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Abstract 

This paper discusses potential improvement in accuracy 

of estimation of load profiles at substation/aggregation 

point if the demand data is collected directly from smart 

meters rather than from balancing meters at bulk supply 

points. It proposes a bottom-up approach for 

development of daily load curves for domestic load 

sector by aggregating data coming as real-time data 

series from smart meters. In order to illustrate the 

concepts an assumption is made that all the smart 

meters in an area have the ability to measure 

instantaneous real power demand of each individual 

appliance. Following this, a probabilistic bottom-up 

approach is applied to generate reactive power demand 

at the point of aggregation. It is further assumed that the 

collected data streams have different sampling steps and 

that there are some missing data in recorded data 

streams. Different data conditioning methods are used to 

investigate the accuracy of demand aggregation at    

different aggregation levels not only in terms of total 

demand but also in terms of demand categories and 

controllable and uncontrollable demand.   

1 Introduction 

Future power networks are set to become significantly 

different from the existing, particularly in the areas of 

electricity generation and distribution. Generation will  

increasingly rely on low carbon technologies (LCT), i.e. 

renewable sources and energy storage systems scattered 

across all voltage levels  as illustrated in Fig.1 [1].     

Distribution network is becoming more active in 

balancing generated and consumed power through 

active participation of the end-users through demand 

side management (DSM). DSM is principally driven by 

market (reduction of the electricity generation price) 

and reliability (avoiding transmission/distribution lines 

congestion) objectives [2].   

Load control, as direct “consequence” of DSM involves 

disconnection and/or shifting the connection time of 

controllable loads in order to provide flexibility. During 

the day, portion of controllable loads changes due to end 

user activities, hence timely assessment of the amount 

of available controllable load is essential for facilitating 

load scheduling tasks. Controllable loads, together with 

distributed generation from renewables, form the actual 

flexibility of the end-users. This flexibility is in fact the  

amount of consumption or production that can be 

shifted in time and used for mitigation of grid 

congestion at both distribution and transmission level,    

for reduce the electricity bill for consumers by 

following dynamic pricing and energy efficiency 

services, or for providing balancing services to 

balancing actors or directly to the transmission system 

operator (TSO) [3]. 

 

Figure 1 Distributed generation system [1] 

Load and distributed generation forecast is essential for 

reliable flexibility assessment, as it is taken as the 

reference to calculate the effects of flexibility, from 

both network and market perspective [4]. Data used for 

load forecasting is currently taken from substation 

points where monitors measure total consumption (real 

and reactive power), often involving different load 

classes/sectors (residential, industrial and commercial). 

These measurements, however, do not discriminate 

between different load   categories (induction motors, 

lighting, resistive loads, etc.). In this respect, smart 

metering system that has been increasingly developed 

throughout the world enables remote   acquisition of    

information about daily load variation at users’ 
premises. Depending on the future distribution system 

architecture, the low-level data acquired in this way will 

be aggregated either at distribution system operator 

(DSO) or aggregator point.  
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This paper therefore proposes a bottom-up approach for 

development of daily load curves at given aggregation 

point by aggregating individual load curves coming as 

real-time data series from smart meters. It establishes 

potential improvement in accuracy if the demand data is 

collected from smart meters rather than from balancing 

meters at substation (bulk) points. To illustrate the 

concept an assumption is made that all smart meters 

have the ability to measure daily demand for each 

individual appliance. Measured active power demand of 

individual appliances is then aggregated by summing up 

load of different appliances, differentiating between six 

load categories, as follows: 

1) Resistive loads: hob, oven, iron, electrical 

water heater, etc.; 

2) Switch-mode power supply (SMPS): TV, 

microwave, electronic devices, etc.; 

3) Lighting: incandescent light bulbs, compact 

fluorescent bulbs, etc.; 

4) Single-phase constant torque induction motors 

(CTIM1): washing machine, tumble dryer, dish 

washer, etc.; 

5) Three-phase constant torque induction motor 

(CTIM3): electrical space heater; 

6) Single-phase quadratic induction motor 

(QTIM1): fridge, freezer, etc. 

Categories 4, 5 and 6 are considered to be controllable, 

loads in category 1 are partly controllable and categories 

2 and 3 are uncontrollable. Since smart meters that are 

presently being deployed, and which will therefore 

remain in service for foreseeable future, most 

commonly do not measure reactive power consumption 

of end-users, a probabilistic approach is applied to 

generate reactive power daily demand at aggregation 

point using range of possible values of power factor 

(PF) of individual appliances.  

