

the missile in a plane causes a small positive mean angle

of attack during most of the trajectory. Computational

results from the 6-DOF trajectory show this value to be

about 0.01 to 0.02 deg. after the initial disturbance at

launch decays .57 This angle of attack causes a lift

component on the missile, i.e., a small gliding effect,

which results in a slightly longer trajectory. The lower

fidelity model does not account for this physics, and as a

result, the prediction of range is consistently shorter.

From this understanding of the physics, one can then see

that the magnitude of the bias will depend on a host of

additional parameters that were not investigated, e.g.,

initial launch altitude, initial launch angle, and the

aerodynamic lift coefficient.
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Variability in Range due to Variability in Initial Weight

Figure 8 shows frequency data of the LHS samples

as a function of range off-set from the mean value range

for the 6-DOF trajectory: 19.552 nm. That is, the range

computed for the mean weight of 1379.05 lbs for the 6-

DOF trajectory is defined to have zero offset. In this

figure the bias error in range of 0.040 nm of the 3-DOF

model is seen as a shift of distribution to the left, i.e.,

shorter range. The frequency plot shows the distribution

produced by each model is remarkably similar, as might

,

.
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be expected from the results of Fig. 7. For the 6-DOF

model the standard deviation in range is computed to be

0.0770, whereas for the 3-DOF model, OR = 0.0766.
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Figure 8

Frequency Data from LHS for Range Offset

Due to Initial Weight

When nearly identical frequency data are computed

for different fidelity models and computer resources

restrict making all computations using the high fidelity

model, the following design of computer experiment

strategy is commonly used. Runs are initiated with the

same random number seed with each model, and the

distributions of the ranges of each model are plotted.

These runs are compared to determine if a bias shift in

the mean of the distributions has occurred. If a bias does

occur, then the lower fidelity model is “calibrated to

eliminate the bias and then used for the hundreds or

thousands of runs typically needed for estimation of total

uncertainty. This same calibration strategy is used in

computational simulations of complex processes when

experimental measurements are used for the benchmark.

4.2 Effects of Thrust Uncertainty

As we discussed in Sections 3.3 and 3.4, our

approach to determining the uncertainty in the trajectories

due to uncertain temperature of the rocket motor is to

compute bounding trajectories using three thrust profiles:

a nominal profile, the highest profile resulting from the
#

highest temperature allowed by the manufacturer, and the

lowest profile resulting form the lowest temperature

allowed by the manufacturer. To be representative of

thrust uncertainty in actual motors, we chose the changes

in performance that have been experimentally measured

for the Standard Hawk motor.59 At the highest allowed

temperature of 120° F, the total impulse of the motor is

270 above the nominal performance, but the bum time is

decreased by 770. At the lowest allowed temperature of

-20° F, the total impulse of the motor is 290 below the

nominal performance, and the burn time is increased by

790. Stated qualitatively, the high temperature motor has

a higher net performance over a shorter bum time, and

the cold motor has a lower net performance over a longer

bum time.

Figure 9 shows the 6~DOF computed range of the

missile for each of the three temperature conditions of the

motor as a function of initial weight variability. It can be

seen from Fig. 9 that, as expected, the motor temperature

uncertainty produces a shift in range: the high

temperature motor flying 0.625 nm further than the

nominal motor temperature, and the cold motor flying

0.616 nm shorter that the nominal motor. The linearity

of the missile range as a function of weight continues to

hold for both the high and low motor temperature cases.

It is also seen that the uncertainty in range due to motor

temperature uncertainty is significantly larger than that

observed due to weight variability. The uncertainty in

range due to uncertain rocket motor temperature is 1.24

nm. The uncertainty in range due to mass variability can

be calculated as ‘@R = 4 x 0.077 = 0.308 nm, which is

only 25% of the uncertaintydue to thrust.
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Uncertainty in Range due to Thrust Uncertainty and Mass

Variability for 6-DOF Model

Figure 10 shows the frequency data from the LHS

for the 6-DOF model as a function of missile range for

each of the three motor temperatures. The mean range for

the cold motor is shifted 0.62 nm toward shorter range,

whereas the hot motor is shifted the same amount toward

longer range. The standard deviation in range for the hot

and cold motors are nearly identical: (OR)hot = 0.0773

nm and (~R)co]d = 0.0762 nm. Recall these are

essentially the same as the value of the nominal motor,

(~R)nom = ().()770 nm. The results for the hot and cold
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motors using the 3-DOF model are very similax to the 6-

DOF results presented in this section. The only difference

is that the 3-DOF results show the 0.040 nm bias in

range, as discussed in the previous section.
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Frequency Data from LHS for Range Uncertainty

due to Thrust Uncertainty for 6-DOF Model

We argue that the source of the potentially large

uncertainty in missile performance due to motor

temperature uncertainty should be characterized as lack of

knowledge. Some would argue that the motor

temperature uncertainty could be characterized as a

variability instead of an uncertainty. The argument is that

a probability distribution could be constructed based on

experimentally measuring motor temperatures for a large

number of actual missile deployments. The variability of

motor temperature could then be represented by a

probability distribution with some mean and standard

deviation. Although this is a reasonable approach, we

argue that the variability approach could lead to

misleading estimates of system performance for certain

deployment situations. For example, if the deployment

was in Alaska during the winter versus Saudi Arabia

during the summer, the average range of the missile

would be of little value. Additional knowledge of the

type of deployment could change the representation. A

deployment at a permanent installation with significant

environmental controlled space would be quite different

than a make-shift battlefield deployment. As more and

different kinds of knowledge are introduced into the

analysis, representations other than probability

distributions may be more appropriate, e.g., fuzzy sets,

belief functions, and possibility theory. Guidance on

developing these representations based on available

information, is not as well developed as probability

theory.

4.3 Effects of Solution Error

As discussed in Sections 3.4 and 3.6, we are able to
precisely control the numerical solution error at each step

of the numerical integration of the ODES. The per step,

relative, truncation error is estimated using the Runge-

Kutta-Fehlberg 4(5) method, and the time step is adjusted .

at each step so that the truncation error is less than the

specified error criterion. Figure 11 shows the computed

range of the missile for the 6-DOF model using the
.

nominal thrust profile as function of the mass variability

for five different per step, relative error criteria. There is

no effect on calculated range even though the error

criterion is varied over eight orders of magnitude: up to

1070errorper step. This was not expected. Intuition leads

us to believe that as the error criterion increased greatly,

the accuracy of the solution would degrade. For certain

state variables, for example, those that are periodic, the

solution accuracy degrades only slightly. Most variables,

including output variables that are derived from state

variables, like range, do not degrade because the error

criterion must be satisfied by all 12 state variables. The

state variables that have the highest frequency are those

that will restrict the growth of the time step and the

resulting growth in solution error. The highest frequency

state variables are the pitch rate, q, and the yaw rate, r.

Both have a frequency of 1 to 2 Hz. This limits the

maximum time step to 0.1 to 0.2 sec. so that this

element of physics can be adequately computed. All

lower frequency state variables are computed much more

accurately than required by the errorcriterion.
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Uncertainty in Range due to Solution Error

and Mass Variability for 6-DOF Model

Figure 12 shows the 3-DOF computed range using

the nominal thrust profile as a function of mass

variability for five values of the per step, relative,

truncation error criterion. These five error criteria are the
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same as used in the 6-DOF calculation illustrated in Fig.

11. The 3-DOF model has a completely different

sensitivity to numerical solution error as compared to the

high fidelity model. For a relative emor of 10-4 slight

roughness in the range as a function of weight can be
. seen. For a 10-3 error, the amplitude in roughness of

range increases to 0.035 nm. This variation in amplitude

i can occur over a very small change in weight. For

example, near the mean weight of 1379 lbs, a jump of

0.035 nm can be seen over a change in weight of less

than one-tenth of a pound. This type of predicted system

response roughness due to solution error has been seen

by many investigators, particularly those using first order

response surface methods and those using optimization

methods that rely on numerical differentiation of the

system response.
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Uncertainty in Range due to Solution Error

and Mass Variability for 3-DOF Model

As the numerical error is increased further, to 10-2

and 10-1, Fig. 12 shows that a drop in the predicted range

occurs. This introduces a bias error in range similar to

that observed in the earlier comparison of the 3-DOF and

6-DOF models. The bias error varies slightly with

weight for 10-2 error but becomes constant at a value of

0.10 nm for 10-1 error. In addition, the range becomes an

extraordinarily smooth function of weight: the same

characteristic occurring at errors of 10-5 and smaller. To

, understand these unusual characteristics due to solution

error, one must examine how the integration step size is

changing to control the per step error in the state
. variables of the 3-DOF model. Contrary to the 6-DOF

model, there are no periodic state variables in the 3-DOF

system. As a result, the step size can increase rapidly

from the fixed initial value of 0.1 sec., i.e., all solutions

presented in this paper attempt to use At = 0.1 sec. in

stepping from t = O. If the step size results in an

estimated truncation error that satisfies the error criterion,

then the step is taken. If the estimated error is 0.6 of the

error criterion, then the time step is increased for the next

step. If it does not meet the error criterion, then the time

step is decreased until the error criterion is met. For the

3-DOF model, the time step increases rapidly because all

of the state variables are extremely smooth as a function

of time, relative to the 6-DOF model. When the error

criterion is changed from 10-3 to 10-4, Fig. 12, there is a

rapid loss in accuracy of the major physical characteristic

of the 3-DOF trajectory: the motor thrust profile. From

the initial condition until 4.5 sec. the motor thrust is

roughly 19,000 Ibs. Then it rapidly drops to a sustained

thrust value of about 3,600 lbs. for 20 sec., after which

thrust terminates. For error criteria less than 10-5, the

numerical solution very accurately captures these two

rapid drops in thrust. As the error criteria increases up to

10-3, the numerical error becomes more erratic,

depending on how the time steps fall with regard to the

two rapid drops in thrust. For error criteria of 10-2 up to

10-1, the error requirement becomes so loose that the

time steps jump across the rapid drops in thrust with
little notice.

4.4 Effects of Variability, Uncertainty, and

Error

This section discusses the computational results for

the combination of the mass variability, thrust

uncertainty, and solution error for both the 6-DOF and 3-

DOF models. Shown in Fig. 13 is the 6-DOF computed

range as a function of mass variability, for all three

thrust profiles, for the complete range of numerical

solution error. As was seen in Figs. 9 and 11, the

dominant characteristic is the very smooth variation in
range m a function of initial weight for all free thrust

profiles, regardless of the numerical solution error. The

high temperature and low temperature motor cases are

just as insensitive to solution error as the nominal motor

temperature case shown in Fig. 11. The frequency plots,

although not shown here, also show essentially no effect

of solution error. For example, for the cold motor for a

10-9 and 10-1relative error the mean range and standard
deviation are, respectively: R = 20.1771 and 6R =
0.0773 and R = 20.1766 and OR = 0.0774. As discussed
earlier, the higher fidelity model is remarkably
insensitiveto solutionerror because of the temporal fine
scale structurecontrollingthe time step.

Figure 14 shows the 3-DOF computed range as a
function of mass variability for a hot motor for the
complete range of solution errors. As the solution error
increases, the range calculation becomes even more
erraticthan that seen earlier for the 3-DOFmodel in Fig.
12.For an error criterionof 10-3and for weight samples

in the range of 1349to 1355Ibs, a nearlyconstantbias
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SolutionError for the High Temperature Motor for 3-

DOF Model

of 0.07 nm toward shorter range occurs. For weights

higher than 1355 lbs, the computed range wanders back

to near the correct value. At a weight of 1399 lbs, a

discontinuous drop of 0.08 nm in range occurs. When the

error criterion increases to 10-2, the bias switches to

longer ranges for all weights. When the error criterion

increases to 10-], the bias error switches back to shorter

ranges for all weights. The frequency plots for this hot

motor case, although not shown here, also show erratic

behavior for error criteria greater than 10-5. That is, the

frequency plots for range show even more sensitivity to

solution error than the plot of range as a function of

weight. The computed characteristics of the cold motor

case are similar to those for the hot motor case.

4.5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFinal Comments on the Results

Probably the most surprising computational results

obtained in this example problem are those related to the

aggregation and interaction of numerical solution error

with variability and uncertainty. The counter intuitive

result that the higher fidelity model is much less

sensitive to solution error than the lower fidelity model

needs further comment. The discussion given earlier for

the controlling factor in solution error for each model

provides an explanation to why this surprising result

occurs. These results have implications for the effect of

numerical solution error on uncertainty analyses when

the mathematical model equations are given by PDEs.

The per-step numerical solution error in the present work

was precisely controlled by the adaptive step-size control

of the ODE integrator. This level of solution error

control and robustness does not presently exist in the

numerical solution of PDEs. Even if one only considers

elliptic boundary value problems, robust adaptive grid

generation for the control of local spatial discretization

error does not presently exist. For certain special cases,

such as linear boundary value problems or problems with

no large gradients, reliable methods for adaptive grid

control do exist.

It is our view that the present results for the widely

different sensitivity of each mathematical model to

solution error would only apply to the numerical

solution of PDEs with robust, adaptive, ~tid generation

methods. If one were to use non-adaptive grid generation

methods for the solution of the PDEs, very different

sensitivities would occur than those observed here. Non-

adaptive grid methods would be analogous to a constant

time step method in the solution of ODES. For the

present example problem we computed numerical

solutions using a constant time step over the length of

the trajectory for the 6-DOF and 3-DOF models. Table 1

shows the numerical error in range for various constant

time steps for both models using the nominal weight and

nominal thrust. As the time step increases, the numerical

error for both models increases, but the 6-DOF model

error increases more rapidly. When the time step becomes

roughly half of the period of the finest scale structure in

the 6-DOF model, the error increases exponentially. For

a time step of 0.1, the error in the 6-DOF solution has

become so large that the trajectory is no longer

computable. For the 3-DOF model, the same time steps

cause a gradual increase in the solution error. This table

shows the opposite sensitivity to numerical error as

compared to the adaptive time step method.

‘

.
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Time 0.001 0.01 0.07 0.09 0.1

Step

6-DOF 0.0000 0.004 0.038 0.397 =

3-DOF 0.0000 I 0.004 I 0.040 I 0.052 I 0.058

Table 1
‘.

Error in Range for 6-DOF and 3-DOF for Constant Time

Steps

5. SUMMARY AND CONCLUSIONS

We have presented a new framework for modeling

and simulation that combines three viewpoints; the

systems view from operations research, methods for

propagation of uncertainty, and the numerical solution of

partial differential equations. The activities that are

conducted in each of the phases of modeling and

simulation were discussed in detail. We have carefully

defined the meaning of and distinguished among

variability, uncertainty, and error. In each of the activities

in each phase of modeling and simulation we discuss

which type of source (variability, uncertainty, or error)

typically dominates the activity. Particular emphasis is

given to those features of the framework that deal with

the nondeterministic features of the analysis, such as

representations of variability and uncertainty, and

propagation methods. Our framework applies regardless

of whether the discretization procedure for solving the

partial differential equations is based on finite elements,

finite volumes, or finite differences.

