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Lower canopy temperature (CT), resulting from increased stomatal conductance, has

been associated with increased yield in wheat. Historically, CT has been measured

with hand-held infrared thermometers. Using the hand-held CT method on large field

trials is problematic, mostly because measurements are confounded by temporal

weather changes during the time required to measure all plots. The hand-held CT

method is laborious and yet the resulting heritability low, thereby reducing confidence

in selection in large scale breeding endeavors. We have developed a reliable and

scalable crop phenotyping method for assessing CT in large field experiments.

The method involves airborne thermography from a manned helicopter using a

radiometrically-calibrated thermal camera. Thermal image data is acquired from large

experiments in the order of seconds, thereby enabling simultaneous measurement of CT

on potentially 1000s of plots. Effects of temporal weather variation when phenotyping

large experiments using hand-held infrared thermometers are therefore reduced. The

method is designed for cost-effective and large-scale use by the non-technical user

and includes custom-developed software for data processing to obtain CT data on a

single-plot basis for analysis. Broad-sense heritability was routinely >0.50, and as high

as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment

comprising 768 plots of size 2× 6 m. Image analysis based on the frequency distribution

of temperature pixels to remove the possible influence of background soil did not improve

broad-sense heritability. Total image acquisition and processing time was ca. 25 min and

required only one person (excluding the helicopter pilot). The results indicate the potential

to phenotype CT on large populations in genetics studies or for selection within a plant

breeding program.
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1. INTRODUCTION

The gaseous exchange of water for carbon occurs at the
stomata. From this exchange, plant surfaces, particularly leaves,
are cooled by evaporation, and their temperatures typically
decrease with increased evaporation. Stomatal closure and
reduced transpiration manifest as a warmer canopy temperature
(CT), while cooler CT is related to more open stomata and
higher transpiration. Cooler CT has been associated with
genetic gains in wheat yield, higher stomatal conductance,
and maximum photosynthetic rates under non-water-limited
conditions (Fischer et al., 1998). Similarly, cooler CT has
been associated with increased grain yield in warm, irrigated
conditions in Mexico (Reynolds et al., 1994; Amani et al., 1996;
Ayeneh et al., 2002), and in a study comparing a selection
of spring wheat cultivars from Australia and the International
Maize and Wheat Improvement Center (CIMMYT) (Rattey
et al., 2011). Similar findings were reported in water-limited
environments, with cooler CT in wheat associated with increased
yield (Blum et al., 1989; Rashid et al., 1999; Olivares-Villegas
et al., 2007). When measured during grain-filling, cooler CT has
been associated with increased rooting depth (Reynolds et al.,
2007a), water use, and grain yield (Lopes and Reynolds, 2010).
Conversely, warmer CT has been associated with conservative
water use in different crops. In wheat, Pinter et al. (1990) reported
that varieties with warmer CT in well-watered conditions had
reduced stomatal conductance, used less water and were higher
yielding when grown under water limitation.

Researchers have investigated the genetic basis underpinning
CT in wheat using different populations. For example, Saint
Pierre et al. (2010) studied five populations grown in three
environments (water-limited, well-watered, and heat stress) and
reported that gene effects were mostly additive with some
dominance. Genetic mapping has revealed multiple quantitative
trait loci for CT that are often pleiotropic with other important
agronomic traits including yield and biomass (Pinto et al.,
2010; Bennett et al., 2012; Mason et al., 2013; Rebetzke et al.,
2013b). These studies generally report a strong association
between cooler CT and yield, particularly when CT is measured
during grain-filling. However, the polygenic control, together
with the environmental sensitivity of stomatal conductance and
CT (Rebetzke et al., 2013b), may reduce the heritability of
the trait and hence the utility of CT for selection within a
breeding program.Mason and Singh (2014) investigated CT as an
indirect selection criterion for wheat under water limitation and
heat stress environments. They concluded that the most useful
application of CT within a breeding program would occur in
the early generations, where yield testing is not performed and
therefore indirect selection would be beneficial.

In the aforementioned studies, CT was measured with hand-
held infrared thermometers. Use of hand-held instruments in
large experiments is laborious, time-consuming and sensitive
to weather fluctuations over short periods of time. Moreover,
difficulties associated with maintaining a constant view angle
and avoiding “contamination” from soil further complicate
hand-held CT measurements. To address these issues, infrared
thermography has been proposed as a method for CT

phenotyping, owing to the advent of relatively affordable thermal
cameras and user-friendly software for image processing (Jones
et al., 2009; Takai et al., 2010; Prashar et al., 2013; Prashar and
Jones, 2014). Recent studies have used unmanned aerial vehicles
(UAVs) for the acquisition of thermal images for quantifying
water stress in various field crops including cotton (Sullivan et al.,
2007) and perennials including olives, mandarins, oranges, and
apples (Berni et al., 2009a,b; Zarco-Tejada et al., 2012; Gómez-
Candón et al., 2016). Chapman et al. (2014) demonstrated the
use of UAV for various phenotyping applications including CT in
sugarcane using thermal imaging.

For successful deployment of CT phenotyping within
breeding programs, a scalable, and reliable methodology must
first be developed and validated. Such a methodology must
enable acquisition of CT from a large number of plots in
a short time period (in the order of seconds), to reduce
variance associated with weather fluctuations. The method
must be accurate and precise to enable reliable and confident
discrimination between genotypes. Moreover, the method must
enable fast data acquisition and timely data processing. It must
also be routine in delivery and readily accessible.

