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Methodology Review:
Assessing Unidimensionality
of Tests and ltenls

John Hattie

University of New England, Australia

Various methods for determining unidimensionality
are reviewed and the rationale of these methods is as-

sessed. Indices based on answer patterns, reliability,
components and factor analysis, and latent traits are
reviewed. It is shown that many of the indices lack a

rationale, and that many are adjustments of a previous
index to take into account some criticisms of it. After

reviewing many indices, it is suggested that those
based on the size of residuals after fitting a two- or
three-parameter latent trait model may be the most
useful to detect unidimensionality. An attempt is made
to clarify the term unidimensional, and it is shown
how it differs from other terms often used inter-

changeably such as reliability, internal consistency,
and homogeneity. Reliability is defined as the ratio of
true score variance to observed score variance. Inter-

nal consistency denotes a group of methods that are
intended to estimate reliability, are based on the vari-
ances and the covariances of test items, and depend on
only one administration of a test. Homogeneity seems
to refer more specifically to the similarity of the item
correlations, but the term is often used as a synonym
for unidimensionality. The usefulness of the terms in-
ternal consistency and homogeneity is questioned. Uni-
dimensionality is defined as the existence of one latent
trait underlying the data.

One of the most critical and basic assumptions
of measurement theory is that a set of items forming
an instrument all measure just one thing in com-
mon. This assumption provides the basis of most

mathematical measurement models. Further, to make

psychological sense when relating variables, or-

dering persons on some attribute, forming groups
on the basis of some variable, or making comments
about individual differences, the variable must be

unidimensional; that is, the various items must

measure the same ability, achievement, attitude,
or other psychological variable. As an example, it

seems desirable that a test of mathematical ability
be not confounded by varying levels of verbal abil-

ity on the part of persons completing the test. Yet

despite its importance, there is not an accepted and
effective index of the unidimensionality of a set of
items. Lord (1980) contended that there is a great
need for such an index, and Hambleton, Swami-

nathan, Cook, Eignor, and Gifford (1978) argued
that testing the assumption of unidimensionality
takes precedence over other goodness-of-fit tests
under a latent trait model.

Initially identified as a desirable property of tests
in the 1940s and 1950s (the earliest mention was
in Walker, 1931), unidimensionality was used in
the same way as was homogeneity and internal
consistency until the recent increase of interest in
latent trait models constrained a clearer and more

precise definition. One aim of this paper is to make
the boundaries of the terms less fuzzy by detailing
variations in the use of the terms and by proposing
definitions that seem consistent with usage by many
authors (or at least, what the authors appear to have

intended when they used the terms). A further aim
is to review the many indices that have at various
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times been proposed for unidimensionality, with

particular emphasis on their rationale. It is argued
that most proposers do not offer a rationale for

their choice of index, even fewer assess the per-
formance of the index relative to other indices, and

hardly anyone has tested the indices using data of
known dimensionality.
As a working definition of unidimensionality, a

set of items can be said to be unidimensional when

it is possible to find a vector of values <I> = (~Z)
such that the probability of correctly answering an

item is 7r¡g = fg(~;) and local independence holds
for each value of <1>. The first section, on methods
based on answer patterns, assumes fg to be a step
function. The second section, on methods based
on reliability, assumesf, to be linear. The next two
sections, on methods based on principal compo-
nents and factor analysis, assumefg to be generally
linear (though a nonlinear function is considered).
The final section, on methods based on latent traits,
assumes different forms for f~.

Each section details various indices that have

been proposed for unidimensionality. Given the

large number of indices, it is not possible to discuss
each one fully or to cite every researcher who has
used it. Table 1 lists the indices discussed in this

paper and cites references to the authors who have

used or recommended each index.

Indices Based on Answer Patterns

Several indices of unidimensionality are based
on the idea that a perfectly unidimensional test is
a function of the amount by which a set of item
responses deviates from the ideal scale pattern. The
ideal scale pattern occurs when a total test score

equal to n is composed of correct answers to the
n easiest questions, and thereafter of correct an-
swers to no other questions.
Guttman (1944, 1950) proposed a reproducibil-

ity coefficient that provides ‘ ‘a simple method for
testing a series of qualitative items for unidimen-

sionality&dquo; (1950, p. 46). This index of reprodu-
cibility is a function of the number of errors; these
errors are defined as unity entries that are below a
cutoff point and zero entries that are above it. Var-

ious authors have suggested rules to determine this
cutoff point. Guttman determined his coefficient
of reproducibility by counting the number of re-

sponses that could have been predicted wrongly for
each person on the basis of his/her total score,

dividing these errors by the total number of re-

sponses, and subtracting the resulting fraction from
1. Guttman has suggested reproducibility indices
of .80 (1944) and .90 (1945) as acceptable ap-
proximations to a perfect scale.

Guttman’s coefficient has a lower bound that is

a function of the item difficulties and can be well

above .5 when the item difficulties depart from .5.
Jackson (1949) proposed a Plus Percentage Ratio

(PPR) coefficient that was free from the effect of

difficulty values. His method is very cumbersome
and time consuming, and has many of the problems
of the coefficient of reproducibility (e.g., the prob-
lem of determining the cutoff). To overcome these
deficiencies, Green (1956) proposed approxima-
tion formulas for dichotomous items and reported
an average discrepancy between his and Guttman’s s
formula of .002 (see Nishisato, 1980).

Loevinger (1944, 1947, 1948) argued that tests
of ability are based on two assumptions: (1) scores
at different points of the scale reflect different lev-
els of the same ability, and (2) for any two items
in the same test, the abilities required to complete
one item may help or may not help but they will
not hinder or make less likely adequate perfor-
mance on the other items. These assumptions led
Loevinger to define a unidimensional test as one
such that, if A’s score is greater than B’s score,
then A has more of some ability than B, and it is
the same ability for all individuals A and B who
may be selected.

Loevinger (1944) developed what she termed an
index of homogeneity. When all the test items are

arranged in order of increasing difficulty, the pro-
portion of examinees who have answered correctly
both items, Pij, is calculated for all pairs of items.
From this, the theoretical proportion, (P;P/), who
would have answered correctly both items had they
been independent, is subtracted. These differences
are summed over the n(n - 1) pairs of items:

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



141

Table 1
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A test made up of completely independent items
would have a value for S of 0, but S does not have
an upper limit of unity when the test is perfectly
homogeneous. The upper limit is fixed by the pro-
portion of examinees answering correctly the more
difficult item in each pair (Pj):

The index of homogeneity thus proposed by Loe-
vinger (1944) was the ratio of the Equations 1 and

2 (I~ = 5’/S~&dquo;aX). The coefficient is unity for a per-
fectly homogeneous test and zero for a perfectly
nonhomogeneous test. Yet for some sets of items,
such as those that allow guessing, the lower bound
may not necessarily be zero. (Incidentally, Loe-

vinger’s method of identifying errors is the same
as Green’s (1956), but Green sums over those item

pairs whose members are adjacent in difficulty level
and not over all pairs of items, as does Loevinger.)