This framework was applied to a missile flight

example problem. The analysis began at a high-level

system view and culminated with the computation of the

flight dynamics of the missile. Many conceptual model

alternatives were discussed so that the multitude of

scenario and analysis options for a complex system can

be better recognized. Although this example resulted in

the solution of ordinary differential equations rather than

PDEs, most of the features of the new framework could

be demonstrated. The example showed how alternate

mathematical models of the physical phenomena might

be compared and utilized. As is common in complex

system analyses, a hierarchy of mathematical models can

be identified and employed. However, constraints on

computer resources commonly require that the higher*
fidelity model be used to calibrate the lower fidelity

model, similar to the use of experimental data in the
. calibration of complex simulations. Research is needed in

the future to develop guidelines concerning how the use

of multiple mathematical models can be optimized, given

the constraints of varying model fidelity and widely

different computer requirements needed for solution. This

example computation yielded unexpected results for the

sensitivity of alternate mathematical models to numerical

solution error. There can be widely differing sensitivities

to numerical error depending on whether solution error is

controlled with adaptive mesh refinement versus fixed

mesh size. We suggest that adaptive mesh refinement

will also produce much more robust results for response

surface methods, sensitivity analyses, and optimization

methods.
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EXECUTIVE SUMMARY

A technique is presented for studying the effects of model-form uncertainty and model parameter

uncertainty on the results of numerical simulations. A generalized metarnodeling approach is

used in which model-form is included as a qualitative input and quantitative inputs can be either

global to the metamodel or nested within a specific model-form. A method is also presented for

the systematic development of a corresponding experiment design based on the D-optimality cri-

terion and Effective Independence. A straightforward least squares approach is used to fit the

metamodel using the developed experiment design. Multiple simulation outputs are. easily han-

dled. The “goodness” of the computed metamodel is quantified using 12 criteria which are

described. The approach is applied to a simple axially forced cantilever beam structure repre-

sented by three different models. Both root mean square and peak displacement of the end of the

beam are considered as outputs. Quadratic polynomial based metarnodels are fit and their good-

ness is examined using the criteria suggested. The metamodels are applied to quantify the effects

of uncertainty on the simulation outputs using a decoupled Monte Carlo analysis in which the

inputs are assumed to be normally distributed and prior probabilities are assumed for the model

forms. The extreme results and output probability distributions compare favorably with the

results of a much more computationally intensive Monte Carlo analysis. The proposed general-

ized metamodeling approach provides a valuable tool to economically investigate the propagation

of both model-form and model parameter uncertainties in both deterministic and nondeterministic

analyses which would otherwise be computationally prohibitive.

.
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1. Introduction

Numerical simulations

munities to help make

of system response are used throughout the research and industrial com-

important system design and performance decisions. These simulations

contain errors and uncertainties from many diverse sources. In order to make proper decisions, it

is important to understand how errors and uncertainties propagate through computational simula-

tions into computed results. A particularly important source of error is the analytical model of the

system to be simulated. Sources of error and uncertainty within analytical models include discret-

ization effects, nonlinearities, parameter uncertainties, improper model form, etc.

Model parameter uncertainty has probably received the most attention in the literature. Sensitiv-

ity analyses can be performed in an attempt to quantify uncertainty in the simulation output by

adjusting model parameters and running the numerical solution in a repeated fashion. Depending

on the size and complexity of the simulation, the computational cost of this type of analysis can be

quite high- If the uncertainties in model parameters follow known probability distributions, the

ultimate goal of uncertainty quantification would be to determine the corresponding probability

distributions of the simulation outputs of interest. Accurate prediction of these distributions

requires Monte Carlo analysis incorporating many thousands of simulation runs. In most cases,

the computational cost is prohibitive.

In many situations, the computational cost associated with running the full simulation during

deterministic sensitivity analyses, optimization analyses, and nondeterministic analyses can be

greatly reduced by generating what is commonly referred to as a Response Surjace or Metamodel.

An appropriate functional form is assumed for the simulation response of interest and then fit to

the output produced by the simulation of a set of numerical experiments. In contrast with the full

numerical simulation, evaluation of the metarnodel is very fast. Assuming that the underlying

system is itself deterministic, the prediction of the response can be decoupled from the probabilis-

tic Monte Carlo sampling using the metamodel. This is often referred to as “decoupled” Monte

Carlo analysis.

The metamodel approach has recently received attention by the structural dynamics community.

Applications include structural optimization [1, 2] and probabilistic design [3-5]. Romero and

Bankston, from Sandia, are currently investigating the use of a response surface based on finite

element / lattice sampling in decoupled Monte Carlo analysis [6]. All of this work focuses on

model uncertainty due uncertainty in model parameters. An equally important source of uncer-

tainty is due to uncertain model form. While a seemingly small amount of work has been per-
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formed considering model form uncertainty from the standpoint of Bayesian analysis [7-10], none

has been found within the context of structural dynamics and the use of metamodels in decoupled

Monte Carlo.

*

This report details work that has been performed to include model form as a qualitative variable

within a metamodel that also includes quantitative variables representing model parameters. This

provides a general metamodel approach that can be used to investigate the effects of both model

form and model parameter uncertainty in both deterministic and nondeterrninistic analysis. The

report presents the generalized metamodeling approach, an approach for experiment design, quan-

tification of metamodel accuracy, and an application to a simple example.
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2. Development of Metamodels with Model-Form Inputs

The inputs to an analytical model can be categorized as either quantitative or qualitative. Quanti-

tative variables are those that vary smoothly and continuously between their lower and upper

bounds like mass, spring stiffnesses, elastic modulus, etc. On the other hand, qualitative input

variables vary discretely and their value or level has little if no physical meaning. In this analysis,

model form will be represented by a qualitative variable z that has as many levels as models that

are to be considered. For example, if there are three different models, z would take on the values

of .ZI= –1, Z2 = O,and Zq=1, corresponding to models 1,2, and 3, respectively.

In metamodel analysis, the quantitative variables are usually coded such that they vary continu-

ously between -1.0 and 1.0 using the relation

xi– Xio
xi =

A
(x.Ai=; ,- - Ximin) (1)

,cii

where xi is the ith coded input, Xi is the corresponding uncoded input, XiOis the nominal value of

the ith input, and Xi~i~ and Xi_ represent the lower and upper bounds on the range of the ith

uncoded input. The nominal value of the coded input variable always corresponds to 0.0. Coding

is performed to offset large possible differences in units between various model inputs which can

cause numerical error during fitting of the metamodel.

An important characteristic of quantitative variables that is peculiar to the application of model-

forrn is the fact that a particular input variable may only have physical meaning within a particular

model. For example, suppose there are two models being considered for an axial beam, one is a

continuous representation while the second is a lumped mass and spring model. Elastic modulus

of the beam material would be a meaningful input variable for the first model while values of

spring stiffnesses would be meaningful inputs for the second. Elastic modulus would not have

any influence on the second model, while spring stiffnesses would not affect the first. These quan-

titative inputs are said to be nested within the corresponding models. Therefore, quantitative vari-

ables come in two classes, global variables xi that are common to all models, such as an external

forcing frequency, and nested variables wi,j representing the jth variable nested to the ith model.

Note that Wi,j could also represent a nested qualitative variable. The model form variable z is a

global variable. Some quantitative or qualitative variables could be common to subsets of models.

This third class of variables will

the approach that is presented.

not be distinguished in this work but can be readily handled by
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In most metarnodel analysis, quadratic surfaces are assumed in the form of simple polynomials in

the input variables. This same approach is used here, but the formulation can be easily general-

ized to higher order surfaces and more sophisticated functions of the inputs, such as trigonometric

. functions, inverse functions, etc. Alternate basis function formulations will be the subject of

future investigation. Initially assuming a single output y for the simulation, such as an rms dis-

.
placement, the general form of the quadratic metamodel is given by

1 1!

[

n; ni n, I

Y= PO + ~~ixi + ~< ~4 ~ijxixj + ~~ ~ ai,jwi,j + ~~~i,jkwi.jwi,k + ?1~4&i,jqwi,jxq 1
i=1 i=] j=i iel j=l j=] k=j

m–1 m-1

[

1 11

+ ~yiZi + ~zi ~fii,jxj + )“. ~{ 6i, jkxjxk
i=] i=l j=l k=j 1

J (2)

number of global input variables

number of models

number of nested input variables in model i

regression coefficients for global variables

regression coefficients for variables nested to model i

regression coefficients for coupling between variables nested to model i and

global variables

regression coefficients for model form variable

regression coefficients for coupling between model form and global variables

globalhested formulation given by Eq. (2) contains the same number of terms as

would be obtained by nesting the global terms within each model. However, many of the terms

will later be found to be statistically insignificant and dropped from the metamodel. Due to this

fact, the globalhested formulation will in general produce a final metamodel with fewer terms.

It is also of note that the sums on the second line of Eq. (2) can produce terms in the metamodel

v that are higher than second order in the input variables even though the metarnodel is supposedly

restricted to quadratic terms. For example, suppose there are four models with four levels for z

and assume that there are no variations of any other global or nested inputs. The corresponding

metarnodel from Eq. (2) evaluated at all four model levels produces the set of equations
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& + Y*Z, + w; + I’3Z: = Y]

Al+ Y*Z2 + Y2Z; + w; = Y2

P,+ I’lz, + Y*Z; + ‘Y3Z: = Y3

Do+ Y1Z4 + Y2Z: + Y3Z: = Y4

(3)

where yi is the response for the ith model. It is apparent that, depending on the values of yi, the

metamodel could require up to four constants (PO,yl, y2, y~), and thus terms through Z3, to accu-

rately predict the response. In general, the metamodel should contain coupling terms between the

global terms in the quadratic representation and terms in z up to the power of m- 1.

The nesting of variables in Eq. (2) is handled by the introduction of the functions ~ which have

the general form

f“fi=
<=1 Zi — Zj
J#i

(4)

When the model form variable z takes on the value correspondingtothe~t.hmodel,~=1,Other-
wise, f = O. In this manner, depending on the current value of Z, the appropriate terms corre-

sponding to the current model form are either retained or excluded in Eq. (2).

In order to calculate the metamodel coefficients in Eq. (2), a sequence of simulations, or numeri-

cal experiments, is performed using predetermined settings for the input variables. The data for

the complete set of experiments is then combined into a matrix equation

X(3=Y (5)

in which X is the n=xp experiment design matrix, o is a column vector containing the model coef-

ficients, Y is a cohmm vector containing the responses from the numerical experiments, n. is the

number of experiments performed, and p is the number of terms in the metamodel. The coeffi-

cient vector is then estimated in the usual manner using least-squares

6= (x~x)-’XTY (6)

Each row of X corresponds to one of the prescribed experiments and each column corresponds a
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term within the assumed metarnodel. Initially, the full quadratic model in Eq. (2) is assumed.

Analysis of variance (ANOVA) is performed leading to statistical tests that can determine the sig-

nificance of each metamodel term [11]. Columns corresponding to insignificant terms are then

dropped from the experiment design matrix X and the coefficients for the reduced metarnodel ares

recomputed and checked again for significance. If additional terms are found to be insignificant,

J they are dropped and the process repeats. This process corresponds to a backwards stepwise

regression.

If multiple outputs of the simulation are of interest, they can be handled simultaneously by ini-

tially assuming the same full order experiment design matrix for both and again forming matrix

equation (2) where now for k different outputs

(7)

in which ~ is a column vector containing the ith response for the n. experiments and @iis a col-

umn containing the corresponding regression coefficients. Equation (7) can also be solved using

the least-squares approach in Eq. (6). The regression coefficients in each column of $ are

checked for significance and unimportant terms are dropped. Re-estimation and analysis of coef-

ficients in the backward stepwise manner then proceeds on an individual response type basis.

After final estimation, the models can be recombined into the form of Eq. (7) by adding zeros to

the individual columns of coefficients at the appropriate locations to expand back to the original

assumed metamodel size.

The proposed process essentially provides a procedure by which metarnodels for individual model

forms can be combined. This combined metarnodel offers several advantages. Only one regres-

sion model needs to be ‘fitted. By pooling the data from all the models, more degrees of freedom

for error are obtained. The significance of terms containing the qualitative model form variable

can be determined using statistical tests which sheds light on the significance of a particular

model. The effect of model form on the response uncertainty can be determined by assuming

some type of probability for each of the models in a decoupled Monte Carlo analysis.
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3. Numerical Experiment Design

In order to achieve the best possible metamodel representation of a simulation, the combined

parameter/model-form space must be sampled appropriately. The optimal points are selected

based on statistical experiment design. There is a vast literature in this area proposing a number

of standard designs such as Central Composite [12] and Box-Behnken [13], etc. These designs

are usually implemented for the estimation of relatively low order metamodels containing a rela-

tively small number of input variables. As the number of variables increases, coupled with the

inclusion model-form with nested and global parameters, the standard designs become costly and

difficult, if not impossible to generate. Therefore, this investigation is based upon computer gen-

erated experiment designs.

The best known and one of the most widely used approaches is the D-optimality design criterion

[11] which attempts to minimize a measure of the variance associated with the estimates of the

metamodel coefficients which is related to the moment matrix

ivf=*xTx

An important norm on the moment matrix is given by its determinant

(8)

(9)

Under the assumption of independent normally distributed model errors with constant variance,

the determinant of XTX is inversely proportional to the square of the volume of the confidence

region corresponding to the regression coefficients. A large determinant implies a small confi-

dence region which implies good estimates of the coefficients. A D-optimal design therefore

maximizes IMI over the design space.

There are several approaches available to determine the D-optimal design. Some, such as the

genetic algorithm, can be quite time consuming. The approach used here is a suboptimal

approach called Effective Independence (EfI ) [14]. Initially, a candidate set of experiments D is

produced. Each column of D represents one of the metamodel inputs in coded form. Columns

corresponding to quantitative inputs are given by

.

.
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~,_2zi-(N+l) (lo)
1—

N

in which N is the number of candidate experiments selected by the analyst, andn~ is a uniform

random permutation of the integers between 1 and N. This produces a variant of the Latin Hyper-

cube [15] with centered values of the coded inputs between -1 and 1. The column of D corre-

sponding to model-form is constructed as series of random permutations of the m values of z. In

this work, N is selected to be evenly divisible by m so that each model is represented in the candi-

date set of experiments an equal number of times- Once the candidate numerical experiments are

produced, the corresponding experiment design matrix X is generated using the general form

assumed for the metamodel in Eq. (2).

The Efl method determines the importance of each candidate experiment in D by examining X

and computing the N dimensional vector

ED= [xY]”* A-’{l}
P

(11)

where Y is a matrix containing the eigenvectors of the information matrix Q=XTX,“2 denotes a

term-by-term square of the resulting matrix in the brackets and
{1}

P is a p dimensional column

vector of 1‘s corresponding to the number of terms in the metamodel. It has been shown in Refs.

[16] and [17] that the Effective Independence of the ith candidate experiment, E~i, is related to the

determinant of the information matrix by the expression

~ _ IQI-IQ,I
D1—

H

(12)

in which ‘, represents the information matrix with the ith candidate experiment deleted from X.

Therefore, EDi corresponds to the fractional change in the determinant of the information matrix

if the ith candidate experiment is deleted. The values of ED~thus satisfy the relation

()<~Di<l.o (13)

where a value of 0.0 indicates that the corresponding candidate experiment will contribute nothing

to the identification of the

ment is absolutely vital to

metamodel coefficients, while a value of 1.0 indicates that the experi-

the identification. The experiment design process proceeds by sorting
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the entries in ED and deleting the lowest ranked experiment. The remaining experiments are then

reranked. In an iterative manner the large candidate set of experiments can be quickly reduced.

