
Ann. Inst. Statist. Math. 
Vol. 41, No. 3, 503-520 (1989) 

METHODOLOGY FOR THE INVARIANT ESTIMATION 
OF A CONTINUOUS DISTRIBUTION FUNCTION 

QIQING YU 

Mathematics Department, Zhongshan University, the People's Republic of China 

(Received April 21, 1987; revised November 11, 1988) 

Abstract. Consider both the classical and some more general invariant 
decision problems of estimating a continuous distribution function, with 

the loss function L ( F , a ) = f ( F ( t ) -  a(t))2h(F(t))dF(t) and a sample of 

size n from F. It is proved that any nonrandomized estimator can be 
approximated in Lebesgue measure by the more general invariant esti- 
mators. Some methods for investigating the finite sample problem are 
discussed. As an application, a proof that the best invariant estimator is 
minimax when the sample size is 1 is given. 

Key words and phrases: Admissibility, admissibility within U1, invariant 
estimator, minimaxity. 

1. Introduction 

Since Aggarwal (1955) found the best invariant estimator of an 
unknown continuous distribution function F(t), under the loss 

(1.1) L(F, a) = f (F( t )  - a(t))2h(F(t))dF(t) , 

different methods have been used in investigating the decision theoretic 
properties of the best invariant estimator do. One interesting fact is that 
when h( t )=  t - l ( 1 -  t) -1, the best invariant estimator is the same as the 
empirical distribution function P(t). 

The asymptotical method has been used in approaching the problem. 
For instance, Dvoretzky et al. (1956) studied the asymptotical minimaxity 
property of the best invariant estimator for some loss function; and Read 
(1972) considered the asymptotical admissibility property of the best in- 
variant estimator. However, this method does not describe the decision 
theoretic properties when the sample size n is finite. 
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Some considered the problem in another way. They considered the 
loss 

(1.2) L ( F ,  a) = f ( F ( t )  - a ( t ) ) 2 h ( F ( t ) ) d W ( t )  , 

where W is a nonzero finite measure, instead of (1.1). For example, Phadia 
(1973) and Cohen and Kuo (1985) considered this problem in this way. The 
decision theoretic properties of/e( t)  in this set-up are, of course, interest- 
ing. However, the loss function is no longer invariant. So it is not 
surprising that the conclusion in this set-up is different from that in the 
classical set-up. 

Brown (1988) carefully formulated the discrete analogues of the con- 
tinuous nonparametric estimation problem. Besides investigating the deci- 
sion problems themselves, he also hoped to approximate the classical set- 
up by the analogues. This effort does not seem to be successful, since the 
property of the best invariant estimator in discrete problems does not 
coincide with the one in continuous problems for the special case with the 
loss 

(1.3) L ( F ,  a) = f ( F ( t )  - a ( t ) )~dF( t )  . 

The most important breakthrough in this finite sample continuous 
nonparametric estimation problem is made by Brown (1988). He found an 
estimator to improve on the best invariant estimator when the loss is (1.3). 
It turns out that Brown's estimator belongs to a set Um = Um(s~, . . . ,s , , )  (see 
(2.8)), of nonrandomized invariant estimators of more general invariant 
decision problems. Yu (1986, 1987 and 1989b) extended Brown's result 
and formulated a sequence of more general invariant decision problems. 
This seems to be a good methodology in investigating the classical finite 
sample invariant estimation problems and leads to some important  results, 
e.g., P(t) is admissible iff the sample size is 1 or 2 with the loss (1.1), where 
h( t )  = t-l(1 - 0 -1 . 

So it is worthwhile to study properties of the sets U,,. In Section 3, we 
prove that for any nonrandomized estimator d, there is a sequence of 
estimators {dk} such that dk ~ d in Lebesgue measure and each dk belongs 
to some U,,(Sl ... .  , s,,). In Section 4, we show that for the sample size n = 1, 
the best invariant estimator is admissible iff it is admissible within U~. We 
also show that for the sample size n - 2, under some assumptions on h( t )  
in the loss (1.1) similar to h( t )  = t-l(1 - t) -~, the best invariant estimator is 
admissible iff it is admissible just within U~ instead of/./2. We conjecture 
that in general for the sample size n > 1 the best invariant estimator is 
admissible iff it is admissible within U, (within U~ would probably be too 
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strong to be true). 
The discussion of the sets Um is necessary both  for theoretical and for 

practical reasons. The admissibility of the best invariant est imator has not  
been solved completely even for the special form of the weight funct ion 
h(t) = ta(1 - t) p in the loss (1.1). On the other  hand,  est imators in tim are 
useful since it is relatively easy to compute  the risk, especially when m --- 1. 

