
Methodology for Estimating
Network Distances of Gnutella Neighbors

Vinay Aggarwal1, Stefan Bender2, Anja Feldmann1, Arne Wichmann1

1Technische Universität München, Germany {vinay,anja,aw}@net.in.tum.de
2MPI für Informatik, Saarbrücken, Germany {sbender}@mpi-sb.mpg.de

Abstract: In this paper we ask the question how much does the neighborhood se-
lection process of a P2P protocol such as Gnutella respect the underlying Internet
topology.

1 Introduction

Network applications, such as IRC, MBone, Usenet, etc. route data at the application
layer, thus creating overlay networks. A common aspect of these applications is that
these overlay networks are controlled by system administrators, who ensure that neigh-
bor choices respect resource limitations to some degree. One may expect that this biases
the neighborhood choices to respect network proximity. This is in contrast to another class
of overlay networks, the popular peer-to-peer file-sharing systems. Here system-specific
metrics or arbitrary choices govern the neighborhood selection process.

Accordingly we, in this paper, ask the question how much does such a selection process
respect the underlying network topology, or put differently, how close is a P2P topology
to the Internet topology. The answer can help us estimate the (in-)efficiency of using
overlays. We investigate this question using Gnutella as our example overlay network.

Gnutella [Cl01], one of the first decentralized overlay file sharing networks, is based on
agents, called servents. According to its original design each servent maintains connec-
tivity with a set of others by sending Ping messages, which are answered using Pong
messages. Search queries are flooded within the Gnutella-network using Query mes-
sages and answered by Query Hits. To limit flooding Gnutella uses TTLs and message
IDs. Each answer message (Query Hit/Pong) takes the reverse path of the correspond-
ing triggering message. Due to scalability problems in the original design, later versions
of the Gnutella protocol [Li] introduced a hierarchy which elevates some servents to ul-
trapeers, while others become leaf nodes. Each leaf node connects to a small number of
ultrapeers while each ultrapeer maintains a large number of neighbors, both ultrapeers and
leafs. To further improve performance and to discourage abuse, the Ping/Pong protocol
underwent semantic changes. Answers to Pingmessages may be cached and too frequent
Pings or repeated Querys may cause termination of the connection or may be ignored
by the receiver.

219

These changes have vastly improved the scalability of the Gnutella network [Li]. Yet at the
same time they pose a huge impediment to investigating the structure of Gnutella, which is
based on the original semantic of the Ping/Pong protocol. Accordingly in this paper we
investigate how to overcome these limitations to find neighbors in the Gnutella network
and then explore their network distance in comparison to random node distances.

Fully distributed P2P networks, such as Gnutella [Cl01], attracted an enormous interest
after Napster was sued by the music industry in 2001. Traditionally networks such as
Gnutella are mapped by crawlers [SGG02, RFI02]. The main component of a crawler is
a client which maintains a list of known Gnutella servents. It connects to each servent
on this list and uses the Ping/Pong protocol with large TTLs to discover other Gnutella
servents, which are added to the list, as well as edges in the Gnutella network. This results
in a snapshot of the network. The crawls, typically lasting a few hours, discovered about
400, 000 [RFI02], 120, 000 [Li] and 1, 239, 487 [SGG02] servents respectively. Overall
[RFI02] asserts that Gnutella’s virtual network topology does not match the Internet topol-
ogy well. [SGG02] found considerable heterogeneity in Gnutella, and presented evidence
of distinct client- or server-like behavior in servents.

The remainder of the paper is organized as follows: Section 2 outlines our methodology
for exploring the Gnutella network topology. Next Section 3 presents some preliminary
results and finally Section 4 concludes with a short summary.

2 Methodology for identifying edges in a P2P network

In order to study how close the P2P topology is to the Internet topology we first need
to identify a representative set of edges in the P2P network. Then we need to find a
comparable set of edges in the Internet and a metric suitable for comparison.

The most obvious way of finding edges in a P2P network is to create some by participating.
Yet these are not representative. They are highly biased by the location and the software of
the participant. Rather we want to identify edges in the P2P network where neither of the
two nodes is controlled by us. We refer to any two nodes connected by an edge as neighbor
servents and those not involving a node controlled by us as remote neighbor servents.