Comments

There have been many criticisms of indices of

unidimensionality based on answer patterns. The
most serious objection is that these methods can

only achieve their upper bounds if the strong as-

sumption of scalability (i.e., a perfect scale) is

made (Lumsden, 1959). Another major criticism
is that there is nothing in the methods that enables
a test of just one trait to be distinguished from a
test composed of an equally weighted composite
of abilities. Loevinger (1944), who recognized this

objection, suggested that in such cases methods of
factor analysis were available that could help in

determining whether there were many abilities

measured or only one. Guilford (1965) argued that
it is possible to say that a test that measures, say,
two abilities may be considered a unidimensional

test provided that each and every item measures
both abilities. An example is an arithmetic-reason-
ing test or a figure-analogies test.
A further objection is that it is possible to con-

struct a set of items that forms a perfect scale yet
would appear not to be unidimensional. For ex-

ample, consider a set of 10 items testing different
abilities, one item at a level of difficulty appro-
priate to each grade from 1 through 10. The test

is given to a group of 10 children, each of which
is an average student at each grade level from 1 to
10. A perfect scale very probably would result.
Thus, perfect reproducibility may not necessarily
imply that the items are unidimensional. It seems
that using these examples, as have Loevinger (1947)
and Humphreys (1949) among others, confuses the
method of assessing dimensionality with the iden-
tification of the dimension(s) measured. It is pos-
sible to say that the items in the above example
measure one characteristic, which could be labeled

development. Saying that a test is unidimensional
does not identify that dimension, in the same way
that saying that a test is reliable does not determine
what it is reliably measuring.

Because of these criticisms, there was a decline
in the use of scaling methods to index unidimen-
sionality. Over the past decade the indices have

reemerged under different names. Loevinger’s
( 1944) ~ has been tenned C¡3 by Cliff (1977) and

Reynolds (1981). A number of simulations (Wise,
1982, 1983) have compared various reproducibility
indices (or order statistics as they are now called)
and rediscovered many of the above problems. Wise

(1983), for example, compared Loevinger’s N and
ci~ described by Cliff (1977) and Reynolds (1981)
using six simulated and three real data sets. He
found that C¡l was a poor index of dimensionality
for data sets in which there were items of similar

difficulty and in which items were of disparate
difficulty but did not belong to the same factor.

Loevinger’s (1944) index also did not perform well
in data sets in which there were correlations be-

tween factors. In these cases, Loevinger’s index
tended to overestimate the dimensionality and was
not able to distinguish between items loading on
different factors.

Indices Based on Reliability

Perhaps the most widely used index of unidi-

mensionality has been coefficient alpha (or KR-

20). In his description of alpha Cronbach (1951)
proved (1) that alpha is the mean of all possible
split-half coefficients, (2) that alpha is the value

expected when two random samples of items from
a pool like those in the given test are correlated,
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and (3) that alpha is a lower bound to the proportion
of test variance attributable to common factors among
the items. Cronbach stated that &dquo;for a test to be

interpretable, however, it is not essential that all

items be factorially similar. What is required is that
a large proportion of the test variance should be
attributable to the principal factor running through
the test&dquo; (p. 320). He then stated that alpha &dquo;es-

timates the proportion of the test variance due to
all common factors among the items,&dquo; and indi-
cates &dquo;how much the test score depends upon the

general and group, rather than on the item specific,
factors&dquo; (p. 320). Cronbach claimed that this was
true provided that the inter-item correlation matrix
was of unit rank, otherwise alpha was an under-
estimate of the common factor variance. (The rank
of a matrix is the number of positive, nonzero char-
acteristic roots of the correlation matrix.) However,
Cronbach suggested that this underestimation was
not serious unless the test contained distinct clus-

ters (whereas Green, Lissitz, & Mulaik, 1977,
demonstrated that with distinct clusters alpha can
be overestimated). These statements led Cronbach,
and subsequently many other researchers, to make
the further claim that a high alpha indicated a ‘ ‘high
first factor saturation&dquo; (p. 330), or that alpha was
an index of &dquo;common factor concentration&dquo; (p.
331), and the implication was that alpha was related
to dimensionality.

Underlying the intention to use alpha as an index
of unidimensionality is the belief that it is somehow
related to the rank of a matrix of item intercorre-

lations. Lumsden (1957) argued that a necessary
condition for a unidimensional test (i.e., &dquo;a test in
which all items measure the same thing,&dquo; p. 106)
is that the matrix of inter-item correlations is of

unit rank (see also Lumsden, 1959, p. 89). He
means that the matrix fits the Spearman case of the
common factor model. From a more systematic set
of proofs, Novick and Lewis (1967) established
that alpha is less than or equal to the reliability of
the test, and equality occurs when the off-diagonal
elements of the variance-covariance matrix of ob-

served scores are all equal. This implies the weaker

property of unit rank. (However, the converse is
not true, i.e., unit rank does not imply that the off-
diagonals are all equal.) Thus, there exists a di-

agonal matrix that, on being subtracted from the
variance-covariance matrix, reduces it to unit rank.

Unfortunately, there is no systematic relationship
between the rank of a set of variables and how far

alpha is below the true reliability. Alpha is not a
monotonic function of unidimensionality.

Green et al. (1977) observed that though high
&dquo;internal consistency&dquo; as indexed by a high alpha
results when a general factor runs through the items,
this does not rule out obtaining high alpha when
there is no general factor running through the test
items. As an example, they used a 10-item test that
occupied a five-dimensional common factor space.
They used orthogonal factors and had each item

loading equally (.45) on two factors in such a way
that no two items loaded on the same pair of com-
mon factors. The factors were also well determined

with four items having high loadings on each fac-
tor. Each item had a communality of .90. Green
et al. calculated alpha to be .811, and pointed out
that &dquo;commonly accepted criteria&dquo; would lead to
the conclusion that theirs was a unidimensional

test. But this example is far from unidimensional.
On another criterion, it can be determined that 15
of the 45 distinct inter-item correlations are zero.

This should be a cause for concern.

In a monte carlo simulation, Green et al. (1977)
found: ( Y ) that alpha increases as the number of
items (r~) increases; (2) that alpha increases rapidly
as the number of parallel repetitions of each type
of item increases; (3) that alpha increases as the
number of factors pertaining to each item increases;
(4) that alpha readily approaches and exceeds .80
when the number of factors pertaining to each item
is two or greater and ~a is moderately large (ap-
proximately equal to 45); and (5) that alpha de-
creases moderately as the item communalities de-
crease. They concluded that the chief defect of

alpha as an index of dimensionality is its tendency
to increase as the number of items increase.