Yu (1989a) considered a subset 0d of (0, 1) (see (5.1)). It plays an 
impor tan t  role in determining the admissibility of do for n = 1. As pointed 
out by Yu (1989a) it leads to an impor tan t  fact: there is no cont inuous  
est imator  which is as good as do when n = 1 (so even when do is inadmis- 
sible, we cannot  expect to find a cont inuous est imator  which can improve 
on do, though we are est imating a cont inuous distr ibution function).  In 
Section 5, it leads to a p roof  that  do is min imax for n = 1, too. Since Qd 
cannot  be generalized to the case n > 1 directly, we formulate  a subset Qd 
of (0, 1) (see (5.1')), and provide a sufficient condi t ion of the minimaxi ty  of 
do. Also we propose to consider the minimaxi ty  of do within a class of 
est imators in Section 5. In proving Theorem 5.4 related to Qd, we illustrate 
the method  for construct ing a cont inuous  distr ibut ion funct ion F for given 
es t imator  d and given e > 0 such that  R(F, d)>_ R(F, do) -~  (a similar 
cont inuous  distribution funct ion was constructed in Yu (1987) in proving 
the admissibility of F(t)  for the sample size n = 2). This is a useful idea in 
considering the minimaxi ty  of do. 

It is well known that  the decision problem of the invariant est imation 
of a cont inuous  dis tr ibut ion funct ion with the suppor t  on ( - ~ ,  + ~ )  is 
equivalent  to that  with the suppor t  on (0, 1) (for example,  see Brown 
(1988)). Thus for convenience we consider the latter problem in this paper. 

2. Notations and formulation 

Let O denote the parameter  space. Here 

(2.1) O -- {F; F is a cont inuous  distribution function on (0, 1)}. 

Let X1,..., Xn be a sample of size n f rom F in O. 
Let A = {a(t); a(t) is a nondecreasing funct ion f rom (0, 1) into [0, 1]} 

denote the action space. 
Let 

(2.2) L(F, a) = f(F(t) - a(t))2h(F(t))dF(t) 

be the loss function,  where h(t) is nonnegative Lebesgue measurable on 

fo 1 (O, 1) and t ( 1 - t ) h ( t ) d t <  +~.  
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Let sl, &,..., Sm E [0,  1], Sl < " .  < Sm, 

(2.3) 

(2.4) 

Go = {~bg; ~bg(x) = (g ( xO , . . . ,  g (x , ) ) ,  g( t )  < g(s) 

if t < s and g((0, 1)) = (0, 1)}, 

G,,(Sl , . . . ,  sin) = {qbg ~ Go;g(si) = si, i = 1,. . . ,  m} . 

Under  the above assumptions  and notat ions,  the decision problem 
(O, A, L) with the distr ibut ion family O over (0, 1) is invariant under  the 
group of t ransformations Go. Then (see Aggarwal (1955)) the nonrandomiz-  
ed invariant estimators are of the form 

(2.5) d(t )  = ~ uil(Yg___ t < Yi+1), 
i = 0  

where I (E)  is the indicator  funct ion of E, Yo = 0, Yn+l = 1, Y~ < ... < Y, 
are the order statistics of the sample X1,..., X,. The best invariant esti- 
mator ,  denoted by do(t), has the form (2.5) with 

fo x ti+ 1 ( 1 - t)"-ih ( t )d t  
(2.6) = _ , i = O , . . . , n ,  Ui 

Jo I ti(1 - t ) " - ih ( t )d t  

and has constant  risk. Since G,, is a subgroup of Go, under  the above 
assumptions and notations,  for each m -- 0, 1,..., and Sl,..., s,,, the decision 
problem (O, A, L) with the distr ibution family O over (0, 1), is also invari- 
ant under  the group of t ransformations G,,(s~,. . . ,  s,,). 

The form of nonrandomized  invariant estimators d of the decision 
problem ( O ) , A , L ,  Gm(s1,... ,Sm)) can be described as follows, d assigns 
weight u~,~, depending on the ranks I of s~,...,Sm among (X~,..., An, 0, 1, 
Sl, . . . ,Sm), to the order statistics YoZ,..., Yn*+m+l of (X1 .... , Sn, O, 1 ,S I , . . . ,  Sm), 
i.e., 

n+rn 

(2.7) d ( Y , t )  = ~=o u L j I ( Y /  <_ t < Y/+I) 
j= 

where I is a r a n d o m  vector,  I =  (I~,...,Im), defined by Iz = max  {j>_ 0: 
Yj <<- st}, 1= 1,. . . ,m. So 

{Ij=k}={Y~<_s~<rk+,}, k = O  . . . . .  n .  

Yj if 0 < j _ 11; 

Y/ '=  sl if j = I i + l ;  

Yj-1 if f i + l < j < _ n + 2 ;  
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yj(l,,..., h) 

yj(l,,..., lk+ o = Sk+l 

~(!,~...,+~) 

if O<_j<_h+~ + k , 

if j =  h+, + k + l , 

if I k + a + k + l < j < _ n + k + 2 ,  

f o r k =  1 , . . . , m -  1. 