Due to the changed semantics of the Ping/Pong protocol the simple crawling approach
outlined in the last section is no longer sufficient. As Pongs are cached and due to the
rapid fluctuations in Gnutella networks1 one cannot assume that answers to Pings with
TTL equal to two (so called crawler pings) contain still active servents. They should,
however, have been remote neighbor servents at some point. Note that leaf nodes are no
longer reported in Pongs.

To cope with these complications we deploy a combination of active and passive tech-
niques to explore the Gnutella network. From the passive technique (an ultrapeer servent)
we gain a list of active servents. Using Querys with TTL value of two allows us to get
a set of remote neighbor servents. Using Pings with TTL value of two results in a set of

1In our experiments, see Section 3, the median connection duration is 0.74/0.98 seconds respectively.

220

candidate servents. These are then contacted actively to further advance the network ex-
ploration. This approach allows us to discover edges in the Gnutella network that existed
at some point but it does not guarantee that they still exist. In the future we plan to enhance
our strategy to ensure that we have discovered active remote neighbors by connecting to
both servents at the same time and issuing a query with a TTL of three which can only
be answered by the crawler servent. The problem with this approach is that connecting to
two servents at the same time is problematic due to the restrictions on the neighborhood
size of each servent.

Our active approach consists of multiple client servents and a manager. The manager
controls the clients in that it supplies each client with a Gnutella servent address (IP ad-
dress/port number combination) to connect to. Should a client not respond within a rea-
sonable time frame it is restarted. Each client tries to connect to its assigned servent.
Depending on success, connection refusal, connection timeout, or Gnutella error message
the client reports a different result to the manager. Based on this the manager reschedules
the servent for retry. If the connection is rejected with a Gnutella error code it is indicative
of an active servent that most likely has no open connection slots currently available. If the
connection times out, the servent is either inactive or behind a firewall. If the connection
is refused, it is either inactive or highly overloaded with connection requests. Accordingly
servents that rejected connections are retried faster than those that refused them or did not
respond.

When interacting with other servents, the client is pretending to be a long-running ultrapeer
with an acceptable querying scheme. It processes incoming messages and has a non-
intrusive Ping/Pong behavior. For example the client issues query/crawler pings only
to those peers that have already responded with a Pong, Pings are issued only to those
peers that send one themselves, and at the same rate. This seems to avoid bans. The client
uses Query messages with a compiled list of catchwords such as mp3, avi, rar. One
can expect queries to yield only a subset of neighbors due to the presence of “free-riders”
[AH00].

Early experiments showed that the behavior of a client can have significant impact on the
connection success rate. This has led to several changes that make the client more attrac-
tive (e.g., large X-Live-Since times, ultrapeer handshaking) as well as less predictable
(e.g., initializing the timers that issue the Query and Ping messages with random values
within a certain range).

To better understand the limitations of our approach and the behavior of both client and
ultrapeers, we experimented with the prevalent tools in a test bed. It consisted of a small
Gnutella network with servents based on GTK-Gnutella, LimeWire, BearShare, and Gnu-
cleus. Interestingly only GTK-Gnutella provides a configuration parameter to elevate it
to an ultrapeer. We also observed several compatibility issues. For example while the
LimeWire servent allows other servents to establish TCP connections to it, it then rejects
the Gnutella handshake with an error message. BearShare also discourages other vendors’
servents from connecting to it. We conclude that non-compliance and compatibility issues
impose limitations on the success rate of our techniques.

Our passive approach consists of an ultrapeer on the basis of GTK-Gnutella [GM+03].

221

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.0001 0.01 1 100 10000 1e+06 1e+08

re
la

tiv
e

po
pu

la
rit

y
[%

] (
C

C
D

F
)

connection duration [s]

incoming
outgoing

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nu
m

be
r

of
 s

es
si

on
s

network layer distance [#AS]

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nu
m

be
r

of
 s

es
si

on
s

network layer distance [#AS]

Figure 1: (a) CCDF of session duration distribution (b) Estimated number of autonomous systems
between application layer distance one and two Gnutella servents (solid line) and random IP ad-
dresses (dashed line).

The goal is to have an ultrapeer that is just a normal node in the network, yet worthwhile
to connect to. The ultrapeer shares a reasonable amount of data (100 randomly generated
music files, totalling 300 MB in size), and maintains a maximum of 60 simultaneous con-
nections to other servents. To derive various statistics the servent is instrumented to log
per-connection information which is augmented with a packet level trace.