As each experiment is deleted, the determinant of the information matrix becomes smaller. At

each iteration, according to Eq. (12), the deletion of the lowest ranked experiment will produce

the smallest change in the information matrix determinant. Therefore, the method tends to pro-

duce an experiment design that maximizes the determinant of the information matrix, which is

also the goal of a D-optimal design. The number of required experiments in the reduced design

can be determined by iteratively eliminating experiments to the point where only p are left, corre-

sponding to the minimum number required for identification. At each iteration, the determinant of

the moment matrix can be computed using Eq. (9). The design which produces the maximum

value is used to identify the metamodel coefficients.

Variance criteria such as D-optimality assume that all the error associated with the metamodel is

random and do not consider systematic error or bias resulting from an insufficient metarnodel. It

has been noted that D-optimal designs tend to concentrate sample points at the fringes of the

design space while designs that spread the samples throughout design space provide greater pro-

tection against bias. It is believed that a weighting matrix can be used in conjunction with Eff to

penalize candidate experiments that are “far” from the center of design space. This could be used

to offset the tendency of the D-optimality criterion to place experiments at the corners of design

space. Future work will examine this issue in more detail.
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4. Quantification of Metamodel Accuracy

In order for the metamodel to be a useful tool, its accuracy needs to be quantified. Fox [4] sug-

gests twelve different tests that can be used to determine the goodness of the computed meta-

model. Each is briefly described in the following paragraphs.

4.1 Coefficient of Multiple Determination - R2

This statistic gives a measure of the amount of variability in the simulation data about the mean

value that is explained by the metamodel. A value of 1.0 implies that all variability in the data is

explained by the metamodel. In the backward stepwise regression process mentioned previously,

the process of dropping insignificant terms from the metamodel can continue until there is a non-

trivial change in the value of the statistic. The statistic is computed using the expression

R2=~x100
SST

(14)

in which SST is the total sum of squares and SSR is the sum of squares due to regression given by

*

where F is the mean value of the simulation data ~ and ~ is the corresponding value computed

by the metamodel. This statistic is not always a good measure of metamodel goodness because it

depends on the relative difference between the number of experiments ‘~ and the number of terms

in the metamodel. For example, if ‘e = P, R= is always 1.0.

The R2 statistic can be adjusted to account for the relative difference between experiments and

coefficients by computing the adjusted statistic R;

+1- (1~ (1-R’)
e
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While R* always decreases as terms are dropped from the metamodel, ‘~ can actually increase if

an unnecessary term is deleted. If there is a significant difference between R* and ‘~, there is a

good chance that insignificant terms are included in the metamodel. Values close to 1.0 are obvi-

ously good. More details can be found in [1 1].

4.2 t-Test Statistic for Metamodel Coefficients

This statistic tests the null hypothesis for each of the estimated coefficients
~~in the metamode~

It is computed using the expression

A

,0- b’_-
()
.

se bi

()se ii
A

in which is the estimated value of the standard error of b; given by

()se ;, = [CiiSz]]’z

(18)

(19)

where cij is the ith diagonal element from covariance matrix Q-’ andS2 is the estimate emor Vai-

ante

52 = ~(SST - SSR) (20)
n,-p

Statistic ‘Ois commred against the corresponding value from a t distribution table. Assuming a

‘, – P is the numbert < ‘(~’ ‘e – ~), Where ~ is the level of significance andtwo-sided test, if o

of degrees of freedom in the test, the null hvnothesis is accepted and the corresponding coefficient

t > ‘(~) ‘e – p) the corresponding coefficient is found to beis dropped from the metamodel. If o 7

statistically significant and retained in the metamodel. It is important to remember that this test is

a marginal one in that it tests for the significance of the ith coefficient assuming that the others in

the estimated model are all present. This test is usually performed at the 9570 confidence level or

a value of ~ = 0.05 and is equivalent to the p-value tests suggested by Fox.
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4.3 Variance Inflation Factor

This statistic provides a measure of whether there is multicollinearity among the independent

‘Z~ >10.0 indicates that multicollinear-variables in the metamodel. A rule of thumb is that anyF

ity maybe present [11]. At least two of the independent variables are highly correlated and only

, one of the two variables is needed in the metamodel. The statistic measures how much the vari-

ances of the estimated metamodel coefficients are inflated as compared to when the input vari-

ables are not linearly related. This is essentially a test for the independence of the columns in the

‘z~ = 1‘0, the ith column of X is not linearly dependent on theexperiment design matrix X. If

remaining columns of X. Otherwise, Vzq>1.0.Implies an inflated variance for the corresponding

metamodel coefficient. The statistic is computed by normalizing the columns of X to unit length

and eliminating the column of 1‘s corresponding to the zero intercept coefficient PO, forming the

matrix ‘~ . The ith variance inflation factor is computed as the matrix diagonal term

VIE = [(X;XJ-’],,
11

(21)

4.4 Condition Nmnber

Computing the condition number of the information matrix Q = “x gives a measure of its ill-

conditioning. Condition numbers greater than 100.0 indicate that some of the estimated meta-

model coefficients may have a fair amount of numerical error. This test is basically another test

for linear dependence of the columns of the experiment design matrix. It can be computed as the

ratio of the largest to smallest eigenvalues of Q.

4.5 Maximum Residuals

The ith residual error is calculated as

For the metamodel to be acceptable, the largest residual error ‘“~ must be acceptably low for the

case of interest. An estimated metamodel can satis~ all the listed goodness criteria, but if it pro-

duces errors that are unacceptable, it is of no use to the analyst-
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4.6 Hat-Diagonal - Influential Observations

This statistic is computed for each data point that is used to estimate the metamodel. It searches

for data points or experiments that have profound influence on the estimated model and a small

residual. This implies that if the data point was removed from the estimation analysis, the result-

ing metamodel would be vastly different. The metamodel or response surface tries to bend dra-

matically to fit through the influential data point. The best metamodels are those that fit a trend to

the data rather than twisting and turning too much. This statistic is based on the Hat matrix

H= X(X’X)-’ X’ (23)

The Hat matrix is an orthogonal projector onto the column space of X. It is therefore idempotent,

meaning that its trace is equal to its rank, which in this case is p. The average value of the diago-

n~ terns ‘ii is P’ne. The rule of thumb is that if

(24)

which is the average value, then the ith experiment is said to be a high leverage point and should

perhaps be deleted from the experiment design matrix [1 1].

4.7 Cook’s Distance - Influential Observations

This statistic also checks for influential data points in the experiment design, but unlike the Hat-

Diagonal, it looks for outliers, i.e. points with large residuals. Often, ‘ii ~d ‘, give ~alogous

results, but sometimes they will identi~ different points, so both statistics should be computed.

The ith experiment is said to be influential if the corresponding Cooks distance ‘i is greater than

the 50th percentile of an F distribution with numerator degrees of freedom given by p and denom-

inator degrees of freedom given by n – P. Practically, a value of 1.0 is usuzdly used as a cutoff

[1 1]. Therefore, if ‘f >1 ‘o, the ith experiment is influential

experiment design. The statistic is computed using the relation

and should be dropped from the

.

(25)



where ~ is the ith studentized

k

.

“

.

residual

(26)

4.8 Durbin-Watson D Statistic

This measure of goodness checks if the error temns in the metamodel are independent. Error

terms in a good metamodel have nothing to do with each other. Fox [4] states that in general, a

value of D close to 2.0 indicates that the errors are not correlated. The statistic basically tests for

a correlated error term within the metamodel

yi=~o+~oxli+L +&i (27)

where y, is the response from the ith experiment and the error term is

Ei = pzi.l + u,
(28)

This is an m]toregressive error model where P is the autocorrelation parameter. If P = O.O,

‘i = ‘j = ‘(o’ 02) and the errors are not correlated. If p <0-0, there is negative correlation and if

P >0-0 there is positive correlation between the errors. The usual hypotheses are tested

HO:p=O Ha:p>O

The D statistic is computed as

(29)

Upper and lower bounds, ‘L and ‘U, respectively, are given in tables in many texts such Neter et

al [18] to be used with the following decision rules.

If D>d~: conclude HO
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If”D<d~: conclude H.

1fd&D5du: test is inconclusive

If a test for negative correlation is required, compute D- = 4 – D and apply the same decision

process aswith D. Touseatwo-sided test

HO:p=O Ha:p#o

employ both one-sided tests separately but at a confidence level of %

4.9 Residual Plots vs. Predicted Values

This plot should show the residuals randomly scattered about zero. Otherwise, there may need to

be some transformation of the response variable. There should be no systematic tendencies and

the residuals should lie within a constant band about the origin indicating a constant variance.

More can be found in Neter, et al, pp. 111-123 [18].

4.10 Residual Plots vs. Independent Variables

These plots should have the same characteristics of random scatter as the residual plots in Section

4.9. If not, this may indicate that the input variable may have to be transformed. This type of plot

can be directly applied to global inputs but it seems to only be appropriate within the correspond-

ing model for nested inputs.

4.11 Test for Constant Variance

The main assumptions in fitting a metamodel are that the errors or residuals follow a normal dis-

tribution with a mean of zero and a constant variance. This test checks for constant variance and

is left for study in future work.

4.12 Shapiro-Wilk Test for Normality

This test checks to see if the residuals follow the desired normal distribution. If the errors are not

normally distributed, an underlying assumption of the metamodel process has been violated and

the corresponding model should not be used. This statistic is also left for future work.
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5. Numerncal Example

A simple numerical example is presented to illustrate the application of the metamodeling process

tomodel-form uncertainty. Thestructure to besimulated, pictured in Fig. la., isa simple axial
,

cantilevered beam with two sections of equal length but one section has twice the cross sectional

. area and thus twice the mass and stiffness. The total mass of the beam is 2.0 while the resultant

stiffness with respect to the right end is 100.0. The beam is sinusoidally forced as shown with a

frequency of 19.0 rad/sec and an amplitude of 300.0. The numerical simulation outputs of interest

are the root mean square (rms) displacement and the peak displacement at the force application

point.

Three different models are assumed for the axial beam. Model 1, shown in Fig. lb. is simply a

single degree of freedom oscillator in which half the total mass has been lumped in M2 and the

spring constant has been selected consistent with the overall beam stiffness. Model 2 is more

refined by having two degrees of freedom. However both mass and stiffness are still evenly dis-

tributed within the model as illustrated in Fig. lc. Model 3 is the most sophisticated of the three

with the mass and stiffness distribution reflecting the actual beam. Values for the Model 3 compo-

nents are shown in Fig. lc. In this analysis, the model-form variable Z, has the values -1, 0, and 1,

for models 1,2, and 3, respectively.

All model parameters, the forcing frequency, and the model-form will be considered as input vari-

ables for a metamodeling analysis. The D matrix representing a candidate set of experiments

must first be generated. The ith row of D has 10 entries representing the 10 coded input variables

in the order

D“=[x; “ .
%1 ~;,z %1 %,2 %1 %2 %3 W;,4 z;]

@ Ml K1 M2 K2 ml m2 kl k2 z
(30)

The corresponding physical input variables are listed just below. The Latin Hypercube variant

given in Eq. (10) was used to generate 1,002 candidate experiments via a MATLAB function

called “randesign” listed in Table A- 1. The candidate set of experiments was then used to gener-
.

ate the candidate experiment design matrix X for the fully quadratic metamodel using Eq. (2) and

another MATLAB function called “mod3buildX” listed in Table A-2.. The same metamodel form

is initially assumed for both outputs. The full metamodel contains 41 terms and is given by the

expression
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[Ynns 1[Ype.k = x $,m ‘P’”’1 (31)

in which row vector x is given by

X=[l xl x; fi~l,l .fw,2 m:] fiw!2 fiw>lw,2 JW,P1 J%,2%L

f2w2J .LW2,2 Lw;,l L%2 &w2,1wl,2 $7 W2,1XI f2w2,2xl LW3,1 L

~w3,2 &w3,3 &w3,4 &w:,] &w;,2 &w:3 &w;4 &w3,1w3,2L

&w3,1w3,3 -LW3,1W3.4 &w3,2w3,3 &w3,2w3,4 ~w3,3w3,4 &W3,1X1 L

fiw3,2xl &w3,3xI &w3,4xI Z Z2 Zxl Z2x1 ZX; Z2X; ]

(32

and both ‘~ and ‘PeQ~ have the form

@ = [ Po PI Bll %,1 %,2 %1 %,22 %12 %11 ‘%,21L

a *1 a22 azll a2z2 a212 s211 .s22, a31 a32 a33L

a 3,4 a3,11 a3,22 a3,33 a3,44 a3,12 a3,13 a3,14 a3,23 a3,24
L

a 3,34 ‘3,1 I ‘3,21 ‘3,31 ‘3,41 Y1 Y2 ~1,1 32,1 111 ~2,11IT

(33)

The candidate experiment matrix was then reduced to a suboptimal design using Efl and the

MATLAB function “xexpdes” listed in Table A-3. The D-optimal design parameter given in Eq.

(9) was computed and examined for the design that produced the maximum value. Fig. 2. illus-

trates the experiment design parameter versus the number of experiments retained. The maximum

is attained at 86 experiments. Of the 86 selected, 21 corresponded to model 1,22 corresponded to

model 2, and 43 corresponded to model 3. This roughly corresponds the relative number of meta-

model terms nested to each mode-form. Figure 3. illustrates a scatter plot showing the selected

experiment points in the Ml vs. @ design space. Even though Efl is a variance reduction based

algorithm, the selected points are still are fairly well spread throughout the design space.

All three models are statically equivalent and at a forcing frequency of @ = 2.0 rad/sec. the rms

responses for nominal models 1, 2, and 3, of 2.27, 2.23, and 2.19, respectively, are in rough agree-

ment. However, in other forcing frequency regimes, they markedly disagree. The nominal forc-

ing frequency of @ = 19.0 rad/sec. was selected from such a region. It is above the fundamental

natural frequency for all three models but is below the second frequency of models 2 and 3. It is

important to remember that there is no damping in any of the models, therefore the corresponding

response surfaces are not smooth. It is therefore believed that this example is a very stern test of
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the proposed metamodling process.

In this example, a maximum variation of 10% was assumed for all quantitative inputs. This would

correspond to a level of ~1.o in the coded variables. The 86 simulations, each with 1,000 time.

steps of data, were run and the metamodel fit using the MATLAB function “mod3afit” listed in

. Table A-4. Once the model was fitted, the coefficients for each output were checked for signifi-

cance at the 9570 confidence level. The response and corresponding metamodels are now treated

separately. Each is reduced to only the significant terms computed in the first analysis and recom-

puted. After a couple iterations, 24 terms were found to be significant for the rsm displacement

and 30 terms were found to be significant for the peak displacement.