(2.10 

(2.8) Um = Urn(s, . . . .  ,Sin) ,  

where U0 is the set of  classical invariant estimators. Given m = 1, define a 
mapping f from Ul to {(U0")tn+,)×tn+21; UU <-- Ui,j+l, i = 0,..., n, j = 0,..., n} by 

(2.9) 
n+l 

f :  j~oUl,jl{Yj 1< t < YjZ+l} --+ (uo)(,+l)×(,+2) • 

The risk functions of d in U0 and U~ are interesting. If d e U0, then 

(2.1o) R(F, d)= )2 fo~(t - ui)Zh(t)( n )(1 - t)"-itidt 
i=o i " 

If d e U1, then 

R(F ,d )  ~ ~ f~  ( n )  = (t - uo.)2h(t) 
i=0j=0 j 

n - j  . ( i _ j  ) tJ (p - t)i-J(1- p)"-idt 

i=0 j>i (t - uij)2h(t) J -  1 

• ( J ~  1 ) ( l - t ) " - J + a ( t - p ) J - l - i p i d t ,  

where p = F(s~). For  the whole discussion above, refer to Yu (1986b). 

DEFINITION 2.1. Let U be a subset of  the space £2 of all estimators. 
If d belongs to U and no estimator in U can improve on d, then we say that 
d is admissible within U. 

Given I = i = (h,. . . ,  ira), Ut.j = Ui,j is a constant ,  0 < ul, j <- Ul, j+ ~ <_ 1, m = 
1 ,2 , . . . , j  = 0, 1,..., m + n -  1. The nonrandomized invariant estimators de- 
noted by Um(s~,...,s,,) of the decision problem (O,A,  L, G,,) are essentially 
complete within the class of  randomized invariant estimators. Abusing 
notation, write 
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Given the sample size n, let 

(2.12) 
N be the collection of all nonrandomized  Lebesgue 

(in (0, 1) ~÷ 1) measurable estimators; 

and let 

(2.13) U =  U U sm) 
m = O  s t , , . . , s ~ ( O ,  " '  " 

3. Relation between N and U 

We are going to discuss the relation between several sets in the coming 
sections. Recall that  do ¢ N. As discussed by Brown (1988) and Yu (1986), 
for some special weight funct ion h(t), in order to investigate the admissi- 
bility of the best invar iant  es t imator ,  it suffices to s tudy its decision 

oo 

theoretic properties within t.) Um(Sl,..., sin). Theorem 3.1 tells an interesting 
r n = l  

fact about  the relation between N and U (see (2.12) and (2.13)). 

THEOREM 3.1. Let  X = (X~,.. . ,  X , )  be a sample o f  size n. Let  Y = 
( Y~,..., Y,) be the order statistics o f  X.  V d( Y, t) ~ N, 3 {dk} C U such that 
dk --" d in Lebesgue measure m "+ 1. 

n + k  

PROOF. As we know that d ~ Uk(S~,.. Sk) iff d = Z u l j l ( Y / <  t < Yfil) 
"' j=O -- 

(see (2.7)), i.e., d is constant  for t ~ (Y/, Yj(1), where Y/'s are the order 
statistics of 0, 1, YI,..., Y, and s~ ..... Sk. Fur thermore ,  if the orders of 
0, 1, Y1,..., Y, and st,.. . ,  Sk do not change, neither do uxj's. So it suffices to 
show V e, g >  0, 3 finite many points s~,...,sK, integer m and a step 
function de such that  

(a) for t ~ (s~,s~+O, xl ~ (si,,si,+O,...,x, ~ (si.,si,+l),d~(x,t) is constant  
and assumes one value of 0, 1 / m,. . . ,  1; 

(b) d,(x, t) is nondecreasing in t, 
(c) m"+t{ ld , -  dl > ~5} < e. 

In the following 4 steps we try to simplify our consideration step by step. 
(1) Suppose d is an arbitrary estimator of F. Let 

m 

dm= i~o(i/m) 1 (( Y, t) ~ Bi) . 

where Bi = {(Y, t): d e [ i /m,  (i + l) /m)},  i = 0,..., m. Then dm -- d uniformly 
on (0, 1) "+ 1 as m --- ~ .  

(2) By (1), we can assume, wi thout  loss of generality, that  d assumes 



METHODOLOGY IN 1NVARIANT ESTIMATION 509 

0, 1 / m,. . . ,  I only. Let 

E/= {y: d(y, t) = i /m V t c (0, 1)}, i = 0,..., m ; 

Ei,.r2 = {y:d(y , t )  = (i~/m)l( t  < ty) + (i2/rn)l(ty <_ t)}, 

where ty is not 0 or 1 and depends on y, 0 _< i~ < i2 --< m;. . .  

E0 ...... = {y: d(y, t) assumes exactly m + 1 distinct values}. 

Let A be the symmetric difference. V r />  0, 3 finite union Or ...... ,, of  disjoint 
subsets with the form Is × . - -× In, where /?s are intervals, satisfying: 

(-J Or ...... i ,=(0,1)"; 
i l , . . . , i  I 

mn(Oi A Er) < r /and define 

d ~ = i / m  for y~Oi ,  i =  0, . . . ,m ; 

m"(O~,,i2 A E/,,r2) < r /and define 

I ( i l / m ) l ( t < l / 2 ) + ( i z / m ) l ( t > _ l / 2 )  if y¢Oi,,,2\Ei,,~2, 

d~ = d(y,  t) if y ~ O~,,,20 E,-,,i~ ; 

where 0 ___ il </2 < m; 

m"(Oo,...,m A Eo,...,m) < q and define 

m 

d ,= iZ :~ (1 /m) l ( t> i / (m+l ) )  if y~ Oo  ...... \Eo ...... , 

d(y,  t) if y ~ O0,,..,,, O E0 ....... 