In this paper, we evaluate such a method developed for
assessing CT on large field experiments. The method involves
(i) airborne thermography from manned helicopter using a
radiometrically-calibrated thermal camera to acquire CT data
for large experiments in the order of seconds, and then (ii)
data processing within minutes. The aim of this paper is to
demonstrate the repeatability, scalability, and operative nature of
the airborne thermographymethod for potential use in plot-scale
phenotyping within a genetics study or within a plant breeding
program.

2. MATERIALS AND METHODS

2.1. Field Experiments
A field experiment containing contrasting wheat genotypes was
grown in two successive years at the Managed Environment
Facility (MEF) (Rebetzke et al., 2013a), located at Yanco (34.62◦S,
146.43◦E, elevation 164 m) in SE Australia. The soil at the Yanco
MEF has been classified as chromosol and has a clay-loam texture
(Isbell, 1996). The experiment was sown on 28th May in 2013
and 11th June in 2014 following canola or field pea break-crops
and thenmanaged with adequate nutrition and chemical controls
as required for pest, weed, and leaf diseases. The experiments
comprised 768 experimental plots, of size 2 × 6 m with 18 cm
row spacing (orientated North-South), and included a range of
germplasm that conformed to the following criteria described
in Rebetzke et al. (2013a): contemporary high-yielding, elite
germplasm with agronomically-acceptable flowering time and
plant height, to minimize confounding variation in CT with
canopy architecture.

Genotypes were sown into a partial-replicate design trial
(average number of replicates was 1.4) at a sowing density of
200 seeds per m2. As described in Rebetzke et al. (2013a), two
irrigation treatments (384 experimental plots per treatment)
were used to simulate appropriate target environments, namely:
Treatment 1, where irrigation was supplied to achieve a water
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limitation pattern close to the long-term climate median for the
site and; Treatment 2, where irrigation was supplied to achieve
the equivalent of a decile eight rainfall (wettest 20% of years) for
the site. The mean grain yields for Treatment 1 and Treatment
2 were 2.2 and 2.0 t/ha in 2013 and 1.7 and 2.1 t/ha in 2014,
respectively. For the majority of entries and for both treatments,
the anthesis growth stage occurred between the 19th and 24th of
September in 2013 and between the 24th of September and 2nd
of October in 2014.

2.2. Hand-Held Thermography
Hand-held CT measurements were made by a single operator
walking through the plots with an infrared thermometer (Mikron
1600, Mikron Infrared Instrument Co., Inc., Oakland, NJ, USA).
To minimize capturing soil in the instrument’s field-of-view,
the infrared thermometer was held obliquely to each plot and
scanned across the canopy at an angle of ca. 20◦ (above the
horizontal) for ca. 4 s to derive an average CT-value for each
plot (after Rebetzke et al., 2013b). Measurements were taken on
the morning of 18th October 2013, between 11:00 and 11:30,
(Treatment 2 only) and on the afternoon of 25th October 2013,
between 13:50 and 14:20, (Treatment 2 only). The majority of
entries in the experiment were in the grain-filling growth stage.
Weather conditions on both days were sunny and clear, and
winds light (≤20 km/h). Air temperature, relative humidity, and
wind speed were recorded at a weather station located ca. 400 m
from the experiment site.Weather conditions were only recorded
prior to the commencement of hand-held CT measurements on
the 18th October 2013, while on the 25th October 2013, weather
conditions were recorded prior to the start of measurements and
at the completion of measurements.

2.3. Airborne Thermography
Airborne thermal images were acquired using the system
described below on the 24th October 2013 at 10:00, 11:30, 12:30,
and 13:30 and on the 2nd October 2014 at 09:00, 10:00, 11:00,
12:00, 13:00, and 14:00. On the 24th October 2013, the majority
of entries in the experiment were in the grain-filling growth
stage. On the 2nd October 2014, the majority of entries in the
experiment were at anthesis. Weather conditions were sunny
and clear, and winds light (≤20 km/h) on all days. The image
acquisition and processing pipeline is depicted in Figures 1, 2,
and the major steps are described below.

2.3.1. Image Acquisition
Thermal images were acquired using a thermal infrared camera
(FLIR R© SC645, FLIR Systems, Oregon, USA, for which the
technical specifications are: ±2◦C or ±2% of reading; < 0.05◦C
pixel sensitivity; 640 × 480 pixels; 0.7 kg without lens; 13.1 mm
lens). The camera was mounted in a commercially-available
helicopter cargo pod (R44 Helipod II Slim Line Top Loader,
Simplex Aerospace, Oregon, USA) and fitted to a Robinson R44
Raven helicopter (Figure 1). Highly visible infra-red (IR) targets,
made of black fabric and of size ca. 1 m2, were systematically
positioned throughout the field to identify the experiment from
adjacent collocated experiments. The IR targets were initially
used for flight navigation and later for spatial referencing in

post-processing of the thermal images. In contrast to other
studies (e.g., Gómez-Candón et al., 2016), the IR targets were not
used for temperature correction of the thermal images. Prior to
acquiring thermal images, a GPS tracking line (an “AB line”) for
subsequent flights was recorded by flying ca. 10 m above ground
level (AGL) directly along the middle of the intended flight
line.