Green et al. (1977) were careful to note that
Cronbach realized the effect of the number of items

and that he recommended the average inter-item

correlation. Yet in their monte carlo study, Green
et al. found that the average inter-item correlation

is unduly influenced by the communalities of the
items and by negative inter-item correlations.
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Index/Index-h4ax Formulas

Because alpha is based on product-moment cor-
relations, it cannot attain unity unless the items are
all of equal difficulty. This limitation has led other
authors to modify alpha in various ways, and to

propose other indices of unidimensionality. Gen-
erally, these modifications have involved dividing
the index by its maximum value (index/index-max).
Loevinger’s (1944) I~ is one such ratio. Horst (1953),
who reconceptualized Loevinger’s index in terms
of intercorrelations between items, argued that in-
stead of using Loevinger’s method of estimating
average item intercorrelation corrected for disper-
sion of item difficulties, it is more &dquo;realistic&dquo; to

estimate average item reliability corrected for dis-
persion of the item difficulties. The problem in
such an index is to obtain plausible estimates of
item reliability.

Both Loevinger (1944) and Horst (1953) defined
the maximum test variance given that the item dif-
ficulties remain the same, or alternatively, that the
item covariances be maximum when the item dif-

ficulties are fixed. Terwilliger and Lele (1979) and

Raju (1980) instead maximized the item co-
variances when test variances were fixed but the

item difficulties were allowed to vary. (Thus, these
indices are not estimates of the classical definition

of reliability, i.e. , as the ratio of true score variance
to observed score variance.)

Although his work predated these criticisms,
Cronbach (1951) was aware of the problems of

alpha, and reported that the difference between
alpha and indices controlling for the dispersion of
item difficulties was not practically important.

Indices Based on Correcting
for the Number of Items

Alpha is dependent on the length of the test, and
this leads to a new problem-and to more indices.

Conceptually, the unidimensionality of a test should
be independent of its length. To use Cronbach’s
(1951) analogy: A gallon of homogenized milk is
no more homogeneous than a quart. Yet alpha in-
creases as the test is lengthened and so Cronbach

proposed that an indication of inter-item consist-

ency could be obtained by applying the Spearman-
Brown formula to the alpha for the total test, thereby
estimating the mean correlation between items. The
derivation of this mean correlation is based on the

case in which the items have equal variances and

equal covariances, and then is applied more gen-
erally. Cronbach recommended the formula as an
overall index of internal consistency. If the mean
correlation is high, alpha is high; but alpha may
be high even when items have small intercorrela-
tions-it depends on the spread of the item inter-
correlations and on the number of items. Cronbach

pointed out that a low mean correlation could be
indicative of a nonhomogeneous test and recom-
mended that when the mean correlation is low, only
a study of the correlations among items would in-
dicate whether a test could be broken into more

homogeneous subtests.
Armor (1974) argued that inspecting the inter-

item correlations for patterns of low or negative
correlations was usually not done, and was prob-
ably the most important step since it contained all
information needed to decide on the dimensionality
(also see Mosier, 1936). Armor claimed that by
assessing the number of intercorrelations close to
zero, it was possible to avoid a major pitfall in
establishing unidimensionality. That is, it becomes

possible to assess whether more than one indepen-
dent dimension is measured.

Another problem in using an average inter-item
correlation is that if the distribution of the corre-

lations is skewed, then it is possible for a test to
have a high average inter-item correlation and yet
have a modal inter-item correlation of zero (Mo-
sier, 1940). Clearly, despite its common usage as
an index of unidimensionality, alpha is extremely
suspect.

Indices Based on Principal Components

Defining a unidimensional test in terms of unit
rank leads to certain problems, the most obvious
of which is how to determine statistically when a

sample matrix of inter-item correlations has unit
rank. Some of the estimation issues relate to whether

component or factor analysis should be used, how
to determine the number of factors, the problem
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of communalities, the role of eigenvalues, the choice
of correlations, and the occurrence &reg;f &dquo;difficulty&dquo;
factors.

Since the first principal component explains the
maximum variance, then this variance, usually ex-
pressed as the percentage of total variance, has
been used as an index of unidimensionality. The

implication is that the larger the amount of variance

explained by the first component, the closer the set
of items is to being unidimensional. An obvious

problem is how &dquo;high&dquo; does this variance need to
be before concluding that a test is unidimensional.
Carmines and Zeller (1979), without any rationale,
contended that at least 40% of the total variance

should be accounted for by the first component
before it can be said that a set of items is measuring
a single dimension. Reckase (1979) recommended
that the first component should account for at least
20% of the variance. However, it is not difficult
to invent examples in which a multidimensional set
of items has higher variance on the first component
than does a unidimensional test.

Since many of the components probably have
much error variance and/or are not interpretable,
there have been many attempts to determine how

many components should be &dquo;retained.&dquo; A com-

mon strategy is to retain only those components
with eigenvalues greater than 1.0 (see Kaiser, 1970,
for a justification, though there are many critics of
his argument, e.g., Gorsuch, 1974; Horn, 1965,
1969; Linn, 1968; Tucker, Koopman, & Linn,
1969). The number of eigenvalues greater than 1.0
has been used as an index of unidimensionality.
Lumsden (1957, 1961), without giving reasons,

suggested that the ratio of the first and second ei-

genvalues would give a reasonable index of uni-

dimensionality, though he realized that besides

having no fixed maximum value, little is known

about the extent to which such an index may be

affected by errors of sampling or measurement.
Hutten (1980) also assessed unidimensionality on
the basis of the ratio of the first and second largest
eigenvalues of matrices of tetrachoric correlations.
Without citing evidence, Hutten wrote that the ratio
criterion was &dquo;a procedure which has been used

extensively for this purpose&dquo; and that ’high values

of the ratio indicate unidimensional tests. Low val-

ues suggest multidimensionality&dquo; (p. 15).
Lord (1980) argued that a rough procedure for

determining unidimensionality was the ratio of first
to second eigenvalues and an inspection as to whether
the second eigenvalue is not much larger than any
of the others. A possible index to operationalize
Lord’s criteria could be the difference between the

first and second eigenvalues divided by the differ-
ence between the second and third eigenvalues.
Divgi (1980) argued that this index seemed rea-
sonable because if the first eigenvalue is relatively
larger than the next two largest eigenvalues, then
this index will be large; whereas if the second ei-
genvalue is not small relative to the third, then

regardless of the variance explained by the first

component and despite the number of eigenvalues
greater than or equal to 1.0, this index will be

small. It is not difficult, however, to construct cases
when this index must fail. For example, given four
common factors, if the second and third eigenval-
ues are nearly equal, then the index could be high.
But in a three-factor case, if the difference between

the second and third eigenvalues is large, then the
index would be low. Consequently, the index would
identify the four-factor case as unidimensional, but
not the three-factor case!

The sum of squared residuals, or sum of the
absolute values of the residuals after removing one

component, has been used as an index of unidi-

mensionality. Like many other indices, there is no
established criterion for how small the residuals

should be before concluding that the test is uni-

dimensional. It has been suggested that the absolute
size of the largest residual or the average squared
residual are useful indices of the fit. Thurstone

(1935), Kelley (1935), and Harman (1979) argued
that all residuals should be less than (~ - 1)1/2,
where N is the sample size (i.e. the standard error
of a series of residuals).

