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Abstract 

In this report we present an image similarity metric for content-based image 

database search. The similarity metric is based on a multiscale model of 

the human visual system. This multiscale model includes channels which 

account for perceptual phenomena such as color, contrast, color-contrast and 

orientation selectivity. From these channels, we extract features and then 

forin an aggregate measure of similarity using a weighted linear combination 

of the feature differences. The choice of features and weights is :made to 

maximize the consistency with similarity ratings made by human subjects. 

In particular, we use a visual test to collect experimental image matching 

data. We then define a cost function relating the distances computeld by the 

metric to the choices made by the human subject. The results indicate that 

features corresponding to contrast, color-contrast and orientation selectivity 

can significantly improve search performance. Furthermore, the systematic 

optimization and evaluation strategy using the visual test is a gent:ral tool 

for designing and evaluating image similarity metrics. 





1 Introduction 

In recent years the use of digital imagery has become an important part of computer and 

telecommuinication systems. As a result of advanced computer technology, image databases 

containing thousands of images have evolved in many applications. The efficient use of these 

databases requires new database organization and image retrieval methods. 

Currently, it is common practice to manually annotate image databases by describing each 

image with a small set of keywords. However, the manual annotation is not only expensive 

but also incomplete. Since most images are far too complex to be completely described, 

the keywords are typically limited to represent the most important object,s in the image. 

Furthermol-e, it is difficult to be consistent with the choice of keywords for each image in the 

database. J4s a result, image databases often must be re-annotated for different users with 

different search requirements. A more basic problem with text annotations is the inability 

of the the keyword representation to adequately capture visual aspects of images such as 

color and spatial arrangement. While the language description is usually connected to the 

recognition of objects in the image, a large part of human visual perception does not rely on 

recognition or interpretation. Humans have a graphical memory which stores the appearance 

of images, and often when we cannot remember the actual objects in an image, we can extract 

informati011 from the memorized visual appearance. It seems therefore unn(atura1 to search 

and compare images by representing them in the language domain. 

The above difficulties have led to the development of content-based retrieval met hods 

for image database search. Over the past ten years, there has been considerable research 

activity in the field, resulting in hundreds of publications and several conferences devoted 

to this topic [I, 21. Much of this research has been motivated by an increasing number 

of applications for image database search. With the development of m~lt~imedia systems 

and large data networks, an increasing number of interest groups have gained access to 

thousands of images. For example, the medical community is forming contiinent-wide inter- 

hospital networks to allow content-based image search for the diagnosis of rare diseases 

[3]. Law enforcement agencies are interested in face recognition for subject identification 

[4]. Further important areas of interest are architecture, art history, astronomy, geology, 
multimedia, satellite imagery and TV production. Due to the exponential growth of the 

World Wide Web and the introduction of electronic imaging equipment to the consumer 

electronics market, we expect a rising demand for image database organization tools for 

commercial applications such as electronic mail order catalogs as well as for home usage 

such as electronic home photography. 





2 Previous Approaches 

Previous a:pproaches have defined image similarity metrics using classical irnage processing 

techniques. The first content-based search algorithms were intended to retrj.eve CAD draw- 

ings from technical databases [ 5 ,  6, 71. For these tasks, it was assumed that larger images 

were manually segmented into objects which could be searched for in the database. How- 

ever, these drawings contained well defined objects which makes the task quite different from 

retrieving natural images. 

To obtain more general metrics of image similarity, people have defined discriminants 

based on clolor histograming, color clustering or Bayesian color segmentation [8, 91. Color 

histograms of the entire image have the advantage of being invariant to spatial perturba- 

tions and c~f being computationally inexpensive. However, color histogram methods are too 

invariant to be consistent with the human perception of image similarity. Different spatial 

arrangements of similar objects or different perspectives of a similar scent: may have the 

same color histogram but appear very different to a human observer. 

Other approaches have been based on shape and curvature features [lo, 1'1.1. These concepts 

work well :for binary images which contain clearly distinct objects. However, in natural 

images it is usually not possible to extract and match the edges of meaningful objects. 

Generally, as [12] points out, metrics based on a single discriminant can only capture 

some but not all aspects of image similarity since the precomputed databast: representation 

is incomplete. More recent approaches use image compression techniques to generate per- 

ceptually complete image representations. While some of the published similarity metrics 

directly colnpare the compression coefficients of, for example, the wavelet csompressed [13] 

images, others use the compressed representation to extract features for d.ifferent aspects 

of similarity [12, 141. MIT's photobook [12] for example, extracts different features for ap- 

pearance, texture and shape using image processing methods such as the K<arhuenen-Loeve 

transformation. 

Although these metrics perform well for the task of comparing images which contain 

distinct objects, it is questionable how well they relate to human image similarity perception 

of natural images. The impressive progress made in the field of image quality assessment by 

employing models of the early human visual system suggests that the use of visual system 

models for general image comparison may significantly improve similarity metric perfor- 

mance. In this work we propose an approach to image similarity using feakures extracted 

from a simple multiscale model of the human visual system. In order to identify features 

which relate well to human percept ion, we developed a feature select ion and optimization 

strategy based on experimental image matching data. 
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Figure 1: The optics of the human eye. In- 

coming light is focused by the cornea and lens 

onto the retina which contains the photore- 

ceptor~. 
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Figure 2: Nonlinear light i;o photocurrent 

conversion. The figure shows the photocur- 

rent peak response as a function of the photon 

intensity of a flash stimulus. Figure from [15]. 

3 The human visual system and existing models 

A natural approach to deriving image similarity metrics which relate well to human percep- 

tion is to extract features from models of the human visual system. In orde:r to derive such 

a metric, we need to  understand the basics of the human visual system. 

3.1 The early human visual system 

Figure 1 shows a cross section of the imaging components of the human eye. The incoming 

light is focused by the lens and passed through the transparent vitreous befo:re it falls on the 

retina. The retina is a thin layer of tissue containing the photoreceptors and several layers 

of interconinected neurons. The photoreceptors contain photopigment which converts the 

incoming li,ght to electric current. The light to current conversion is nonlinear as shown in 

Fig. 2. Th l~  functional relationship within the non-saturated range has long been modeled 

as being lclgarithmic, however certain perceptual effects cannot be explained by the log 

relationship, so that more recent results indicate a power law function of' approximately 

dl3. 

Figure :3 shows a simplified block diagram of the retina. The photoreceptors can be 

distinguished into two basic types which are called rods and cones. While the rods are 

achromatic sensors, the cones are color sensitive. Based on the spectral sen.sitivity of their 

photopigment, the cones can further be subdivided into long (L), medium (M) and short (S) 

wavelength cones. Figure 4 shows the relative cone sensitivities as a function of wavelength. 

The cones a.re comparatively large and highly concentrated in the center of the retina whereas 

the smaller rods are more concentrated in the periphery. Note that the number of S cones is 

much smaller than the number of L and M cones. A potential reason for this is that due to 



Retina 

Figure 3: A functional diagram of the human retina. The figure shows the three basic 

streams which have been identified in the retina. The path in the center correspollds to the 

I.- and hl-cone vision in the central fovea which is most important for our considerations. 

The cones convert the incoming light into photocurrent which is received by multiple bipolar 
cells per cone. The bipolar cells send their signals to the retinal ganglion cells. These cells 

have a center surround organization as indicated by the concentric circles. Most of the 
retinal ganglion cells send their output to the LGN from where it is further distributed to 
higher areas of the visual cortex. The path on the right processes the signal of th.e S-cones 

and has a similar organization to the center path. The path on the left represents the 

monochrome rod vision. 
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Figure 4: The relative sensitivities of the L, M and 
S cones. After Boynton, 1979 

chromatic aberration, the optics of the eye blur short wavelengths so that a finer sampling 

of light in t.his frequency range would not improve vision. 

Although the rod sampling is finer than the cone sampling, the monoch:rome rod-vision 

has lower spatial resolution than the chromatic cone-vision. This is due t,o the fact that 

the photocurrents of approximately 1000 rods are integrated by a single rod bipolar cell to 

obtain high light sensitivity. In contrast to this, the output of a single cone is sent to multiple 

bipolar cel1,s which receive input from this cone only, making cone vision sensitive to high 

spatial frequencies. 

The bipolar cells pass their signals on to retinal ganglion cells which are most impor- 

tant for our considerations. Ganglion cells are characterized by their receptive field which 

is defined a;s the retinal area in which light influences the cell response. The receptive fields 

of retinal ganglion cells have a 'center-surround' organization, which means they react dif- 

ferently to stimuli to the center as compared to stimuli to the periphery of their receptive 

field. When no stimulus is applied to such a cell, it emits a random sequence of electric 

pulses at a rate of approximately 50 spikes per second. When a stimulus is applied to the 

center, the cell reacts excitory by emitting more pulses per second. If a stinlulus is applied 

to the surround, the reaction is inhibitory, reducing the number of spikes per second below 

the equilibrium level. A cell with this behavior is called 'on-center, off-surround' cell. The 

retina also contains ganglion cells, which have 'off-center, on-surround' organization, that is 

their center response is inhibitory and their surround response is excitory. Figure 5 shows 

the steady-state receptive field response for an on-center, off-surround ganglion cell. The 

plot indicates that the cell response is essentially the difference between the luminance of 

a center stiinulus and the mean luminance over the receptive field. If a stinlulus falling on 

the center of an ON-cell is lighter than the average illumination, the cell response is positive 

whereas if it is darker the response is negative. Since the difference operation is localized 

to the receptive field of a single cell, the computed signal is usually called 'local contrast'. 

