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Abstract

Optimal climate control for building systems is facili-

tated by linear, low-order models of the building struc-

ture and of its Heating, Ventilation and Air Condition-

ing (HVAC) systems. However, obtaining these models

in a practical form is often difficult, which greatly ham-

pers the commercial implementation of model predictive

controllers. This work describes a methodology for ob-

taining a linear State Space Model (SSM) of Building

Energy Simulation (BES) models, consisting of walls,

windows, floors and the zone air. The methodology uses

the Modelica library IDEAS to develop a BES model,

including its non-linearities, and automates its lineari-

sation. The Dymola function linearize2 is used to

generate the state space formulation, facilitating further

mathematical manipulations, or simulation in different

environments. Optionally this model can then be reduced

for control purposes using model order reduction (MOR)

techniques. The methodology is illustrated for the zone

air temperature in an office building. For this case, the

absolute error between the non-linear BES and its SSM

remains under 1 K and its yearly average is 0.21 K. The

original 50 states SSM could furthermore be reduced to

16 states without significant loss of accuracy.

Keywords: model predictive control, Dymola, building

energy simulation, linearisation, model order reduction.

1 Introduction

Building climate control uses around 18% of the to-

tal end energy in Europe (Perez-Lombard et al., 2008).

One way of reducing energy use is to develop more ef-

ficient control algorithms for the production and distri-

bution of heat and cold in buildings. Recent research

has shown that (near) optimal controllers such as Model

Predictive Control (MPC) can greatly improve the en-

ergy efficiency of buildings compared to traditional rule-

based-controllers (Gyalistras and Gwerder, 2009; Ver-

helst, 2012). However, its practical implementation is

hampered due to the difficulty of finding a controller

model that is simple enough to allow optimization within

a reasonable computation time but still accurate enough

to correctly predict the building behaviour. Linear mod-

els are preferred since efficient optimization algorithms

can then be used (Kummert, 2001; Sturzenegger et al.,

2012).

Controller models are often obtained using system

identification, i.e. fitting reduced order models based

on measurement data. Obtaining controller models for

buildings is an active research topic due to the complex-

ity of the systems and due to the difficulty or even im-

possibility of performing experiments allowing the iden-

tification of multi-input, multi-output building models

(Sturzenegger et al., 2014). An alternative approach is

to create models based on physical insight and knowl-

edge about the system. Lehmann et al. (2013) showed

that building energy simulation (BES) models are only

weakly non-linear. They set up a relative complex lin-

ear model based uniquely on physical data, which was

able to mimic the non-linear TRNSYS BES model with

an error smaller than 1 K. The accuracy of the model

is not enough for design purposes but it is sufficient for

MPC or sensitivity analysis. Sturzenegger et al. (2014)

automated their approach for deriving state space models

for MPC applications using the BRCM Matlab toolbox.

The toolbox needs a considerable amount of information

such as an EnergyPlus input file.

In this work, we propose an automated way of obtain-

ing accurate linear BES models based on a non-linear

model implementation in Dymola using the IDEAS li-

brary (Baetens et al., 2015). Section 2 describes the non-

linearities of BES models together with common sim-

plifications and Section 3 explains the linearisation tech-

nique. Section 4 describes the linearisation methodol-

ogy in IDEAS and Section 5 shows a validation of the

methodology. Section 6 briefly discusses a model order

reduction technique for the linear model and their use for

optimal controllers. Main conclusions are summarized in

Section 7.
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2 Non-linearities in Building Energy

Simulation Models and Common

Simplifications

Typically, BES models contain three major sources of

non-linearities. The first is longwave radiation, which

is typically described using the Stefan-Boltzmann law.

The second is the absorption of incident solar radiation

by windows, which is a function of the incidence angle.

The third is convective heat transfer, which is usually de-

scribed using correlations for the convective heat trans-

fer coefficient. These non-linear equations are first de-

scribed in this section, then a linearisation technique is

proposed. Other non-linearities in real buildings exist

(e.g temperature dependent emissivity, pressure depen-

dent air leakage, ...) but they are rarely modelled. They

will not be treated in this work.

Radiation Radiation is described by the non-linear

Stefan-Boltzmann law which is given by Eq. 1 for two

grey-bodies with surface areas A1 and A2.