In order to capture the experiment in a single flight pass whilst
maximizing image resolution and avoiding motion blur, images
were typically acquired at heights of 60 to 90 m AGL and at a
flight velocity of 25–35 knots (45–65 km/h). Using the camera
described above, at 60 m AGL, an image swath 43.6 by 32.1 m
was obtained with a pixel size 7 × 7 cm, which equated to 204
temperature pixels per m2. At 90 m AGL, an image swath 65.3 by
48.1 m was obtained with a pixel size 10× 10 cm, which equated
to 100 temperature pixels per m2.

Thermal images were recorded on a laptop computer with
FLIR R© ResearcherIRTM software which was also used to control
the camera. This proprietary software is provided for camera
control and comprises basic image analysis features. The
laptop and camera were manually operated by the helicopter
passenger. Immediately prior to acquiring data for a particular
experiment, the passenger would manually apply the shutter-
based non-uniformity correction (NUC) and focus the camera,
thereby ensuring image sharpness and that the NUC was not
automatically applied during the run. Whilst acquiring thermal
images, the passenger checked the images for complete coverage
of the experiment using the IR targets and, in this way, provided
real time assessment of the images and feedback on the helicopter
flight path to the pilot (Figure 2A).

This method enabled capture of multiple high quality single
images with at least 30% frame overlap in the direction of travel.
Image acquisition with this system took < 10 s for the experiment
described above comprising 768 plots.

2.3.2. Image Processing
The thermal images were pre-processed with FLIR R©

ResearcherIRTM software using the basic image analysis and
processing features provided. Pre-processing included trimming
of the image stack, to exclude extraneous images, and conversion
from the RAW file format to Matlab (MAT) file format. This
processing took ca. 2 min and was independent of experiment
size.

Experimental plots were segmented from each thermal image
using custom software developed with Python 2.7 (Python
Software Foundation, https://www.python.org/); alias “ChopIt”.
The ChopIt software works on a frame-by-frame basis extracting
data from the raw imagery, whereby the user navigates through
the image stack to ensure that each plot in the experiment has
been sampled. A screenshot of the ChopIt graphical user interface
is shown in Figure 2B. The ChopIt software is designed for
semi-automated plot segmentation whereby the user controls the
area sampled within plots by placement of bounding corners.
The software also assigns a unique identifying number to each
plot. The core geometric algorithm in ChopIt divides a four-
sided region into a predefined number of rows and columns
based on the placement of the bounding corners. The algorithm
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FIGURE 1 | Airborne thermography image acquisition system comprising a helicopter cargo pod with thermal camera and acquisition kit mounted on

the skid of a Robinson R44 Raven helicopter. Photo insert shows the inside of the helicopter cargo pod with arrow denoting FLIR® SC645 thermal camera: ±2◦C

or ±2% of reading; < 0.05◦C pixel sensitivity; 640x480 pixels; 0.7 kg without lens.

FIGURE 2 | Airborne thermography image acquisition and processing pipeline. Total time to acquire and process images for an experiment comprising 1000

plots of size 2 × 6 m is ca. 25 min. (A) Image acquisition with helicopter. The images are recorded on a laptop and the passenger, left, provides real time assessment

of the images and feedback to the pilot. This step takes < 10 s for an experiment comprising 1000 plots of size 2 × 6 m. (B) Screenshot of custom developed

software called ChopIt. ChopIt is used for plot segmentation and extraction of CT from each individual plot for statistical analysis. This step takes ca. 20 min for an

experiment comprising 1000 plots of size 2 × 6 m.

uses the concept of vanishing points and thus can accommodate
situations where the image plane is not parallel to the ground.
For a given row and column value, a plot rectangle is defined
with a surrounding buffer, and the CT data are extracted from
within the plot rectangle. The ChopIt software produces two
output files comprising the CT data for each plot rectangle
assigned by the user: (1) SQLite database file comprising all the
CT pixel values for each experimental plot rectangle; and (2) an
Excel file comprising a descriptive statistical summary for each
experimental plot rectangle.

The process of plot segmentation and extraction of CT for
each individual plot for statistical analysis took ca. 20 min for the
experiment described above comprising 768 plots. Total image
acquisition and processing time was ca. 25 min.

2.3.3. Image Quality Control
The custom-developed ChopIt software provides a high level of
quality control for the user to manually exclude poor quality
sections of the plot or removed sections (e.g., where biomass
cuts have been earlier sampled). This user-enabled flexibility in
the image analysis protocol is demonstrated in Figure 3, where
a section comprising a previous biomass sampling has been
excluded on a plot with approximate dimensions of 2 × 6 m. In
this fashion, sections of plots comprising biomass samples were
excluded in the study reported herein. In addition to this feature
of manually excluding poor quality sections of the plot during
plot segmentation, post-processing of the temperature pixels is
also possible, as all the pixel data for each plot are stored in a
SQLite database file.
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FIGURE 3 | Custom developed ChopIt airborne thermography image processing software. Demonstration of quality control by user and flexibility of image

analysis protocol, whereby the user can manually exclude exposed soil patches within a field plot. In this example, exposed soil patch is from biomass sample taken

earlier on a 2 × 6 m field plot of wheat. (A) ChopIt user interface, where user has avoided exposed soil within the plot. (B) Magnified view showing exposed soil patch.

(C) CT histogram is therefore void of pixels from the exposed soil patch. Compare with (D), where for the same plot as (A), user has included the exposed soil, evident

in magnified view (E) and pixels from the soil patch are evident in the CT histogram (F). Where x̄ denotes the respective mean for (C,F). The x̄ from (C) is 0.87◦C

cooler than (F).