Our combined active/passive approach integrates the crawler into the ultrapeer. Experi-
ments with the unmodified and the modified ultrapeer confirmed that the changes did not
alter the characteristics of incoming connections. Overall this allows us to reach a connec-
tion rate well above other known studies (e.g. [DZL02]) during the same time frame.

3 Results

Our initial characterization is based on a data set collected using the technique discussed in
Section 2. The trace started on Oct 26, 2003 and lasted till Dec 3, 2003. During this time
the ultrapeer logged 8, 199, 643 sessions of which 8, 192, 461 are incoming and 7, 182 are
outgoing. The dominance of the incoming connections indicates that the ultrapeer is quite
popular, which is likely to reduce the bias in the sampled servents. The crawler discovered
14, 101, 399 remote neighbor servents.

Before exploring similarities of the P2P topology with the Internet topology we explore
the variability of the Gnutella session durations. Figure 1(a) shows the complementary
cumulative distribution function (CCDF) of the session duration of the above trace. It is
apparent from the plot that most session durations are rather short. Indeed the median
duration of incoming/outgoing sessions is 0.98/0.74 seconds. Only 5% of the incoming
sessions lasted longer than 12.3 seconds. This implies that edges in the Gnutella network
change rapidly. On the one hand this complicates any crawling attempts, on the other hand
it affects the expected accuracy and value of any derived map.

Typical metrics for distances in the Internet are router hop counts and AS distances. Un-
fortunately, estimating the hop counts for any two random nodes is non-trivial [SMW02].

222

While difficult, estimating approximate AS distances is possible. We map IP addresses to
AS numbers using BGP tables from Ripe [RI]. Using BGP tables and updates we derive
an AS topology and the AS relationships [Ga00]. Based on this topology and the heuristic
that a customer route is prefered to a peering route over an upstream, we estimate the AS
distances. Figure 1(b) (solid line) shows a histogram of the estimated AS distances of the
remote neighbor servents. The plot shows that the distances span a huge range with some
clustering at distance 3 − 5. We note that the estimated AS distances for the direct neigh-
bors have a significantly different distribution. The large values as well as the spread of AS
values indicates that Gnutella does not bias its neighbor choices to correspond to network
proximity. To further explore this the same Figure (dashed line) shows a histogram of the
estimated AS distances of randomly chosen IP addresses. While the overall shape is quite
similar there are some differences. This has to be expected since users need reasonable
network connectivity to use the Gnutella network.

4 Summary

Exploring the Gnutella network topology is limited by the optimizations to the Gnutella
protocol as well as the short session durations. Nevertheless we are able to identify a sig-
nificant number of remote neighbor servents to approximate a representative set of edges
in the P2P network. Our comparison to randomly selected pairs of IP addresses shows that
neighbors in the Gnutella P2P network do not seem to significantly bias their neighbor
choices towards network proximity.

References

[AH00] Adar, E. und Huberman, B. Free riding on gnutella. Web Page. 2000.
http://www.firstmonday.dk/issues/issue5_10/adar/.

[Cl01] Clip2. The gnutella protocol specifi cation v0.4. Web Page. 2001.
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf.

[DZL02] Dhamdhere, A., Zegura, E., und Liston, R.: Determining characteristics of the gnutella
network. In: Technical Report, College of Computing, Georgia Tech. 2002.

[Ga00] Gao, L.: On inferring autonomous system relationships in the Internet. In: Proc. IEEE
Global Internet Symposium. 2000.

[GM+03] Grossel, Y., Menfredi, R., u. a. Gtk-gnutella - a clone of gnutella. Web Page. 2000-2003.
http://www.gtk-gnutella.sourceforge.net/.

[Li] Lime Wire. http://www.limewire.com/.

[RFI02] Ripeanu, M., Foster, I., und Iamnitchi, A.: Mapping the gnutella network. In: IEEE
Internet Computing Journal. 2002.

[RI] RIPE’s Routing Information Service raw data page. http://data.ris.ripe.net/.

[SGG02] Saroiu, S., Gummadi, K., und Gribble, S.: A measurement study of peer-to-peer fi le
sharing systems. In: Multimedia Computing and Networking. 2002.

[SMW02] Spring, N., Mahajan, R., und Wetherall, D.: Measuring ISP topologies with Rocketfuel.
In: Proc. ACM SIGCOMM. 2002.

223