Q̇1→2(t) = σF1→2 A1

(

T 4
1 (t)−T 4

2 (t)
)

(1)

Q̇1→2 and F1→2 are the heat transferred from surface 1

to 2 and their view factor respectively, σ = 5.670373×
10−8 W/(m2.K4) the Stefan-Boltzmann constant, and Ti

the temperature of body i.

Radiative heat transfer between room surfaces is of-

ten approximated using the Mean Radiant Temperature

model (e.g. in TRNSYS TYPE 56 ( S.A. Klein et al.,

2010)) or using the Radiant Star Temperature model (e.g.

in IDEAS (Baetens et al., 2015)) since it greatly sim-

plifies the computations without a significant loss in ac-

curacy (Liesen and Pedersen, 1997). This radiant star

temperature Tstar is derived from the energy conservation

equation in the radiant node and the temperature of each

surface Ak is calculated using a distribution coefficient

Rk:

Q̇k→star(t) =
σAk

Rk

(

T 4
k (t)−T 4

star(t)
)

(2)

Eq. 2 is often linearised around nominal temperatures

Tk,nom and Tstar,nom (Eq. 3), which is an accurate ap-

proximation for small temperature differences. Figure 1

shows the approximation error for the heat exchange be-

tween two black bodies with view factor equal to one.

Q̇k→star(t)≃ c(Tk(t)−Tstar(t)) (3)

c =
σAk

Rk

(

(Tk,nom +Tstar,nom)(T
2

k,nom +T 2
star,nom

)

(4)

The longwave radiation heat flow Q̇lw,k(t) between ex-

terior surface k of the building with longwave emissivity
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Figure 1. Error made by the linearisation of the radiative heat

transfer equation between two black bodies with view factor

one.

εlw,k and its environment can be modelled as:

Q̇lw,k(t) = σεlw,kAk

(

T 4
s,k(t)−Fce,kT 4

ce(t)

−(1−Fce,k)T
4

db(t)
)

Fce,k =
1+ cos ik

2

(5)

with Ts,k(t), Tce(t), Tdb(t) the surface, celestial dome and

dry bulb temperature respectively, Fce,k the view factor

between the surface k and the celestial dome, and ik the

inclination of the surface. This equation is linearised by

default in IDEAS as:

Q̇lw,k(t)≃ c
(

Ts,k(t)−

4

√

Fce,kT 4
ce(t)+(1−Fce,k)T

4
db(t)

)

(6)

with c a parameter defined similar to Eq. 4.

Finally, the shortwave solar irradiation absorbed by

exterior surface k equals:

Q̇sw,k(t) = εsw,kAkEe,k(t) (7)

with Ee,k(t) the incident solar irradiation on surface Ak

as a function of time.

Absorption and transmission through glazing Heat

absorbed or transferred through windows is typically

highly non-linear as it depends on the spectral proper-

ties of the window, on the angle of incidence of the sun

and on possible shading. Typically, the window prop-

erties are pre-computed using specialized software and

delivered as an input to the simulation software. IDEAS

uses the software Window 4.0 (Finlayson et al., 1993)

to pre-compute window spectral properties but it com-

putes the amount of absorbed and transmitted light dur-

ing the simulation, requiring trigonometrical transforma-

tions and lookup tables, which are non-linear functions.
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Convective heat transfer Two types of convective

heat transfer are present in buildings: exterior, forced

convection by the wind, and interior, natural convection

when forced ventilation is absent.

In IDEAS, the external convective heat transfer rate

Q̇cv(t) between an exterior surface with area Ak and the

outdoor air is based on Defraeye et al. (2011):

Q̇cv,k(t) = hcv(t)Ak

(

Tdb(t)−Ts,k(t)
)

hcv(t) = max
{

5.01(v10(t))
0.85

,5.6
}

W/m2K
(8)

with convective heat transfer coefficient hcv(t), dry bulb

ambient temperature Tdb(t), surface temperature Ts,k(t)
and the undisturbed wind speed at 10 meters above the

ground v10(t).
Eq. 8 is non-linear even if the convection coefficient

is an input due to the multiplication of input with input

(hcv(t)Tdb(t)) and inputs with state (hcv(t)Ts,k(t)). If the

nominal values of Tdb(t) and Ts,k(t) are equal, Eq. 8 can

be linearised as:

Q̇cv,k(t)≃ h̄cvAk

(

Tdb(t)−Ts,k(t)
)

(9)

with h̄cv the yearly average of the exterior convection co-

efficient.