Indices Based on Factor Analysis

Factor analysis differs from components analysis
primarily in that it estimates a uniqueness for each
item given a hypothesis as to the number of factors.
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There are other differences between the two meth-

ods and Hattie (1979, 1980) has clearly demon-
strated that contrary conclusions can result from

using the two methods. When using the maximum
likelihood estimation method, assuming normality,
the hypothesis of one common factor can be tested
in large samples by a chi-square test. Using binary
data, it clearly cannot be assumed that there is

multivariate normality. Fuller and Hemmerle ( 1966)
assessed the effects on chi-square when the as-

sumption of normality was violated. They used
uniform, normal, truncated normal, Student’s t,

triangular, and bimodal distributions in a monte
carlo study. They concluded that the chi-square
was relatively insensitive to departures from nor-

mality. The Fuller and Hemmerle study was con-
fined to sample sizes of 200, five items, and two

factors, and it is not clear what effect departure
from normality have on the chi-square for other
sets of parameters, particularly when binary items
are used.

It should be noted, however, that the chi-square
from the maximum likelihood method is propor-
tional to the negative logarithm of the determinant
of the residual co variance matrix, and is therefore
one reasonable measure of the nearness of the re-

sidual co variance matrix to a diagonal matrix. This

property is independent of distributional assump-
tions and justifies for the present purpose the use
of the chi-square applied to the matrix of tetra-
chorics from binary data. (However, this does not

justify use of the probability table for chi-square.)
Further, it is possible to investigate whether two

factors provide better fit than one factor by the
difference in chi-squares. Joreskog (1978) conjec-
tured that the chi-squares from each hypothesis (for
one factor and for two factors) are independently
distributed as a chi-square with (c~f2 - 4~) degrees
of freedom. Given that many of the chi-square val-
ues typically reported are in the tails of the chi-

square distribution, it is not clear what effect this

has on testing the difference between two chi-square
values. Given the important effect of sample size
in determining the chi-square values in factor anal-

ysis, the chi-square values are commonly very large
relative to degrees of freedom. Consequently, even

trivial departures lead to rejection of the hypoth-
esis. J6reskog and S6rbom (1981) suggested that
the chi-square measures are better thought of as

goodness-of-fit measures rather than as test statis-
tics.

Instead of using chi-squares, R4cDonaId (1982)
has recommended that the residual covariance ma-

trix supplies a nonstatistical but very reasonable
basis for judging the extent of the misfit of the
model of one factor to the data. Further, h4cDonald

argued that in practice the residuals may be more

important than the test of significance for the hy-
pothesis that one factor fits the data, since the hy-
pothesis &dquo;like all restrictive hypotheses, is surely
false and will be proved so by a significant chi-

square if only the sample size is made sufficiently
large. If the residuals are small the fit of the hy-
pothesis can still be judged to be ’satisfactory’ 

&dquo;

(p. 385). This raises the issue that it is probably
more meaningful to ask the degree to which a set
of items departs from unidimensionality than to ask
whether a set of items is unidimensional.

Tucker and Lewis (1973) provided what they
called a &dquo;goodness-of-fit&dquo; test based on the ratio
of the amount of variance associated with one fac-

tor to total test variance. The suggestion is that for
the one-factor case this &dquo;reliability&dquo; coefficient

may be interpreted as indicating how well a factor
model with one common factor represents the co-
variances among the attributes for a population of
objects. Lack of fit would indicate that the relations

among the attributes are more complex than can
be represented by one common factor. The sam-
pling distribution of the Tucker-Lewis coefficient
is not known, and there is no value suggested from
which to conclude that a set of items is unidimen-

sional. It is also not clear why the authors did not
condone using the statistic to indicate how well the

hypothesized number of factors explains the inter-

relationships, yet they did claim that it summarizes
the quality of interrelationships (see Tucker & l~~ris9
1973, p. 9).

Maximizing Reliability

An index based on the largest eigenvalue (X,),
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that has been often rediscovered is maximized-al-

pha (Armor, 1974; Lord, 1958):

maximized-alpha = [nl(n-1)](1 -1/A,) . . (3)

Armor compared maximized-alpha and alpha for
the single factor case and concluded that maxi-

mized-alpha and alpha differ in a substantial way
only when some items have consistently lower cor-
relations with all the remaining items in a set. This
led Armor to propose what he termed &dquo;factor scal-

ing,&dquo; which involves dropping items that have lower
factor loadings. He suggested dropping any item
with factor loadings less than .3. Then, since alpha
and maximized-alpha do not differ by much when

only high loadings are retained, Armor proposed
that rather than bothering to get the set of weights
that would lead to maximized-alpha, the test de-

veloper could use unit weights (which leads to al-

pha). Armor also suggested that maximized-alpha
could be used to discover unidimensionality, though
he did not specify how this was done. The obvious

interpretation of Armor’s remarks is that a large
maximized-alpha is an indication of a uni-

dimensional test, whereas a low value indicates a

multidimensional test. Armor argued that maxi-

mized-alpha was better than alpha, but in his ex-

amples, the differences between these two coef-
ficients were .05, .02, .002, and 0.0, none of which

justifies his claim of &dquo;substantial&dquo; differences.

Omega

McDonald (1970) and Heise and Bohmstedt

(1970) independently introduced another coeffi-

cient that has been used by other researchers as an
index of unidimensionality. This index, called theta

by McDonald and omega by Heise and Bohmstedt,
is based on the factor analysis model and is a lower
bound to reliability, with equality only when the

specificities are all zero. Omega is a function of
the item specificities and these can be satisfactorily
estimated only by fitting the common factor model

efficiently. Approximations from components
analysis would generally yield underestimates of
the uniquenesses (and therefore of the specificities)
and thus lead to spuriously high values of omega.

Should Factor Analysis
Be Used on Binary I~e s?

Many of the tests for which indices of unidi-

mensionality have been derived are scored correct
or incorrect. A problem in using the usual factor
model on binary-scored items is the presence of

&dquo;difficulty factors.&dquo; This problem has a history
dating back to Spearman (1927) and Hertzman
(1936), and often is cited as a reason against per-
forming factor analysis on dichotomous data (Gor-
such, 1974). Guilford (1941), in a factor analysis
of the Seashore Test of Pitch Discrimination, ob-
tained a factor that was related to the difficulty of
the items. That is, the factor loadings showed a

tendency to change as a linear function of item

difficulty. Three possibilities were suggested to ac-
count for the presence of the difficulty factor: (1) it

may have something to do with the choice of a
measure of association; (2) it may be that difficulty
factors are related to distinct human abilities; or

(3) it may have something to do with chance or

guessing. From each account various indices of
unidimensionality have been proposed.