2.4. Analysis of the Pixel Frequency
Distribution
2.4.1. Rationale
The water limitation imposed on the crop in the MEF can often
result in incomplete crop ground cover. The incomplete ground
cover may have implications for the airborne thermography
measurements through the potential aggregation of crop canopy
and the background soil temperatures, which in the case of
dry soil is often warmer than the crop canopy. The potential
for the background soil temperature to bias estimates of CT is
exacerbated when the size of the image pixels is the same as,
or greater than, the individual plant organs that comprise the
crop canopy. In such cases, a pixel is likely to comprise both

soil and plant canopy temperatures, thereby resulting in “mixed
pixels”. The presence of mixed pixels is likely to bias the observed

temperature toward the soil background temperature (Jones and

Sirault, 2014).
In the airborne thermography system described above

(Section 2.3), at an above-ground altitude of ca. 60 m, the

pixel size is ca. 7 × 7 cm. This pixel resolution is several

times greater than the leaf width of a typical wheat plant

(ca. 1 cm) and, together with variation in plant establishment
and canopy architecture, can result in mixed pixels and
the need for image analysis to remove temperature pixels
arising from the background soil that can bias the intrinsic
measures of plant-based CT. Methods for handling thermal

Frontiers in Plant Science | www.frontiersin.org 5 December 2016 | Volume 7 | Article 1808

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Deery et al. High-Throughput Field Phenotyping of Canopy Temperature

images containing mixed pixels were reviewed by Jones and
Sirault (2014). These methods include automated thresholding
algorithms such as the Otsu method (Otsu, 1979) and work
best when discrete peaks are present in the histogram,
representing multiple frequency distributions of temperature
pixels.

A bimodal distribution with discrete peaks representing soil
and plant canopy was not evident in the data acquired. Rather,
pixel frequency distributions were unimodal with a long tail
of warm temperature pixels, as shown in Figures 3, 4. The
unimodal distribution may have resulted from the ca. 7 × 7 cm
pixel resolution, whereby no clear difference between the
mean temperature of the background soil and the mean
temperature of the plant canopy was evident (Jones and
Sirault, 2014). To account for the unimodal pixel distribution,
the below-described methods of pixel frequency analysis were
used.

2.4.2. Methods for Analysis of the Pixel Frequency

Distribution
The frequency distribution of the temperature pixels from a given
plot rectangle produced from the ChopIt software was analyzed
to determine if the observed temperature was biased by the
background soil and whether this influenced the measurement
repeatability. Three methods for analysis of pixel temperature
bias were evaluated, depicted in Figure 4, and hereafter referred
to as M1, M2, and M3:

1. M1: The mean of all pixels (no pixels discarded).
2. M2: The mean of the coolest 25th percentile remaining

after discarding the coolest 5th percentile. This method was
designed to extract the plant CT only. The percentile of
pixels discarded and sampled were selected arbitrarily with
the intention of maximizing the sampling of pixels arising
from plant material and discarding mixed pixels and pixels
comprising background soil. The coolest 5th percentile was
discarded to avoid sampling background soil that might be
cooler than the plant material (Jones, 2002; Jones and Sirault,
2014).

3. M3: A method designed to discard warm pixels arising from
soil patches and calculated as follows:

a. For a given set of plot pixel temperatures, x, the mode of
the distribution was estimated.

b. Then, a filter cut-off, c, was calculated according to: c =

min(x)+ 2(mode(x)−min(x))
c. The set, x, was then filtered by retaining only values where

x < c.
d. The mean of this filtered set was then calculated.

From the representative example of pixel frequency distribution
shown in Figure 4, the difference betweenM1 andM2 was 2.4◦C,
the difference between M1 and M3 was 0.6◦C and the difference
between M3 and M2 was 1.7◦C.

2.5. Statistical Analysis
CT data were analyzed after first checking for normality and
error variance homogeneity at each date by time sampling event.

Each event was analyzed separately with the best spatial models
being determined after first fitting the experimental design and
then modeling the residual variation with autoregressive row and
column terms in the Genstat R© statistical program (https://www.
vsni.co.uk/software/genstat/). Significant spatial effects were
identified and residuals assessed before determinations made
to the need for fitting of other (e.g., linear) effects (Gilmour
et al., 1997). Generalized heritabilities were then estimated after
Holland et al. (2003).

3. RESULTS

3.1. Hand-Held Thermography
The results from the hand-held thermography are summarized
in Table 1, and box-plots for each sample time are shown in
Figure 5A. The range in plot CT was large in each sampling
event. Broad-sense heritabilities for CT using the hand-held
thermography method were 0.17 and 0.13 for the morning (18
October 2013) and afternoon measurements (25 October 2013),
respectively (Treatment 2 only). The time taken to measure CT
using hand-held thermography on 384 plots was ca. 30 min
on both days. On the 25th October 2013, the air temperature
changed from 17.8◦C prior to the start of measurements to
19.0◦C at the completion of measurements. At the same time, the
relative humidity remained constant at 28%, and the wind speed
remained constant at 17 km/h. Weather conditions were only
recorded prior to the commencement of measurements on the
18th October 2013: air temperature was 11.9◦C, relative humidity
was 48% and wind speed was 11 km/h.