The interior convective heat transfer rate of a wall,

ceiling or floor with surface area Ak and an air node is

computed as:

Q̇cv,k(t) = hcv,k(t)Ak

(

Tdb(t)−Ts,k(t)
)

hcv,k(t) = n1,k D
n2,k

k

∣

∣Tdb(t)−Ts,k(t)
∣

∣

n3,k
(10)

with Dk the hydraulic diameter, and coefficients

ni,k. The value of the coefficients are n1:3 =
{1.823,−0.121,0.293} for vertical surfaces, n1:3 =
{2.175,−0.076,0.308} for heated floors and cooled ceil-

ings and n1:3 = {0.704,−0.601,0.133} for cooled floors

and heated ceilings (Awbi and Hatton, 1999).

These interior convection equations can be linearised

in IDEAS using an average value for hcv:

hcv,k ≃ n1,k D
n2,k

k |∆Tnom|
n3,k (11)

with ∆Tnom the nominal temperature difference.

Heat diffusion through walls and floors Heat transfer

through walls and floors is characterized by convective

and radiative heat transfer at the surfaces and conduc-

tion through the solid layers. The latter is governed by

a partial differential equation (PDE). It extends in three

spatial dimensions and in time. However, the heat trans-

fer through walls and floor can often be approximated

using a one dimensional PDE due to the low thickness to

height and width ratio. The equations can then either be

solved using discrete Laplace transform (e.g. TRNSYS)

or using a finite volume method (e.g. EnergyPlus (Strand

et al., 1999)). In IDEAS, the finite volume method is

used, leading to a set of linear equations.

3 Linearisation Technique

The linearisation of a function consists of the first order

term of the Taylor expansion of this function around a

working point. Given a deterministic non-linear dynamic

system:

ẋ = f (x,u)

y = g(x,u)
(12)

where x ∈ R
nx are the states, ẋ are their derivatives, u ∈

R
nu the inputs, and y ∈R

ny the outputs. The linearisation

of Eq. 12 around point p⋆ , (x⋆,u⋆) is defined as:

ẋ = f (p⋆)+
∂ f

∂x

∣

∣

∣

∣

p⋆

(x− x⋆)+
∂ f

∂u

∣

∣

∣

∣

p⋆

(u−u⋆)

, f (p⋆)+Ax̃+Bũ

y = g(p⋆)+
∂g

∂x

∣

∣

∣

∣

p⋆

(x− x⋆)+
∂g

∂u

∣

∣

∣

∣

p⋆

(u−u⋆)

, g(p⋆)+Cx̃+Dũ

(13)

where A,B,C,D are constant matrices.

The Dymola built-in function linearize2 of the

Modelica Linear System2 library provides the possibil-

ity of linearising Modelica models (Otter, 2014). The

hybrid differential-algebraic equation system is treated

as an ordinary differential equation system at the lineari-

sation point and the partial derivatives of the functions

f and g are obtained by evaluation of the analytical Ja-

cobian if it is available. Otherwise a central difference

method is used. The function can also be used to trans-

form a linear model into a SSM.

It should be noted that even for a linear system, the

linearisation point p⋆ used by the function linearize2

should be chosen carefully to avoid numerical noise. The

states x⋆ can be set using initial equations or start val-

ues. The inputs u⋆ can be set using start values. The

default start value for the inputs in Dymola is zero

which can lead to significant error when evaluating the

derivatives using the central difference method.

4 Linearisation Methodology in

IDEAS

This section describes how IDEAS was adapted to au-

tomatically obtain a state space formulation of a BES

model in Dymola. Firstly the linearization of the equa-

tions is discussed, followed by the model structure re-

quirements for SSM’s. Finally the SSM structure is de-

scribed.