Measurements in human visual systems research in fact confirm that the response of gan- 

glion cells to contrast patterns is linear in terms of contrast ([15], page 132). From these 



Figure 5: Qualitative receptive field of an on-center, off-surround retinal ganglion 

cell. The cell responds excitory to stimuli to its center and inhibitory to stimuli to 

its periphery. 

observations, vision scientists conclude that contrast is the most important quantity encoded 

in the strea,ms of our visual system. The physiological importance of contrast is consistent 

with psychological observations. The human eye is regularly confronted with changes in lu- 

minance over many magnitudes. We usually ignore these changes since most information we 

perceive is encoded in the spatial relationships of the reflectance of objects. For example, a 

scene under daylight illumination and its photograph viewed at artificial illumination appear 

very similar. although the difference in luminance can be several orders of magnitude. 

In term:; of the spatial frequency response, ganglion cells have a band-pass characteristic. 

If the stimillus to the receptive field of a ganglion cell is a contrast pattern of very low 

spatial frequency, the luminance across the field of the cell will be constant, resulting in 

equilibrium output. If, on the other hand, the pattern has very high spatial frequency, the 

output will also be the equilibrium response since the dark and light areas within center and 

surround average out to mean illuminance. An important measurement which illustrates this 

band-pass behavior is the smallest perceivable luminance difference as a function of spatial 

frequency. This function is called the contrast-sensitivity function and plays a key role in 

determining whether image distortions are perceivable or not. 

Most of the retinal ganglion cells send their signals to a brain area called the Lateral 

Geniculate Nucleus (LGN). There is one LGN on each side of the head, but each LGN 

receives outiput from both eyes. Each LGN sends output to approximately 20 different 

areas of the brain, whose functionality in terms of vision is not well known. Research has 

concentrated on one specific area called the Primary visual cortex (Vl). The Primary visual 

cortex can be divided into 6 main layers by the characteristics of the neuron responses in 

each layer. :For example, 80% of the neurons in layers 1-3 are binocularly driven while most 

of the neurons in layers 4-6 respond to one eye only. The cells in V1 are commonly classified 

in 'simple cells' with linear response and 'complex cells' with non-linear response. Important 

for our purposes is the observation of simple cells in V1 which respond to stimuli of specific 



Figure 6: Orientation selective fields. The sum of the responses of the c'ell 
array on the left yields an oriented receptive field as shown on the right. 

The white areas correspond to locations of excitory response whereas the 

black areas represent locations of inhibitory response. Assuming that the 

black and the white areas have the same total area, this filter responds 

predominantly to horizontal stimuli. 

orientation!; only. These cells are similar to the retinal ganglion cells in that they have 

receptive fields which are divided in excitory and inhibitory areas. However., the cells in V1 

are not rad:ially symmetric but have oriented receptive fields as shown on the right of Fig. 6. 

These field:; are assumed to be the result of a linear combination of the signals from several 

radially synnmetric cells in the LGN as shown on left of the figure. Based on this observation, 

most image processing models of the human visual system have included banks of filters of 

different orientations. 

The knowledge about the further processing of the visual signals in higher areas of the 

brain is very limited. Vision science has identified brain areas which are believed to be 

important :for vision. An area called V4 has been shown to respond strongly to color- 

contrast stimuli. Another area called medial temporal (MT) responds predominantly to 

stimuli containing movement of objects. However, these models are still speculative and the 

underlying methods of research are controversial. 

In summary, this section explained the order in which visual stimuli are processed by 

the early stsages of the human visual system. The first stage of lens optics is followed by 

a nonlinear light to current conversion in the photoreceptors. Retinal ganglion cells then 

compute co:ntrast signals which are passed on to the LGN, V1 and higher areas of the visual 

cortex. While the knowledge about most of the higher brain areas is very limited, layers in 

Vl have been shown to contain orientation selective neurons. 

The reader should keep in mind, that even the knowledge about the early stages of 

the HVS is highly incomplete. This simplified introduction has only explained some of the 

known aspects which are commonly modeled by image processing models of the HVS. Vision 

science indicates that there are many more streams and cells in the retina .which have not 

been investi.gated. Due to these limitations, extracted features for a mode:[ of the human 

visual system should not only be physiologically motivated, but also be consistent with 

behavioral irneasurements. Furthermore, the goal of any engineering model cannot be to 

mimic the human visual system, but to extract similar features which might relate well to 

human perception. 
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Figure 7: Achromatic HVS channel model used for image quality evaluation. Both input images are 

filtered by a bank of spatial bandpass filtered followed by filters of different orientations for each channel. 

After accounting for masking effects, the image representations are subtracted and passed through a 

non-linearity to model the detection threshold. The results are either displayed as image difference maps 

or summed .up to yield a single quality measure. 

3.2 Existing models 

Recently, models of the early human visual system have been developed to design quality 

metrics for iipplications such as halftoning and perceptually lossless compresrjion [16, 17, 18, 

19, 201. These channelized models exploit multiscale pyramid structures to better account 

for known visual phenomena and essentially measure the similarity between the original and 

distorted versions of an image. 

Figure 7 shows the typical architecture of an achromatic HVS model for image quality 

evaluation. The first stage models the optical transfer function of the lens and in some models 

contains an amplitude nonlinearity to model the transfer function of the photoreceptors. It 

is followed by a bank of radially symmetric band-pass filters which model the function of 

the retinal ganglion cells. The band-pass filters compute a multiscale contrast representation 

which allows modeling the contrast sensitivity function by assigning different weights to each 

frequency band [20]. Furthermore, a multiscale representation is supported by vision research 

since the effect of pattern adaption cannot be explained by a single resolution theory [15]. 



In order to model orientation selective effects such as the variation of contrast sensitivity 

as a function of orientation as well as masking, each bandpass is followed by a bank of 

orientational selective filters. A common implementation is to combine the band-pass and 

oriented filters using a bank of second derivative of Gaussian filters with dilAerent sizes and 

orientations [2.L]. Other approaches use filters specified in the frequency donlain [18], Gabor 

filters or a Gaussian pyramid model [16]. 

After performing the filtering operations separately for the original an.d the distorted 

image, the representations are subtracted pixel-wise in each channel. This subtraction is 

either preceded or followed by a stage which accounts for masking. Masking is the effect of 

reduced visibility of a contrast pattern if a strong background contrast stimulus is present. A 

thin line, for example, might be visible on a uniform background, however, i~f it is displayed 

close to a thick line with stronger contrast, it might become undetectable. In terms of the 

contrast seilsitivity function, masking means a threshold elevation for the masked stimulus. 

The modeling of the masking mechanism varies considerably between the existing models. 

While some models extract the masker signal from the original image and perform the actual 

threshold elevation after the subtraction [20], others perform the entire masking operation 

before subtracting the original and the distorted image [16, 181. 

In most models, the next processing stage is a sigmoid shaped non-1inear:~ty which repre- 

sents the probability of detecting stimuli at threshold levels. This modeling is based on the 

observation, that the human detection performance varies even for a single subject presented 

with the sa,me stimulus multiple times. It is therefore reasonable to model the detection 

threshold as a cumulative probability function instead of using a binary threshold to decide 

whether a difference is perceivable or not. 

Finally, the detection probabilities are either displayed as image difference maps or summed 

up to obtain an overall image distortion measure. 

Models like these have been shown to be quite successful in predicting the perceptibility 

of differences between images. The main innovation of these models is the introduction of 

a systematic evaluation method for lossy image processing techniques sucl~ as halftoning 

and image compression. A compression algorithm, for example, can assign less bits to 

high spatial! frequencies since the human observer is not very sensitive to high frequency 

distortions. Further compression can be gained in the vicinity of strong contrast stimuli, 

since details will be masked for the observer. 

However, the models for quality assessment are not directly applicable to tlne image search 

problem because they are designed to measure threshold level differences. In contrast, the 

search problem requires a metric that describes differences well above threshold. 





Figure 8: Color-matching functions of the RGB and XYZ color-spaces. After data 
from [24]. 

4 Image dis-similarity metric 

In this work, we propose an approach to image similarity using features extracted from 

a multiscal~~channelized model. The model is based on existing monochrome models of 

threshold behavior and the Lab uniform color-space. It includes channels which account for 

perceptual phenomena such as color, contrast, color difference and orientation selectivity. 

From these channels, we extract features and then form an aggregate measure of similarity 

using a weighted linear combination of the feature differences. The specific choice of features 

and weights is made to maximize the consistency with similarity ratings made by human 

subjects. 

4.1 Choice of the color-space 

The choice of the color-space for an image similarity metric is critical in order to obtain 

color differences which correspond well to human perception. In particular, the color-space 

must be uniform, i.e. the intensity difference between two colors must be consistent with 

the color difference estimated by a human observer. Unfortunately, the RGB color-space is 

not well suited for this task because the relationship between the RGB tristimulus values 

and perceived color intensity is highly nonlinear. The development of a sufficiently uniform 

color-space :is complex since the human color perception varies with illumination and stimuli. 