Choice of a measure of association. Wherry
and Gaylord (1944) argued that difficulty factors
were obtained because phi and not tetrachoric cor-
relations were used. This was, they argued, be-
cause tetrachorics would be 1.0 in cases of items

measuring the same ability regardless of differ-
ences in difficulty, whereas the sizes of phis are
contingent upon difficulty. They contended that if

difficulty factors were found even when tetrachor-
ics were used (as in Guilford’s, 1941, case), then
this must be considered disproof of the unidimen-
sional claim. Empirically, the sample matrix of
tetrachorics is often not positive-definite (i.e., non-
Gramian). This may be a problem of using (perhaps
without justification) a maximum likelihood com-

puter program as opposed to least squares methods.
Further, Lord and Novick (1968) have contended
that tetrachorics cannot be expected to have just
one common factor except under certain normality
assumptions, whereas such distributional consid-
erations are irrelevant for dimensionality defined
in terms of latent traits.
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Carroll (1945) has further demonstrated that te-
trachorics can be affected by guessing, and that
the values of tetrachorics tend to decrease as the

items become less similar in difficulty. Lord (1980)
was emphatic that tetrachorics should not be used
when there was guessing.

Gourlay (1951) was aware of the effect of guess-
ing on tetrachorics yet argued that a more funda-
mental problem was that the test items often vio-
lated the assumption of normality. This hint led to
an important discovery by Gibson (1959, 1960)
who recognized that difficulty factors were caused

by nonlinear regressions of tests on factors. How-
ever, a general treatment of nonlinearity was not

given until McDonald’s series of publications
(1962a, 1965a, 1965b, 1967a, 1967b, 1967c, 1976).

Nonlinear factor analysis. l~cl~onald (1965a,
1967c) used a form of nonlinear factor analysis to
derive a theory for difficulty factors. Using a factor

analysis of subtests of Raven’s Progressive Mat-
rices, McDonald demonstrated that a difficulty fac-
tor emerged in that the loadings of the subtests
were highly correlated with the subtest means. He
showed that this factor corresponded to the quad-
ratic term in a single-factor polynomial model, and
hence argued that the difficulty factor corresponded
to variations in the curvatures of the regressions of
the subtests on a single factor. A major conse-
quence of using linear factor analysis on binary
items is to distort the loadings of the very easy and

very difficult items and to make it appear that such

items do not measure the same underlying dimen-
sion as the other items.

McDonald and Ahlawat (1974), in a monte carlo

study, convincingly demonstrated (1) that if the

regressions of the items on the latent traits are lin-
ear, there are no spurious factors; (2) that a factor
whose loadings are correlated with difficulty need
not be spurious; (3) that binary variables whose

regressions on the latent trait are quadratic curves
may yield &dquo;curvature&dquo; factors, but there is no nec-
essary connection between such &dquo;curvature&dquo; ef-

fects and item difficulty; and (4) that binary vari-
ables that conform to the normal ogive model yield,
in principle, a series of factors due to departure
from a linear model. The conclusion was clear:

The notion of &dquo;factors due to difficulty&dquo; should
be dropped altogether and could reasonably be re-

placed by &dquo;factors due to nonlinearity.&dquo;
McDonald (1979) described a method of non-

linear factor analysis using a fixed factor score model
which, unlike the earlier random model (Mc-
Donald, 1967c), obtains estimates of the parame-
ters of the model by minimizing a loss of function
based either on a likelihood ratio or on a least

squares function. Etezadi and McDonald (1983)
have investigated numerical methods for the mul-
tifactor cubic case of this method with first-order

interactions.

Although nonlinear factor analysis is concep-

tually very appealing for attempting to determine
dimensionality, it has been used, unfortunately,
relatively infrequently. Other than work done by
McDonald (1967c), McDonald and Ahlawat (1974),
and Etezadi (1981), it was possible to find only
one use of the method. Lam (1980) found that one
factor with a linear and a quadratic term provided
much better fit to Raven’s Progressive Matrices
than a one- or two-factor linear model. If nonlin-

earities are common when dealing with binary data,
then a nonlinear factor analysis seems necessary.

Moreover, if a nonlinear factor analysis speci-
fying a one-factor cubic provides good fit to a set
of data, then the rank of the inter-item correlation

matrix is three. Hence, the claim that unit rank is
a necessary condition for unidimensionality is in-
correct.

Communality Indices

Green et al. (1977) have suggested two indices
based on communalities. The first they called u,

where h2 is a communality from a principal com-

ponents analysis. Unlike many other proposers of
indices, Green et al. did offer a rationale for these
indices. When there is a single common factor among
the items, the loadings on this factor equal the

square roots of their respective communalities. Also,
the correlation between any two items equals the
product of their respective factor loadings or the
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square root of the product of the respective com-
munalities. For any particular pair of items a and

j, Green et al. suggested that the inequality Iriil <

(h? hJ)’~2 holds. Equality is attained for items oc-
cupying a single common factor space and the in-

equality is strict for items occupying more than one
dimension. When there is one factor, u equals 1;
when there are more factors, u takes on values less
than 1 and has a lower limit somewhere above 0.

Green et al. (1977) calculated the value of u in
a monte carlo study and found u to be relatively
independent of both the number of items and the
communality of the items. Although u did increase
as the number of factors loading on an item in-

creased, Green et al. reported that u did not increase
as much as alpha. From an inspection of their sum-
mary statistics it appears that, contrary to the claim
of Green et al., u is affected as much as alpha,
though the values are much lower than alpha. Fur-
ther, although u does seem to distinguish between
a one-factor solution and a more-than-one-factor

solution, it does not relate in any systematic way
to the number of extra factors involved.

A serious problem with u is that it requires
knowledge of the communalities of the items, which

depends on knowledge of the correct dimensional-

ity. In the simulation of Green et al. (1977), they
provided the communalities, but in practice these
are not known and r~ can be (and nearly always is)
larger than 1, as Ir ijl > (h? h~)1I2 (because the com-
munalities are usually underestimated). The use-
fulness of r~ is therefore most questionable.

Green et al. (1977) suggested a further index.
Given that ~° is affected by the communalities of
the items, one aim would be to counter this effect.
If the correlations are first corrected for commun-

ality by dividing them by the product of the square
roots of their respective communalities in the same
manner as a correction for attenuation would be

calculated, and the resulting values averaged, then
an index not affected by the communalities is ob-
tained. Green et al. contended that such an index

also takes on values 0 to 1, with 1 indicating uni-
dimensionality. This index also depends on knowl-

edge of the communalities and is affected by the
number of factors determining a variable.

Second-Order Factor Analysis

Lumsden (1961 ) claimed that it is possible that
variance in important group factors may be ob-
scured if the group factors are each measured by
only a single item in the set that was tested for

unidimensionality. He gave as an example four
items whose ideal factor constitutions were:

where G is a general factor, S a specific factor,
and E is error. The correlation between these items

will be determined by the product of the G load-

ings, and Lumsden stated that the remainder of the
variance would be treated as error. He then wrote

that the &dquo;matrix of item intercorrelations for these

four items will be of unit rank. A verbal analogy,
a number series, a matrix completion and a me-
chanical problem are not, however, measuring the
same thing and unit rank is not, therefore, a suf-
ficient condition &reg;f unidirr~ensi&reg;r~ality’9 (1957, pp.
107-108).