The ims displacement metamodel is given by

Xm = [ 1 xl x; fwl,l fiwz,l fiw2,1wl,z fiwz,lxl fiwz,zxl ~w~,l L

&w3,2 hw3,3 hw3,4 ~wi,3 hw3,1w3,2 ~w3,1w3,3 ~w3,2w3,3L

fiw3,,x, fiw3,2x, ~w3,3x1 z Z* z-x, Z2X1 n: ]

em = [ 1.5791-0.26310.2627-0.1907 -0.1211-0.07820.1534 -0.1270 -0.3314,,

-0.35300.4293-0.0962 0.11600.1057-0.1307-0. 11340.25080.3112,.

-0.40230.53350.7158-0.4104 -0.51580.2213 ]T

The peak displacement metamodel has the form

p,.~ = [ 1 x, x: Jwl,l fwl,l%x t!w2,1 hw2,2 JX2 fiw2,1W,2L

fiw2,1xl .L2W2,2Z hw3.1 &w3,2 hw3,3 &w3,4 fiw:,IL

&w:,2 &w:,3 &w:,4 &w3,1w3,2 fiw3,1w3,3 &w3.2w3,3L

$W3,,X1 jjw3,2x, &w3,3x, z Z2 ZXI Z2X1 2X; J

e peak = [ 3.0135-0.42160.5745-0.3778 0.1256-0.1822-0.2175 0.1967-0.2633,

0.5184-0.4162-0.6586 -0.66690.8906-0.2509 0.16880.18590.2897

. 0.22300.2212-0.2902-0.2833 0.51700.6994-0.81741.0512 1.3884

-0.8760-1.19790.4655 ]T

(34)

(35)

(36)

(37)
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The goodness. of the metamodels must now be assessed. Figures 4. and 5. present comparisons

between numerical simulation responses and corresponding responses predicted by the metamod-

els for rms displacement and peak displacement, respectively, for the 86 experiments used to fit

the metamodels. The experiments have been sorted by model; experiments 1 through 21 corre-

spond to model 1, experiments 22 through 43 correspond to model 2, and experiments 44 through

86 correspond to model 3. The metamodels appear to do a good job of representing the simula-

tion responses over all three model-forms. The maximum absolute residual for the rms meta-

model was 0.379 for an experiment corresponding to model 3. The maximum absolute

percentage error for rms displacement was 8.04% for an experiment corresponding to model 2. In

the case of peak response, the maximum absolute residual was 0.427 for an experiment corre-

sponding to model 3. The maximum absolute percentage error for peak response was 6.92% for

an experiment corresponding to model 2. For many applications, these errors would probably be

considered as too large, indicating that the computed metamodels may not be satisfactorily accu-

rate. As discussed previously, this example appears to be a very stem test of the method due to the

existence of discontinuities or ridges in the response surfaces at resonances. Some experiments in

the parameter space lie close to these ridges producing poor metamodel predictions.

Besides residuals, other goodness criteria discussed in Section 4. were applied to the two meta-

models. Table 1 presents the results for both rms and peak displacement metamodels. The Coef-

ficient of Multiple Determination R-square and the adjusted R-square values are close to 100.0 for

both metamodels indicating that a large portion of the variation in the data is explained by the

metamodels and there are no insignificant terms left in either. The maximum variance inflation

factors are either less than or approximately equal to the rule of thumb maximum value of 10.0

indicating good estimates of the metamodel coefficients. The condition number of the informa-

tion matrix for the peak displacement metamodel is a bit larger than the allowed value of 100.0

indicating that the estimates for the peak displacement metamodel coefficients might not be as

accurate as those of the rms displacement metamodel. This is consistent with the results of the

variance inflation factor analysis.

The maximum hat-diagonaJ values for both metamodels are below their allowable values indicat-

ing that there are no profoundly influential points with small residuals in the experiment designs.

Both metamodels have a Cook’s distance less than 1.0 indicating that there are no profoundly

influential points in the experiment design with large residuals. Finally, the Durbin-Watson D sta-

tistic for each metamodel is close to 2.0, indicating in a practical sense that the residuals are not

correlated. Residual plots were also examined. Figure 8. illustrates the residuals versus the val-

ues predicted by the metamodel for peak displacement. The residuals are randomly scattered
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about zero with no systematic tendencies. Figure 9 presents the same residuals versus the forcing

frequency. It also shows a random scatter about zero with no systematic tendencies. Analogous

results were found for the rms displacement. Both rnetarnodels seem to satisfy these other good-

ness criteria.>

, To examine the predictive capability of the metamodels, the rms and peak displacements were

estimated for all 1,002 candidate experiments used in the suboptimal experiment design. Figures

6 and 7 plot the estimated rms and peak responses versus actual rrns and peak responses for all

1,002 candidate experiments. The maximum absolute percentage errors for the rrns and peak dis-

placements were 8.73% and 13.29Y0, respectively. The maximum error in rrns displacement cor-

responds to an experiment from model 3, while the maximum for peak displacement corresponds

to model 1. Ultimately, the usefulness of a metamodel for a particular application is determined

by the size of the maximum residuals. Certainly, the maximum percentage predictive residuals

for the computed metamodels are quite large. However, over much of the parameter space, the

metamodels due a relatively good job of prediction, reflected in the root mean square errors of

2.49% and 3.49% for rms displacement and peak displacement, respectively.

Finally, Monte Carlo and ‘decoupled Monte Carlo analyses were performed in which normal dis-

tributions with 5.0% standard deviations were assumed for all quantitative inputs. The metamod-

els were fit assuming 10.O% or fi~ (al/40 extremes) variation on the inputs. This is classified

by Fox [5] as moderately extreme. Ten thousand numerical simulations were performed in which

the quantitative inputs were selected from the described normal distributions and the model-form

was selected based uDon user provided prior probabilities. The meaning of these prior model-

form probabilities ‘f”~J is currently the subject of great debate. For example, three different

possible definitions are: i) the probability that model i is correct, ii) the probability that model i is

“best”, the probability that model i is “good enough” [19]. The first definition is not very useful

because all models are approximations of reality. Definitions ii) and iii) are very subjective and

require definitions of “best” and “good enough”. Definition ii) may be the most practical where

“best” is defined with respect to a “goodness” index relative to a candidate set of models. This is a

subject of future research and for the purposes of this example, the probabilities are assumed

given with respect to the candidate set of three models.

*

The Monte Carlo analysis was performed using the MATLAB function “mod3arand” presented in
.

Table A-5. One of the output matrices, D, contains the coded values of the inputs for each ran-

domly selected experiment. The corresponding experiment design matrix X can then be generated

using the MATLAB function “mod3buildX”. A decoupled Monte Carlo analysis was then per-
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formed using the metarnodels calculated previously. Two cases were considered for this example.

Case I assumed an equal probability for each model, while Case U assumed that model 3 was

twice as likely as model 2 which was twice as likely as model 1. Table 2. presents the &l/100 and

~1/40 extremes predicted by the Monte Car10 analyses and the metarnodels. In both cases, the

values of the -1/100 and -1/40 extremes are accurately predicted by the metarnodels. However,

the +1/100 extremes are not accurately predicted which is consistent with the fact that the meta-

models had difficulty predicting extreme values within the experiment design used to generate

them. The +1/40 extremes are very accurately predicted for the peak displacement and somewhat

less accurately predicted for rms displacement.

Probability distributions for the outputs can be generated using frequency data from the Monte

Carlo analyses. Figure 10 illustrates the tiequency distribution for therms displacement from the

Monte Carlo analysis for Case I in which all models have equal probability. Figure 11. presents

the corresponding distribution for the decoupled Monte Carlo analysis. The metamodel results do

a good job of qualitatively describing the Monte Carlo distribution. The quantitative accuracy is

not as good but still seems to be representative. Figures 12 and 13 illustrate the analogous results

for Case 11in which model 3 is twice as likely as model 2 which is twice as likely as model 1. The

more complex nature of the distributions is apparent. It is obvious that model form plays an

important role. Once again, the metamodel results qualitatively capture this additional complex-

ity with somewhat less quantitative accuracy. Similar results were obtained for peak displace-

ments. It is apparent that the decoupled Monte Carlo analysis using the metamodel produces

useful results concerning the impact of model-form uncertainty on probability distributions for

simulation outputs.

.

.
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6. Conclusions

A technique has been presented for studying the effects of model-form uncertainty and model

parameter uncertainty on the results of numerical simulations. A generalized metamodeling

approach is used in which model-form is included as a qualitative input and quantitative inputs

can be either global to the metamodel or nested within a specific model-form. A method is also

presented for the systematic development of a corresponding experiment design based on the D-

optimality criterion and Effective Independence. A straightforward least squares approach is used

to fit the metamodel using the developed experiment design. Multiple simulation outputs can be

easily handled. The goodness of the computed metamodel can be quantified using 12 criteria

which have been described and implemented. The validated metamodel can then be used as an

economical tool to investigate the effects of uncertainties in both deterministic and nondeterminis-

tic analyses such as decoupled Monte Carlo.

The proposed approach was applied to a simple axially forced cantilever beam structure repre-

sented by three different models. Both root mean square and peak displacement of the end of the

beam were considered as outputs. Quadratic polynomial based metamodels were fit and their

goodness was examined using the criteria suggested. In many cases, the metamodels were found

to be good, except that they produced large errors at extreme values of the outputs found within

the experiment design space. It is believed that the example chosen is a very stem test of the

method due to the existence of discontinuities or ridges in the response surfaces at resonances.

Some experiments in the parameter space lie close to these ridges producing poor metamodel pre-

dictions. The metamodels were then applied to quantify the effects of uncertainty on the simula-

tion outputs using a decoupled Monte Carlo analysis in which the inputs were assumed to be

normally distributed and prior probabilities was assumed for the model forms. The extreme

results and output probability distributions compared favorably with the results of a much more

computationally intensive Monte Carlo analysis.

It is believed that the proposed generalized metamodeling approach can provide a valuable tool to

economically investigate the propagation of both model-form and model parameter uncertainties

in both deterministic and nondeterministic analyses which would otherwise be computationally

prohibitive. Future research will concentrate on the use of advanced basis functions such as trigo-

nometric or inverse functions to improve accuracy, further quantification of metamodel accuracy,

the use of weighting in the experiment design to guard against bias, the relation between the sta-

tistical significance of model-form terms within the metamodel and the significance of individual

models, how to assign meaningful prior probabilities to the model forms, and finally, the develop-
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ment and investigation of ways to use metamodels to study the effects of model-form uncertainty.
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Fig. 2. D-Optimal design parameter.
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Tablel. Goodness criteria forrmsand peakdisplacement metarnodels.

RMs Peak

Displacement Displacement

~2

R2~

Vn?m=

cond(XTX)

emax

hmm (allowable)

Cooks D

Durbin-Watson D

99.57

99.41

4.82

53.76

0.379

0.495 (0.558)

0.881

1.93

99.76

99.63

10.46

142-66

0.427

0.618 (0.698)

0.373

2.10

Table 2. Extreme values for random analyses.

Case I

+1/1 ()()Extremes &1/40 Extremes

Lower Upper Lower Upper

~ MM %Err MC MM ~oEIT MC MM %Err MC MM %Err

rms 1.39 1.40 0.70 6.66 6.03 -9.46 1.44 1.45 0.69 4.01 4.13 2.99

peak 2.63 2.67 1.52 13.74 12.33 -10.262.71 2.75 1.48 8.30 8.36 0.72

Case II

~ 1/1()() Extremes &1/40 Extremes

Lower Upper Lower Upper

w MM %Err MC MM %Err ~ MM %Err MC MM %Err

rrns 1.41 1.42 0.71 7.36 6.38 -13.32 1.45 1.47 1.38 4.35 4.45 2.30

peak 2.66 2.69 1.13 14.98 13.09 -12.62 2.74 2.77 1.09 9.00 9.04 0.44
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3-Model - Probabiiii Distribution -10,000 Experiments - Model Probability (2,2,2)
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3-Model - Probsbilii Distribution -10,000 Experiments - Mode/ %obzibiiity (2.4,8)
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Table A-1. MATLAB function for generating candidate experiment design.

function [D]=randesign (alum) ;
%
% Created by: Daniel C. Kammer

% Associate Professor

% Dept of Engineering Mechanics“
% University of Wisconsin

% Madison, WI 53706

, % (608) 262-5724 / 262-3990

%

% Generates a coded random candidate design for the study of model form

% using metamodels. The last column of the design variable is always

% assumed to be the qualitative variable representing model form. The

% remaining columns are assumed to be quantitative inputs with coded
% values between -1 and 1. This program assumes that there are 3 model
% form levels- The number of candidate designs must be evenly

% divisible by the number of model form levels, 3.

%

%
% HISTORY

% ------------—-

%

% Created 08-04-97

% ----------------

%

% Use: [D]=randesign (alum);
%

% OUTPUT

% —-—--—

%D= Experiment design matrix containing coded variables for

%

% [wmlklm2k2 ... z]

%

%==================================================================
%

Date=date
%

% Input number of quantitative variables

% --------------------------------------

nv = input( ‘Number of Quantitative Variables? = ‘)

%

% Input number of levels for model form

% -----------------— -------------------

%nl = input( ’Number of Model Form Levels? = ‘)
%

% Input of desired candidate experiments

% ----—----—-----—— ---------------------

ne = input(’Number of Desired Experiments?

%
nl=3;

m = ne/nl;

%

tl=clock;

%

D=((2*randperm(ne) ‘)-(ne+l)

%

for i=l:nv-1

%

number

= ‘)

of model form levels

start clock

generate first column

loop over quantitative variables

, D=[D ((2*randperm(ne) ‘)-(ne+l))/ne];% build design matrix for quan. var.

%

end
%

Z = randperm(3);
%
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for i=l:m-1 % build experiment vector for model form
Z = [Z randperm(3)];

end

%

Z=z’ ;
%

for i=l:ne

if Z(i)==l;

Z(i)=-1.O;

elseif Z(i)==2;

Z(i)=O;

else;

Z(i)=l.O;

end

end
%

D= [DZ];

%

t2=clock;

Etime=etime(t2 ,tl)
%

end

.
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Table A-2. MATLAB function for generating experiment design matrix X.

function [Xl=mod3buildX(d);
%

% Created by: Daniel C. Kammer
% Associate Professor

% Dept of Engineering Mechanics.
% University of Wisconsin

% Madison, WI 53706

, % (608) 262-5724 / 262-3990
%
% Builds experiment matrix for 3-Model model form problem

% ----------------- .--------_------------------—---------

%
% Input

% =====

%d=

%

%

%

Experiment design

[w Ml K1 M2 K2 ml

- (nexp x 10)

m2 kl k2 z]

% output

% -—--—--—----

%x = Corresponding experiment coefficient matrix for use with metamodel
% (nexp x 41)

%

[nexp,m]=size(d) ;

frl=.5*(d(:, 10)-ones(nexp,l) ).*d(:,lO);

fr2=ones (nexp,l)-(d(:,lO) .~2);

fr3=.5*(d(:, 10)+ones(nexp,l) ).*d(:,lO);

%

X=[ones(nexp,l) d(:,l) d(:,l).A2 frl.*d( :,2) frl.*d(: ,3)...

frl.*(d(:, 2).A2) frl.*(d(:,3).A2) frl. *d(:,2).*d( :,3) frl. *d(:,2). *d(:,l) ...

frl.*d(:,3).*d(:, 1) fr2.*d(: ,4) fr2.*d( :,5) fr2.*(d(:,4).A2). ..
fr2.*(d(:,5).A2) fr2. *d(:,4).*d(: ,5-) fr2.*d(:,4).*d(: ,1)

fr2-*d( :,5) -*d(:,l) ...

fr3.*d(: ,6) fr3.*d(: ,7) fr3.*d(: ,8) fr3.*d( :,9) fr3. *(d(:,6).A2). ..

fr3.*(d(:,7).A2) fr3.*(d(:,8).~2) fr3.*(d(:,9).A2) fr3. *d(:,6). *d( :,7)...

fr3. *d(:,6).*d( :,8) fr3. *d(:,6).*d( :,9) fr3. *d(:,7). *d( :,8)..-

fr3. *d(:,7).*d(:,9) fr3. *d(:,8).*d( :,9) fr3. *d(:,6).*d(:,l) -..

fr3.*d(:,7).*d(:, 1) fr3.*d(:,8)-*d(:, 1) fr3.*d(:,9).*d(:, 1) d(:,lO) ...

d(:,10)-A2 d(:,lO).*d(:,l) (d(:,lO) .A2)-*d(:,l) d(:, 10). *(d(:,l).’’2). .