By construction d, ~ d as t/--- 0 in Lebesgue measure on (0, 1) "+~. Note 
( ,)  d, assumes exac t ly j  values i l /m,. . . , i j /rn f o r y  ~ Oi ...... ~. 
(3) By (1) and (2), we can assume, without loss of generality, that d 

satisfies (,). Noting that the jump points depend on y and might be 
infinitely many, we try to simplify to the case where there are only a finite 
amount  of jump points, it suffices to consider d ( y , t ) =  ( i l /m) l ( t  < ty)+ 
( i2/m)l( t  >_ ty) f o r y  ~ 0 =/1 × ... × L, where h's are intervals. 

V e > O ,  3b~, . . . ,bk,  where k depends  on e such that  Vty, 3 b i ¢  
{ b l , . . . , b k }  satisfying lty - b,l < e. Let bi = rain {bh: Ity -- bht < e} for the given 
y ~ 0 and define da(y, t) = (i~/m) 1 (t < bi) + (i2/m) 1 (t > bi); for y not in O, 
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define &(y , t )=  d(y,t). Then d~---d in Lebesgue measure on (0, I) "+~ as 
~ 0 .  

(4) By discussion in (3), we can assume, wi thout  loss of generality, 
that  d satisfies ( . )  and the set of possible j u m p  points  are finite, though  
they still depend on y. Consider  again that  for y e O = 11 × ... x I,, where 
/?s are intervals, d(y, t )=(i~/m)l( t<bi)+(&/m)l( t>_b~) and there are 
only k bi's. 

Let Ei = {y e O: The j u m p  point  is bi}. Note that  Eg might not be a nice 
set such as a finite union of disjoint subsets like O. However,  V e > 0, 51 
finite un ion  Oi of disjoint subsets with the fo rm 11 x ... × In, whe re / ? s  are 

k 
intervals such that  U (9, = O; mOi A E~ < e/(k + 1). Define 

i=I 

I (il/m) l ( t  < b,) + (&/m) l ( t  >_ b~) 
d~(y, t) 

d(y, t) 

if yeOi ,  i - - 1 , . . . , k ;  

otherwise.  

Then d~ --- d in Lebesgue measure on (0, 1) "+ l as e --- 0. 
This procedure can be generalized to general cases that  for y c some O 

defined similarly as above, d(y, t) assumes exactly h values i~/m,..., ih/m 
with j u m p  points only at bi's. Note that  this d, satisfies the condi t ion (a), 
(b) and (c) in the beginning of the proof  ({bl,...,bK} contains all j u m p  
points and endpoints  of intervals I ' s  ment ioned  above) and thus finishes 
our proof. [] 

4. U1 and admissibility of do 

When the sample size n -- 1, the best invariant estimator is 

(4.1) 
= / u0 if t < X ,  

do(t) ( u~ if t _> X ,  

f fO l'l 2 [1"1 where uo = j t ( 1  - t)h(t)dt 1(1 - t)h(t)dt and u, =Jo t h(t)dt/J o th(t)dt. 
/ 

For  convenience, define 

(4.2) V = {d(t): R(F, d) <_ R(F, do) V F ¢ O }. 

When the loss funct ion is of the form (2.2), with h(t)= t a ( 1 -  t) p, 
a, fl >_ - 1, and the sample size n = 1, Yu (1989a) pointed out that  do is 
admissible iff it is admissible within U~. In fact, it is true for general h(t) 
under  the assumptions on h(t) given in Section 2. It is not hard to simulate 
the argument  in Section 3 of Yu (1989a) and get the following proposit ion.  
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PROPOSITION 4.1. Suppose  t(1 - Oh(t) is integrable and the sample 
size n -- 1. Then do(t) is admissible i f f  do(t) is admissible within U1. 

As an application of Proposi t ion 4.1, look at the following example. 

Example  4.1. Suppose  h ( t ) =  (sin t) -1 and n = 1. Then the best in- 
variant est imator do is admissible. 

PROOF. It suffices to show that  do is admissible within U1. 

= / 0 if t < X ,  
do(t) ( Ul if t___ X ,  

/So 1 where u~ =folt2(sin t)-ldt t(sin t)-ldt. If d e Vf3 U~, then 

o 
Ulo Ull U12 0 Ul Ul2 

by (2.9). Note 0 _< uoo < uol = 0, so uoo = 0. Let U12 = U l  ~- 2c, since u12 -> Ul 
implies c >_ 0. Now by (2.11) 

R(F ,  d) - R (F ,  do) = p fpl[(t - Ul - 2c) 2 - (t - uO2]h(t)dt 

= p  f_l[ _ 4c(t - ul - c)]h(t)dt 
- p  

and 

lim p - ' [ R ( F ,  d) - R ( F ,  do)] 
p - O  

l im~l[4c(u l  + c)](sin t)-ldt + ~ > 0 ,  

if c > 0. So d = do. This means do is admissible within U~. [] 

When the sample size n = 2 we conjecture that  do is admissible iff do is 
admissible within U2. In fact, by simulating the argument  in Section 3 of 
Yu (1987), we can get the following conclusion. 