Although complex vision models have been proposed [22, 231, a sufficiently uniform color- 

space and color difference formula have not yet been identified. Due to the urgent need for 

perceptually uniform color difference equations, in 1976, the Commission Imernationale de 

1'Eclairage (CIE) recommended the use of two approximately uniform color-spaces called the 

1976 CIE L"u*u* and the 1976 CIE L*a*b* color-spaces. Both color-spaces are based on the 

1931 CIE X'YZ color-space which was designed to match light of any wavelength composition 

with non-negative primary intensities. The linear transformation from CIE RGB to XYZ 



Figure 8 sllows the color-matching functions of the RGB and the XYZ color-spaces. The 

three curves indicate the intensities of the color-space primaries which are necessary to match 

monochronlatic light sources of the wavelengths drawn on the x-axis. In order to match light 

of short wavelengths, the R tristimulus value in the RGB space is negative whereas the XYZ 

intensities are strictly non-negative throughout the visible range. More importantly, the Y 

tristimulus value is centered in the middle of the spectrum and falls off slowly towards both 

ends. Consequently, Y corresponds to  achromatic luminance whereas X en-codes primarily 

the red+ and Z the blue part of the spectrum. The CIE equations for transforming the XYZ 

color-space into Lab are 

where Xw, Yw and Zw are the tristimulus values of the white point. Since a* is computed as 

the nonlinear difference between X and Y, it encodes a red-green opponent signal. Similarly, 

b* is obtained by subtracting Y and Z and therefore represents a yellow-blue opponent 

signal. Sin'ce L* depends only on Y, it encodes achromatic luminance. The recommended 

color-difference equation for the Lab color-space is given by the Euclidean nnetric 

A standard test for the uniformity of a color-space is to draw diagrams of the tristimulus 

values for color patches which are perceptually equally spaced with respect to hue, saturation 

and brightness. Figure 9 shows such a diagram for the Lab color-space using color patches 

of Munsell value 5 from the Munsell Book of Colors. The symmetry of the diagram indicates 

a high uniformity of the Lab color-space. However, since human color perception varies 

substantially with spatial frequency and illumination, this uniformity is only valid for stimuli 

at low spatial frequencies viewed under daylight illumination. 

While the Lab color-space is widely used in engineering applications, most vision models 

use color-spaces which are directly based on the cone photopigment absorptions [22, 241. 

Since furthermore opponent signals are evident in the neural pathways of t,he LGN, vision 

t1n order for light to appear red, it must contain spectral components at short wavelengths. Due to the 

the overlap of the L and M cone sensitivity functions, light of long wavelengths always invokes both the red 

and the yellow opponent stream. To perceive the light as being red, the yellow signal must be canceled by 

an opposing blue component. 



Figure 9: Uniformity of the Lab color-space 
at low spatial frequencies. The figure shows 
the a* and b* values for constant, hue and con- 
stant chroma. Ideally, the lines for constant 

hue should be straight and the contours for 
constant chroma should be concentric circles. 

Figure from [25]. 

research [2B, 271 has used psychological experiments to identify separate pathways for lumi- 

nance, red-green and yellow-blue signals in the human visual system. These studies have 

proposed new opponent-color spaces which are based on linear transformatiions of the cone 

absorptions. In particular, the spaces were designed to have separable contrast sensitivity 

functions for each channel. Consequently, these spaces are well suited for chromatic threshold 

detection tasks. However, little data about their perceptual uniformity has 'been published. 

For the task of general image similarity assessment, we consider the uriiformity of the 

color-space to be more important than its properties in terms of the contrast sensitivity 

function. In order to obtain general image similarity metrics, we need to measure image 

differences which we can assume to be considerably above threshold. For these differences 

to be perceptually relevant, the color-space must be as uniform as possible. The contrast- 

sensitivity function, however, is a threshold measure which only determines the perceptibility 

of differences. 

While the Lab color-space was designed to be approximately uniform at low spatial 

frequencies, the color-spaces with a separable contrast-sensitivity function ta,ke into account 

the dependency of human color vision on spatial frequency. In general, this is a much more 

accurate description of human color perception. However, work on these color-spaces is 

still underway and little information about their uniformity at low spatial frequencies has 

been published. Since we consider the perceptual uniformity at low spatial frequencies to 

be most important, we decided to use the Lab color-space for our model. VVe will also see, 

that due to the consistency of the Lab conversion power with the characteristics of 

the photoreceptors, the selection of Lab yields a simple contrast calculation with desirable 

properties in our model. 

4.2 HVS Model Architecture 

The HVS channel model proposed in this work is derived from existing models for image 

quality assessment. However, the purpose of this model is quite different from that of the 

quality assessment models. Recall, that the purpose of the models in section 3.2 is to decide 
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Figure :LO: HVS Channel Model for Image Similarity Metric. For reasons of sinnplicity, the 

diagram shows only two pyramid levels and contrast calculations using adjacent pyramid 

levels. 
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Figure 11: Pyramid decomposition of a four level Gaussian pyramid. The image is 
successj.vely low-pass filtered and decimated. 

whether differences between images are perceptible or not. The purpose of our model on the 

other hand is to assess continuous perceptual distances between images. While the quality 

models estimate the limits of the early stages of vision to predict Lwhat' is perceptible, our 

model seeks a representation which predicts 'how' we perceive differences. In. particular, our 

model concentrates on the perceptual uniformity of the image representatio'n instead of on 

masking and contrast sensitivity. 

The basic structure of the proposed model is illustrated in Fig. 10. We first de-gamma 

correct the RGB input image and convert it to XYZ color-coordinates using (I). We then 

apply a G~~ussian pyramid decomposition to each of the three color channels [28]. The 

pyramid decomposition is computed by successively low-pass filtering the original image 

with a Gau,ssian kernel and decimating by two as shown in Fig.11. The low-pass kernel can 

be expresseld as a sampled 2D-Gaussian kernel with standard deviation a = a, = a,. If we 

define the sample spacing a = 110, the kernel can be expressed as 

The indices m and n are the discrete-space coordinates in x and y direction. Let 1 denote 

the pyramid level ranging from 1 = 0 representing the input image and 1 = L - 1 for the last 

level in the pyramid. Furthermore, let Ml and Nl denote the size of image at pyramid level 

1. The computation of the luminance image x at level 1 is then given by 

where the fi:rst equation is the low-pass filtering and the second is the decimation by a factor 

of 2. Due to the decimation operation, the image size at level 1 is half the size of that at 

1 - 1. If the size of the original image is given by Mo x No, we can express the level sizes as 

Nl-1 - No 
NL = - - - 

2 21 ' 
(7) 

The pyramid levels Xl and Zl are computed analogously using the X and Z coordinates of the 

input image. The result is a multiscale representation of the image where each pyramid level 1 



Figure 12: Gaussian filter kernel for pyramid decomposition. This kernel with sample spacing 
a = 0.5 and of size 15x15 is used to successively low-pass filter the image. 

has the resolution of the original image divided by 2'. Since the convolution of two Gaussians 

is also Gaussian, the decomposition is equivalent to directly filtering the input image with 

different Gaussian kernels for each level and decimating the result. Howevcx, the pyramid 

decomposition is much more efficient because most filtering operations are performed on 

image sizes much smaller than the size of the original image. The implementation of the 

pyramid decomposition requires choosing the size and the sample spacing of -the filter kernel. 

If the sample spacing is too small, the filter has a very low cutoff frequency, resulting in a 

large resolution difference between adjacent pyramid levels. If, on the other hand, the sample 

spacing is too large, the filter has a very high cutoff frequency, resulting in aliasing produced 

by the decimation operation. Using images containing radially symmetric sine-waves, we 

experimentally determined a reasonable sample spacing of a = 0.5 and a corresponding 

kernel size of 15x15. The implemented Gaussian filter kernel is shown in Fig. 12. Since 

we experim,ent with image sizes of approximately 185x280 pixels, we chose the number of 

pyramid levels to  be L = 5 .  Consequently, the size of the lowest level as given by (7) is 

M4 x N4 =: 11 x 17. Since the kernel size of the Gaussian filter is 15 x 15, further levels 

would be djominated by border effects and are therefore not meaningful to compute. 

The pyramid decomposition is followed by a conversion of each pyramid level to  Lab 

color-space. Since the white point of the screen given by [&G,BWlT = [I I. 1IT transforms 

into [XwYwZWlT = [I  1 1IT, equation (2) becomes 

a; (m, n) = 5 0 0 ( x ~ / ~ ( m ,  n) - ~ ' / ~ ( m ,  n))  (9) 

Figures 13 and 14 show the resulting Lab pyramids for two example images. Note that the 

artificially introduced red-green and blue-yellow colors in the al* and bl* images represent 



Figure 13: Gaussian pyramid decomposition. The figure shows the Lab pyramid  decomposition of 

the color image in the upper left corner. From top to bottom, the rows contain the pyramids for 

the L*, a* and b* channels. 



Figure 14: Gaussian pyramid decomposition. The figure shows a second exa,mple of an Lab 

pyramid dec:omposition. Fkom top to bottom, the rows contain the pyramids for the L*, a* and b* 

channels. 



the signs of these opponent signals. In the following, we will refer to the Lt as luminance 

channels and to at and bt as color channels. We will see that we can use these channels not 

only in the traditional way of comparing luminance and color between images, but also to 

compute color and color-contrast representations in the HVS model. 

4.2.1 Contrast Representation 

A common definition of the contrast of a luminance stimulus Y relative to the background 

luminance YB is given by Weber's contrast Cw 

For small CJw = 0, this can be approximated by the logarithmic difference 

That this is in fact an approximation, can be seen by expanding the Taylor series for the 

logarithm 

The scientist Weber defined Cw based on the observation, that the human sensitivity to this 

contrast is approximately constant with respect to background luminance. He formulated 

this relatiorlship as Weber's law, which states that if Cws denotes the minimum contrast 

necessary for a stimulus to be just noticeable, then the contrast sensitivity defined as l/Cws 
is not a function of background luminance, i.e. 

However, measurements indicate that the contrast sensitivity to Cw is not completely in- 

variant to background luminance, but increases as shown in Fig. 15. Therefore, the contrast 

definition (1.1) does not accurately describe the background luminance dependence of human 

contrast sensitivity. Furthermore, Weber's contrast and its logarithmic appr'oximation have 

the disadvantage, that if the background luminance approaches zero, the ccontrast goes to 

infinity, which is inconsistent with human perception. 