3.2. Airborne Thermography
Box-plots summarizing the airborne thermography CT data for
each flight time and irrigation treatment are shown for 2013
and 2014 in Figures 5C,D, respectively. Each box-plot represents
CT data from 384 experimental plots (384 experimental plots
per treatment and 768 experimental plots in total). The CT
for box-plots shown in Figures 5C,D were derived from each
experimental plot using M1, the mean of all pixels from a
given plot rectangle produced from the ChopIt software with
no pixels removed. For 2013 (Figure 5C) and 2014 (Figure 5D),
Treatment 2 is consistently cooler than Treatment 1, owing to
the greater water limitation in Treatment 1. Pearson correlations
between the hand-held CT, obtained on the 18th October 2013
11:00 and the 25th October 2013 14:00, and the airborne
thermography CT, obtained on the 24th October 2013, are
shown in Figure 5B. The correlations between hand-held CT and
airborne CT were <0.25.

Broad-sense heritabilities for airborne thermography CT for
each flight time and irrigation treatment are shown for 2013
and 2014 in Figure 5. For the 2013 data, broad-sense heritability
was calculated using CT derived from each experimental plot
using M1 (Figure 6A). For the 2014 data, to test the influence
of soil temperature bias on measurement repeatability, broad-
sense heritability was calculated for CT estimated from M1, M2,
and M3 (Figure 6B). With the exception of two early morning
measurements on Treatment 1 in 2014, broad-sense heritability
was high and ranged from 0.34 to 0.79. Figure 6B shows that for
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FIGURE 4 | Typical histogram of the frequency distribution of CT pixels from airborne thermography for a single 2 × 6 m experimental plot. Different

histogram trimming methods used to minimize bias from background soil temperature are shown. M1, The mean of all pixels (no pixels discarded). M2, The mean of

coolest 25th percentile remaining after discarding coolest 5th percentile, designed to extract leaf temperature only. M3, Designed to discard warm pixels from soil

patches resulting from poor establishment or biomass sampling. Total pixels in histogram (i.e., M1): 671. Total pixels using M2: 167. Total pixels using M3: 623.

Difference between M1 and M2 was 2.4◦C. Difference between M1 and M3 was 0.6◦C. Difference between M3 and M2 was 1.7◦C. Refer Section 2.4.2 for details on

M1, M2, and M3.

TABLE 1 | Summary of hand-held CT sampling events, weather conditions

and resulting broad-sense heritabilities.

Date and time Broad-sense Air temp. Rel. humidity Wind speed

heritability (◦C) (%) (km/h)

18 October 2013 0.17 11.9 (09:00) 48.0 (09:00) 11.0 (09:00)

11:00 to 11:30

25 October 2013 0.13 17.8 (13:30) 28.0 (13:30) 17.0 (13:30)

13:50 to 14:20 19.0 (14:00) 28.0 (14:00) 17.0 (14:00)

Hand-held CT measurements were made on two occasions in 2013 on Treatment 2 only.

In Treatment 2, irrigation was supplied to achieve the equivalent of a decile eight rainfall

(wettest 20% of years) for the site. Treatment 2 comprised 348 plots. Values in parenthesis

denote the time of day when air temperature, relative humidity, and wind speed were

recorded. Note, that weather conditions were only recorded prior to the commencement

of measurements on the 18th October 2013.

a given flight time, there was very little difference in broad-sense
heritability for the three pixel handling methods. This result is in
accordance with Figure S1, which shows the Pearson correlation
calculated for all methods at each flight time. At any given flight
time, all three pixel handling methods were highly correlated
with Pearson correlations exceeding 0.86 and averaging 0.93. The
background soil temperature did influence the observed CT but
in this example, did not influencemeasurement repeatability (i.e.,
broad-sense heritability).

3.3. Analysis of the Pixel Frequency
Distribution
The aerial CT data incorporates influences from the background
soil and the plant canopy. To investigate the significance of the
effect of background soil, pairwise difference plots between M1,
M2, and M3 (i.e., M1 and M2, M1 and M3, M3 and M2) were
generated for airborne thermography data captured from Yanco
MEF, 2nd October 2014, using the method of Bland and Altman
(1986):

• Where i is a given set of temperature pixels derived at a
particular time from a given plot rectangle produced from the
ChopIt software described in Section 2.3.2.

• For a given pair, the mean of the pair as the abscissa (x-axis)
value e.g., M1i + M2i

2 .
• For a given pair, the difference between the twomethods as the

ordinate (y-axis) value e.g.,M1i − M2i.

The difference against mean plots are shown in Figure S2. For
M1 and M2 (Figure S2A), and M3 and M2 (Figure S2C), the
differences increased with time of day until 11:00 h, then from
12:00 to 14:00 h the differences decreased (M1 and M2 mean
decreased 0.19◦C). From the mean difference calculated across
all sample times, M1 and M3 were on average 1.13◦C and 0.94◦C
warmer, respectively, thanM2. Further,M1 andM3were asmuch
as ca. 3.0◦C warmer than M2 at sample times close to solar
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FIGURE 5 | Data summary. (A) Box-plots of hand-held CT data for each sample event in 2013 (Treatment 2 only); (B) Pearson correlations between hand-held CT,

H, (18-Oct-2013 11:00 and 25-Oct-2013 14:00) and airborne CT, Air, (24-Oct-2013) (Treatment 2); (C) box-plots of airborne thermography CT data for each flight

time and treatment on 24-Oct-2013; (D) box-plots of airborne thermography CT data for each flight time and treatment on 2-Oct-2014. Each box-plot represents CT

data from 384 experimental plots (384 experimental plots per treatment and 768 experimental plots in total). Airborne CT for each experimental plot was derived using

M1: mean of all pixels (no pixels discarded). In (C,D), Treatment 2 was consistently cooler than Treatment 1, owing to the greater water limitation applied to Treatment

1. In Treatment 2, irrigation was supplied to achieve the equivalent of a decile eight rainfall (wettest 20% of years) for the site, while in Treatment 1, irrigation was

supplied to achieve a water limitation close to the long-term climate median for the site.

noon (11:00, 12:00, and 13:00 h). The majority of differences
betweenM1 andM3 (Figure S2B) were close to zero and themean
difference across all sample times was 0.19◦C.