To illustrate the approach, the input data  are obtained 

through aggregation of low-level data generated using  

CREST tool [5] which  allows simulation of 34 

individual home appliances’ daily load profiles in terms 
of active power, with one-minute resolution. The 

information provided by the CREST tool is then used to   

generate decomposed daily load profiles in terms of 

load categories in both active and reactive power. The 

paper  builds on the  methodology described in [6], 

where a probabilistic approach and Artificial Neural 

Networks (ANN) were used to estimate and predict 

contribution of different load categories to daily loading 

curve based on half hourly meetering data and bulk 

supply points and general information about customer 

composition available from customers surveys. The use 

of realistic data obtained thorugh aggregation of huge 

data streams from smart meters, as demonstrated in this 

paper,  will certainly improve the accuracy of estimation 

of load composition at aggregation point as well as 

identification of controllable and uncontrollable 

portions of load which will   facilitate more effective  

DSM. 

2 Decomposed Daily Load Curves 

(DDLC)   

Having in mind that the electricity consumption of 

individual residence depends on family composition, 

lifestyle, mixture of electrical appliances, etc., 

residential sector’s daily electrical behaviour is quite 
random and therefore requires probabilistic analysis [7]. 

At the same time, large number of residential consumers 

presents a significant portion of the total power 

consumption in an area. In the UK, for instance, 

residential (domestic) sector is the largest final user of 

energy, presenting around 30 % of overall consumption, 

with industrial and commercial sector following with 

26 % and 21 %, respectively [8]. This presents high 

potential for domestic sector involvement in future 

DSM programs.  

2.1 Total Daily Load  

Daily load pattern of the end-users is typically 

reconstructed according to their monthly energy 

consumption and typical load profile, i.e. load class they 

belong to [9]. However, even when they belong to the 

same load class or commercial code, consumers’ load 
patterns might be very different [10]. As shown in [9], 

there was a limited correlation   between consumers’ 
activity type (i.e. load class) and their load pattern. It 

has been found that differences between individual daily 

load curves do not influence significantly the shape of 

aggregated load curve when it involves large number of 

consumers, for instance at substation point. However, in 

case of aggregators (potential new actors in future 

distribution grid market), the aggregation might include 

smaller number of customers and thus be more affected 

by their varieties in power demand. Therefore, a more 

detailed analysis should be performed over customers’ 
load patterns in order to enhance accuracy of load 

estimation and forecast, especially at lower levels of 

aggregation. 

Fig. 2 shows daily load profiles on two working days 

and one non-working (holiday) day, taking in account 

three aggregation levels: 10, 200 and 1000 houses. The 

load profiles were generated using CREST tool. As it 

can be seen from the graph, there is a significant 

randomness in daily load profiles at the aggregation of 

10 houses, irrespectively of the day type (working day 

or holiday). Differences in load patterns between 

working days decrease as the aggregation level grows, 

which is very clear at the aggregation of 1000 houses. 

The graph also shows difference in load profile between 

working days and holidays. This difference, larger 

consumption during working hours (8 a.m. to 4 p.m.), is 

more observable, at higher aggregation levels (200 and 

1000 houses). Therefore, in case of DSM at local level, 

i.e., for smaller number of consumers, the load 

forecasting becomes much more complex.  
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Working day 1 Working day 2 Holiday day 

Figure 2 DLC for aggregation levels of: 10 houses (blue), 200 houses (red) and 1000 houses (green) 

2.2 Load Decomposition 

Going further from total load prediction, even more 

chalenging is to estimate impacts of different load 

categories (induction motors, lighting, resistive loads, 

power electronics, etc.) at the aggregation point level. 

Potential flexibility in terms of different load types by 

areas or groups of customers has only been assessed 

through surveys, which is time demanding and not 

necessarily sufficently  accurate. Since flexibility 

depends on the availability of controllable loads, there is 

a need for isolating (disaggregating) impacts of different 

categories/types of load at the aggregation point 

according to available measurements. With the 

assessment/prediction of available demand flexibility   it 

is possible to adjust the level of incentives that need to 

be offered in order to attract more end-users to 

participate in DSM actions and such provide required 

support to  distribution network. This would result in 

shifting (washing machines, dryers, dishwashers, 

boilers) or curtailing (AC, space-heaters) [2] parts of the 

load when needed. 

Fig. 3, adopted from [11], shows the expected format of 

the output, where load curves of different load types (a) 

are summarised into corresponding load categories (b). 

Further grouping should show percentages of 

controllable and uncontrollable load, obtained by 

summing the percentages of controllable/uncontrollable 

load categories.  