Figure 15: Deviations from Weber's law. The 

curves show human contrast sensitivity func- 

tions for different background luminances. At 
low background intensities, the contrast sen- 
sitivity increases with luminar~ce. At high in- 

tensity levels, the functions co:nverge and We- 

ber's law becomes a good apprc~ximation. Fig- 
ure from [15], after data frorn van Nes and 
Bouman. 
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Motivated by physiological aspects of the human visual system, we define contrast dif- 

ferently. The transfer function of the photoreceptors followed by the subtraction performed 

by the ganglion cells, suggests that contrast be defined as 

This definition is not only physiologically motivated , but also avoids the disadvantages of 

Weber's law contrast. In particular, if YB approaches zero, C becomes y1I3 which is more 

consistent with human perception. Furthermore, if we use the Taylor expansion 

1 1 1 
x1I3= l + - ( x - 1 ) - - ( ~ - - 1 ) ~ +  . . .  =I+- (2 -1 )  for X R : ~  

3 9 3 (16) 

we can approximate (15) for C % 0 as 

For small 1u:minance differences, the power law contrast therefore becomes Weber's contrast 

weighted by y;I3 and a constant. If we now set the sensitivity to this contrast to  be constant 



with respeck to YB, we obtain 

1 
- 

C 
= const 

I 

= const 
cw Y;/~ 

which qualitatively accounts for the background luminance dependence of 1 /Cw. 

Another reason for choosing the contrast definition of C is its consistency with the XYZ 
to Lab color-space conversion. Since the conversion power of 1/3 in the contrast calculation 

is the same as the conversion power in the color-space conversion, we can cclmpute C as 

where L* artd L+B are the values of L* corresponding to Y and YB as obtained by (2). For the 

similarity metric, we will only be interested in relative contrast differences between images. 

Therefore, we can ignore the multiplicative constant of 11116 and define a scaled power law 

contrast c(") as 

c ( ~ )  = l l 6 C  = L* - L i .  Po) 
This implies a very simple contrast calculation for our model. Due to the spatial averaging of 

the low-pass filters in the pyramid decomposition, local background luminances for a stimulus 

in are giv~en by the lower pyramid levels Yk with k > 1. We can therefore calculate contrast 

representations at pyramid level 1 as the difference between the luminance ch~annel at level 1 

and any luminance channel at level 1 + i as long as 1 5 i < L - 1. We denote these contrast 

channels as ~ / , y ) ( m ,  n): 

= L; (m, n) - ~&,(m/2 ' ,  n/2') (21) 

The indices m/2i and n/2' are a consequence of the i decimations betwee:n LT and LT+,. 

Since these i.ndices are in general non-integers, we use bilinear interpolation ad Ll;,(m, n) by 

a factor of 2' before performing the subtraction. 

The contrast computed by the subtraction of different levels in Lr is similar t o  the 

Difference of Gaussians model which was developed by vision scientists to  model the receptive 

field of retin'al ganglion cells. The model assumes that the cell center and surround responses 

are separablle and have Gaussian shape. As shown in Fig. 16, subtracting the large variance 

surround response from the small variance center response yields a transfer function similar 

to the stead;y-state response of a ganglion cell. 

Although it is common to compute contrast involving a difference of low-,pass levels, the 

proposed co.ntrast calculation is quite different from that in existing HVS channel models. 

Most model:; perform a linear subtraction of adjacent low-pass channels in the same color- 
space in which the multiscale representation is obtained [20, 191. This linear luminance 



- -+ - - -+ - - -+ - -+  +- - -  t:: 

Figure 16: The Difference of Gaussians concept. The subtraction of t ~ ~ o  Gaus- 
sian density functions with different standard deviations can be used to nnodel the 
receptive field of a retinal ganglion cell 

difference i:; then divided by a low-pass channel two levels lower in re~olut~ion to yield an 

approximation to  Weber's contrast introduced by Peli [29]. A different approach proposed 

by Zetzsche [16] is to  compute a Ratio of Gaussians by dividing adjacent pyramid levels 

which directly results in a simpler Weber-like contrast approximation. To the contrary, our 

model performs the multiscale and the contrast computations in different spaces which are 

separated by a nonlinearity. As explained above, we believe that this structure corresponds 

well to the human visual system and has several desirable properties. 

An important question is, how spatially 'local' the surround response should be, or, in 

terms of our model, how large the difference i between the subtracted luminance levels in (21) 

should be. While most of the HVS models for image quality assessment co:mpute contrast 

only between adjacent low-pass levels, we decided to compute all possible ~ $ 7 )  (m, n). The 

importance of the different level differences i can then be determined in the fekture selection 

and optimization process which forms the final similarity metric. 

So far, we have examined the contrast calculation in terms of its properties for small 

luminance differences only. A different perspective is given by the fact that we compute 

the power law contrast in Y as a luminance difference in L*. Therefore, vve preserve the 

uniformity of the Lab color difference equation (3). Consequently, contra,st comparisons 

using the Euclidean metric should relate well to human perception. 

In summary, we defined a power law contrast calculation in Y which is motivated by 

the characteristics of the visual processing in the early HVS. This contrast has desirable 

properties for low background luminances and can qualitatively explain deviations of human 

vision from Weber's law. Due to the structure of our model, this contrast can be computed 

as luminance differences in L* which preserves the perceptual uniformity of the Lab color 

difference equation for contrast comparisons. 

4.2.2 Color contrast 

In analogy t;o the luminance contrast, we introduce color contrast channels. Although the 

notion of color contrast is not well established, we believe that a comparison of color transi- 



tions in images could be an important aspect of similarity perception. If, for example, two 

images differ only by a uniform color shift, they may still appear very similar since the color 

transitions from one object to another within the images are identical. Furthermore, it is 

fairly easy to show, that the appearance of colors can depend on the background on which 

they are shown. For example, black lines on a white background appear black, however, if 

we introduce a green background, the same lines will appear red. In fact, visi.on research has 

evidence that human color perception is based on the relative relationships between the L, M 
and S-cone absorptions instead of their absolute absorption rates [15]. Given the opponent 

0rganizatio:n of the visual system, a relative color comparison would be most probable to be 

performed in each of the opponent streams. 

In order to compute contrast in the o ponent coordinates a* and b*, we can define the 
P"* 1 color-contrast channels C/q*)(m, n) and C,, (m,n) analogously to (21). This yields 

By subtracting pyramid levels in each opponent coordinate, we compute the opponent color 

difference between the center signal at location (m, n) and the local avera,ge around this 

location. As in the luminance contrast computation, these differences are part of the Lab 

color difference equation and consequently have the uniformity of the Lab space. 

However, the interpretation of the color-contrast signals in terms of the XYZ space is 

different from that of the luminance contrast. If we denote the multiplicative factor of 500 

in (2) as c, tz* is given by 
a* = ,(XI/' - ~ 1 1 3 )  (24) 

which can b'e interpreted as a power law contrast between X and Y. If now a* denotes the 

tristimulus value of a foreground stimulus and a; the tristimulus value of the background, 

we compute the color-contrast as 

If we approximate this for X z XB and Y z YB analogous to (17), we obtain 

Clearly, c("") is the difference of power law contrasts in X and Y. Note however, that we 

must not interpret this as a difference between 'red' and luminance, but bet-ween 'red' and 

'green' contrast. This is due to the fact, that in differences of X and Y the overlap in the 

color matching functions of X and Y in Fig. 8 cancel. Analogously to (26), the color-contrast 

db*) can be approximated for Y E YB and Z E ZB as 



These equations are meaningful, if we assume that the HVS computes the contrast of each 

opponent c:olor separately before the subtraction. Such an assumption seerns reasonable if 

we consider that the contrast calculation is performed by the retinal ganglion cells whereas 

the first opponent signals have been shown to exist in the LGN. 

The implementation of the contrast channel computation (23) in our m,odel is identical 

to the computation for luminance contrast. This means, that we compute color-contrast 

channels falr all possible level differences i using bilinear interpolation. Whether the color 

contrast channels are important for the model, will be determined in the feature selection 

process. 

4.2.3 Qu.antization of contrast features 

Implementing the contrast and color-contrast channels, we found that an amplitude quanti- 

zation considerably improves the performance of features derived from these channels. More 

specifically, the quantization of the contrast and color-contrast channels resu1l;s in an increase 

of the number of contrast and color-contrast features which are selected by the feature selec- 

tion process to be described in section 4.4. The best performance was obtained using only 

the three quantization levels (-1, 0, 1). In particular, if T (Y)  is the quantization threshold 
C1.i 

- (yi for channel C/,:)(m, n), the quantized contrast channel C1, (m, n) is obtained by 

-1 : c/,Y) (m, n) 5 -Tc/,:) 

1 : c/>:) (m, n) t T c y  - 

( 0 : otherwise 

In order to obtain the thresholds T ( Y ) ,  we calculated the channel variances 17' ( y )  over a set 
c,,i Cl,, 

of 200 images q as 

1 Ml Nl 
2 
a ( Y )  = 

('1) ' 
CL,, 

2 0 0 ~ ~ ~ 1  C q m=l C n=l C (c/,Y1(m, n) - ~ l , i  
+ 

The channel thresholds are then calculated from a (Y)  as 
Cl,, 

The constant B was experimentally determined as B = 0.3. Using these values, most of the 

background noise of the unquantized channels is eliminated whereas important fore round 

contours are preserved. The calculation of the quantized color-contrast channels ~/:'(m, n) 

and C/,p')(m, n) is analogous to (28). The corresponding thresholds T (.*I and T i b * )  are 
C L , ~  Cl,i 

determined as in (30), using the same constant B. 