It can be argued that these items may measure
a unidimensional trait (e.g., intelligence). It is quite
reasonable to find a second-order factor underlying
a set of correlations between first-order factors and

then make claims regarding unidimensionality. Hattie

(1981), for example, used a second-order unre-
stricted maximum likelihood factor analysis to in-

vestigate the correlations between four primary fac-
tors he identified (and cross-validated) on the

Personal Orientation Inventory (Shostrom, 1972).
The hypothesis of one second-order factor could
not be rejected in 9 of the 11 data sets and Hattie
concluded that &dquo;It thus seems that there is a uni-

dimensional construct underlying the major factors
of the POI&dquo; (p. ~0), which could be identified as
self-actualization. Any method for assessing di-

mensionality does not necessarily identify the na-
ture of the unidimensional set. The naming of the
dimension is an independent task.
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Indices Based on Latent Trait Models

Before outlining indices based on latent trait

models, it is necessary to present some basic the-

ory. This basic theory also provides a clear defi-
nition for the concept of unidimensionality.
A theory of latent traits is based on the notion

that responses to items can be accounted for, to a
substantial degree, by defining k characteristics of
the examinees called latent traits, which can be
denoted by 0 = (01, 82, ..., 0,,). The vector 0 is
a k-tuple that is interpreted geometrically as a point
in k-dimensional space. The dimensionality of the
latent space is one in the special case of a unidi-
mensional test. The regression of item score on 0
is called the item characteristic function. For a di-

chotomous item, the item characteristic function is

the probability P(8), of a correct response to the
item. For a one-dimensional case a common as-

sumption is that this probability can be represented
by a three-parameter logistic function:

or alternatively by a normal ogive function

The difference between Equations 5 and 6 is less
than .01 for every set of parameter values when d

is chosen as 1.7 (Haley, 1952).
The parameter in Equations 5 and 6 represents

the discriminating power of the item, the degree
to which the item response varies with 0 level.

Parameter b is a location or difficulty parameter
and determines the position of the item character-
istic curve along the 0 scale. The parameter c is
the height of the lower asymptote, the probability
that a person infinitely low on 0 will answer the
item correctly. It is called the guessing or pseudo-
chance level. If an item cannot be answered cor-

rectly by guessing, then c = 0. The latent trait 0

provides the scale on which all item characteristic
curves have some specified mathematical form, for

example, the logistic or normal ogive. A joint un-

deridentifiability of 0, c~, b, and c, is removed by
choosing an origin and unit for 0.

The most critical and fundamental assumption
of the latent trait models is that of local independ-
ence (Anderson, 1959; McDonald, 1962b, 1981).
Lord (1953) has stated that this is almost indis-

pensable for any theory of measurement. The prin-
ciple of local independence requires that any two
items be uncorrelated when 0 is fixed and does not

require that items be uncorrelated over groups in
which 0 varies. Lord and Novick (1968) gave the
definition of local independence more substantive
meaning by writing that

an individual’s performance depends on a sin-
gle underlying trait if, given his value on that
trait, nothing further can be learned from him
that can contribute to the explanation of his

performance. The proposition is that the latent
trait is the only important factor and, once a

persons’ value on the trait is determined, the
behavior is random, in the sense of statistical

independence. (p. 538)
McDonald (1962b) argued that the statement of

the principle of local independence contained the
mathematical definition of latent traits. That is, &reg;,,
I 6~ are latent traits, if and only if they are

quantities characterizing examinees such that, in a

subpopulation in which they are fixed, the scores
of the examinees are mutually statistically inde-

pendent. Thus, a latent trait can be interpreted as
a quantity that the items measure in common, since
it serves to explain all mutual statistical depend-
encies among the items. Since it is possible for two
items to be uncorrelated and yet not be entirely
statistically independent, the principle is more

stringent than the factor analytic principle that their
residuals be uncorrelated. If the principle of local

independence is rejected in favor of some less re-
strictive principle then it is not possible to retain
the definition of latent traits, since it is by that

principle that latent traits are defined. McDonald

pointed out, however, that it is possible to reject
or modify assumptions as to the number and dis-
tribution of the latent traits and the form of the

regression function (e.g., make it nonlinear instead
of linear), without changing the definition of latent
traits.

It is not correct to claim that the principle of
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local independence is the same as the assumption
of unidimensionality (as have Hambleton et a].,
1978, p. 487; Gustafsson, 1980, p. 218). The prin-
ciple of local independence holds (by virtue of the
above argument), for 1, 2, ... , k latent traits. It

even holds for the case of zero latent traits, that

is, for a set of ~a items that are mutually statistically
independent. It holds for two latent traits, yet such
a case would not be considered unidimensional,
that is, measuring the same construct. Unidimen-

can be rigorously defined as the existence

of one latent trait underlying the set of items.
At this point the working definition of unidi-

mensionality presented in the opening paragraph
can be clarified. It was claimed that a set of items

can be said to be unidimensional when it is possible
to find a vector of values 4) = (~,) such that the