4.1 Linearisation of the equations

Here we describe how the non-linear equations of the

Modelica BES models are conditionally linearised or

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511851

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

53



Wea

Zone

IntWall

OutWall
Eq.2&10Eq.5&8

Eq.5&8

Eq.2&10 Eq.2&10

Eq. Win

Win

Emb

Con

Rad
Eq. Win

Wea

Zone

IntWall

OutWall

Win

Eq.3&11Eq.6&9

Eq.6&9

Eq.3&11 Eq.3&11

Eq. Win

Wea

Win

Sensors

h2s

h2s

h2s

Emb

Con

Rad

Weather data
Acausal connection

Causal connection
Non-linear eq. Linearized eq. Linear eq. Removed eq. HeatPort

Output
Input

weaBus

winBus

E
q.2&

10

E
q.3&

11

Figure 2. Left: original model with non-linear equations. Right: Adjusted model structure with moved and/or linearized non-

linear equations. Component models are outer wall ‘OutWall’, interior wall ‘IntWall’, Window ‘Win’, weather model inputs

‘Wea’ and HeatPorts embedded (Emb), convective (Con) and radiative (Rad). White triangles represent inputs to the model,

whereas black triangles represent outputs of the model.
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Figure 3. Illustration of the office building section, (Sourbron et al. (2013), p 5)

moved outside the model and replaced by model inputs.

Note that the moved equations should not depend on any

state variables.

Radiation As described in the previous section, all

longwave radiation equations can be linearised accu-

rately. If linearise = true, Eq. 2 and Eq. 5 are re-

placed by Eq. 3 and Eq. 6, respectively, where the square

root term is transformed into a model input for each dif-

ferent orientations and inclination. The solar irradiation

E
(k)
e (t) required for the shortwave absorption is also con-

verted into a model input per orientation and inclination.

Window models Window models contain equations

for calculating the solar irradiance, the impact of shad-

ing and the amount of heat that is absorbed and transmit-

ted through the window. These are non-linear equations

indicated in Figure 2 by ‘Eq. Win’. Linearising these

equations would introduce large errors. Linearising them

at may for instance have the consequence that the so-

lar position and corresponding incidence angles become

fixed, which can cause a large underestimation of the so-

lar gains for windows. Therefore the absorbed and trans-

mitted heat flow rates are calculated outside of the model

and they are inputs to the linearised model, as indicated

in the right of Figure 2. Each window model is instanti-

ated twice, once inside and once outside of the linearised

model. The grey boxes in Figure 2 indicate which equa-

tions are removed and replaced by inputs. Note that the

window model is thereby split into two parts. A bus con-

nector winBus for each of the nwin windows is used for

connecting the inputs.

Convective heat transfer The interior convective heat

transfer is linearised using Eq. 11. ∆Tnom was chosen

equal to the mean absolute temperature difference

between the window or wall and the zone air tempera-

ture. The exterior convective heat transfer coefficient

is simplified by using the yearly average convective

heat transfer coefficient h̄cv. These linearisations are

indicated on Figure 2 using green rectangles.

The remaining model equations, like thermal conduc-

tion equations, are already linear and they are retained.
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4.2 State space formulation

In the previous paragraphs all non-linear equations are

removed from the building envelope model. This linear

model needs to be converted into state space format. This

requires that all exterior connections are either inputs or

outputs, otherwise Dymola does not detect the connec-

tions. However, HeatPort connections Emb, Con and

Rad contain variables T and Q_flow that do not spec-

ify whether they are inputs or outputs. Each HeatPort

for the room thermal gains is therefore connected to an

input-output block h2s, which either sets heat flow rate

Q_flow to a fixed input and temperature T to an output

or the other way around.

In order to propagate weather data inputs to all sub-

models, one weather bus weaBus with prefix input is

connected to each zone. The zone further propagates this

data to all its connected surfaces (walls, windows, ...) as

indicated by the dotted lines in Figure 2.

4.3 State space model structure

All non-linear equations are now removed and all con-

nections are either defined as an input or as an output.

The state space formulation can now be obtained by us-

ing the linearize2 function on the model containing

all components of the dashed green box in Figure 2. This

function returns matrices A, B, C and D. The SSM inputs

u are the heat flow rate or temperature for thermal gains

of the zones, the weather bus and nwin window buses.

Outputs are either the temperature or the heat flow rate of

the transformed HeatPorts. Additional outputs can be

defined in the linearised model by adding RealOutput

components.