The main interpretation of the increased performance obtained by quantizing the color 

and color-contrast channels is the elimination of background noise. In most images, the 

contrast val-ues corresponding to background texture are small, however, the:y usually make 

out most of the area of the image. For similarity assessment, functions corresponding to the 



local contrast differences between images have to  be integrated over the image area. Due to  

the large background area, the integration of the small contrast values yields a large overall 

error which does not correspond to  human perception. The contrast quantization minimizes 

this effect 'by setting the background contrast to  zero. 

The elimination of background noise explains that quantizing small contrast values to  

zero improves performance. However, this does not account for our observation that the 

best performance is obtained by quantizing values above noise level to a single value. An 

explanation in terms of our model might be, that the coarse quantization limits errors in- 

troduced by comparisons of foreground contours which are not lined up in the two images. 

A different interpretation in terms of human vision could be, that much of human simi- 

larity perception is based on shape recognition. The shape recognition, however, is not a 

continuous function of contrast. Instead, it relies on the binary decision whether contrast 

contours are the boundaries of objects or not. In this sense, we can interpret the three level 

quantization as a decision procedure about the importance of contrast contours. Note that 

such a decision is quite similar to  the contrast sensitivity function. While the contrast sen- 

sitivity function describes the physiological perceptibility of contrast stimuli, this decision 

describes what we could call the psychological perceptibility. For future work, this motivates 

replacing the binary quantization threshold by a sigmoid-shaped nonlinearity as used in ex- 

isting HSV models to  compute detection probabilities. Note, that although the contrast is 

coarsely quantized, the perceptual uniformity of the underlying space is important in order 

to  determine meaningful thresholds. Moreover, if a sigmoid-shaped nonlinexity will be used 

in the future, the uniformity becomes very important in order for the resulting detection 

probabilities to  be linear. 

Figures 17 and 18 show the final contrast and color-contrast representations of our two 

example images. The pyramids on the right contain the quantized contrast channels corre- 

sponding to the luminance and color channels on the left. Clearly, the contrast computations 

extract luminance transitions in the L* channel and color-transitions in the a* and b* chan- 

nels. The bandpass behavior of the contrast levels is particularly apparent in Fig. 18, where 

for example the girl's hair in the highest level is shown by its boundary whereas it becomes 

a massive object in subsequent levels. 

4.2.4 Orientation selective channels 

In parallel to  computing the contrast representation, we derive orientation selective channels 

from the pyramids in Lab. The representation of orientation selectivity in this model differs 

considerably from that in existing models. The main purpose of the filter banks in existing 

models is to account for masking. Since the masking effect decreases with angular difference 

between masker and masked signal, it is important to separate the stimuli into groups of 

similar orientation. At the same time, however, the shape and location of the stimuli must 

be preserved in order t o  identify masker and masked stimulus. The filter bank representation 

achieves this by computing separate channels for the angular intervals. Each of' these channels 

contains an image representation whose stimuli amplitudes and locations are consistent with 

the input innage. For the image search problem, however, the god  of orientation selective 

channels is to extract the dominant orientation at  each location in the image. In order 



Figure 17: Contrast representation of example image 1. The pyramids on the right show the 

quantized contrast and color-contrast pyramid representations derived from the L*, a* and b* 

pyramids on. the left. 



Figure 18: Contrast representation of example image 2. The pyramids on the right show the 

quantized contrast and color-contrast pyramid representations derived from the L*, a* and b* 

pyramids on the left. 



to effectively compare these orientations between images, it is desirable to represent the 

complete information about the entire angular range in one channel. This suggests the use 

of angular rnaps to model orientation selective perception. In our model, these maps consist 

of edge-angle and edge-amplitude values at each image location. 

A popular method for computing orientation maps is to use a quadrature filter pair as 

proposed in [30,31]. The idea is to filter the image with an oriented even symmetric filter and 

its odd Hilbert transform to obtain signals corresponding to the oriented real and imaginary 

part of the Fourier transform. Let both filters be oriented in direction 6, and let G'"(m, n) 

and H'" (m., n )  denote the output of the even symmetric filter and its Hi:lbert transform 

respectively. The square sum of these outputs then results in the oriented energy E'" (m, n). 

E'" (m, n) = [G'" (m, n]~] + [H'" (m, n)] (31) 

The oriented energy is computed for a sufficient number N of equally spaced. orientations in 

order to sa1;isfy the sampling theorem in polar coordinates. Consequently, the filter output 

for arbitrary orientations 6 can then be obtained as a linear combination of the N filter 

outputs. This linear combination can be expressed as a Fourier series of the form 

@(m, n)  = Cl (m, n) + C2(m, n)  cos(26) + G ( m ,  n) sin(26) + . . . (32) 

The dominant orientation angle dd and its orientation amplitude s d  can be a;pproximated by 

sd(m, n)  = Jc; (m, n) + ~ $ ( m , n ) .  (34) 

We implemented the oriented filters for Efin (m, n)  using a second derivative-of-Gaussian 

filter kerne:l and its approximated Hilbert transform as given in [31.]. Co~nparing images 

by their angular orientation maps obtained from (34) in the luminance ancl color channels 

resulted in significantly improved similarity metric performance over directly comparing the 

N energy outputs in separate channels. However, a disadvantage of the oriented energy 

computation is its inability to preserve contour polarity information. In particular, the 

orientation maps for images with the same contours but inverted contrast arle identical. The 

map comp~trison of such images produces the same error as the comparison of images with 

identical cclntrast polarities. 

In order to investigate the importance of edge polarity in orientation maps, we compared 

the quadrature filter method to an approach which preserves the polarity information. This 

method coinputes orientation as the argument of the horizontal and the vertical derivative 

of the input image. The derivative in each of the two directions is obtained by convolving 

the image with a first derivative of a two-dimensional Gaussian. The filter lsernels h,(m, n) 

and h,(m, 5%) with sample spacing CY are given by 



Figu.re 19: Orientation selective filter kernels. The two meshplots show the first 

derivative of Gaussian filters for the sample spacings 0.15 and 1. 

Note that the leading constants have been ignored since we will only be interested in ra- 

tios and relative amplitude comparisons of the filter outputs. Figure 19 !Shows the filter 

kernel in orie direction for two different sample spacings. The derivatives DXjL') (m, n) and 

~ y / ~ * ) ( m ,  n) of luminance channel L;(m, n) are then computed by 

Ml Nl 

DyjL"(m, n) = x hy(m - i ,  n - j)L;(i, j). 
i=l j=1 

Transforming these derivatives into polar coordinates, we can compute the edge-orientation 

6iL*) (m, n) and edge-amplitude sjL*) (m, n) as 

6jL*'(m, n) = arg(DyjL*)(m, n) , DXjL*)(m, n)) 

sjL*'(m, n) = J ( ~ x j ~ * ) ( m ,  n))2 + ( ~ y / ~ * ) ( m ,  n))2 (37) 

where the ztrg computes the angle in full the range from -.rr 5 6 < .rr. We implemented this 

method computing the luminance orientation maps 

as well as the color orientation maps @ja*)(m, n) and @jb*)(m, n) for all pyramid levels I .  
We found that angular image comparisons based on this method improved the performance 

of our image similarity metric considerably in comparison to using the quadrature filter 

method. We believe that this difference in performance is due to the loss of contour polarity 

informatiorl in the energy computation of the quadrature filter pair. 

Experimenting with different sample spacings we found that a is not a critical parameter. 

In order to obtain a kernel which is sufficiently small to be used on the 10we~jt pyramid level 

and to still obtain some spatial smoothing, we chose a = 1. However, even replacing the 

first derivative of Gaussian filters with simple derivative kernels of the fo:rm h = [-I, 11 



resulted on:ly in a small loss in similarity metric performance. This is due to the fact, that 

the generation of high frequency noise by such small kernels is limited since the pyramid 

levels are allready low-pass filtered. 

Similar1:y to the results for the contrast channels, a quantization of the edge-amplitude 

values resulted in improved similarity metric performance. Analogous to (28,) we obtain the 

quantized edge-amplitude s;* (m, n)] as 

-(L*) (- n) = 
1 : siL*'(m, n) 2 TsiL*' 

s1 0 : otherwise 

The quantization thresholds T (L.1 are computed using the edge-amplitude mean p (L.1 cal- 
S1 S1 

culated over the same set of 200 images q as the variance in (30). 

The constant A* was experimentally determined to be A* = 0.7. The quantized luminance 

orientation map 6jL*) (m, n) is then given by 

- ( b * )  Again, the equations for the quantized color orientation maps 6ia*)(m, n) and (m, n) are 
analogous. In the remainder we will refer to these quantized orientation maps as orientation 

channels. 

Figures 20 and 21 show visualizations of the quantized luminance orientation-maps for 

our two example images. The visualizations represent each angular map entry by a short 

line, oriented at 0, 45, 90 or 135 degrees. The colors have been introduced in order to display 

the full angular range -.rr < 6 < .rr. In the positive direction of x from left to right, red lines 

correspond to dark to light transitions, whereas black lines represent transitions from light 

to  dark. 

In conclusion, we developed and implemented a multiscale channel modell which includes 

color, contrast, color-contrast and orientation-selective channels. In particul.ar we proposed 

a new contl-ast computation based on the uniform Lab color-space. Furthermore, we found 

that for general image similarity assessment, angular orientation maps are molre efficient than 

separate channels for different orientations. Finally, it appears to be important to retain edge 

polarity infixmation in the orientation maps. Table 1 shows a list of the computed channels. 

4.3 Feature extract ion and distance computation 

The HVS nnodel provides us with pyramid representations of color, contrast;, color-contrast 

and orientamtion maps. From these channels we need to  extract features for image compar- 

ison. The choice of features extracted is closely linked to the desired feature invariance. 