probability of correctly answering an item is

~tg 
= fg(~;) and local independence holds for each

value of 4). This definition is not equating unidi-

mensionality with local independence, because it

can further require that it is necessary to condition

only on one 0 dimension and that the probabilities
~~~ can be expressed in terms of only one 0 di-

mension.

Lord (1953) in an early specification of the as-

sumption (his restriction IV) suggested a heuristic
for assessing whether the assumption of local in-

dependence is met in a set of data. First, take all
examinees at a given score level and apply a chi-

square test (or an exact test) to determine if their

responses to any two items are independent. Then,
because the distribution of combined chi-squares
is ordinarily also a chi-square (with df = df, +
dj2 + ... + df&dquo; degrees of freedom), the resulting
combined chi-square may be tested for signifi-
cance. If the combined chi-square is significant,
then Lord argued it must be considered that the test
is not unidimensional. When assessing how this
statistic behaved (for use in Hattie, 1984a), it soon
became obvious that it does not matter whether a

chi-square or an exact test is used, since in both
cases the probability is nearly always close to 1.0.
McDonald (1981) outlined ways in which it is

possible to weaken the strong principle, in his ter-
minology, of local independence. The strong prin-
ciple implies that not only are the partial correla-

tions of the test items zero when the latent traits

(which are the same as factor scores) are partialled
out, but also the distinct items are then mutually
statistically independent and their higher joint mo-
ments are products of their univariate moments. A
weaker form, commonly used, is to ignore mo-
ments beyond the second order and test the di-

mensionality of test scores by assessing whether
the residual covariances are zero (see also Lord &

Novick, 1968, pp. 225, 544-545). Under the as-

sumption of multivariate normality, the weaker form
of the principle implies the strong form, as well as

conversely. McDonald (1979, 1981) argued that
this weakening of the principle does not create any
important change in anything that can be said about
the latent traits, though strictly it weakens their

definition.

Indices Based On the

One-Parameter Model

Using a combination of difficulty, discrimina-
tion, and guessing, various latent trait models have
been proposed. The most used and the most re-
searched model involves only the estimation of the

difficulty parameters. It is often called the Rasch

model after the pioneering work of Rasch (1960,
1961, 1966a, 1966b, 1968, 1977). It is assumed

(1) that there is no guessing, (2) that the discrim-
ination parameter a is constant, and (3) that the

principle of local independence applies.
One of the major advantages of the Rasch model

often cited is that there are many indices of how

adequately the data &dquo;fits&dquo; the model. In one of the

earliest statements, Wright and Panchapakesan
(1969) contended that &dquo;if a given set of items fit

the (Rasch) model this is evidence that they refer
to a unidimensional ability, that they form a con-
formable set&dquo; (p. 25). These sentiments have often
been requoted and an earnest effort made to find
and delete misfitting items and people. Rentz and
Rentz (1979) stated that &dquo;the most direct test of

the unidimensionality assumption is the test of fit
to the model that is part of the calibration process&dquo;
(p. 5).
From the one-parameter model there has been a

vast array of indices suggested (e.g.9 see Table 2),
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but they appear to lack theoretical bases, little is
known of their sampling distributions, and they
seem to be ad hoc attempts to understand the be-

havior of items. Their developers have paid insuf-
ficient attention to helping psychometricians un-
derstand the assumptions, the methods of calculation,
and the justification for them (see Rogers, 1984
and below, for a detailed account of the derivations
and behavior of these indices). One of the obvious

problems of many of the tests of fit is that with

large samples a chi-square is almost certain to be

significant. For this reason, and also because the

distribution of the indices is only an approximation
to chi-square, it is not clear how valid the methods
are for evaluating items (see George, 1979, for a
critical evaluation of this approximation). The tests
are motivated primarily by a desire to assess the
various assumptions, particularly the unidimen-

sionality assumption.
To illustrate the various &dquo;fit statistics,&dquo; consider

the following indices that are typically used. The
Between-Fit t has been called the &dquo;most natural&dquo;

in that it &dquo;is derived directly from the ’sample-
free’ requirements of the model&dquo; (Wright, Mead,

Table 2

Some Fit Statistics Based On the One-Parameter IR’T
Model Commonly Used to Detect Departures

From Assumptions (Including Unidimensionality)

Xij = observed response of person i to item j
Pij = probability of a correct response for person i to item j, obtained

from the model equation using estimates of the person and item

parameters
N = number of persons
rn = number of score groups (usually 6)
Oij = observed proportion of examinees in group ~c who answer correctly

item j
Eii = expected proportion of examinees in group rrc who answer correctly

item j
nri 

= number of correct responses at each score level K for each item j
Enrj = expected number of correct responses at each score level k for each

item j

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



154

& Bell, 1979, p. 10). The statistic, however, is

sample-dependent. The sample is divided into

subgroups based on score level according to esti-
mated 0, and then, the observed proportion of suc-
cesses on each item in each estimated 0 subgroup
is compared with that predicted from the estimates
of the item difficulties given by the total sample.
Wright et al. derived a standardized mean-square
statistic that has an expected value of 0 and variance
of 1. A more general statistic, a Total-Fit t, eval-
uates the general agreement between the variable
defined by the item and the variable defined by all
other items over the whole sample. Again, the ex-

pected value is 0 and variance is 1.

Thus, the Total-Fit t summarizes overall item fit
from person to person and the Between-Fit t fo-

cuses on variations in item responses between the

various subgroups. Wright et al. (1979) noted that

any t value than 1.5 to be examined
for response irregularities and that values greater
than 2.0 &dquo;are noteworthy’ 9 (p. 13). They also rec-
ommended that a &dquo;within-group&dquo; mean-square be
calculated that summarizes the degree of misfit re-
maining within ability groups after the between

group misfit has been removed from the total.

There have been critics of the claims made by
the Rasch proponents. Hambleton (1969) included
five items in 1 ~-, 30-, ~nd 45-item simulations that
were constructed to measure a second ability or-

thogonal to the first ability. (He did not specify
how these items were generated.) In the simula-
tions the items were constrained to have equal dis-
criminations and no guessing. The main aim was
to investigate whether the Rasch model was robust
with respect to this kind of violation of its as-

sumptions. Hambleton found that the model did
not provide a good fit, and further that the fit for
the other items was also affected. He wrote that

in the simulation where the proportion of items

measuring a second ability was 33 (5 out of
15), the attempt to fit the data failed so com-

pletely that nearly every item was rejected by
the model. Since, 67% of the simulated items
could be regarded as having been simulated
to satisfy the assumptions of the model, this,
result suggests that rejecting items from a test

on the basis of the chi-square test of the good-
ness of fit of the items to the model is, by
itself, a very hazardous way to proceed. (p.
101)

Gustafsson and Lindblad (1978) found that tests
of fit, like those used by Wright et al. (1979), did
not lead to rejection of the one-parameter model
even for data generated according to an orthogonal
two-factor model. As an alternative, Gustafsson

(1980) proposed tests of fit based on the person
characteristic curve rather than the item character-

istic curve, but he pointed out that prior to using
these tests &dquo;it does seem necessary to use factor

analysis to obtain information about the dimen-
sionality of the observations&dquo; (p. 217).
Van den Wollenberg (1982a, 1982b) has dem-

onstrated that many of the commonly used indices
of unidimensionality based on the Rasch model are
insensitive to violations of the unidimensionality
axiom. Instead he proposed two new indices, one
of which (his <3)) is easy to compute but seems to
lack sensitivity, and the other (Q,) requires much

computer time to calculate but does seem to be
sensitive to violations of unidimensionality under
some conditions. Van den Wollenberg discussed
the conditions when Q2 seems to be useful, and he

promised more systematic inquiries Of 62. Q2 is,
however, more a global test of the fit of the one-

parameter model rather than a specific index of

unidimensionality. If Q2 is large relative to its ex-

pected value (yet to be accurately determined), it

could be because of violations of other assumptions
such as equal discriminations and/or no guessing.

Rogers (1984) investigated the performance of