(d(:,lO) .A2). *(d(:,l).A2)] ;

%

end

.

●
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Table A-3. MATL~function forreducing experiment design matix Xtosuboptimd size.

function [D13TER,COND,FEXP,DEXP,EFI,FX,M]=xexpdes(X);
%

Created by: Daniel C. Kamtner 07-10-97

Associate Professor

Dept of Engineering Physics

University of Wisconsin

Madison, WI 53706

(608) 262-5724 / 262-3990

Iteratively Generate a Computer Experiment Design using Effective

Independence and D-Optimal Design Parameter
______________________________________________________________________________________________________________________________________________

HISTORY
---——-—----—-—

----------------------------------------------------------------------------------------------------------------------------------------------

INPUT
—-——-

X=

OUTPUT
--—-----—---

DETER =

COND =

FEXP =

DEXP =

EFI =

FX =

M=

Input initial candidate experiment

Determinant of information matrix

Condition Number of information matrix

Final list of selected experiments

List of deleted experiments

Final Effective independence ranking

Final experiment design

Computed D-Optimal design parameter

Use: [DETER,COND,FEXP, DEXP,EFI,FX,M] =xexpdes(X);

%==================================================================
Date=date

%
% Input number of iterations
% ———--.___—--_____________—

nit = input( ‘Number of Desired Iterations = ‘)

%

% Input number of experiments to be truncated per iteration

% —-—-- L---------------------------------------------------

ntk = input( ‘Number of Experiments to be Truncated Per Iteration = ‘)

%

% Calculate Initial Matrix Measures and Ranking

% ------_—_---___________—--__—----——----------

tl=clock;

A = X’*X;

FX = X;

[m,p]=size(FX) ;

nexp= (m:-ntk:m–nit*ntk) ‘; % number of exps at each iteration

FEXP = (l:m)’; % Id vector for experiemnts

DETER(1) = det(A);

COND(l) = cond(A) ;

[P,L]=eig(A);

E=FX*P;

E2=E.”2;

EFD=E2*(inv(L) );

ADD=ones(p,l) ;

EFI=EFD*ADD;

[Y,I]=sort(-EFI) ;
%

.

.



% Loop over iterations

% --------------------

for i = l:nit
j = i+l;

format short e

ONE=ones(m-ntk, 1);

il=cumsum(ONE) ;

id=I(il) ;

iext=sort(id) ;

%

ONED=ones(ntk ,1);

ild=cumsum(ONED) + m-ntk;

idd=I(ild) ;

DEXP=[DEXP’ FEXP(idd) ‘1 ‘;
%

FX = FX(iext, :);
FEXP = FEXP(iext);

A= FX’*FX;

%

DETER(j) = det(A);

COND(j) = cond(A) ;

[P,L]=eig(A);

E=FX*P ;

E2=E.”2;

EFD=E2*inv(L) ;

EFI=EFD*ADD ;

[Y,I]=sort(-EFI) ;

m=m-ntk;

%

end

%

% Compute D-Optimal Design Parameter

% --------.----------__---—__---—---

M = DETER’ ./(nexp.”p);

%

format bank

t2=clock;

Etime=etime(t2 ,tl)

%
% Print Results

% —------------

format short e

DETER=DETER’ ;

COND=COND’ ;

%

ORDER=-Y;

[YY,IIl=sort(I) ;
format bank

LIST=[YY FEXP(I) ORDER]

format short e

end

% column of 1’s

% Running sum

% Retained dof in ranked order

% Transform to numerical sort

% Column vector of 1’s for deleted exps

% Vector of deleted rows in ORDER

% Vector of deleted rows in EFI

% Vector of deleted exp id numbers
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Table A-4. MATLAB function for fitting metamodel.

function [e,Y,Yhat,b,Ml,Kl,M2,K2,ml,m2, kl, k2,W, t]=mod3afit(D,X);

Created by: Daniel C. Kammer

Associate Professor

Dept of Engineering Mechanics

University of Wisconsin

Madison, WI 53706

(608) 262-5724 / 262-3990

Studies uncertainty due to model form for an axial beam with two

different cross sections. Fits a metamodel to three models of the

axial beam which is harmonically forced at the endpoint. Model 1

is a single dof oscillator while model 2 contains two dof with the

mass and stiffness evenly distributed over both dof. Model 3 has

two dof with the actual mass and stiffness distributions of the two

different cross sections of the beam. The metamodel is fully quadratic

and contains 41 parameters, 86 experiments were chosen from an initial

set of 1002 using EfI and the D-Optimality criterion.

Updated to a consistent mass lumping representation for all the models

Input Variables
----.-.-----——-

Global
-----—

Xl=w - forcing frequency

z= - model 1

= “i - model 2
. 1 – model 3

Internal to Model 1
——----------— ------

Wl,l =ml - oscillator mass

w1,2 = kl - oscillator stiffness

Internal to Model 2
--------——-—-----—-

W2,1 = m2 - oscillator masses

w2,2 = k2 - oscillator stiffnesses

Internal to Model 3
--—--------——— -----

W3,1 = ml - mass of oscillator 1

w3,2 = m2 - mass of oscillator 2

w3,3 = kl - stiffness of oscillator 1

w3,4 = k2 - stiffness of oscillator 2

Output Variable
———-----_____-—

Y(:,l) = rms displacement at force input location

Y(:,2) = peak displacement at force input location

HISTORY
————-------—--

Created 08-08-97
_——-------------

Consistent mass lumping added - 8-22-97

Added peak displacement output - 9-19-97

Use: [e,Y,Yhat,b,Ml,Kl,M2,K2,ml,m2 ,kl, k2,W, tl=mod3afit(D,X) ;
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%

%
%
%
%
%
%
%

%
%

%
%
%
%

%
%

%
%
%
%
%
%
%
%

INPUT
———. —--—-—

D=

x=

OUTPUT
—----—------

Y=

Yhat =

b=

Ml =

K1 =

M2 =

K2 =

ml =

m2=

kl =

k2 =

w=

e .

Experiment design matrix containing coded variables for

[wM1 K1 M2 K2 ml m2 kl k2 z]

Expanded experiment in coded variables for least squares solution

RRM displacement predicted by simulation

Estimated rms displacement using fitted model

Estimated regression parameters

Mass values used during experiment for model 1

Stiffness values used during experiment for model 1

Mass values used during experiment for model 2

Stiffness values used during experiment for model 2

Mass value used during experiment for mass 1, model 3

Mass value used during experiment for mass 2, model 3

Stiffness value used during experiment for spring 1, model 3

Stiffness value used during experiment for spring 2, model 3

Frequency values used during experiment

Residuals

%==================================================================
%
Date=date

%

% Input variation of mass in model 1
% ----------------------------------

dMl = input(’% to Vary Mass in Model 1? = ‘)

dMl=dM1/loo;

%

% Input variation of stiffness in model 1

% -——____________________________________

dKl = input(’% to Vary Stiffness in Model 1? = ‘)

dKl=dK1/100;

%

% Input variation of mass in model 2
% ----------------------------------

dM2 = input(’% to Vary Mass in Model 2? = ‘)

dM2=dM2/loo;

%

% Input variation of stiffness in model 2
% --_-—_-—------__——______________———____

dK2 = input(’% to Vary Stiffness in Model 2? = ‘)

dK2=dK2/100;

%

% Input variation of mass 1 in model 3

% ------------------------------------

dml = input{’% to Vary Mass 1 in Model 3? = ‘)

dml=dnll/loo;
%

% Input variation of mass 2 in model 3

% -------------------_____________-——_

dm2 = input(’% to Vary Mass 2 in Model 3? = ‘)

dn12=dm2/loo;

%

% Input variation of spring 1 in model 3

% ______________________________________

dkl = input(’% to Vary Spring 1 in Model 3? = ‘)

dkl=dkl/100;

%

% Input variation of spring 2 in model 3
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% ______________________________________

dk2 = input (’% to Vary Spring 2 in Model 3? = ‘)

dk2=dk2/100;

%

% Input variation of forcing frequency

% -——-----——-————— ____________________

dw = input(’% to Vary Forcing Frequency? = ‘)

dw=dw/100;

%

% Input number of data points

% ---------------------------

nt = input( ‘Number of Data Points in each Experiment = ‘)
%

tl=clock;

%

dt=.02;

t= [O:dt:(nt–l)*dt] ‘;

%f=inv(dt) *(O:nt-l) ‘/nt;

%

[ne,np]=size(X) ;
%

% Nominal Input Variables

% .------------------—---

M1O=1;

K1O=1OO;

M20=0.5;

K20=200;

m10=2/3;

m20=l/3;

k10=300;

k20=150;

WO=19;

%WO=2 .

%

dMl=dMl*MIO;

dKl=dKl*KIO;

dM2=dM2*M20;

dK2=dK2*K20 ;

dml=dml*mlO;

dkl=dkl*klO;

dm2=dm2*m20;

dk2=dk2*k20;

dw=dw*wO;

%

W=wO*ones (ne,l)+dw*D( :,1);

Ml=MIO*ones (ne,l)+dMl*D( :,2);

Kl=KIO*ones (ne,l)+dKl*D( :,3) ;

M2=M20*ones (ne,l)+dM2*D( :,4);

K2=K20*ones (ne,l)+dK2*D( :,5) ;

ml=mlO*ones (ne,l)+dml*D( :,6) ;

kl=klO*ones (ne,l)+dkl*D( :,8);

m2=m20*ones (ne,l)+dm2*D( :,7) ;

k2=k20*ones (ne,l)+dk2*D( :,9);

Z=D(:,1O);
%

for i=l:ne
%

F=300*sin(W(i) *t);

%

if Z(i)==-l;

M=Ml(i);

K=Kl(i) ;

7+=[0 1; –inv(M)*K O];

B=[O; inv(M)];

% start clock

% time step

% time vector

% frequency vector in Hertz

No. of experiments and parameters

mass for model 1

stiffness for model

mass for model 2

stiffness for model

mass 1 in model 3

mass 2 in model 3

spring 1 in model 3

spring 2 in model 3

forcing frequency

delta

delta

delta

delta

delta

delta

delta

delta

delta

mass in model

1

2

1

stiffness in model 1

mass in model 2

stiffness in model 2

mass 1 in model 3

spring 1 in model 3

mass 2 in model 3

spring 2 in model 3

frequency

design frequency values

design mass values for model 1

design stiffness values for model 1

design mass values for model 2

design stiffness values for model 2

design mass 1 values for model 3

design spring 1 values for model 3

design mass 2 values for model 3

design spring 2 values for model 3

model form

loop over experiments

Input force

check for model 1

model 1 system matrices
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Cc=[l o];’
DD= [O];

Xo=[o; o]; % initial conditions for model 1
%

elseif Z(i)==O; % check for model 2

M=[2*M2(i) 0;0 M2(i)]; % model 2 system matrix

b K=[2*K2(i) -K2(i); -K2(i) K2(i)l;

A=[zeros(2,2) eye(2); -inv(M)*K zeros(2,2)];

B=[O; 0;O;inv(M(2,2) )];
. Cc=[o 1 0 o];

DD=[O];

Xo=[o;o;o;o];

%

else; % model 3

M=[ml(i)+m2 (i) 0;0 m2(i)]; % model 3 system matrices

K=[(kl(i)+k2(i)) -k2(i); -k2(i) k2(i)];

A=[zeros(2,2) eve(2); -inv(M)*K zeros(2,2)];

B=[O; 0;O;inv(M(~,2) )];

Cc=[o 1 0 o];

DD=[O] ;

Xo=[o;o;o;o];

end

%

:=lsim(A,B, CC,DD,F,t,xO) ; %

rms=sqrt(sum(y. “2)/nt) ; %

[peak, imax]=max(abs (y(:,l) )); %

%

Y(i,l)=rms(:,l); %

Y(i,2)=peak; %

%

end

%Y=Y ‘;

%

piot(t,y(:,l)) %

title( ’Typical Response’)

xlabel( ‘Seconds’ )

ylabel (’Displacement’)

%

simulate ith experiment

rms value

peak response

rms displacement

peak displacement

nominal displacement response

% Estimate Model Parameters using Coded Variables

% -----------------------------------------------

[N,pl=size(X);

Condition=cond (X1*X) % information matrix condition number

b=inv(X’*X) *X’*Y; % estimate of regression parameters

Yhat=X*b; % estimate response using fitted model

e=Y-Yhat; % residual

%
% Calculate Statistics

% --------———--------—

SSE=diag(e’*e) ‘ % sum of squared residuals

s2=ssE/(N-P) % variance of errors

SST=diag(Y’*Y) ‘-(sun(Y) .A2)/N % total sum of squares

SSR=diag(Yhat’*Y) ‘-(sum(Y) .“2)/N % sum of squares due to regression

Fstat=(SSR/(p-1) )./(SSE/(N-p) ) % F stat for significance of fitted regres-

sion

R2=(ssR./ssT)*loo % % of variation due to fitted regression

R2a=(l-((1-R2/100)*(N-1) /(N-p)))*100 % adjusted R2 statistic

seb=sqrt (diag(inv(x’ *X) )’s2); % estimated standard error for parameters

tstat=b./seb; % t stat for null hypothesis of parameters
#

seb=[(l:np) ‘ seb]

tstat=[(l:np)’ tstat]

bhat=[(l:np)’ b] % estimated parameters
%

% Compute Variance Inflation Factor



% ————---- . —-----------------------

g=sqrt(diag(X’ *X) ).A (-l) ;

g=diag(g) ;

x=x*g; %

[VIF,num] =max (diag (inv (x’*x) )) %

[VIFnobO,num]= ...

max(diag(inv(x( :,2:p)’*x(:,2:p) )))
%

% Maximum Residuals

% —--------------—-

[Maxe,num]=max (abs(e))

[Maxepercent,num] =max(100*abs(e ./Y))

%
% Hat Diagonal Statistic
% --------—-—-------—-—-

h=diag(X*inv(X’ *X)*X’);

hallowable=2 *p/N

[hmax,num]=max (h)
%

% Cook’s Distance

% ---------------

r=e./sqrt( (1-h)*s2) ; %

normalize columns of X

variance inflation factor

% VIF

%
%

with no BO term

max residuals

max % residuals

studentized residuals

[CDmax~num]=max(((h./(l-h) )*[1 11).*(r.A2)/p)

%
% Durbin-Watson D Statistic

% -------------------------

ddl=sum( (e(2:N, :)-e(l: (N-1) ,:)).A2);

dd2=sum(e.A2) ;

DurbinD=ddl ./dd2
%

t2=clock;

Etime=etime(t2 ,tl) % clock time duration

end
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Table A-5. MA~AB function for random analysis.

function [Y, t, Dl=mod3arand(d);
%
%
%
%

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
g

%
%
%
%
%
%
%
%
%
%
%

%
%
%
%

%
%

%
%
%
%
%
%

%
%

%
%
%
%
%
%

%

Created by: Daniel C. Kammer

Associate Professor

Dept of Engineering Mechanics

University of Wisconsin

Madison, WI 53706

(608) 262-5724 / 262-3990

Simulates random response for three models for the axial beam with two

different cross sections harmonically forced at the endpoint for

comparison with results produced by a metamodel. Model 1 is a single dof

oscillator while

model 2 contains two dof with the mass and stiffness evenly distributed

over both dof. Model 3 has two dof with the actual mass and stiffness

distributions of the two different cross sections of the beam. The

quantitative inputs are assumed to normally distributed. The model form is

based upon a probability vector containing PI entries -1 for model 1, P2

entries O for model 2 and P3 entries +1 for model 3. P1 through P3 are

specified by the user to reflect the relative confidence among the three

models.