PROPOSITION 4.2. Suppose the sample size n = 2. As sume  t(1 - t)h(t) 

f o I f o' is integrable, but  th( t )d t  = ~ and ( 1 -  t )h(t)dt  = ~ .  Then the best 

invariant estimator is admissible i f f  it is admissible within U1. 
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Example 4.2. Suppose h(t) = [(sin t)(1 - sin 0] -1 and the sample size 
n = 2. Then the best invariant estimator is admissible. The reader can verify 
it by referring to the proof  that the best invariant estimator is admissible 
for the sample size n = 2 and for the case h(t) = t-l(1 - t) -1 in Yu (1987). 

5. Od and the minimaxity of do 

In this section we are going to investigate some methods for attacking 
the minimaxity of do, instead of as a by-product  of its admissibility, since 
in most cases we know so far, do is inadmissible. 

Yu (1989a) introduced the notion Qd for given d e  V (see (4.2) and 
(5.1)). 

(5.1) Qd = {x e (0, 1): lim d(x, t) = Uo, and lira d(x, t) = ul} 
t ? x  

where u0 and ul are as (4.1). An interesting fact is that the set Qd plays an 
important  role in justifying the admissibility of do(t). We are going to 
investigate the relation between (~d and the minimaxity of do. It is not 
surprising to see that this leads to a proof  of the minimaxity of the best 
invariant estimator for the sample size n = 1. 

DEFINITION 5.1. Suppose r e (0, 1] and I is a positive-Lebesgue- 
measure subset of R. A distribution function F(t) is said to give mass r 

f: uniformly to I if F(t) - F(a) = [1 (x e I ) r / m I ] d x  for t e (a, b), where 

a = ess . in f I  and b = ess.sup L If r =  1 in the above formula F is the 
uniform distribution o n / .  

THEOREM 5.1. Suppose h(t) is nonnegative, t(1 - t)h(t) is integrable 
and the sample size n = I. f f  mOd > O, then 

sup R(F, d) >_ R(F, do). 

PROOF. Without loss of generality, assume that h(t) is integrable. 
Since mQd > 0, V 6 > 0, 3 a subset B of 0d, satisfying: 

(1) as t I x, d(x, t) converges to u0 uniformly for x e B; 
(2) as t ~ x, d(x, t) converges to ul uniformly for x e B; 
(3) mB > 0 and sup B - inf B = r/; 
(4) I d ( x , t ) -  u01 < ,Vxe B a n d 0 < x -  t<r/; 
(5) I d ( x , t ) - u l l < 6 ,  V x e B a n d O < t - x < r / .  
Let F be the uniform distribution on B, then 

[R(F, d) - R(F, do)[ < 2~fo ~ h(t)dt . 
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Since 6 is arbitrary, the result follows. [] 

COROLLARY 5.1. Under the assumptions o f  Theorem 5.1, the best 
invariant estimator is minimax for  the sample size n = 1. 

PROOF. By simulating the proof  of Theorem 3.4 in Yu (1989a), we 
have that d e Vimplies mQd -- 1. So the minimaxity follows from Theorem 
5.1.[3 

Since the minimaxity of the best invariant estimator remains open for 
general sample size n > 1, it is natural  to consider some extension of 0d to 
the sample size n > 1 case. For  this purpose, we introduce a new notion Qd 
as follows, 

(5.1') Qd={x~(O, l ) :  V e>O, :16>O9 l d ( y , t ) - d o ( y , t ) l  < t  

for almost all (y, t) ~ N((x, . . . ,  x), ~)}, 

where y is an n-dimension vector, and consider the minimaxity within the 
family of estimators d satisfying 

(5.2) d(x, t) is nonincreasing in xi given t and other x/s fixed, 

i = l , . . . , n .  

As we can see that this notion can be used in the higher dimension. 
The connection of these two sets for the case n - 1 can be seen from the 
following theorem. 

THEOREM 5.2. Suppose the sample size n = 1. Given an estimator d, 
then m Qd = 1 implies m O_.d = 1. 

The proof of Theorem 5.2 appears in the Appendix. 
The importance of the notion of Qd for given estimator d can be seen 

from the following theorem which is also proved in the Appendix. 

THEOREM 5.3. Suppose h(t) is nonnegative, t(1 - t)h(t) is integrable. 
For the sample size n > O, i f  f o r  any d ( V we have that Qd is not empty,  
then do is minimax. 