5 Validation

In this section, the methodology is applied to a test case.

The case is firstly described after which the methodology

is validated.

Case description The validation uses the cut-out of

a typical office building with South and North oriented

facades described by Sourbron et al. (2013) (See Fig-

ure 3). We only consider the building structure, which

consists of three zones (a corridor, a south-oriented and

a north-oriented zone) each equipped with a thermally

activated ceiling and floor composed of multiple layers

(floor tiles, air layer, screed, and reinforced concrete),

two external walls composed of multiple layers (plaster,

concrete blocks, mineral wool, and bricks), and two win-

dows. Each zone has a convective and a radiative heat

gain input and heat can also be injected at the core of the

thermally activated building parts.

The model is implemented with all details above in

Modelica using the IDEAS library (Baetens et al., 2015).

Table 1. Comparison between three models based on equation

types and equation formats.

Ref Lin SSM

Convection non-linear linear linear

Radiation non-linear linear linear

Model inputs non-linear non-linear non-linear

Other equations linear linear linear

SSM formulation no no yes

The model has 8434 variables and 50 differentiated

states. Once linearised, the model has 52 inputs. The

model uses the weather data of Uccle (Belgium).

Each of the heat flow rate inputs is set equal to the

sum of the two sinusoids of Equations 14-15, with t = 0

at new year. The sinusoid with a period of one day and

one year respectively represent internal gains, and heat-

ing or cooling delivered by the HVAC system. The sinu-

soid parameters are tuned such that the zone temperature

remains around 22 ◦C.

sin1 = 4+4sin

(

2π t

86400
−

π

2

)

(14)

sin2 = 13sin

(

2π t

31536000
−1.4

)

(15)

Model description In order to validate the method-

ology, the zone temperatures of three models are com-

pared. The reference model is the IDEAS model

with non-linear radiative heat transfer (Eq. 3 and 6),

temperature-dependent interior convection (Eq. 11) and

wind speed dependent exterior convection (Eq. 8).

The second model is identical to the reference model

but it uses the linearised equations for the radiation and

interior and exterior convection. The model is then fully

linear except for its inputs.

Note that the linearisation of the exterior convection

coefficient can cause a heat flow rate error of more to 150

W/m2 due to the wide range of hcv (from 7 to 55 W/m2K)

and the potentially large difference between the ambient

dry bulb temperature and the surface temperature. For

the given example, the maximum deviation is 141 W/m2.

This error culminates when both wind speed and solar

radiation are high, which causes both a high heat transfer

rate and a high surface temperature.

The third model is the state space version of the

second model. The SSM is loaded into Dymola using

Modelica.Blocks.Continuous.StateSpace.

Note that the difference between the third and the

second model should be around the solver tolerance.

A comparison between the equation types and formats

of the three models is given in Table 1.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511851

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

55



0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35
T

[◦
C
]

Ambient Non-linear Linear SSM

0 50 100 150 200 250 300 350
−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0

∆
T

[◦
C
]

TNon−lin−TLin

0.0
0.5
1.0
1.5
2.0
2.5

∆
T

[◦
C
]

1e−5

TLin−TSSM

Figure 4. Result comparison between three model types for a one year simulation. The top graph shows absolute temperatures,

while the other two graphs show absolute temperature differences.

Model comparison The three model versions are sim-

ulated in one model for a whole year using solver Dassl

with a tolerance of 10−6. The zone air temperatures

are then compared. Figure 4 shows the southern zone

temperature of the different models, the average error of

the three zone air temperatures of the reference model

and the linear model, and this average error for the lin-

ear model and its SSM. The figure shows that the zone

temperature is excited over a realistic range. The CPU

time is also compared 1. Normalized CPU times tnorm

are computed by subtracting the ‘CPUtime’ required for

a simulation that only computes the building model in-

puts. The CPU time ratio ri is computed based on the

non-linear reference case: ri =
tnorm,re f

tnorm,i
. The total compu-

tation time for the reference case is 290 s.

Figure 4 shows that the linear model is a good approx-

imation of the non-linear model as the absolute error re-

mains smaller than 1K and its average is close to zero.