Updated to a consistent mass lumping representation for all the models

Input Variables
---------------

Global
------

Xl=w - forcing frequency

z= -1 - model 1
. 0 - model 2

= +1 - model 3

Internal to Model 1
--—___---------——-—

Wl,l =ml - oscillator mass

w1,2 =.kl - oscillator stiffness

Internal to Model 2
-------------------

W2,1 =m2 - oscillator masses

w2,2 = k2 - oscillator stiffnesses

Internal to Model 3
------—— -----------

W3,1 = ml - mass of oscillator 1

w3,2 =m2 - mass of oscillator 2

W3,3 = kl - stiffness of oscillator 1

w3,4 = k2 - stiffness of oscillator 2

Output Variable
---------------

Y(:,l) = rms displacement at force input location

Y(:,2) = peak displacement at force input location

HISTORY
.-—--——--—--—-

Created 10-21-97
--—--------—-—--

Consistent mass lumping added - 8-22-97
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% Added
%

peak displacement output - 9-19-97

% Use: [Y,t,D]=mod3arand(d) ;
%

%
% INPUT

% =====

%d= Fractional variation of each inpit variable used
% in previous metamodel.

%

% = [dw dMl dKl dM2 dK2 dml dm2 dkl dk2]

%
% OUTPUT

% ======
%y = Rms displacement and peak displacement

%Ml= Mass values used during experiment for model 1

% K1 = Stiffness values used during experiment for model 1

%M2= Mass values used during experiment for model 2

% K2 = Stiffness values used during experiment for model 2

% ml = Mass value used during experiment for mass 1, model 3

%m2= Mass value used during experiment for mass 2, model 3

% kl = Stiffness value used during experiment for spring 1, model 3
% k2 = Stiffness value used during experiment for spring 2, model 3

%W= Frequency values used during experiment

%t= Time vector for a single experiment

%D= Resulting experiment design matrix containing coded variables for

%

% [w Ml K1 M2 K2 ml m2 kl k2 z]
%=..=.====..==..=..=.===.=..=.=..=.==...==.=...=..=....=.=..=.=..=.

%

Date=date

%

% Input standard deviation of mass in model 1

% -------------------------------------------

dMl = input(’% SD of Mass in Model 1? = ‘)

dMl=dM1/loo;
%

% Input standard deviation of stiffness in model 1
% —--------——--—------------------—--------—------

dKl = input(’% SD of Stiffness in Model 1? = ‘)

dKl=dK1/100;
%

% Input standard deviation of mass in model 2
% ___________________________________________

dM2 = input(’% SD of Mass in Model 2? = ‘)

dM2=dM2/loo;

%

% Input standard deviation of stiffness in model 2

% ------------------------------------------—-----

dK2 = input(’% SD of Stiffness in Model 2? = ‘)

dK2=dK2/100;
%

% Input standard deviation of mass 1 in model 3
% —-—-------------------————————-----------—-——

dml = input(’% SD of Mass 1 in Model 3? = ‘)

dml=dml/loo;

%

% Input standard deviation of mass 2 in model 3
% ---------------------------------------—-----

dm2 = input(’% SD of Mass 2 in Model 3? = ‘)

dm2=dm2/loo;
%

% Input standard deviation of spring 1 in model 3
% -----------——-------—— -------------------------
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dkl = input(’% SD of Spring 1 in Model 3? = ‘)

dkl=dkl/100;
%

% Input standard deviation of spring 2 in model 3

% -------------------------------————-—---------—

dk2 = input(’% SD of Spring 2 in Model 3? = ‘)
● dk2=dk2/100;

%

% Input standard deviation of forcing frequency
. % -------------------------------——------------

dw = input(’% SD of Forcing Frequency? = ‘)

dw=dw/100;

%

% Input number of possibilities for model 1
% -----------------------.--------—--------

PI = input( ’Number Chances for Model 1? = ‘)

%

% Input number of possibilities for model 2
% -----------------------------------------

P2 = input( ’Number Chances for Model 2? = “’)

%

% Input number of possibilities for model 3

% -----------------------------------------

P3 = input( ’Number Chances for Model 3? = ‘)
%

‘Total number in model form pool’

Ptotal = P1+P2+P3

%

‘Percentage probability for model 1’

(P1/Ptotal)*100

%

‘Percentage probability for model 2’

(P2/Ptotal)*100

%

‘Percentage probability for model 3’

(P3/Ptotal)*100

%

% Input number of experiments to run

% -----------—-—--————--— -----------

ne = input( ‘Number of Experiments

%
% Input number of data points

% -------------------— -------

nt = input( ‘Number of Data Points
%

tl=clock;

%

dt=.02;

t=[O:dt:(nt-l)*dt] ‘;

%

to

in

%

%

%

Run = ‘)

each Experiment

start clock

time step

time vector

% Generate Model Form Probability Vector

% ------------------— -------------------

PZ=[-l*ones(Pl, l); zeros(P2,1); ones(P3,1)];

%

% Nominal Input Variables
% ------------—----——-———

.
M1O=1;

K1O=1OO;

M20=0.5;
b

K20=200;

m10=2/3;

m20=l/3;

k10=300;

k20=150;

= ‘)

% mass for model 1

% stiffness for model 1

% mass for model 2
% stiffness for model 2

% mass 1 in model 3

% mass 2 in model 3

% spring 1 in model 3

% spring 2 in model 3
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WO=19 ;

%
dMl=dMl*MIO;

dKl=dKl*KIO;

dM2=dM2*M20;

dK2=dK2 *K2 O;

dml=dml *m10;

dkl=dkl*kl O;

dm2=dm2*m20;

dk2=dk2*k20;

dw=dw*wO ;

%

for i=l:ne
%

W=wO+dw*randn (l);

Ml=MIO+dMl*randn(l)

Kl=KIO+dKl*randn (1)

M2=M20+dM2*randn (1)

K2=K20+dK2*randn (1)

ml=mlO+dml*randn (1)

kl=klO+dkl*randn(l)

m2=m20+dm2*randn(l)

k2=k20+dk2*randn (l)

pp=randperm (Ptotal)

z=Pz(pp(l));

MM(i)=Ml;

%

F=300*sin(W*t) ;

%
if Z==-l;

M=M1 ;

K=K1 :

;
;
;
;
;
;
;
;
;

% forcing frequency

% delta mass in model 1

% delta stiffness in model 1

% delta mass in model 2

% delta stiffness in model 2

% delta mass 1 in model 3

% delta spring 1 in model 3

% delta mass 2 in model 3

% delta spring 2 in model 3

% delta frequency

% loop over experiments

% experiment

% experiment

% experiment

% experiment

% experiment

% experiment

% experiment

% experiment

% experiment

frequency value

mass values for model 1

stiffness values for model 1

mass values for model 2

stiffness values for model 2

mass 1 values for model 3

spring 1 values for model 3

mass 2 values for model 3

spring 2 values for model 3

% experiment model form

% Input force

% check for model 1

A=[O’l; -inv(M)*K O];

B=[O; inv(M)];

Cc=[l o];

DD=[O];

Xo=[o;o]; %

%

elseif Z==O; %

M=[2*M2 0;0 M2]; %

K=[2*K2 -K2; -K2 K21;

% model 1 system matrices

initial conditions for model 1

check for model 2

model 2 system matrix

A=[zeros(2,2) eye(2); -inv(M)*K zeros(2,2)];

B=[O; 0;O;inv(M(2,2) )];

Cc=[o 1 0 01;
DD=[O];

Xo=[o;o;o;o];

%
else; % model 3

M=[ml+m2 0;0 m2]; % model 3 system IIEitriCeS

K=[(kl+k2) -k2; -k2 k2];

A=[zeros(2,2) eye(2); -inv(M)*K zeros(2,2)];

B=[O; 0;O;inv(M(2,2) )];

Cc=[o 1 0 01;

DD=[()];

Xo=[o;o;o;o];

end

%

;=lsim(A,B, CC,DD,F,t,xO) ; %

rms=sqrt(sum(y. ”2) /nt); %

[peak, imax]=max(abs (y(:,l) )); %

%

Y(i,l)=rms(:,l); %

Y(i,2)=peak; %

simulate ith experiment

rms value

peak response

rms displacement

peak displacement
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%
% Transform Random Inputs to Coded Variables

% ---.-------.-----.---------——-------------

D(i,l)=(W-wO)/(d(l)*wO) ; % experiment

D(i,2)=(M1-MIO)/(d(2)*Mlo) ; % experiment

D(i,3)=(K1-KIO)/(d(3)*K10) ; % experiment

* D(i,4)=(M2-M20)/(d(4)*M20) ; % experiment

D(i,5)=(K2-K20)/(d(5)*K20) ; % experiment

D(i,6)=(ml-mlO)/(d(6)*m10) ; % experiment
. D(i,7)=(m2-m20)/(d(7)*m20) ; % experiment

D(i,8)=(kl-klO)/(d(8)*k10) ; % experiment

D(i,9)=(k2-k20)/(d(9)*k20) ; % experiment

D(i,lO)=Z;

%

end

%

frequency value

mass values for model 1

stiffness values for model 1

mass values for model 2

stiffness values for model 2

mass 1 values for model 3

mass 2 values for model 3

spring 1 values for model 3

spring 2 values for model 3

Plot(t,Y(:,l)) % nominal displacement response

title( ’Typical Response’)

xlabel( ’Seconds’ )

ylabel (’Displacement ‘)

%

%

t2=clock;

Etime=etime(t2 ,tl) % clock time duration

%

end
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APPENDIX E:
*

Combining Metamodels with Rational Function.
Representations of Discretization Error for

Uncertainty Quantification

submitted to International Journal for Numerical

Methods in Engineering
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Combining Metamodels with Rational Function Representations of

4 Discretization Error for Uncertainty Quantification

r Daniel C. Kammer

Department of Engineering Physics

University of Wisconsin

1500 Engineering Dr., Madison, WI 53706

Kenneth F. Alvin

Structural Dynamics and Vibration Control

Sandia National Laboratories

David S. Malkus

Department of Engineering Physics

University of Wisconsin

Abstract

A new method is presented for extending metamodeling techniques to include the effects of

finite element model mesh discretization errors. The method employs a rational function

representation of the discretization error rather than the power series representation used by

methods such as Richardson extrapolation. Examples dealing with simple function estimation and

estimation of the vibrational frequency of a one dimensional bar showed that when extrapolated to

the continuum, the rational function model gave more accurate estimates using fewer terms than the

Richardson extrapolation technique. This is an important consideration for computational reliability

assessment of high consequence systems, as small biases in solutions can significantly affect the

accuracy of small magnitude probability estimates. In general, the rational function form of the

discretization error produces a nonlinear model requiring an iterative nonlinear least-squares

solution technique. However, all the examples studied in this work proved to be close-to-linear,

meaning that the linear least-squares estimate of the model coefficients could not be improved. In

subsequent nondeterministic analyses, the rational function based metamodel also produced more

●
accurate estimates of failure probabilities using fewer terms than the Richardson extrapolation

method under very severe extrapolation conditions. Rational function representations of

* discretization error offer greater flexibility by allowing a user to accurately extrapolate to a

continuum representation from numerical experiments performed outside the asymptotic region

where the usual power series representation is not converging. This allows the use of coarser

meshes in the numerical experiments, saving a significant amount of time and effort.
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1. Introduction

Numerical simulations of system response are used throughout the research and industrial

communities to help make critical system design and performance decisions. These simulations

contain errors due to known simplifications, variabilities due to random inputs with known

statistics, and uncertainties due to lack of knowledge [1]. In order to make proper decisions, it is

important to understand how all three of these types of deviations propagate through simulations

into computed results. A particularly important source of error, variability, and uncertainty is the

analytical model of the system being simulated.

Model parameter variability has received the most attention in the literature. Assuming that the

variabilities in model parameters follow known probability distributions, the ultimate goal of the

quantification of their effects is to determine the corresponding probability distributions of the

simulation outputs of interest. Accurate prediction of these distributions requires Monte Carlo

analysis incorporating hundreds of thousands of simulation runs. In most cases, the computational

cost is prohibitive. In many situations, the computational effort can be greatly reduced by

generating what is commonly referred to as a Response Sur$ace or Metamodel. An appropriate

functional form is assumed for the simulation response of interest and then fit to the output

produced by the simulation of a set of carefully selected numerical experiments. The functional

form is usually taken as a quadratic polynomial in the input variables.

In contrast with the full numerical simulation, evaluation of the metamodel is very fast.

Assuming that the underlying system is itself deterministic, the prediction of the response can be

decoupled from the probabilistic Nlonte Carlo sampling using the metamodel. This technique has

been referred to as “decoupled” Monte Carlo analysis [2]. The metamodel approach has long been

used in the biological, physical, and sociological sciences [3], but has more recently received

attention from the structural dynamics community. Applications include structural optimization [4,

5] and probabilistic design [6-8]. Response surfaces based on finite element/lattice sampling have

been investigated by Romero and Bankston [2].

While most of the work mentioned has focused on the effects of model parameter variability,

Alvin [9] recently incorporated mesh discretization error into the metamodel formulation in an

effort to quantify its effect on nondeterministic analysis. The approach is based upon the classical

Richardson extrapolation [10] technique used in finite element modeling to quanti@ the error due to

spatial discretization inherent in a mesh. Discretization error is modeled as a polynomial in

parameter h, which could, for example, represent a characteristic element length. The method

strongly resembles the metarnodel approach itself, making it very attractive to combine the two into

a single formulation. In general, a metamodel is used to predict desired responses by interpolating

among selected experiment design points. In contrast, the idea behind including the discretization

parameter is to eventually extrapolate to the value of h = O, obtaining a metamodel representing the
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continuous system. The discretization error is then theoretically removed from the subsequent

decoupled Monte Carlo analysis. In this way, the effects of bias error due to discretization on the

nondeterministic analysis can be quantified. Alvin demonstrated the efficacy of this approach for a

i simple bar example using three different mesh refinements [9]. One conclusion drawn from

Alvin’s work is that small failure probability estimates, which are typical in high consequence
.

systems such as nuclear reactors, can be very sensitive to small bias errors in computational

solutions. Hence, estimating the potential effects of discretization error is important in

computational reliability analysis.