Now we have a sufficient condition for checking the minimaxity of the 
best invariant estimator do. Of course, mQd= 1 if d (  V satisfies the 
condition. As we know, if h(t) = t -1 (1 - t)-~, d e V and the sample size is 1 
or 2, then mQd = 1. We can also show that the condition that d ~ Vimplies 
Qd is not empty is true for general h(t) when n = 1, if d satisfies (5.2) (thus 
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we have a sufficient condi t ion for checking the minimaxi ty  of do within the 
family of estimators satisfying (5.2)). We need some lemmas before we 
prove it. The proofs of these lemmas are given in the Appendix.  

LEMMA 5.1. Suppose dl has finite risk .for all F~ 0 and d ~ V. 
V ~ > O, 3 ~> 0 such that 

I R ( F , d ) -  R(F, dOI < e 

if [d(x, t) - dl(x, t)] < 8 a.e. (dF) "+1 

Remark 5.1. Under  assumption (5.2): if 3 H C R 2 such that  

[d(x, t) - u[ < 6 V (x, t) e H and m2H > 0 ,  

then there are two points (b,p)  and (a, q) in H such that a < b and p < q; 
furthermore,  

[d (x , t ) - u l  <8, V(x , t )  e ( a , b ) × ( p , q ) ,  

since u - 6 < d(b,p) <_ d(x, t) <_ d(a, q) < u + 8. 

LEMMA 5.2. Suppose d satisfies (5.2). Given n and x ~ (0, 1), 3 0 < 
l <_ h <_ 2 ~ such that V 8 > 0 3 closed intervals 11 and 12 in (0, 1) of  positive 
measure satisfying: 

(a) 1l t,_) 12 C N(x, ~), inf 12 -> sup/1 ; 
(b) d(x,t) ~ [l/2~,(1+ 1)/2 ") if  (x,t) ~ 12 × 11; 
(c) d(x,t) e[h/2n,(h+ 1)/2")if(x,t)eI1 × 12. 

So by Lemma 5.2, 3 hi = max imum of all possible h as above; 
3 h2 = min imum of all possible h as above; 
3/3 = max imum of all possible l as above; 
3 14 = min imum of all possible I as above. 
In other words, for the x given above, 3 some h--(h~, . . . ,h4) ,  and 

! = (ll,..., 14), satisfying: 
( ,)  V 8 > 0 3 closed intervals/ j l  and/ j2 in the neighborhood N(x, 6) 

of x with radius 8, satisfying 
(a) m/jz > 0, and inf/j2 -> sup/ j l ,  i = 1,2, j = 1,..., 4; 
(b) d(x,t) ~ [hfl2",(hj+ 1)/2"), i f (x , t )  ~/jl ×/j2; 
(c) d(x, t) ~ [/A 2", (/j + 1)/2"), if (x, t) ~/j2 × ~1, j = 1,..., 4; and 

(**) 3 f i o > 0 s u c h t h a t  

m (y , t ) : y , t  ~ N(x,8o), d(y,t) ¢ [ h2 h i )  2n ,2n  i f y < t ,  
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[,4,3) / 
o r d ( y , t ) ~  2 " ' 2 "  i f y > t  = 0 .  

Let 

(5.3) B.~ = {x e (0, 1): x satisfies (.)  and (**)}. 

The sets defined in (5.3) will be used in the proof of Theorem 5.4. 

THEOREM 5.4. Suppose the sample size n = 1. Let d(x, t) ~ V. Let Qd 
be as (5.1'). I f  d satisfies (5.2), then Qd is dense in (0, 1). 

PROOF. Fix n, and [ao, bo] C (0, 1). Since [ao, bo] is a compact metric 
space and [ao, bo] = k.)(Bn/, O [ao, bo]), by the Baire Category Theorem, there 

t,h 

is an open interval (a , ,b , )  and B,i.h., where I, = (li,,...,14,) and h, = 
(hi,, . . . ,  h4,), such that Bnl.h. A [ao, bo] is dense in (a,, b,). Given x ~ [an, b,], 
there is a sequence {Xm} of B, toh. such that Xm --~ X. SO V 6 > 0 3 m such that 
Xm ~ N(x,  J). Since xm e B,i,h., 3 measurable closed intervals/jl  and / j2  in the 
neighborhood N(xm, J,,) C N(x,  J) of Xm with radius Jm, satisfying 

(a) mIji > 0, and inf/j2 -> sup/~1, i = l, 2, j = l, . . . ,  4; 
(b) d(x, t)  ~ [h~/2",(hj~ + 1)/2"), i f (x , t )  ~/jl ×/j2; 
(c) d(x, t)  ~ [/j,/2",(/j~ + 1)/2"), i f (x , t )  ~ Ij2 × Ijl,j--- 1,...,4. 
This means that any x in (a,, b~) satisfies (,)  for the given !, and hn. On 

the other hand, 3 z in (an, b,) satisfying (**), i.e., 

(***) 3 2Jo > 0 such that 

2{ [ 2. , 2. ) i f y < t  ' m (y, t):y,  t e N ( x ,  2Jo) ,d(y , t )¢  hEn h1___2 

or d(y , t )  ¢ [ 14. 13_~_. ) } 2 ~ - '  2" i f y > t  = 0 ,  

and (z - 2Jo, z + 260) C (a., b.). So any x in [z - &, z + &] satisfies (.)  and 
(**) for L and h. given above. That is [z - Jo, z + 6o] C B.t.h.. 