( 1 , ~ )  = {(o, 11, (0,2), (0,3), (0, 4), (1, I ) ,  

color-contrast (1, 21, (1, 31, (2, I ) ,  (2,2), (3 , l ) )  

me 
uminance II 

orientation ri 1 = {0, 1,2,3,4} 

0, 

Table 1: Channels computed by the HVS model. The table gives an overview of the 
channels obtained from the HVS model as a function of type, level and level difference. 

L : 

The last column contains the number of channels computed for the respective type. 

As mentioned in the introduction, histograms of the entire image are too invariant to be 

consistent with human perception. A tempting concept is to use a clustering algorithm to 

perform image segmentation. Theoretically, the clustering algorithm segments the image 

into objects which can then be compared and matched at different locations in the image. In 

practice, however, existing algorithms are unable to segment natural images into meaningful 

objects. Typically, similar images are segmented very differently which makes comparison 

of meaningful objects and regions impossible. 

levels I and level differences i 

To avoid segmenting similar images differently, the approach taken in this work is based 

on the identical segmentation of all images. In particular, all channels except the orientation 

maps are partitioned into a fixed set of rectangular blocks. If the channel ;size at level 1 is 
Ml x Nl, t.he channel is divided into an array of Ul x K blocks of size M,sL x MBl. If 

denotes the floor operation, the size of the block array is given by 

NO. channels1 
51 

Let Cl (m, n) denote an arbitrary channel such as L; (m, n). The block Bl,,,,(l;n, n) at position 

(u, v) in the array can then be extracted from Cl as 

B1,,,,(m,n) = C l ( m + ~ M B 1 , 7 2 + ~ M B L )  for m , n  = l . . .MEt,  (43) 

where 0 5 u < Ul and 0 5 v < K. The underlying strategy of this partitioning is to 

dynamically match the blocks of two different images. If we compare features of blocks in 

different locations, we can identify regions of similar feature behavior and match the blocks 

accordingly.. Currently, we have not yet implemented the dynamic matching and therefore, 



are limited. to comparing images of similar size. The concept, however, serves as the basic 

motivation to perform a block-wise comparison of the query and target images. 

The sellection of features computed for each block depends considerably on how the blocks 

will be compared. Common methods include the mean-squared error (MSE), histogram 

matching and statistical modeling. Most similarity metrics prefer histograms and statistical 

modeling to the mean-squared error because the MSE is not well suited to compare images 

directly. In a pixel-wise comparison of high-resolution images, small spatial differences and 

uniform color shifts result in a high MSE, whereas color-histograms and statistical models 

remain alniost unaffected. In the multiscale framework, however, we can calculate the MSE 

of spatial merages so that small spatial deviations will affect only the error in the high- 

resolution channels as desired. Furthermore, we distinguish between color and contrast 

channels so that a uniform color-shift will affect only the distance of the color-channels but 

not of the contrast and color-contrast channels. 

For these reasons, we think that the mean-squared error can serve as a first approximation 

to a meaniingful comparison for the color, contrast and color-contrast channels of our model. 

In order to compare the channels of query and target image, we calculate two different 

MSE distances. The first is the pixel-wise MSE which can be considered to be the MSE 

of the b1oc:k-means setting the block size equal to one. A linear averaging over blocks is 

not necessary, since the pyramid levels contain spatial averages already. Consequently, the 

channel feakures for this distance are simply the pixel values of the pyramid. representation. 

If Cl (Q, m, n) and Cl(T, m, n) denote the same channel of the query image and the target 

image T, tlie distance d, is given by 

The second distance computed is the mean squared error of the block variances. This 

concept is 'based on the fact, that considerable information about the appearance of images 

is contained in the statistical behavior of image regions. More specifically, humans perceive 

very fine contrast patterns not as single contours but as averaged textures. Since the local 

contrast of uniform patterns over larger image regions averages out to zero, the HVS is likely 

to perform an energy calculation over such regions. In our model, we first calculate the block 

variances oLl,u,w for each channel as 

where 

1 
M B ~  M s l  

PB,,.,, = - C C Bl,u,v(m, n). 
M i l  ,l ,=I 

(46) 

The distance don between the query image Q and the target image T is then obtained by 

calculating the mean square error of the block variances 



The block-sizes MB, for the variances were selected under the consideration that the blocks 

should be smaller than any objects of interest in the image. The current colnfiguration uses 

a constant number of blocks a t  each pyramid level, which implies that the block-size at 

pyramid level I is half of that of level I - 1 

where MB, = 16. Since this yields a block size of MB, = 1 for I = 4, we only compute block 

variances for channels with I 5 3. Note, however, that the constant number of blocks in 

each level implies that the variance computation is always performed at  the same resolution. 

Future work will investigate the effects of different block-sizes for the variance computation. 

The co:rnparison of the orientation channels is similar to the MSE co~nparison in the 

color and contrast channels. An important difference, however, is that the orientation maps 

contain two entries at each pixel location - edge-orientation and edge-amplitude. In order 

to compute a distance measure which combines both entries, we can ca1c:ulate the mean 

square error of the angular differences weighted by a function of the edge-amplitudes. An 

intuitive way of weighting the angular difference is to use the average of the edge-amplitudes 

of the query and the target image. For quantized orientation maps, however, this implies 

that if the edge-amplitude is zero in one of the images but equal to one in t,he other image, 

the edge-a:ngles will still be compared and still be considerably weighted.. This effect is 

generally not desirable since it results in an angular comparison of important contours in 

one image i;o background texture orientation in the other. A different approitch is motivated 

by Jacobs, Finkelstein and Salesin in [13], where wavelet coefficients of a query and a target 

image are only compared if the coefficient in the query image is not quantized to zero. We 

implemented such an unsymmetric comparison by computing the distance de between the 

quantized orientation maps 6, (m, n) and 6, (m, n) as 

This comparison can be interpreted as a search for the important contours in the query image. 

In other words, the comparison only assigns positive distances if the target irnage is different 

at location:; where the query has important contours. The result is a better matching of target 

images which do not only contain objects similar to those in the query but also additional 

objects or strong background contours. At the same time, the unsymmetric comparison 

introduces some unreasonable matches if the query has only few contours which happen to 

line up with edges of different objects in the target. However, the overall similarity metric 

performance using the unsymmetric comparison on the orientation channels was slightly 

improved. 



Table 2: List of the computed feature distances. The table gives an overview of 

distances d for the different channel types, levels I and level differences i. The equa- 
tion:; corresponding to the distance computations are indicated in the 4th column. 
The last column lists the total number of distances computed for the ch.annels in 
the :row. 

p a n n e l s  

, By' , Bjb*' 

In summary, we compute feature distances corresponding to the color, contrast and color- 

contrast channels by calculating the pixel-wise mean-square error as well as the MSE of the 

block-variances between images. Feature distances for the orientation channels are obtained 

by calculating an unsymmetric MSE of angular differences. Note that this difference com- 

putation irnplies a feature representation containing the original channels as well as the 

block-variances. A list of the calculated feature differences is given in Table 2. 

4.4 Distance selection and optimization 

Total: 102 I 

levels 

1 = (01 1,273) 
1 = 4  

all (I, i) 

all 1 

The comparison of each channel obtained from the HVS model provides us with 102 channel 

distances as shown in Table 2. A space of this dimensionality is impractical to be used in 

any similarity metric because it requires intractable amounts of training data for classifier 

estimation. Furthermore, the space complexity is prohibitory for precomputing and storing 

the  feature,^ for each image in the database. It is therefore particularly important to select 

a small set of the best features to be used in the final metric. 

4.4.1 Visual tests 

distances 

d,, du2 

4 
dp,duz 

d, 

In order to select and optimize a subset of 'good' features, we need a cost function to 

evaluate the metric's performance. For the task of image comparison, this is problematic, 

since performance measures for image similarity metrics have not been defined. In fact, 

most of the existing algorithms are evaluated by looking at the result and stating whether the 
results look better or worse. To devise a systematic method of optimization and performance 

evaluation, we developed a visual test to collect experimental image matclning data. The 

matching data is obtained by presenting a subject with a single query image and 209 target 

images randomly selected from a database of 10000 images. As shown in Fig. 22, the query 

image and thumbnails of all target images are simultaneously displayed on the screen. The 

subject can click on the thumbnail images to bring up potential matches at their original 

size and compare them in different positions to the query image. The subject's task is to 

find the two images which are most similar to the query image and rate their similarity on 

equation(s) no. d w  

(44),(47) 

(44) 

(44),(47) 

(50) 





a scale frorn zero to ten. If none or only one image is considered to be sirnil-ar to the query, 

the subject, can leave the corresponding answer fields blank. 

The number of target images was chosen to be 209 because this was the maximum 

number of thumbnails we could fit on the screen. Smaller sets have the advantage that the 

test is faster to perform, however, such sets frequently do not contain any irnages which are 

similar to the query. Furthermore, we found that it was important for the subject to view 

potential matches in different spatial arrangements relative to the query. This is a somewhat 

interesting observation since it indicates that the human perception of image similarity is 

less invariant to spatial perturbations than often assumed in computer visiori models. These 

models typically pursue a translation and rotation invariant data representation. 