In order for Richardson extrapolation to produce accurate results, the numerical experiments

must be performed within the asymptotic region of the power series being used to model the

discretization error. This simply means that the term or terms retained from the power series

dominate the terms that are omitted. The implication is that even the coarse meshes used in the

numerical experiments must be sufficiently refined. The work presented in this paper considers an

alternative representation of the discretization error in the form of a rational function or ratio of

polynomials in the parameter h. In general, rational functions are much more flexible than

polynomials for approximating mathematical functions. They are capable of representing a wide

variety of ascending and descending curves, including curves with minima and maxima, and

curves that approach asymptotes. Due to this greater flexibility, it has been found that the use of

rational functions in general response surface analysis can produce metamodels that are more

accurate and require fewer coefficients than the corresponding polynomial representations [11 ].

Minimizing the number of coefficients is important to avoid systematic error. The increased

flexibility of rational functions over power series is also reflected in the observed superiority of

rational functions in extrapolation applications [12]. A rational function approximation of an

analytic function can remain accurate even after all the terms in a power series representation in h.

have similar magnitudes making the idea of “method order” meaningless [13]. It is believed that

this attribute will allow the use of coarser meshes in the numerical experiments, which would save

a significant amount of time and effort.

2. Theory

In metamodel analyses, parsimony is usually preferred over generality, therefore, quadratic

metamodels are assumed in the form of simple polynomials in the input variables. This same
*

approach is used here, but the formulation can be easily generalized to higher order surfaces and

a more sophisticated basis functions if there is a need. Assuming a single output y for the

simulation, such as a peak displacement or stress, the general form of the quadratic metamodel is

given by

167



4

in which xi are usually quantitative input variables, like mass, spring stiffness, elastic modulus,

etc., and pi are constant coefficients to be determined. Quantitative variables are usually coded

such that they vary continuously between -1.0 and 1.0 using the relation

x, xi– Xio
=

r

Ai
Ai =~(ximu -Xiti,) (2)

where xi is the ith coded input, Xi is the corresponding uncoded input, Xio is the nominal value

of the ith input, and Xi~i~ and Xi= represent the lower and upper bounds on the range of the ith

uncoded input. The nominal value of the coded input variable always corresponds to 0.0. Coding

is performed to offset large possible differences in units between various model inputs, which can

cause numerical error during fitting of the metamodel.

Spatial discretization error is fundamental to all finite element models as well as other types of

analytical model representations [14]. Richardson extrapolation is a technique that attempts to

account for this by modeling the error as a low order polynomial in the discretization parameter h

of the form

()Yh=y+dq+ohq+l
(3)

where yfi is the numerical solution for the current value of h, y is the continuum solution, a is an

unknown coefficient, and q is defined as the formal order of the method. In its classic application,

his assumed to be sufficiently small, i.e. in the asymptotic range, such that the leading term in Eq.

(3) will dominate and the higher order terms can be omitted. More general polynomial

extrapolation methods often use an even asymptotic expansion in h for the error

JJh – y = ctlh2 + ctoh4 + . . .a~h2m (4)

It can be shown that for the same number of terms, an even powered asymptotic expansion will

converge twice as quickly in extrapolation

[12].

applications as a series with powers increasing by one

2.1 Combined Metamodel Forms
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Assuming a multiplicative discretization effect, the metamodel for the continuum

approximation, given by Eq. (1), can be combined with the asymptotic expansion of Eq. (4) to

produce an extended metamodel that explicitly includes the effects of discretization in the form

Y//= Y(A P)[l+@2 + a2h4 + .““a~h2”j (5)

This form allows coupling between the discretization parameter h and the continuum form of the

metamodel y(x, ~) and is analogous to that used by Alvin [9]. It is believed that improved

convergence properties can be obtained by alternatively using a rational function approximation for

the discretization error, producing the metarnodel form

1+ i’v(ai, l?) [1+a1h2 + a2h4 + -.ct~h2~]
Yh = Y(Z p)

1+ D(y,, h)
‘y(x~) [~+ylhz +y,h4 +...y~h2n] (6)

where, in general,

discretization error,

m S n. The corresponding rational function (RF) representation of the

Y~– Y, is given by

= Y(x ~, N(ai,h) - D(ai,h)
chRF 7

1+ D(y,, h)
(7)

A specific example can be considered in order to clarify and compare the two discretization

error model forms. Three quantitative inputs are considered, xl, X2, and X3. The fourth model

input is the discretization parameter h. The truncated metamodel considered for this application

containing the polynomial form of the discretization error is given by

YM = Y(X,~)[1 + (xlh’ + cz2h4] (8)

Retaining only the linear coupling between the quantitative variables xi and h2, the expanded form

becomes

YM.E = Po + L% + P2X2 + P3X3 + lb: + P22# + P33X; +

P12XIXZ+ ~13X1X3+ ~2,X2X~+ alh2 + czllx,h’ + ct,2x2h2 +

a13x3h2 + azh4

(9)
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Additional terms from the general form in Eq. (5) can be easily included in the analysis. Equation

(9) will be called the Richardson extrapolation (RE) metamodel in the sequel. In order to calculate

the metarnodel coefficients in Eq. (9), a sequence of simulations, or numerical experiments, is

performed using predetermined settings for the input variables. The data for the complete set of

experiments is then combined into the matrix equation

xe=y (lo)

in which X is the experiment design matrix, @ is a column vector containing the model

coefficients, and Y is a column vector containing the responses from the numerical experiments.

An estimate of the model coefficients is generated using linear least-squares (LS)

ij = [xq-rx~y (11)

There are many criteria that can be used to optimally design numerical experiments [15]. For

example, the well-known Box-Behnken experiment design [8] for the case of four model inputs is

presented in Table 1. The coded values of the three quantitative inputs xi are –1, O, and 1,

representing low, nominal, and high levels, respectively. The nominal value of the inputs

corresponds to their expected values, while the high and low levels represent plus and minus two

standard deviations. In the case of a finite element analysis, the values –1, O, and 1 corresponding

to the discretization variable h represent coarse, nominal, and fine meshes.

The truncated metarnodel containing the rational function form of the discretization error

considered in this paper is given by

[

1+ a1h2
YMF = Y(~J~)

1+ ylh2 + y2h4 1

or in its expanded form

YhRF = MO + h + B2X2 + P3~3 + M + B22~; + B33X: +

~12XIX2+ ~13XIX3+ P23X2X3+ C$h2 + ~IlXlh2 + ~12x2h2 +

a13x3h2][l+Y1hJ+Y2h41

(12)

(13)

Only quadratic terms in h have been retained in the numerator of the discretization error model,

while a quartic term is included in the denominator. As in the case of the RE metarnodel, only
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linear coupling between the quantitative variables xi and h2 is retained. Additional terms in the

numerator and denominator can be easily included if required. The metamodel represented in Eqs.

(12) or (13) is nonlinear in the coefficients Y, and y2, meaning that an iterative nonlinear least-
4

squares technique, such as the Marquardt method [16], must be used to estimate the coefficients.

P In the case of a linear model, such as Eq. (9), if the errors are assumed to be independent and

normally distributed, with zero mean and constant variance, LS produces estimates of the model

parameters which are unbiased, normally distributed, and minimum variance. In practice, least-

squares produces the best available estimates. Other desirabIe properties of linear models include

ease of obtaining the LS estimates, i.e. no iteration, straightforward statistical interpretation of the

estimates, and the predicted values of the response variable y will be unbiased. In contrast, LS

estimates for a nonlinear model achieve these properties only asymptotically. However, if the LS

estimator for the parameters of a nonlinear model is only slightly biased, with a distribution that is

close to normal, and has variimce close to the minimum, the model can be considered as close-to-

linear [17].

Fortunately, the nonlinear model form in Eq. (12) is found to be close-to-linear. It is important

to understand that this does not mean that the coefficients that appear nonlinearly, YOand y,, are

necessarily small, but rather that the rational form will have properties close to those discussed for

a linear model. An iterative technique for nonlinear LS requires an initial guess for the model

coefficients @. A good initial guess is provided by the linear LS estimate, where the nonlinear

estimation problem associated with the RF metamodel is cast in a linear form

xRFe,F= Y (14)

by multiplying through Eq. (13) by the denominator of the discretization error term and then

subtracting Yy1h2+ Yy2h4 from both sides of the resulting expression. The jth row of the

corresponding experiment design matrix is given by

6 where the inputs and the response ~ are evaluated at the jth experiment in Table 1. The

corresponding coefficient vector is given by
a

(16)
a, all a12 0+3 Y1 Y21T
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If the RF metamodel described by Eq. (12) behaves as though it is close-to-linear, the optimization

scheme used by the nonlinear LS method will find the minimum of the sum of squared errors

function in one step. In all of the examples considered during this work, when the linear LS

estimate was used as a starting point, convergence took just one step and the optimum estimate

essentially coincided with the original starting point. This indicates that the RF metamodel behaves

linearly and the best estimate is produced by linear LS. In general, every example should be

checked for linearity when using RF metamodels.

2.2 Error Analysis

When working with finite sequences to approximate functions, it is desirable to be able to

compute a rate of convergence. For a truncated sequence of simple polynomials, the rate of

convergence is straightforward to estimate. In the case of the general RE metamodel

Y& = Y(ZB)[l+@2 + a2h4 + “. -a~h2”] (17)

the rate would be 0(h2(m+1)) or at least as fast as the term h2(”’1) for small h. In the case of a RF

metamodel, the truncated sequence is a little more difficult to identify. Due to the nonzero

polynomial in the denominator, Eq. (6) is equivalent to a sum of infinite sequences of simple

polynomials given by

Y[RF= Y(Zp)[l+~(~i,h)]~~j;=]
where

$ = 6iih2i + ($ii+1h2(i+1)+ dii+zh2(i+2J+ . . . , i>l

(18)

The order of convergence can be estimated by computing the difference between a rational function

representation containing an infinite number of terms in the denominator, y~~, and the truncated

expression in Eq. (6) containing terms through order h2”. Equation (18) produces the result

(19)

Therefore, assuming ns m, the representation y~~~converges at least as fast as h2(”+*).
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In order to have confidence in the accuracy of extrapolated results using either the RE or RF

error representations, consistency checks must be computed. For conciseness, only first and

second order models in h2 will be considered, but the following consistency checks can be

generalized to models of any order. Let s; and s; represent the discretization error produced by

truncating either the RE or RF representations to first and second order in h2, respectively. In the

case of RE representations, Malkus and Webster [18] proposed a check of the relative

contributions at f~st and second order given by the measure

s;–&;q=
E;

For the RE models proposed in Eqs. (4) and (5), the measure has the form

In the case of RF models of the form given in Eq. (12), s; and s; are given by

(%- Y,)h’
ELF = y

1+ ylh’

E:RF= y[@I‘Y,)h2 -y2h4]
1+ ylh’ + yzh4

(20)

(21)

(22)

(23)

which produces

-y2h2(l + (x,h’)

‘“= (ctl -yl)[l+ylh’ +y2h4]
(24)

A second measure, proposed by Conte and de Boor [19], estimates the dominance of that

portion of the series retained in the discretization error model over that portion discarded.

Assuming that the desired output value is available at three different discretizations, the measure is

computed using the relation

Y1– Y’r2 z

Y’ – Y3

173

(25)



10

in which yi denotes the value produced at a discretization parameter value hi. In a finite element

analysis, hi would correspond to three different mesh refinements. In the following analysis, it is

assumed that ~ corresponds to the coarsest discretization, with h, = ~ \qz and ~ = ~ \q~ in

which qz and % are integers. Assuming a second order RE metamodel

estimate of measure r2 can be computed by substituting into Eq. (25)

al(’-#+a242[1-#
“E=a[i-i)+a’~2[i-i

in the form of Eq. (8), an

(26)

The corresponding measure for a first order model, ?12RE,Cm be found by setting CZzequal to zero.

For the second order RF metarnodel in Eq. (12), the corresponding estimate is given by

,2RF=[Y1(1-#+Y242(l--!J][l+Y1-$+Y2+44)
‘2

[y1(ki)+y242[i%J
(27)

Setting y2 equal to zero produces the measure for the corresponding first order RF model, f~~~.

These consistency measures can be used in a fashion analogous to that proposed by Malkus

and Webster [18]. It will be considered strong evidence that either of the methods is frost order in

h2 and in its asymptotic range if q is small with respect to 1 and f; = ~ . Conversely, if q is

large and i?; = ~, it will be considered strong evidence that the method is second order in h’ and

in its asymptotic range. Otherwise, it will be concluded that the analysis is indeterminate, meaning

that the methods are not in the asymptotic range or possibly of higher order.

3. Numerical Examples

Several numerical examples are considered in this paper. Initially, a very simple problem is

presented to illustrate the superior convergence properties of the rational function representation of

the discretization error model. The second example deals with the prediction of the natural

frequency of the third axial mode of vibration of a one dimensional prismatic bar which is

constrained at one end.

3.1 Convergence Study for Simple Example

The function
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(28)

will be considered as a simple representation of the possible effects of discretization on a system

response. This might represent the solution produced by a finite element analysis. The extended

metamodel formulations discussed in the previous section will be applied to estimate yk and then

extrapolated to their continuum estimates at h = O. Quantitative variable x varies between –1 and 1

while the discretization variable h will take on three different values in the numerical experiments

representing different mesh sizes. Thirty numerical experiments were generated by randomly

varying x according to a modified Latin Hypercube centered at zero. The corresponding value of h

was randomly selected from the three possible values used for the analysis.

The metamodel forms applied in this example are given by

YhRE = Y(Z 0[1 + f%h’ + ~2h4]

(29)

yhRF = Y(~> @
[l+Y1h~+Y2h41

Note that the RF metamodel has no polynomial present in its numerator. This form was selected

such that both of the metamodels in (29) have the same number of unknown coefficients in the

discretization error, allowing direct comparison of the models. This form of the RF model is

sometimes referred to as an Inverse Polynomial [20]. When expanded, the metamodels in Eq. (29)

have the forms

yhRE = ii)+ tix + /32x2 + %h2 + %]xh’ + ~~2x2h2 + ~2h4

YIIRF = DO + PIX + ~2x2 – y1yhh2 – y2yhh4

(30)

Note that both models are second order in h’, but the RE model possesses two more unknown

coefficients than the RF metamodel due to the explicit coupling between the quantitative variable x

and h2. In contrast, the RF model form in Eq. (29) possesses this type of coupling without

explicitly introducing new coefficients.