4. DISCUSSION

4.1. High Broad-Sense Heritability
Obtained from Airborne Thermography
Methodology
The main finding reported herein is the large broad-sense
heritability obtained for CT from the airborne thermography
method, which contrasts with the low heritabilities reported with
hand-held thermography sampling methods. Further, this was
demonstrated in a large experiment comprising diverse wheat
germplasm typical of a commercial wheat breeding program.
Across both years, the broad-sense heritability for the airborne

thermography ranged from 0.34 to 0.79, while for the hand-
held infra-red thermometer, broad-sense heritability ranged
from 0.13 to 0.17. Further, aside from two early morning
measurements (09:00 and 10:00 h) on Treatment 1 in 2014,
which ranged from 0.34 to 0.46, broad-sense heritability for
the airborne thermography ranged from 0.52 to 0.79. The
larger broad-sense heritabilities obtained from the airborne
thermography can be attributed to the acquisition of thermal
images of the entire experiment at effectively a single point in
time, thereby overcoming confounding changes in local weather
conditions during sampling to provide reliable assessment of
CT for large experiments comprising hundreds of 10 m2 sized
plots. Moreover, by measuring CT at effectively a single point
in time, statistical analysis need only account for the spatial
variation in CT, likely due to the below ground effects of soil
structure and water availability, which can be accommodated
by the experiment design and spatial analysis (Gilmour et al.,
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FIGURE 6 | Broad-sense heritabilities for airborne thermography CT for each flight event and treatment in 2013 (A) and 2014 (B). (A) CT for each

experimental plot was derived using M1: mean of all pixels (no pixels discarded). 24th October 2013 (grain-filling). (B) Comparison between airborne thermography

pixel handling methods. 2nd October 2014 (anthesis). M1, mean of all pixels (no pixels discarded). M2, The mean of coolest 25th percentile remaining after discarding

coolest 5th percentile, in order to extract plant CT only. M3, Designed to discard warm pixels from soil patches resulting from poor establishment or biomass

sampling. Refer Section 2.4.2 for details on M1, M2, and M3. In Treatment 2, irrigation was supplied to achieve the equivalent of a decile eight rainfall (wettest 20% of

years) for the site, while in Treatment 1, irrigation was supplied to achieve a water limitation close to the long-term climate median for the site. Generally, broad-sense

heritability was high regardless of the pixel handling method used, except for early morning measurements on Treatment 1 in 2014.

1997). In contrast, for the hand-held thermography method,
the spatial analysis is confounded by temporal variation in
weather conditions, which are more difficult to account for in the
statistical analysis.

Broad-sense heritabilities obtained from the hand-held infra-
red thermometer were small, ranging from 0.13 to 0.17, and
typical of our experience with experiments of similar size
previously undertaken at the Yanco site (data not shown).
Further, Pearson correlations between the hand-held (18-Oct-
2013 11:00 and 25-Oct-2013 14:00) and airborne thermography
(24-Oct-2013) measures were <0.25, and the correlation
between the two hand-held measurement events was low (0.13)
(Figure 5B). It is likely that during the time required to
measure all plots with the hand-held thermography method
(ca. 30 min), the seemingly small changes in local weather
conditions confounded the CT measurements, thereby resulting
in low broad-sense heritabilities (Table 1). Another contributing
factor might also be the range in area and canopy structure
sampled by the user as they moved through the experiment. By
contrast, an airborne thermography measurement of each plot in
the entire experiment took approximately 3 s – a measurement of
CT for 768 experimental plots at effectively a single point in time
and at a common height above the ground. The heritability of
hand-held CT can potentially be improved by using the time of
sampling in the statistical analysis. For example, Rebetzke et al.
(2013b) improved the heritability of hand-held CT by fitting
“time of sampling” as a fixed linear effect in a mixed linear model.

To the best of our knowledge, heritability of CT is typically
small on a single-plot basis and seldom reported in the literature.
More commonly reported is heritability of CT estimated on
a line-mean basis where multiple environments are included
in the calculation. Heritabilities of CT calculated on a line-
mean basis are often small to moderate in size for both
diverse germplasm and related families such as recombinant
inbred lines (RILs) and doubled-haploid (DH) lines. For