 

 

 
(a) 

 
(b) 

Figure 2 Decomposition of load curve in terms of load types 

(a) and load categories (b) [11] 

Another benefit from information about demand (real 

and reactive power) composition in terms of load 

categories is that it can be further utilised for the 

estimation and prediction of the dynamic response of 

demand [12]. In case of a voltage disturbance in the 

network, i.e. voltage step change, there is a dynamic  

response of the load (real and reactive power) which 
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may influence the voltage and angular stability of the 

system. This response is highly dependent on the 

composition of load (shares of different load categories 

in total demand at given point in time) and the voltage 

change. Therefore, it would be highly useful to assess 

the time change of real and reactive power and 

composition of loads in order to be able to predefine the 

desired composition of load categories whose demand 

response would not harm stability of the system in case 

of a voltage disturbance (small and large). 

3 Case studies 

3.1 Processing and Conditioning Imperfect Data  

According to [13], up to 20 % of active load 

measurements at substation points are inaccurate. This 

consequently affects to a large extent the accuracy of 

load forecast. This  case study focuses on the effect of 

missing data on the accuracy of demand decomposition. 

Some studies have treated missing data by simple 

elimination and consequent data size reduction or by 

imputing mean values of available data in places where 

the data is missing [14, 15].  

Several techniques have been investigated in this study 

in order to improve the accuracy of data restoration. 

Three data imputation methods, namely, simple 

linearization, locally weighted scatterplot smoothing 

(LOESS) [18] and K-nearest neighbor (kNN) [16, 17] 

are illustrated here as representatives of different classes 

of possible methods.  Simple linearization is taken as 

the simplest of methods for restoring missing data by 

simply connecting existing samples by a linear line 

whenever there is a missing sample/set of samples 

between them. LOESS can be used in cases when data 

streams have “NaN” values, although it shows higher 

errors for large portions of missing data (relative error 

can be up to 30 % in case when 20 % of data is missing 

in a data stream). kNN method requires a set of training 

data which is then used to impute missing samples in 

the test data using distance (e.g., Euclidean) 

minimization. Part of this study will adopt an improved 

version of kNN,  weight adjusted kNN (WAkNN) [19] - 

in this case, if a training object has smaller distance  

from the test object, this training object will have higher 

weight. Eventually, the missing part will be replaced 

with the sum of weighted training objects that were 

closest to the test object. Furthermore, two ways of 

applying KNN method are considered: 

 kNN based on total samples: all available samples 

in a daily load curve (DLC) of a house are set as the 

test object; 

 kNN based on adjacent samples: only a set of two 

closest bordering samples around the missing part 

of a DLC is taken as the test object (in this case 

WAkNN method is applied).  

3.1.1 Methodology 

An assumption is made that perfect data presents fully 

accurate smart meter data with one-minute sampling 

step. Another assumption is that in an aggregation area 

some smart meters have different sampling step of 10, 

30 and 60 minutes including that some have missing 

values in their data streams. In order to present realistic 

issues with aggregation of incoming data streams, total 

number of smart meters in an aggregation area is 

divided into four groups: 

 Group A: 1-minute resolution smart meters with 

20-30 times, 10-30 samples missing from a total of 

1440 samples (daily load); 

 Group B: 10-minute resolution smart meters with 

10-20 times, 1-6 samples missing from a total of 

144 samples; 

 Group C: 30-minute resolution smart meters with 1-

3 times, 2-6 samples missing from a total of 48 

samples; 

 Group D: 60-minute resolution smart meters with 

1-2 times, 2-4 samples missing from a total of 24 

samples. 

3.1.2 Results 

Following the random distribution of the smart meter 

groups (A to D)  within an aggregation of 1000 homes 

(i.e. 1000 daily load profiles) on a working day in 

January (which was set in CREST tool), five different 

approaches are used to restore missing data. They are 

summarised in Table 1. Fig. 4 illustrates the original 

DLC for 1000 houses and five restored DLCs using 

approaches described in Table 1.    