Two cases are considered for this example. In the first, the values of the discretization

parameter are selected as A = 1.2, ~ = 0.6, ~ = 0.3. This corresponds to the usual practice of

doubling the mesh size between refinement analyses. Values of h were selected such that the

numerical experiments were not performed in what would be expected as the asymptotic region.
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Parametersq2 and% havevalues 2and4, respectively. Both first andsecond order metamodels

in h2 are considered. The first order models are derived from Eq. (29) by simply omitting terms

proportional to h4. Linear LS was used to estimate the RF and RE model coefficients. The

estimate of the leading coefficient PO, corresponding to the response at nominal x and zero mesh

size, serves as a measure of the ability of the associated metamodel to accurately extrapolate to the

continuum value of 3.0 at h = O. Analysis results are presented in Table 2.

A first order RF model produces the extrapolated result PO = 3.23 possessing an error of

7.67%. In general, the true value of 3.00 is not known, therefore, the consistency measures q

and L must be applied to validate the accuracy of the extrapolated results. Note that q cannot be

computed until a second order metamodel is generated. However, rz can be immediately

calculated using Eq. (25) resulting in the value 8.22. An estimate, i?z= 14.59, can be computed

from the first order RF metamodel using Eq. (27). A lack of agreement between L and its

estimate, indicates that the result extrapolated from the first order RF model cannot be assumed to

be accurate. A first order RE metamodel produced the extrapolated result PO= 2.33 having an

error of -22.33~0. Equation (26) gives the corresponding estimate ?Z= 4.00. Measure r2

indicates that the extrapolated result cannot be accepted as an accurate estimate, which is consistent

with the large amount of error that is actually present.

Second order metamodels were then investigated. The RF model produces the estimate

EO= 2.96. Measure q Cm now be computed using Eq. (24) resulting in a value of -1.82, which

indicates that the additional second order term is almost twice as large in magnitude as the first

order term. Measure r2 now has the value 7.95 compared with the value of 8.22 computed from

the actual response data. Due to the facts that ~ is not small and ;2 = rz, it can be assumed that the

RF method is second order and in its asymptotic range, meaning that the extrapolated results can be

accepted as accurate. This is consistent with the actual amount of error, -1.3370, present in the

estimate. The RE model produced an estimate of ~0 = 2.77 with ~ = 0.74 and ?2= 6.26. The

-23.86~0 error in ;2 coupled with the relatively large value of q indicates that the RE method is not
.

second order and not in its asymptotic range. The estimate of PO cannot be accepted as accurate,

even though the actwd error level of -7.67Y0 might be accurate enough for some applications. Note

that bad values of ~ and f2 are necessary, but not sufficient, to conclude that the extrapolated

result is inaccurate. Further details can be found in Ref. [18].

The second case considered for this simple example puts even greater demands on the

extrapolation capabilities of the methods. The values of the discretization parameter are increased

to * = 2.0, ~ = 1.0, & = 0.5. Only second order models were considered. Table 2 shows a

2.0070 error in the estimate of PO for the RF model, while there is a -283.6790 errors in the

corresponding RE estimate. The values listed for < and ~ indicate that there is strong evidence
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that the RF method is second order and in its asymptotic range, while there is no such evidence for

the RE method. This is consistent with the actual error levels and illustrates the superior

extrapolation capability of the RF representation. In all of the cases listed, the RF discretization

error model clearly outperforms the RE model in extrapolating to the continuum at h = O. Note that

the nonlinear Marquardt LS method was unable to improve on the initial linear LS estimate of the

RF model coefficients, indicating that the RF model is close-to-linear in this region of parameter

space.

3.2 Finite Element Bar Example

The proposed methods are now applied to a more realistic example. The natural frequency of

the third axial mode of a one dimensional continuous prismatic bar, constrained at one end, is to be

predicted using results based on finite element models. This example is based on the problem

studied by Alvin [9]. The exact continuum solution in Hertz is given by the expression

(31)

Three quantitative inputs are considered, including elastic modulus (xl ), mass density (X2), and

length of the bar (X3). Numerical experiments using finite element models of the beam were

generated using the Box-Behnken design in Table 1. The standard deviations of the quantitative

inputs are taken as 1.O% of their mean values. The coded values of –1, O, and 1 for the three

quantitative inputs in Table 1 represent low, nominal, and high levels, respectively. The nominal

value of the inputs corresponds to their expected values, while the high and low levels represent

plus and minus two st~dard deviations. In the following computations, the nominal values of the

quantitative inputs E,_, and L, correspond to 107 psi, 0.10 lb/in3/g, and 16.0 in, respectively.

The fourth model input is the discretization parameter h. In general, h can be expressed as

(32)

where N is the number of elements in the finite element mesh and p is the spatial order of the

● elements [14]. In this example, elements are one dimensional, therefore, h is just the inverse of the

number of elements in the mesh. In the case of the discretization variable h, values –1, O, and 1

4 correspond to coarse, nominal, and fine meshes. The actual values of h given by Eq. (32) are

used in the design matrix instead of the coded values listed in Table 1. In each of the following

cases, a consistent mass distribution was used and the meshes were uniform for simplicity. It is

177



14

believed that analogous results would be obtained for nonuniform meshes as considered by Alvin

[9].

3.2.1 Case 1

The first case investigated uses a nominal mesh with 20elements, ~ =1/20. Employing the

usual convention of halving and doubling the number of elements, the coarse and fine meshes have

10 and 40 elements with discretization parameter values of ~ =1/10 and ~ =1/40, respectively.

This particular case is comparable to the one considered by Alvin [9]. Linear LS was used to fit

both the RE model in Eq. (9) and the RF model in Eq. (13) to the response data obtained from the

numerical experiments. The estimated model coefficients were tested for statistical significance at

the 95% confidence level using the t-Test statistic [3]. All 15 coefficients in the RE model were

found to be statistically significant while the four h dependent terms in the numerator of the RF

representation were insignificant resulting in the reduced RF metamodel

YMw = [B()+ Pp, + P*X*+&q + Pl,x;+ 1322x;+ &: +

P12X1X2 + ~13xlx3 + &3x2x31

[l+Yo~+YIJ

(33)

This form of the discretization error is identical to the inverse polynomial form used in the simple

convergence example of Section 3.1 in which cq was assumed to be zero.

Two measures of goodness for extrapolation capability are considered. The fwst is the estimate

of the zero-intercept coefficient Do which represents the frequency corresponding to the nominal

continuum model, 15,351.12 Hz. The results presented in Table 3 show that both the RE and RF

metamodels are essentially exact in their predictions. In both cases, measure q is small and fz = ~

indicating there is strong evidence that each of the methods is first order and in its asymptotic

range.

One of the main goals of this work is to accurately extrapolate the discrete metamodel form to

the continuum metamodel such that an accurate decoupled Monte Carlo analysis can be performed.

Therefore, all the h-independent coefficients must be accurately estimated, not just PO. One

hundred random experiments were selected within the initial design region and applied to the exact

relation given in Eq. (31). The estimated RE and RF metamodels were extrapolated to h = O and

applied to the same 100 experiments. The second measure of goodness considered is the

maximum percentage residual error for the 100 experiments. Table 3 indicates that the RF model is

slightly better, but both models give very accurate estimates within the design region. However, it

is important to remember that the RF model is able to achieve this level of accuracy using three less
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terms than the RE representation. As suggested earlier, simplicity is desired over generality in

response surface analysis.

3.2.2 Case 2

The extrapolation capabilities of the RE and RF metamodels were then tested by using coarser

meshes. In Case 2, the nominal mesh has only 6 elements, ~ = 1/6, while the coarse and fine

meshes correspond to

y insignificant, resulting in 13 terms in the RE metamodel. All the h dependent terms were

retained. Linear LS was also applied to the RF model form. As in Case 1, all the h dependent

terms in the numerator of the discretization error model were found to be statistically insignificant

producing a reduced RF metamodel with 12 terms. The extrapolation performed in Case 1 was

repeated with the results presented in Table 3. Percentage-wise, both metamodels accurately

predict the nominal frequency for the continuum, but the RF metamodel is twice as accurate as the

RE representation. With respect to the 100 random experiments within the design space, the RF

model produced a residual error, 0.11 $%0, that was less than half that of the RE model. In both

cases, measure q is not small and ~ = ~ indicating there is strong evidence that each of the

methods is second order and in its asymptotic range.

3.2.3 Case 3

Case 3 represents the most extreme case of extrapolation possible for the chosen example. The

nominal mesh contains only 4 elements, while the coarse and fine meshes only contain 3 and 5

elements, respectively. In this case, the usual convention of halving and doubling the mesh is not

followed. In an extreme case, this could be considered a perturbation of the nominal mesh.

Linear LS was used to estimate each model and the same terms were found to be significant. The

extrapolation results listed in Table 3 indicate that the RF representation is again more than twice as

accurate as the RE model. As in Case 2, measure q is not small and i?2= h indicating strong

evidence that each of the methods is second order and in its asymptotic range. An error of –1 .57%

in the prediction of the nominal continuum frequency and a residual error of 1.57% indicates that,

even in this extreme case, the RF metamodel is an accurate predictor on the experiment design

space for the continuum. The error measures are consistent with this observation. In an actual

application, the estimate of coefficient f10 can be used to estimate the discretization error present in

a finite element mesh. For the refined mesh, the finite element model with nominal inputs predicts

the frequency of 16,927.04 Hz. Using the RF estimate of /?O, the mesh error can be estimated as

12.04%. Note that in all three cases discussed, the Marquardt nonlinear LS method could not

improve on the linear LS solution.
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3.3 Decoupled Monte Carlo Analysis

The ultimate goal of the extended metarnodel approaches presented in this report is to eliminate

or at least quantify the effect of mesh discretization error on the results of nondeterministic

analyses. Assuming each of the inputs satisfies a normal probability distribution, a Monte Carlo

analysis was performed using the exact relation for the continuum frequency given by Eq. (31).

The inputs were randomly sampled 100,000 times and the results used to compute the probability

of failure, defined as the vibrational frequency being less than 15,000 Hz. In each of the cases

discussed, the metamodels were extrapolated to the continuum approximation at h = O and applied

to the 100,000 samples used in the exact formulation.

In Case 1, which used the most refined meshes, both the RE and RF metamodels accurately

predict the mean frequency value and the probability of failure as listed in Table 4. The benefit of

the RF model is that it uses 3 less terms. Case 2 uses coarser meshes and begins to exercise the

extrapolation capabilities of each of the metarnodel forms. The results presented in Table 4 indicate

that the RF model is more than twice as accurate as the RE representation. But, while the mean

frequency value is very accurately estimated, the percentage error in the estimated probability of

failure is large, at 21.24%. This result agrees with Alvin’s bar example observations that the

accuracy of the estimate of the mean value must be extreme to be able to accurately estimate small

magnitude failure probabilities. The accuracy of the extrapolated metamodels in Case 2 is

illustrated in Fig. 1 in which the percentage error in the probability of failure estimate is plotted

against the number of standard deviations that the failure criterion is away from the mean

frequency. The RF metamodel is clearly superior as the failure criterion deviates below the mean.

Above the mean value, both methods approach zero error. Case 3 uses the most coarse meshes,

possible (3, 4, and 5 elements) for metarnodel estimation. Even in this extreme case, the RF model

produced small residual errors over all 100,000 experiments and an accurate estimate of the mean

frequency at –1 .57% error as listed in Table 4. The RF model, once again, is better than twice as

accurate as the RE representation, but the RF probability of failure estimate is very inaccurate,

while the RE prediction is grossly in error for this extreme case of extrapolation.

4. Conclusions

A new method has been presented for extending response surface techniques to include the

effects of finite element model mesh discretization errors. The method employs a rational function

representation of the discretization error in parameter h rather than the power series representation

used by the straightforward Richardson extrapolation technique. Consistency measures were

introduced to test the method order and whether the method is in its asymptotic range. Examples

dealing with simple function estimation and the estimation of the third axial vibration frequency of

a one dimensional bar showed that the rational function representation gave more accurate
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extrapolated estimates using fewer terms than the Richardson extrapolation technique. In

subsequent nondeterministic analyses used to estimate failure probabilities, the rational function

based metamodel also produced more accurate estimates than Richardson extrapolation under

severe extrapolation conditions. However, it was also shown that accurate estimates of small

magnitude failure probabilities are difficult to obtain in cases of extreme extrapolation. Future
.J

work will address this problem.

While the rational function form of the discretization error produces a nonlinear model,

requiring an iterative nonlinear least-squares solution technique, all the examples studied in this

work proved to be close-to-linear, meaning that the linear least-squares estimate of the model

coefficients could not be improved. It is believed that the rational function representation of the

discretization error offers greater flexibility by allowing a user to accurately extrapolate to a

continuum representation from numerical experiments performed outside of the asymptotic region

where the usual power series representation is not converging. This allows the use of coarser

meshes in the numerical experiments, saving a si~ificant amount of time and effort.
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Table 1. Box-Behnken design for four input variables.

Runs A a d &

1-4 *1 *1 o 0

5-8 0 *1 *1 o

9-12 0 0 +1 *1

13-16 *1 o *1 o

17-20 0 *1 o *1

21-24 *1 o 0 *1

25 0 0 0 0

Table2. Metamodel extrapolation results forsimple function example.

Case 1. ~ =1.2, ~ =0.6, ~ =0.3

First Order 3.23 7.67 ----

Second Order 2.96 -1.33 -1.82

m

First Order 2.33 -22.33 ----

Second Order 2.77 -7.67 0.74

Case 2. ~ = 2.0, ~ = 1.0, ~ = 0.5

~

Second Order 3.06 2.00 -35.19

&

Second Order -5.51 -283.67 3.79

;2—

14.59

7.95

4.00

6.26

35.17

10.51

r2—

8.22

8.22

8.22

8.22

36.17

36.17

% Error

77.49

-3.28

-51.34

-23.84

-2.76

-70.94
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Table 3. Simple beam extrapolation results.

Case 1. ~ = 1/10, ~ = 1/20, ~ = 1/40

RF 15351.15 2.00e-4 -1.98 e-2

RE 15351.13 6.50e-5 5.97e-3

Case 2. ~ =1/3, ~=1/6, ~= 1/12

RF 15334.93 -0.11 -0.55

RE 15319.67 -0.20 -0.38

Case 3. ~ = 1/3, ~ = 1/4, ~ = 1/5

RF 15110.19 -1.57 -0.62

RE 14841.28 -3.32 -0.49

Max. Residual

A

r2 r2 % Error— —

4.02 4.02 6.00e-4

4.00 4.02 7.40e-4

2.38 2.38

2.38 2.38

0.92 0.92

0.92 0.92

Table4. Nondeterministic beamanalysis resuks.

Case 1. ~ = l/10, ~ =1/20, ~= 1/40

Max. Residual Mean

Method % Error Value

Continuum 0.00 15352.40

RF 8.2e-3 15352.43

RE 1.Oe-2 15352.43

Case 2. ~ = 1/3, ~ = 1/6, ~ = 1/12

Continuum 0.00 15354.22

RF 0.11 15338.04

RE 0.31 15323.46

Case 3. ~ = 1/3, ~ = 1/4, ~ = 1/5

Continuum 0.00 15353.51

RF 1.58 15112.55

RE 3.84 14844.51

184

% Error

0.00

2.Oe-4

2.Oe-4

0.00

-0.11

-0.20

0.00

-1.57

-3.32

% Probability

of Failure

2.93

2.94

2.94

2.84

3.45

4.44

2.86

27.36

78.16

0.11

0.27

1-57

3.63
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