example, Rebetzke et al. (2013b), using hand-held CT in
three wheat populations containing 144–178 DH lines assessed
in four irrigated environments, reported small narrow-sense
heritabilities (0.12–0.32) on a single-plot basis and moderate to
high line-mean heritability ranging from 0.38 to 0.91. Pinto et al.
(2010) reported broad-sense heritability of 0.49 for CT measured
during grain-filling on a RIL wheat population comprising 167
lines grown in six field experiments under drought and heat
environments. In a separate study under similar environmental
conditions, Lopes and Reynolds (2012) reportedmoderate broad-
sense heritability on both a wheat population comprising 169
RILs (0.34) and 294 elite wheat lines from CIMMYT (0.38).
Others have reported moderate line-mean heritability for diverse
wheat germplasm calculated from studies comprising RILs in
multiple environments (e.g., Reynolds et al., 2007b; Rattey et al.,
2011; Lopes et al., 2012). In the above-mentioned studies, CT was
measured using hand-held infrared thermometers. In the study
reported herein, Figure 5 shows that the broad-sense heritability
for the airborne thermography method, calculated on a single-
plot basis, was typically >0.50 and as high as 0.79, which is
considerably greater than literature reported calculations of CT
heritability on both a single-plot and line-mean basis.

4.2. Analysis of the Temperature Pixel
Frequency Distribution Did Not Improve
Broad-Sense Heritability
In this study, methods based on filtering the frequency
distribution of the temperature pixels to remove the influence
of background soil did not improve broad-sense heritability
(Figure 5). However, it is likely that the accuracy of the CT data
was improved with the CT derived from M2. The difference
against mean plots (Figure S2) show that for M1 and M2
(Figure S2A), and M3 and M2 (Figure S2C), the differences
increased with the time of day until 11:00 h. This is possibly
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because the soil temperature increased more than the plant
temperatures, thereby biasing the CT derived from M1 and M3.
ForM1 andM2, andM3 andM2, the decrease in differences from
12:00 to 14:00 h (for M1 and M2, the mean decreased 0.19◦C)
may have been due to the lower sun angle in the afternoon
increasing the shaded portion of soil and thereby cooling it. That
many of the differences between M1 and M3 (Figure S2B) were
close to zero, indicates that M2 was more effective at deriving
plant-based CT than M1 and M3. In contrast to M1 and M3, M2
was derived after discarding the warmest 70th percentile and it
is therefore unlikely to be biased by the soil temperature, which,
for dry soil, is likely to be warmer than the plant canopy. This
approach of sampling cooler pixels, is likely to result in M2 more
accurately approximating the actual plant CT than M1 and M3.
The potential for improved CT accuracy may be beneficial in
applications using energy balance equations to calculate stomatal
conductance or transpiration, where soil-biased CT can lead to
significant errors (Leinonen et al., 2006; Guilioni et al., 2008).

There may be phenotyping applications where the
background soil could significantly reduce the accuracy
and precision of CT measurements. For example: when multiple
biomass samples have been taken from a plot leaving large
areas of exposed soil; in plots with poor plant establishment;
in early generation breeding trials or situations where seed
number is limited and phenotyping is required on single plants
or spaced rows; where row-spacing is too wide to completely
cover the soil and in experiments that use raised beds with wide
row spacings. To remove the influence of background soil, the
custom developed ChopIt image processing software provides
a high level of quality control to manually exclude poor quality
sections of the plot or sections of the plot where biomass samples
have been removed (Figure 3). In addition to this feature,
post-processing based on the pixel frequency distribution (e.g.,
M2 and M3) is possible as all the pixels for a particular plot
rectangle are stored in a SQLite database file.

4.3. Frame by Frame Image Processing
The ChopIt software enables processing of the images on a frame-
by-frame basis and was custom built for the application of field
phenotyping of CT. Our image processing method contrasts with
the widely used mosaicking method, where a large number of
single frame images containing many plots are used to create a
mosaic from which plot level information is extracted (e.g., Berni
et al., 2009b; Chapman et al., 2014; Gómez-Candón et al., 2016).
Mosaics were attempted with thermal images obtained from our
image acquisition system. However, the use of mosaics presents
a number of issues, namely: the fact that mosaicking software
tends to modify the pixel’s value in favor of the visual result; the
mosaicking process is computationally intensive; andmosaicking
requires accurate measurements of the external orientation of
the images via the integration of the camera with a GPS and
inertial measurement unit (IMU). For our application, processing
thermal images on a single frame basis confers a number of
advantages over mosaicking including: a reduction in image
processing time; higher CT accuracy from working with original
temperature values from the raw images without the application
of any pixel interpolation or blending; and no mosaicking

“black box”, which introduces another layer of measurement
uncertainty to the process.

Conversely, the requirement to process the images on a frame
by frame basis introduced a trade-off between encompassing the
entire experiment in a single helicopter pass, whilst maximizing
the pixel resolution by flying no higher than necessary. However,
the requirement to encompass an entire experiment in a single
pass conferred many advantages including reduced helicopter
flight time and cost, faster image processing, reduced image
processing errors, and the influence of changing weather
conditions on the observed CT were minimized.