Table 1 Approaches used for restoration of missing data  

 Different Sampling 
Rates 

Missing data 

1 Linearization  Replace with zero 

2 Linearization Linearization 

3 LOESS LOESS 

4 
kNN based on total 
samples 

kNN based on total 
samples 

5 
kNN based on two 
adjacent samples 

kNN based on two 
adjacent samples 

 

Apart from the approach 1 (the simplest), all other data 

restoration methods result in acceptable (visual) 

resemblance to the original data set. In order to support 

this conclusion, a comparison of errors is presented in 

Table 2, showing maximum (E_max) and average 

(E_ave) values of relative errors across 1440 samples of 

the original data, as well as root mean square error 

(RMSE) for different levels of aggregation: 1000, 200 

and 50 homes. RMSE is normalized based on the mean 

daily power value of the original data set. 
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Figure 4 DDLCs of original full data streams (a) and processed data streams by treatment 1 (b), treatment 2 (c), treatment 3 (d), 

treatment 4 (e) and treatment 5 (f) for the sum of 1000 houses based on 6 load categories; Legend: QTIM1 - Single-phase 

quadratic induction motors, SMPS - Switch-mode power supply, R - Resistive loads, CTIM1 - Single-phase constant torque 

induction motors, CTIM3 - Three-phase constant torque induction motors, Lighting 

Even though the approach 5 showed the best results for 

the aggregation of 1000 end users, in cases of 

aggregation at 200 and 50 house level, the approach 2 

(simple linearization) showed higher accuracy. This 

brings the conclusion that for lower level of 

aggregation, there is no need for time consuming data 

mining methods to deal with missing data. The highest 

error for all three aggregation levels resulted from 

replacing the missing data with zero values, i.e. not 

restoring missing data at all. 

Since the main aim of the decomposed DLC is to 

estimate the amount of controllable load, the division 

into controllable/uncontrollable load is performed over 

aggregation of 1000 homes using results of data 

restoration approaches 1 and 5, to illustrate maximum 

and minimum errors, respectively. Fig. 5 presents the 

original data set with categories classified into 

controllable and uncontrollable load (a), followed by the 

same classification done after treatments 1 (b) and 5(c) 

and corresponding time-varying relative errors (d and f) 

for total load and controllable/uncontrollable load. As 

seen from the figure, in case of approach 1, relative 

errors of total load and controllable/uncontrollable load 

are quite high (around 50 %). Relative error for total 

load curve over the whole time frame in case of 

treatment 5 is drastically smaller (up to around 10 %) 

compared to 1. On the other hand, errors in assessment 

of controllable load are larger, reaching around 25 % at 

some time steps. Further analysis should be performed 

to investigate if there is any correlation between the 

period of the day and increased error in estimation of 

the controllable load share.  

Table 2 Three types of errors for 5 treatments in case of 1000, 

200 and 50 houses  

Treatment E_max (%) E_ave (%) RMSE (%) 
1000 houses 

1 49.73 18.08 20.94 

2 18,18 3.70 4.97 

3 37,59 5.72 7.67 

4 23.33 2.72 3.39 

5 14.07 2.57 3.23 

200 houses 

1 66.67 16.71 23.16 

2 34.17 6.55 9.58 

3 40.45 7.73 10.78 

4 66.59 7.89 9.29 

5 48.53 6.65 8.45 

50 houses 

1 78.88 18.39 27.13 

2 54.27 7.24 12.29 
3 84.68 10.87 15.73 

4 95.58 14.66 17.47 

5 100 10.37 14.67 
 

(a) (b) (c) 

(d) (e) (f) 
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Figure 5 DDLCs of: (a) perfect data streams, (b) incomplete data streams conditioned using approach 1 and (c) incomplete data 

streams conditioned using approach 5 for the aggregation of 1000 houses, followed by corresponding errors (d and e) for total 

load and controllable/uncontrollable (C/UC) load 

3.2 Probabilistic Generation of Reactive Power 

Load 

In order to make a complete profile of aggregated load 

in an area, both active and reactive load measurements 

are needed. In most cases, smart meters do not collect 

reactive power data, which brings the need for 

probabilistic assessment. A bottom-up approach is 

followed in this case too, by considering the range of 

possible power factors (PF) for different home 

appliances in CREST library. In order to present 

reactive power consumption more realistically, with 

variable PF across appliances of the same type, PF value 

for each appliance in each time step is randomized 100 

times for all the 1000 customers analyzed. By 

aggregation of probabilistic ranges of Q for each device 

in every household, a range of probabilistic daily 

reactive load curves is obtained.  

Following this a method needs to be adopted to generate 

reactive power for all the appliances. The following four 

options are considered: 

1) average value, based on average PF taken from 

typical range of PF for each appliance,  

2) most probable value of  the probabilistic range of 

reactive power obtained with randomization, 

3) mean value of the probabilistic range of reactive 

power, 

4) typical value - most commonly used PF from the 

typical range of PF for each appliance 

Typical range of PF for each appliance is adopted by 

considering values provided at different manufacturers’ 

websites. Taking lighting load as an example, Fig. 6 

shows four different reactive load curves for an 

aggregation of 1000 customers. As shown in the figure, 

the biggest discrepancies occur when the most typical 

value of PF is adopted for each appliance.  