Without loss of generality, we assume B.~.h. contains [a., b.] (note 
b. - a. > 0). For the same reason, there is [a.+ 1, b.+ 1] C [a., b.] satisfying 

[a.+l,b.+l] C B.+u..,h .... 

(5.4) [hj.+l hjn+l+l)[hjn hjn+ 1 ) 
2 ~+1 , 2 ~+1 C 2~ , 2 ~  and 

[ n+l 
2" + 1 , 2" +1 C 2" ' 2 .------7-- " 
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So there are w = (Wl,..., w4) and o = (01,..., 04) such that I,/2" --. w and 
h,/  2 ~ --. o as n -- o¢. 

If w~ = uo and oi = Ul, i = 1,..., 4, we are done by (**), (5.3) and (5.4). 
Otherwise one of the following four cases would be true: 

(1) v l>Ul ;  (2) o2<ul ;  (3) w3>uo; (4) w4<u0. 

Suppose case (1) is true. Consider an estimator 

d 1 ( x , t ) = I  ol if t _>x ,  

t wl otherwise.  

Note dl ~ Uo, so 

(5.5) R(F, dl) - R(F,  do) = 3e > O . 

It can be shown that d~ has finite risk. Note d e V and R(F,  d) < ~ ,  so 
by Lemma 5.1, given e as above, 3 6 > 0 such that 

(5.6) In(F,  d l ) - n ( F , d ) t < e  if I d ( y , t ) - d ~ ( y , t ) l < 6  a.e. (dF) 2. 

There is n large enough such that 1In < 6. For such n, 3 closed 
intervals 11~ and 112 C [a,, b~] satisfying 

(a) mll i>  0, i -- 1, 2, and inf 112 -> sup 111; 
(b) d(y, t )  ~ [hln/2",(hl~ + 1)/2") i f (y , t )  ~ 111 × 112; 
(e) d(y , t )  ~ [lln/2",(l~n + I)/2") if (y,t)  ~ 112 × 111. 

[ 2 ~2\ 2 2 
Thus Id(y, t ) -  dl(y,  t)[ < 1/n if (y, t) e ~j_LJ 111j J \ j~ l  (Ilj) . 

/ 

It can be shown that there are closed intervals I2.2i and 12.2,.-1 C 
[an, bn] N ltj satisfying 

(a) mI2 j>O, j=  1,2,3,4, and inf I2,~i > sup I2,2g-1; 
(b) d(y, t )  ~ [hl./2~,(h~n + 1)/2") if (y, t)  e I2,2~-~ x I2,2~; 
(c) d(y,  t) ~ [ll . /2 n, (lln + 1)/2") if (y, t) e/2,2i × h,2i-~. 

d t ( y , t ) l < l / n i f ( y , t ) ~ [ t 2 " -  \2\ 22 2 Thus, ld(y , t )  - [ ~  I2J/l ,:~\sU (I2j) by (b) and (c ) in  
j = t  

step 1 and 2. 

Similarly, we can construct a sequence of closed intervals {Ikj}. Let Fk 
give mass 2 -k uniformly to lkj, j =  1,.. . ,2 k (see Definition 5.1). By the 
construction we have 
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(5.7) 

, ] (1) F,(t)=fo l(x Ikj)/2mlkj dx" 
L j=l 

(2) dFk(t)dFk(x) has support only on ( 6 I~j • ~,j=l 

(3) Id(y,t)-d,(y,t)l < l/n if (y,t) e( -'kj=,Ikj )~2\l\[j U='I'22' kjj}. 

By the continuity of the integration w.r.t. (dF)  2, 3 82 > 0 such that 

(5.8) ffB[(F(t) - d(x,  t)) 2 - (F(t) - d, (x, t))2]h (F(t)) dF(t) dF(x)  < e ,  

if f f ndF( t  ) dF(x)  < a2. 
2 ~ 

Let B = U L 2 ff, i=1 *i' then there is k large enough such that dFk(t)dFk(x)  < 

62. Since ]d(y, t)  - dl(y, t)]  < 1/n a.e. (dFk) 2 in B c by (1), (2) and (3) of 
(5.7), where B c is the complement of set B, by (5.6) and (5.8) 

(5.9) I R(Fk, d,) - R(Fk, d) l 

<-(ff.+ ff.c ) [(Fk(t) -- d(x ,  t))2 - (Fk(t) - d~(x, t)) 2] 

• h(Fk( t ) )dF, ( t )dF, (x)  < e + e .  

By (5.5) and (5.9), we have 

R(Fk, d) - R(Fk, do) = R(Fk, d,) - R(Fk, do) 4- R(F~, d) - R(Fk, d,) 

>__ 3 e -  2e= e > 0 .  