4.4. Unmanned Aerial Vehicles
Unmanned aerial vehicles (UAVs) and tethered balloons have
also been used for the acquisition of thermal images in field
phenotyping applications (e.g., Sullivan et al., 2007; Berni et al.,
2009a,b; Jones et al., 2009; Zarco-Tejada et al., 2012; Chapman
et al., 2014; Gómez-Candón et al., 2016). The smaller form and, in
some jurisdictions, non-requirement for a licensed operator may
enable opportunistic sampling on small experiments, whereas the
manned helicopter system used in this study might otherwise
be considered too expensive to hire or may not be locally
available. However, UAVs are often limited to a small camera
payload (e.g., 1.5–1.1 kg in Chapman et al., 2014 and 3.0 kg
in Gómez-Candón et al., 2016); have limited endurance (e.g.,
30–60 min in Chapman et al., 2014); are highly susceptible to
wind; are often required to be operated within line of sight
and sometimes require a license to operate. Moreover, the
image mosaicking process often reported in the literature with
UAVs necessitates multiple passes of the experiment to achieve
sufficient image overlap. For example, Chapman et al. (2014) used
a transect width of 10 m, while Gómez-Candón et al. (2016) used
track and cross-track overlaps of 80 and 60%, respectively. As
discussed above, such requirement for multiple passes increases
the required flight time for a given experiment and increases the
likelihood that changes in local weather conditions will confound
to compromise measurements of CT. However, the ChopIt
frame-by-frame image processing software could potentially be
used with images acquired from a UAV platform, provided the
image acquisition considerations described in Section 2.3.1 are
adhered to.

In contrast to many UAVs described in the literature, the
thermal image acquisition system used in this study, comprising
amanned helicopter fitted with a helicopter cargo pod (Figure 1),
has a payload limit of 45 kg. The large payload limit permits
the use of a radiometrically-calibrated thermal camera with
high accuracy and pixel to pixel sensitivity that negates the
need for ground infra-red calibration targets and temperature
correction during post-processing (Gómez-Candón et al., 2016).
Together, these simplify the image processing. Moreover, the
large payload provides the option to add more cameras and
sensors if required for additional tasks and enables carriage of
a high-capacity battery sufficient for several hours operating
time. Further, the use of manned helicopter enables acquisition
of CT measurements from multiple large field trials in a short
time, which would otherwise require a UAV to fly beyond visual
line-of-site, which is not permitted in some jurisdictions.
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4.5. Potential for Deployment of CT within
Commercial Breeding Programs
In breeder’s trials, plot size is often smaller than those sown
in this study (e.g., Rebetzke et al., 2014). A single 10 s pass of
the helicopter-mounted thermal camera can capture up to 5000
individual 4 m2 plots in a breeder’s yield trial. This application is
ideally suited to the airborne thermography method, which we
have shown readily scales up to experiments comprising 1000
individual 10 m2 plots. For 1000 plots of 2 × 6 m, acquisition
of CT on a per plot basis using the airborne thermography and
data handling described here takes ca. 25 min and aside from the
helicopter pilot, requires only one person. The method could be
used within a breeding program to assess spatial uniformity of
yield experiments and provide guidance to appropriate statistical
spatial models. The demonstrated link between CT and grain
yield (Reynolds et al., 1994; Amani et al., 1996; Fischer et al.,
1998; Ayeneh et al., 2002; Rattey et al., 2011; Rebetzke et al.,
2013b) should provide opportunity to select for CT in early
generation screening. For example, selection of CT in early
generations was demonstrated in studies reporting reasonable
genetic correlation between small plot CT, leaf porosity and full
plot yield (Condon et al., 2004, 2007). In addition, augmenting
breeder’s visual selection with early generation measurements of
CT can potentially identify a greater number of equally high
yielding lines compared to breeder’s visual selection alone (van
Ginkel et al., 2004). Importantly, economic analysis indicates that
the incorporation of CT measurements within a wheat breeding
program is likely to provide an economic benefit (Brennan et al.,
2007).

To assist uptake by breeders, several improvements in the
airborne thermography method described here are possible,
including: remote automation of the image acquisition process;
use of a smaller manned helicopter to reduce the operating cost
(e.g., Robinson R22 Raven helicopter); and use of GPS geo-
referencing to improve image processing. Differences in canopy
architecture that may influence CT could be accounted for by
making use of measurements of fractional ground cover, from
digital camera (e.g., Li et al., 2010), and canopy height that can
now be routinely measured by ground-based LiDAR (e.g., Deery
et al., 2014) but possibly aerial LiDAR in the future. Together,
these potential improvements could reduce the cost per plot of
the airborne thermography method.

The high helicopter operating cost, AU$1000/h, may prohibit
the use of the airborne thermography method within some
breeding (and research) programs. However, the cost per plot
of the airborne method, on 3000 plots of size 10 m2, equates
to AU$0.39 (ca. US$0.30) (Table S1), which is within 30%
of the hand-held cost per plot reported by Brennan et al.
(2007) (US$0.19 in 2007, which equates to US$0.22 in 2016
after adjusting for inflation). Given the similar cost per plot
of the two methods, together with the greater repeatability of
the airborne CT method compared with the hand-held CT
method, the airborne CT method could be a cost-effective CT
phenotyping method for use within breeding (and research)
programs.

5. CONCLUSION

CT, as a surrogate measure for stomatal conductance and
potentially photosynthesis, has been associated with genotypic
variation in grain yield in numerous studies and therefore
mooted as a possible phenotypic selection tool for use in
genetics studies or in breeder’s trials. For this to be realized, an
inexpensive, scalable, and reliable CT methodology is required.
The airborne thermography methodology described herein is
such a method. The method is highly repeatable, as evidenced
by the high broad-sense heritabilities obtained. The method is
scalable: for an experiment comprising 768 plots of size 2× 6 m,
it takes ca. 25 min to obtain a CT measurement for each
individual plot for statistical analysis. Moreover, the method
requires only one person (not including the helicopter pilot) and
utilizes purpose built image processing software for use by a
non-technical user.
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