 

Figure 6 Different probabilistic reactive load curves 

As for the other three solutions, due to relatively small 

differences between them, the most probable reactive 

load curve is adopted as the “original” reactive load 

curve. Based on this, a decomposed reactive load curve 

is obtained and illustrated in Fig.7. It shows 

participation of 6 load categories (including notionally 

resistive loads - which are not modelled as purely 

resistive) -Fig. 7 (a), and controllable/uncontrollable 

load - Fig. 7 (b), within the total daily reactive load. 
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Figure 7 DLCs of generated reactive power decomposed into: (a) categories;  

(b) controllable/uncontrollable loads  

4 Analysis of Results 

Figure 8 illustrates RMSE for different aggregation 

levels (50, 200 and 1000 customers) in cases of 

incomplete active power data before any processing (a), 

incomplete active power data processed using approach  

5 (b) and reactive power derived probabilistically from 

active power data after it was processed using 

approach 5 (c). The errors are shown for total load, 

controllable/uncontrollable (C/UC) load and six load 

categories. Incomplete and processed active load curves 

were compared to the original, complete active load 

curve.  

RMSE_P1 presents RMSE of incomplete data and 

RMSE_P2 presents RMSE after using approach 5. 

Regarding reactive power, two curves are compared to 

obtain RMSE_Q: 

1) Reactive load estimated using the full data set 

of active load curve; adopting the most 

probable reactive power curve as the “original” 
one; 

2) Reactive load estimated using active load curve 

with missing data restored by approach 5; the 

most probable curve was adopted for reactive 

load curve. 

In case of incomplete active load data (Fig. 8a), the 

error does not decrease monotonously with higher level 

of aggregation. The reason is randomness in selection of 

homes (i.e. smart meters) for different aggregation 

levels, which is why there were probably more smart 

meters with full (minute-based) data in 200 homes 

dataset. In cases of incomplete active load data 

processed using approach 5 (Fig. 8b), there is a clear 

decrease in RMSE over the whole range of load 

categories. The largest improvement in accuracy is 

shown for the case of aggregation of data from 1000 

homes, which justifies the application of kNN method 

for missing data at higher aggregation levels. 

Furthermore, the application of kNN method also 

improves the accuracy of estimation of 

controllable/uncontrollable load. 

Analysing the distribution of RMSE over the range of 

load categories, the highest errors are notable in 

resistive load category, both before and after data 

treatment. The most probable reason for this is 

substantial randomness in the use of resistive domestic 

appliances. On the other hand, electrical space heating 

(CTIM3 category) has shown the smallest errors due to 

seldom use of this type of loads in the analysed 

residential district. As for the reactive load (Fig. 8c), 

dataset derived from conditioned incomplete active load 

data gave acceptable RMSE of less than 5 % for most of 

the load categories.   

 

 

 

Figure 8 RMSE for incomplete load data: (a) RMSE_P1, (b) 

RMSE_P2, (c) RMSE_Q  
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5 Conclusion 

This paper presented a bottom-up approach for 

development of daily load curves by aggregating 

individual load curves coming as real-time data series 

from smart meters in residential load sector. 

Aggregation was done on appliance-level, followed by 

load category-level, assuming that smart meters could 

measure active power consumption of each appliance. 

In order to analyse a realistic situation, some smart 

meters were chosen to have different sampling step, as 

well as randomly missing data of different size. From 

several data restoration/conditioning methods 

considered, the kNN method resulted in the highest 

accuracy in estimation of both, total demand and 

demand composition for aggregation of large number of 

individual measurements.    

Following the assumption that smart meters cannot 

measure reactive power consumption, a probabilistic 

approach was developed to generate corresponding 

reactive load data. Two datasets were generated, one 

based on full active load data and one, more realistic,  

based on load curve with restored missing data. It was 

demonstrated that sufficiently accurate decomposed 

daily loading curves for reactive power can be 

developed from real power data sets after restoration of 

missing data. 

The case studies presented in this paper were based on 

simulated realistic measurement data, but not on real 

measurements. Once fully developed and validated, the 

methodology will be tested at later stage using real data 

streams coming from smart meters. Future work will 

focus in particular on conditioning of data streams in 

real-time, to facilitate short-term load forecast and real-

time load decomposition, as basic services of DSM.  
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