Contradiction: This means case (1) is not true. Similarly we can show 
that cases (2) through (4) are not true. [] 
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Appendix 

PROOF OF THEOREM 5.2. Suppose that given an estimator d, m Q d  = 

1 but rnQ.d < 1. Then m{(O, 1)\Qd} > 0. So 



518 QIQING YU 

mQd n {(0, 1)\Qd} > O. 

There  is a closed subset G C O d  n {(0, 1)\Qd} of positive measure  such 
that  d(x,  t) converges un i fo rmly  on G as t I x and as t I x. Given x in G, 
V n :1 6x such that  I d(y ,  t) - do(y, t)l < 1 / n for almost  all (y, t) e N((x ,  x), 6x) 
since x e Qd. 

So {N(x ,  Sx ) : xe  G} is a cover  of  G. Thus,  there is a finite cover  
N(xi,6x,), i = 1, . . . ,k.  In o ther  words,  3 ~ > 0 such that Id(y,  t) - do(y, t)l < 
1/n for a lmost  all (y, t) in {(y, t):y ~ G and It - Yl < 8}. This implies tha t  3 
closed subset Gn C G of  positive measure  such that  Id(x, t) - do(x, t)l < l / n  
for  all x ~ Gn and It - x l  < ~. Fu r the rmore ,  we can assume G,+I C G,. So 
there is x e n G, satisfying 

?/ 

lim d ( x ,  t) = uo and lim d ( x ,  t) -- ul . 
I l x t I X  

This contradicts  that  G n Oa is empty.  [] 

PROOF OF THEOREM 5.3. Since do has cons tant  risk, it is not  hard  
to see 

inf sup R(F ,  d) : a~vinf sup R(F ,  d ) .  

We cons ider  three cases: (1 ) r jo i th ( t )d  t = o¢; (2)rj01(1_ t )h( t )dt  = oo; (3) 

folh( t)dt  < ~ .  

f: Suppose  (2) is t rue but  th( t )dt  < ~ .  Let d e Is, and note (2) is true,  

so d(  Y, t) = 0 a.s. in {( Y, t): E1 > t}. By assumpt ion  Qd is not  empty.  So :t x 
in Qa. Thus  V e > 0 ::1 ~ > 0 such that  for a lmost  all (y,  t) e {(y, t): H(y, t) - 
(x, . . . ,x)l l  < 6}, where  I I ( x l , . . . , x , + 1 ) l l  = sup Ixil, we have 

i 

, i =  i 

Let G be the un i fo rm dis tr ibut ion on (x - fi, x + 8), then 

F I1 

I R (G ,  d) - R (G ,  do)l <- EJr, I(G(t) - d ( t ) f  - (G(t) - do(t))Zlh(G(t))dG(t) 

s:,, /t (n)Sol < 2E (G(t))dG(t)~ 2 ti(1 - t)"-ih(t)dt 
- -  i =  i 
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Now sup R(F,  d) >_ R(G, d) >_ R(G, do) - ~ for any e. Note that d, in 
F 

fact, is arbitrary. This implies R(G, do) = inf sup R(F,  d). This means do is 
d ~ V  F 

minimax. Similarly, we can get the same conclusion for the case that (1) 
and (2) are true and the case that (1) or (3) is true. [ ]  

PROOF OF LEMMA 5.1. f t h ( t ) d t =  ~ (or f(1-t)h(t)dt= ~ ) ,  and d 

and d~ have finite risk for all F e O imply that d = d~ for t < II1 (or t > Y,). 

So we assume, without loss of generality, tha t fh ( t )d t  < ~. 

V e > 0 let ~ = e /2 fh ( t )d t ,  if I d -  d~l < fi a.e. (dF)  "+~, then 

I R(F,  d) - R(F,  d~)l 

< Efl (F(t) - d( Y, t)) 2 - (F(t) - dl ( Y, t))~lh(F(t))dF(t) 

<_ E f 2c~h(F(t))dF(t) 

< e .  [] 

PROOFOF LEMMA 5.2. By (5.2), 

d ( y -  1/2k, y + 1/2k)_< d(x, t )  <_ d ( y -  l / k , y  + 1 /k ) ,  

if (x,  t) ~ 11 x / 2  = [y  - 1 / k, y - 1 / 2k] x [y  + 1 / 2k, y + 1 / k], and 

d(y + 1 / k, y - 1 / k) <_ d(x, t) <_ d(y + 1 / 2k, y - 1 / 2k) ,  

if (x, t) c 12 × 11. Also there are a and b such that 

d ( y +  1 / k , y -  I /k)  ~ a and d ( y -  1 / k , y +  1/k) ~ b ,  

as k tends to +oo .  Without loss of generality, we can assume that 
a e (l/2", (l + 1)/2"] and b e [h/2", (h + 1)/2"). So there is ko such that 

d(y  + 1 /ko ,  y - 1/ko) > l /2" and 

d(y-  l/ko, y + l/ko) < (h + 1)/2". 

We can check that c~ = 1/ko, I~ and 12 (k > ko) satisfy condition (a), (b) and 
(c). [] 
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