I have performed the test on myself and collected the data of 200 image matches. Using 

this experimental data, we define a cost function which accounts for the consistency in 

similarity rankings between the metric and the subject's choices. Let Il(t) and 12(t) be the 

two target images selected by a subject in visual test t. Furthermore, let Sl (t) and S2 (t) 

denote the subject's similarity ratings associated with Il (t) and I2 (t). If the similarity metric 

is then used to order the set of target images in t from highest to lowest ~~imilarity to the 

query, we can define the metric's rankings of the images selected by the subject as Rl(t) 

and R2(t). The function c(t) then computes the cost for the visual test as a. function of the 

metric's rxnkings and the similarities rated by the subject 

c(t> = c [RI (t) , Si (t)] + E [R2 (t) , S 2  (t)] 

where the cost function for the individual matches E(R, S) is a monotonically increasing 

function of R and S.  The main requirement for the function E(R, S) is that it be consistent 

with the application of a user searching a large image database. A linear function of the 

rank R, foir example, would imply that the factor of cost increase from ranking an image 

5th to ranking it 10th would be the same as from ranking it 100th to 200th. Especially if 

we extend our problems to larger databases of many thousands of images, going through a 

number of images on the order of the size of the database becomes intractable and the image 

must be co~nsidered lost. One possibility to account for this behavior is to use a clipped linear 

function of R which does not assign any additional cost once the rank exceeds a certain limit 

RL. This yields 

where f (S) denotes a monotonically increasing function of S.  We have experimented with 

such a function as shown in Fig. 23. A disadvantage of the clipped linear function is that it 

is not well suited for optimization of the similarity metric. Since changes in ranking above 

the clipping limit are not detected, the cost becomes constant for a wide range of model 

parameters. Furthermore, if we consider a more sophisticated method of database browsing 

such as sequentially eliminating sets of mismatches and restarting the automated search on 

the reduced set, the order of magnitude of large rankings becomes important. For these 

reasons we decided to employ an individual cost function which grows 1ogal:ithmically with 

the rank R 

E(R, S) = f (S) log(R). (53) 



Figure 23: Cost functions for individual 

matches E(R,S). The plot shows a compari- 

son of the clipped linear function and the log- 

arithmic function for f (S) == 1 and RL = 11. 

Compared to the clipped linear function, the 

logarithmic function is more consistent with a 

search strategy of iteratively eliminating false 
~ matches and searching the remaining images 

I in the target set. 
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Since th.e subjects are asked to rate similarity on a uniform scale from zero to ten, S would 

ideally be linearly related to perceived similarity. In practice, however, sub'jects might not 

use the full scale but only a sub-scale, for example from 3 to  8. Conseq.uently, S must 

be normalized when visual tests from different subjects are considered at the same time. 

However, s:ince we currently only use visual tests performed by one subject;, we use a cost 

function E(.R, S) which depends linearly on S 

In order to obtain a global cost function C which incorporates the results of a set of T visual 

tests, we sum over the functions c(t) for each test. This yields 

T 

= t=l C ( s ~ l o g  RI (t) + S2 (t) log R2 (t )) . 

This global cost function will be used to estimate the classifier parameters of our similarity 

metric as well as for the final performance evaluation. 

4.4.2 Selecting a classifier 

A general framework for combining the feature distances extracted from the channel model 

into a single image similarity metric is to employ classification theory from1 pattern recog- 

nition. In particular, we can model the task of image comparison as a two class problem - 

either a target image is a match or it is not. After estimating the statistic:; for the classes 

'match' and 'noise', we can compute the distance of each input to both classes. In order to 



rank the siimilarity of a set of target images, we do not have to decide between classes but 

only to sort the classifier distances. 

A simple method is to use a linear classifier, which computes a global distance by calcu- 

lating a weighted sum of the feature distances. This seems reasonable since we know that 

the inputs are non-negative distances so that a result of zero corresponds to a perfect match 

whereas a high value indicates large differences between images. 

Since valuable information might also be contained in the covariances between feature 

distances, we compared using a linear classifier to using a quadratic Baye:s rule classifier. 

The results, however, indicated that in terms of similarity metric performance, the linear 

classifier is superior to the quadratic classifier. We therefore decided, to implement a linear 

classifier. 

Linear classifier The linear classifier calculates the global distance D ,as the weighted 

linear combination of the feature-distances listed in Table 2. Let di denote the n = 102 
feature-distances and wi the corresponding classifier weights. If furthermore HI denotes the 

class 'match' and Ho the class 'noise', then the equation for the linear classifier is given by 

As mentioned above, we can avoid using the threshold T since we are only interested in 

ranking a set of target images. In order to use vector notation, we define d as the vector of 

the feature distances di and R as the vector of the weights wi. We can then write the global 

distance computation as 

D ( d )  = RTd. (57) 

In order to estimate the classifier weights R, we first implemented a method developed for 

statistical signal detection [32]. The weighted sum of the feature distances in. ( 5 6 )  represents 

an FIR filter with impulse response R which is applied to the input signal d .  The signal 

detection method then estimates the R vector by maximizing the signal to  noise ratio of the 

filter output. In our case, however, the filter inputs are feature distances .which are small 

for matches and large for noise. Consequently, our goal must be to maxirnize the inverse 

signal to  noise ratio. If E denotes the expectation operator and dHl and dHo are inputs 

corresponding to  the classes HI and Ho, we can express the inverse signal to noise ratio as 

It can be s:hown that this leads to  the generalized eigenvalue problem 

where RHO = E(dGodHo) and RH1 = E(d&dH1) are the covariance matrices corresponding 

to the inpats and X is a generalized eigenvalue. The R which maximizes ( 5 8 )  is; the generalized 

eigenvector which corresponds to the largest eigenvalue A. 





weights from 0.1 to  1, spaced 0.1 apart. After each iteration, all weights w.: of the set S;+, 
are normalized such that the smallest weight is equal to one. 

I Sj+1 = S;+l : wi = qwi such that min(wi) = 1. (63) 
a 

For the selection of the next distance, the set of weights Wj+1 is extended to  contain all 

weights from 0.1 to  twice the maximum weight of the set Sj+l. 

Wj+l = {0.1,0.2, . . . , max 2wi) 
wiESj+ l  

This normalization strategy is based on the observation, that the algorithm usually selects the 

distances in order of decreasing weights. Consequently, the weight sets Wj+k of subsequential 

steps shou1.d contain a good selection of weights smaller than those contained in Sj.  The 

selection o:€ distances is terminated when j = Ic, i.e. the desired set size is reached. We 

finally normalize all weights wi in Sk to the range 0 5 wi 5 1. In the remainder, we will 

denote these normalized selected weights by the vector R, = [wl ,  . . . , wkIT and the selected 

normalized distances by d,,j where 1 5 j 5 Ic. 

After selecting the feature subset, we use simulated annealing t o  optimize the feature 

weights. Simulated annealing is a stochastic search technique based on Markov chains and 

thermodynamical principles [34]. The method relies on computing acceptance probabilities 

for random.1~ perturbed weights. In order to optimize R,, we randomly perturb one of the 

weights wj  resulting in the perturbed weight vector a/,. Let C(R,) and C(R',) denote the 

values of the cost function C from (55) using the linear classifier with the distances d, and 

weights C(R,) and C(R',). Energies corresponding to  the cost of these sets are then obtained 

by 

where the temperature T is a parameter. We then calculate an acceptance :probability cw as 

the ratio of the Gibbs measures of the perturbed and unperturbed sets. 

eE("s 1 
cw = min (- 1 , I) 

We see thak if the perturbed set performs better than the unperturbed, i.e. C 5 C, it is 

accepted with probability one. If, however, the perturbed set performs worse, i.e. C' > C, 
then there is still a probability of exp((C - C1)/T) t o  accept it. Clearly, the parameter T 
determines how conservative the acceptance probability for C' > C will be. 

In order to calculate the complete transition probability from R, to  RL, we must first 
choose p(j:), the probability of perturbing the j ' th element of the vector !a,. We will let 



p ( j )  = llk, so it is uniformely distributed. Then, the total transition probability p(R',IR,) 

is given by 
1 

p(fl:lflS) = , c* f (w;lwj) (67) 

where f (w;:lwj) is the probability distribution for changing w j  to 4. It can be shown, that if 

the transit ion probabilities are symmetric, i.e. p(R', 10,) = p(R,  ( R i )  , the sequence of weight 

vectors R,(n)  in the algorithm satisfies the properties of a regular Markov chain. 

In order to obtain symmetric transition probabilities, we require that the f (w;(%) be 

symmetric. This can be obtained by perturbing wj with an additive random variable sym- 

metrically distributed around zero. In that case, f (4 1 % )  becomes a function of the absolute 

difference between w j  and 4 only 

However, since we use the wj to weight feature distances, we would like to restrict them to 

non-negative values. We can achieve this without loss of symmetry by limiting the wi to 

the range 0 < wi < 1 and perform a wrap-around whenever the perturbation violates these 

limits. The final perturbation of the selected weight wj using the random variable 5 can then 

be expressed as 
w i + t  : O < W i + [ < l  

U: = { ( w i + [ ) + l  : w i + [ < o  (69) 
(wi + 5 )  - 1 : w i + [ > l  

where J is uniformly distributed from -4. . . $ 

The resulting regular Markov chain with states 0, and transition probabi1it:ies p(R',IR,) can 

be shown t'o converge to a local minimum for sufficiently small T. For a specific schedule 

of iteratiom using different T's, the convergence becomes global. The glotlal convergence, 

however, is very slow so that in any practical application the algorithm is stopped after a 

fixed number of iterations resulting in an approximate solution. 

We implemented this technique as specified above limiting the the range of the wj from 
zero to one and using a $ = 0.02. Reasonable convergence behavior was obtaJned by starting 

the iteratio'n with a T = 20 and successively decreasing it to T = 0.5. After approximately 

lo5 iterations, no further convergence was noticeable. Note that these values are based on a 

set size of Ic = 13 and cost function values C in the range from 500 to 1500. 

The results obtained by sequentially selecting features and optimizing their weights using 
simulated annealing were far superior to those of the covariance based methods. Note also, 

that the direct method estimates only the k weights in comparison to the 2(k 2+k) parameters 
needed by the covariance methods. This is an important advantage, since it implies that 

the direct methods requires only a fraction of the amount of training data, needed for the 

covariance based methods. 