This justifies the often made linear approximations in

building modelling. Figure 4 also shows that the trans-

formation of the linear model into a SSM does not intro-

duce significant errors, as expected. This indicates that

the model equations were successfully extracted by the

linearize2 function.

The linear model is faster than the non-linear model

with rlin = 1.8. This can be expected because linear

equations typically require less operations and do not re-

quire non-linear algebraic loops to be solved. Interest-

ingly, the SSM is much faster with a rSSM = 8.5. This is

1Simulations are performed using Dymola 2016 and Euler integra-

tion using a fixed time step of 10 s and a duration of 107 seconds. Euler

integration is chosen to ensure that the same number of time steps is

performed.

because the state space model contains only 50 states and

therefore only 50 equations. The linear model contains

50 states and 453 additional2 algebraic variables, which

also need to be computed, often requiring the analytical

solution of linear systems of equations.

These results suggest that the symbolic processing

could be improved, resulting in faster models.

6 Model Order Reduction

The obtained SSM of Section 5 is accurate but a large

number of states is used. This might be problematic for

model-based optimal controllers such as MPC. In this

section, we apply a MOR technique for different orders

and we investigate their simulation accuracy compared to

the original model. The comparison is extended by im-

plementing a state observer for each ROM and by com-

puting the 48-hours ahead prediction performance. The

prediction performance is an indicator for the efficiency

of the MPC which uses the model predictions to optimize

the inputs of the system.

The different ROM’s are obtained by applying the

Matlab function reduce to the SSM, using the default

balance algorithm (balancmr). The simulation perfor-

mance is compared using the mininum, maximum, mean

and nominal root mean square error (NRMSE) (Eq. 16)

between the original SSM and the ROM’s for each of

the three zones. The errors are calculated over a period

of 100 days. The applied heat inputs and the gains are

computed as a sum of sinusoids with 30 frequencies and

2The translated linear model contains 453 ‘time-varying variables’

more than the translated SSM model.
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realistic amplitudes. The weather-related inputs are com-

puted using a typical year of Uccle (Belgium).

NRMSE(n) = 100

(

1−
‖y− ŷ(n)‖

‖y− ȳ‖

)

(16)

with y the output signal, ȳ its time averaged value, and

ŷ(n) the output signal of the n order ROM.

Figure 5 shows the comparison for the reduced order

models of different orders. For this particular example,

the error rapidly decreases with the model order and it

becomes negligible for ROM’s with n ≥ 15 . The error

on the south zone, which is irradiated by more direct sun

light than the north zone, is the highest. We therefore

conclude that the MOR technique can for this case suc-

cessfully decrease the number of states without signifi-

cant loss of accuracy but that a minimal number of states

is necessary to correctly capture the faster dynamics of

the system. These dynamics correspond to small thermal

capacities of the different surfaces excited by the sun.

This result was expected as the MOR technique typically

removes the small eigenvalues of the system, responsible

for the fast dynamics.

Note that by applying model reduction, the size of

the SSM matrices decreases but the original matrices

sparsity is lost. It is therefore not interesting to use re-

duced order model in Dymola as the number of additions

and multiplication increase thereby. However, the loss

of sparsity for optimal controller model is not an issue,

since the required conversion from the continuous to the

discrete time domain already removes that sparsity of the

matrices.

7 Conclusion

This paper presents an approach for deriving linear state

space models from BES models using the IDEAS li-

brary and Dymola. To this end, weakly non-linear equa-

tions are linearised. The remaining non-linear equa-

tions can be evaluated outside of the model since they

do not depend on the model states. The resulting model

is linearised using the Dymola function linearize2,

which derives the state space matrices. The errors made

by linearising the models are found to be acceptable. The

SSM can be reduced using model order reduction tech-

niques. For the tested case, the order of the model could

be reduced by a factor three without significant loss of

prediction accuracy. An important advantage of the pre-

sented methodology is that it automates the conversion of

IDEAS BES models into state space formulation which

can then be used for different purposes or by different

programs.

The current implementation still presents some draw-

backs that can be solved in the future. So far, the model

can only have four different perpendicular orientations

and all surfaces should either be horizontal or vertical.

Furthermore, the Medium in the zone should be simple

air without any species concentration. Finally ventila-

tion can only be modelled using heat flow inputs and not

using mass/energy transport equations.
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