Weight wi I Type I Channel / Distance-Type I Level 1 and d-1 
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Table 3: Selected feature distances. The table shows the feature distances selected for the 
training set of 80 visual tests. The distances are listed in the order of decreasing weights 
W i .  

Results 

The results presented are based on a selection of 13 out of 102 features distances computed 

on a training set of 80 visual tests. 

5.1 Selected features 

Table 3 shows the selected distances in the order of decreasing weights. Since we normalized 

the distances d to have zero mean and unit variance, the values of the weights are con- 

sistent between channels. Out of the 13 selected distances, there are 4 luminance/color, 4 

contrast/color-contrast and 5 orientation channel distances. This is remarkable, since it indi- 

cates that a11 types of channels including color-contrast and orientation channels contribute 

to the classification. However, the distribution of weights implies a ranking of the types 

where coloi: and luminance are of highest importance followed by orientation and contrast. 

The examination of the selected distances shows, that for the contrast channels only vari- 

ance distances d,z were selected. This is due to the fact, that the contours of different images 

in the contrast representation do not line up very well. The variance computation, however, 

is a measure for the statistical behavior of a block region and can therefore successfully be 

compared between images even if single contours do not line up. Consequently, the selected 

contrast distances correspond to texture comparisons between images. 

Looking: at the selected pyramid levels, we see that most of the color and orientation 

map comparisons are made at low resolutions. For the color channels, this is, consistent with 



vision science and re-emphasizes that the color space be uniform at low spatial frequencies. 

The selected contrast levels and level differences seem to  suggest, that contrast comparisons 

at high pyramid levels 1 with low level differences i are meaningful. However, this result must 

be further investigated since the block-sizes for the variances are currently chosen to  yield a 

constant resolution. In conclusion, the selection of features is very promising. It suggests, 

that all types of representations computed by the HVS model might be implortant for image 

similarity assessment. 

5.2 Metric Performance 

In order t o  evaluate the metric's performance, we tested it on a set of 80 trained and 80 

untrained visual tests. Figures 24 and 25 show a selection of the matching results for the 

trained and untrained case. Each row of the figure contains a query image followed by the 

images selected by the subject and the six best matches found by the met:ric. The results 

indicate that the metric has considerable potential in matching images consistently with 

human observers. In particular, the metric is capable of finding matches which only share 

single aspects of similarity. In contrast t o  the color-histogram methods, the metric matches 

images containing similar shapes and textures but different colors. Given1 that we use a 

fairly small set of target images, we can not expect to see five or more good matches on a 

single visual test since most sets contain only 1 to 3 good matches. Instead, we focus on 

the ranking: of the images selected in the visual test which we consider very promising. Over 

the entire untrained set we observed that approximately 50% of the images selected by the 

subjects were among the 10 best matches predicted by the metric. Note that this compares 

to a probability of 4.9% for random selection. 

In order to  perform a more systematic analysis, we plotted the classification accuracy 

of the metric as shown in Figs. 26 to  30. The values on the y-axis denote the percentage 

of subject matches found within the first number of metric matches drawn on the x-axis. 

The x-axis is drawn in logarithmic scale since we are mainly interested in tlne classification 

accuracy obtained within the first few matches selected by the metric. In the following, we 

will refer to' results for the untrained set simply as results. 

Figure 2!6 compares our results t o  the performance obtained using a method developed 

by Boumar~ and Chen [35]. This method uses block-wise color-histogram. matching and 

orientation selective features which are similar to  our orientation maps. While the histogram 

method obtains higher accuracies for the first two matches, our method outpeirforms it for the 

rest of the range. The superiority of our method at  higher ranks is remarkable since we have 

to  consider at  least 5 to  10 metric matches to obtain reasonable classification accuracies over 

40%. The t:hird curve in this diagram shows the 95% confidence interval of the performance 

that could be expected from performing a random selection of target images. Clearly, both 

methods perform considerably better than random selection. 

In order to  investigate the importance of the contrast channels, we trained the metric 

excluding these channels. Figure 27 shows a comparison to  the performance obtained by 

allowing the selection of all channels. In the range of interest between rank 5 and 30, a 

considerable increase in performance is obtained by using the contrast features. Although 

the distance selection and optimization process tend to  assign lower weights to  the contrast 



Query Subject matches Similarity metric matches in order of rank 

1 2 1 2 3 4 5 6 

Figure 24: .Matching results on the training set. Each row corresponds to a different visual test where the 

image in the first column is the query and the two images in columns 3 and 4 are the matches selected by 

the subject. In this case, the metric is trained on these matches. The columns on the right show the images 

selected by the metric from rank 1 to 6. 



Query Subject matches Similarity metric matches in order of rank 

1 2 1 2 3 4 5 6 

Figure 25: Matching results on the untrained set. The images are in the same spatial arrangement as in 

Fig. 24. In this case, the metric is not trained on the query images shown in columns 2 and 3. The results 

indicate, that; the metric has high potential in finding images which are consistent with human similarity 

perception. 



Figure 26: Performance comparison to the method 

developed by Bouman and Chen. In the range of inter- 

est between rank 5 and 20, our mod121 achieved higher 

classification accuracies than the method by Bouman 

;' 1 and Chen. The third curve in this diagram shows 

the 95% confidence interval of the performance that 
could be expected from a random selection of target 

images. Clearly, both methods perform considerably 

better than random selection. 

Figure 27: Performance analysis of contrast 

channels. The curves indicate that for rankings 

between 1 and 30 the contrast features resulted in 

a considerab'le improvement in accuracy. 

Figure 28: Performance analysis of orientation 

channels. By using the orientation channel dis- 

tances, the metric's performance is considerably 

increased. 



Figure 29, Comparison of training and test set Figure 30: Comparison of the logarithmic and 

performance. The graphs indicate, that the accu- the clipped linear cost function. The accuracy us- 
racies on the trained and the untrained sets differ ing the clipped linear function drops before reach- 
by not mort: than 10-15% . ing the clipping limit of rank 11. 

and color-contrast channels, these channels result in a significant increase in performance 

which cannot be obtained using the color and orientation channels only. 

A simili3r analysis for the orientation channels is shown in Figure 28. The figure shows the 

classification result obtained by excluding the orientation channels compared to the result 

obtained by allowing all channels. Clearly, the orientation channels in~re~ase the metric's 

performance throughout the range of ranks. 

An important question is whether the classification accuracies on the iiraining set and 

the test set are comparable. A large difference between the cases would imply that the 

model is over-parameterized for the amount of training data available. As shown in Fig. 29 

the classifilnation accuracies obtained on the training and test set differ by not more than 

10 to 15% which is in the common range for pattern recognition algorithms. We therefore 

conclude, that our model is not overparameterized. However, more traicdng data would 

be desirable in order to capture the similarity perception of different subjects and reduce 

performance differences between trained and untrained data. 

Finally, we compared training the metric using the clipped linear functi'on from Fig. 23 

instead of the logarithmic function from (53). The result is shown in Fig. 30. The curves 

indicate that the accuracy obtained using the different cost functions is a,lmost identical. 

Note, however, that the performance of the clipped linear function decreases directly below 

the clipping limit of 11. The reason for this might be that the clipped function can not 

optimize the ranking of matches directly above the clipping matches. In contrast, differences 

in rankings in this range are still substantially weighted by the logarithmic function. 

Overall, the performance of the metric is very promising. Although it captures different 

aspects of similarity using a fixed set of features and weights, the rate 'of unreasonable 

matches is acceptable. 



6 Conclusions 

In this work we presented the development of an image similarity metric based on features 

extracted from a simple model of the human visual system. Our emphasis is not so much on 

the specific model, but on the methodology of feature optimization and metric evaluation. 

The presented optimization strategy is independent of the underlying imagle representation 

and therefore suited to  systematically optimize and compare different kindl3 of image simi- 

larity metrics. 

The visual test that we propose is only a first approximation to a more comprehensivly 

designed and psychologically relevant measurement. However, we believe that the method is 

an importamt step toward a more standardized evaluation methodology. In particular, this 

new methodology seems to be much better than conventional methods of evaluation based 

on anecdotal accounts of good and poor matching results. 

In addition, we have demonstrated that features such as contrast and color-contrast 

might be of considerable value for image similarity assessment. The performance of our 

model suggests that the proposed methodology can lead to derived similar it,^ metrics which 

have substantial value in predicting image similarity as perceived by human subjects. 

6.1 Future work 

The methodology we describe can be improved in many ways. In particular, the feature 

extraction and distance comparison of the contrast channels must be further investigated. 

In the first stage, this will include experimenting with different block-sizes for the variance, 

replacing the binary threshold with a sigmoid-shaped nonlinearity and imlplementing the 

dynamic block matching. In addition, we will seek to improve the distance selection and 

optimizatialn. In particular, simulated annealing iterations should be performed directly 

after the selection of each feature distance. A further improvement might be obtained by 

selecting more than the desired number k of feature distances and then performing a Branch 

and Bound search to optimally reduce the space. 

The proposed visual test methodology is only a first approximation to a psychological 

meaningful measurement. The current task to 'find similar images' leaves the subject with a 

great amount of interpretation which introduces noise to the measurements. More accurate 

measurements can be obtained by decoupling the different aspects of similarity into separate 

tests. Such a method is based on the psychological concept that the quantities intrinsic 

to  the human visual system should be invariant to changes of other aspects. Under this 

assumption, we will seek to identify aspects of similarity which are invariant to each other. 

These aspects can then be measured separately to yield a better defined task for the subjects. 
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