the Between-t and Total-t for persons and items

and the Mean-Square Residual for persons and items,
along with many other one-parameter indices to
detect unidimensionality (including all those listed
in Table 2). She varied test length, sample size,
dimensionality, discrimination, and guessing. Rogers
used the programs BICAL (Wright et al. 1979) and
NOHARM (a method that fits the unidimensional
and multidimensional normal ogive one-, two-, and

three-parameter models by finding the best ap-

proximation to a normal ogive in terms of the Her-
mite-Tchebycheff polynomial series, using har-
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monic analysis; see Fraser, 1981; McD&reg;a~~ld, 1982,
for details). When either BICAL or NOHARM one-

parameter methods were used, all indices were in-
sensitive to multidimensionality, except for Total-
t for persons and Mean-Square for items when the
dimensions were close to orthogonal. Rogers con-
cluded that the inability of all indices &dquo;to detect

multidimensionality under the one-parameter model
restricts their use to conditions where unidimen-

sionality is assured&dquo; (p. 92).

Indices Based On the

Two-Parameter 1~~~~~

The two-parameter model allows for estimation

of difficulty and discrimination and assumes zero

guessing. Bock and Lieberman (1970) detailed a
method of estimating these two parameters by con-

sidering the pattern of a person’s item responses
across all items in the test. When compared to the
more usual method of factoring tetrachoric corre-
lations, Bock and Lieberman reported trivial dif-
ferences in the estimates of item difficulties and

discrimination, but there were differences in the
assessment of dimensionality. Using two sets of
data, they reported a sharp break between the size
of the first eigenvalue and that of the remaining
eigenvalues, and they concluded that’ ’these results
would ordinarily be taken to support the assump-
tion of unidimensionality&dquo; (p. 191). The usual chi-

square tests of one factor from a maximum like-

lihood factor analysis were 25.88 and 53.74, each
with 5 degrees of freedom for the two data sets

employed.
Clearly in both cases, a one-factor solution must

be rejected. The chi-square approximations based
on Bock and Lieberman’s (1970) two-parameter
solution were 21.28 and 31.59, each based on 21

degrees of freedom. In these cases there is evidence
for a unidimensional solution. Bock and Lieberman

concluded that the &dquo;test of unidimensionality pro-
vided by maximum likelihood factor analysis can-
not be relied upon when tetrachoric correlations are

used&dquo; instead of their estimates (p. 191).
A major obstacle to using the Bock and Lieber-

man (1970) method is a practical one. The method

requires the use of 2n possible response patterns

across all items which, for example, would require
32,768 possible patterns for a 15-item test, and
more than 107 million response patterns for a 30-
item test.

Nishisato (1966, 1970a, 1970b, 1971; see also

Lim, 1974; Svoboda, 1972) and Christoffersson

(1975) demonstrated that very little efficiency in
estimation is lost using only information from the
first- and second-order joint probabilities of binary-
scored items compared to using all possible 2&dquo;

proportions, as in the Bock and Lieberman (1970)
approach. Muth6n (1978) developed an estimation
method that was computationally faster than Chris-
toffersson’s. These methods solve many of the

computation problems, and the resulting indices of
fit, after fitting one factor (based on the size of
residuals), are most promising in that they are based
on sound theoretical considerations.

Bock and Aitkin (1981) pointed out the practical
limitations of the Bock and Lieberman (1970) work,
but stated that from a statistical point of view the
Christoffersson (1975) and Muthen (1978) method
6 ‘is also objectionable because it assumes that the
form of the distribution of ability effectively sam-

pled is known in advance. Since item calibration
studies are typically carried out on arbitrarily se-
lected samples, it is difficult to specify a priori the
distribution of ability in the population effectively
sampled&dquo; (p. 444). Instead, Bock and Aitkin pro-
posed to estimate the item parameters by integrat-
ing over the empirical distribution. The Bock and
Aitkin method was applied to the same data as was
the Bock and Lieberman, Christoffersson, and Mu-
th6n methods (see Bock & Aitkin, 1981). The dif-
ferences in the estimates were very small. It is also

debatable whether the observed distribution of abil-

ity, with the usual sampling errors and errors of
measurement, is the best distribution to work from.

The fit statistics listed in Table 2 can be made

applicable to the two- and three-parameter models.

Rogers (1984) derived an appropriate formula for
each index and assessed their sensitivity to the same
factors listed above as for the one-parameter model.
For all indices there was an increased sensitivity
to multidimensionality as more parameters were
fitted. It appears that the restrictiveness and con-
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sequent &dquo;superficiality&dquo; of the one-parameter model

&dquo;may allow violations of the unidimensionality as-

sumption to go undetected, while the greater detail
and accuracy of prediction provided by the two-

parameter model effectively exposes its pres-
ence.... The three-parameter model, at least as
fitted under NOHARM, appears to offer little im-

provement on the two-parameter model&dquo; in as-

sessing unidimensionality (Rogers, 1984, pp. 93-

94).

Other Approaches

Hulin, Drasgow, and Parsons (1983) suggested
a procedure that combined latent trait methods and

factoring tetrachoric correlations. First, they obtain
the eigenvalues of the matrix of item tetrachorics

(replacing noncomputable tetrachorics by an ad hoc

approximation; see Hulin, Drasgow, & Parsons,

pp. 248-249). Using a two- or three-parameter
estimation program, they then estimate the item

parameters from this correlation matrix. Next, they
generate a truly unidimensional item pool by using
the estimated item parameters as the parameters of
the simulated items (having the same number of
simulated examinees and items as the real data set).
The eigenvalues of the matrix of tetrachoric cor-
relations obtained from this synthetic data set are
then computed. Finally, and most importantly, the
second eigenvalues of the real and synthetic data
sets are compared. If the difference is large, this
suggests a nonunidimensional set. Suggested mag-
nitudes of differences are provided in Drasgow and
Lissak (1983). The guidelines are for some very
limited cases. If further simulations support the

method, it may prove very useful.

Rosenbaum (1984) presented a theorem that seems
critical in assessing unidimensionality. This theo-
rem is based on monotone nondecreasing functions
of latent variables. These nondecreasing functions
include most applications, such as total number
correct and positively weighted scores. That is, any
score which, if an additional correct response is

added, does not decrease the previous sum of items.
Rosenbaum’s theorem is:

Let (Y, Z) be a partition of the item responses
in X into two nonoverlapping groups of re-

sponses. Then local independence implies that
for every function h(Z), the responses in Y
are associated given h(Z) = a for all a; that

is, for all nondecreasing functions g)(Y) and
g2(Y)5 cov lgi(Y)5 g2(~)I~(~) _ a] ~ 0. (p.
427)

Rosenbaum provided many illustrations of ap-
plications of his theorem. For example, from a test
of 120 multiple-choice items, the responses from
two items were assessed using the above theorem.
The 15,982 candidates were divided into 119

subgroups based on their total score on the re-

maining 118 items. By the above theorem, local

independence implies a nonnegative population
correlation (e.g., using the Goodman-Kruskal tau;
Goodman & Kruskal, 1979) or equivalently, a pop-
ulation odds ratio of at least 1 (e.g., using the
Mantel-Haenszel ratio; Mantel & Haenszel, 1959)
within each class.

Given the sound theoretical bases of Rosen-

baum’s (1984) procedure, it is expected that his

procedure will become widely used. It must be

noted, however, that Rosenbaum’s theorem relates
to assessing the assumption of local independence,
which is not necessarily the same as the assumption
of unidimensionality (see above). Other problems
of the method relate to the choice of sample statistic

(e.g., the Goodman-Kruskal tau tends to overes-
timate a relationship; see Reynolds, 1977, pp. 74-
75), the existence of not too many cells with small

frequencies, the adequacy of the sample, and the
use of multiple significance tests.

Generally, it seems that though latent trait theory
provides a precise definition of unidimensionality,
there is still debate as to the efficacy of the many
proposed methods for determining decision criteria
for unidimensionality.

Conclusions and Recommendations

At the outset it was argued that unidimension-
ality was a critical and basic assumption of mea-
surement theory. There have been two major issues
that have pervaded this review. First, there is a

paucity of understanding as to the meaning of the
term unidimensionality and how it is distinguished
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from related terms. Second, there are too many
indices that have been developed on an ad hoc basis
with little reference to their rationale or behavior

and little, if any, comparison with other indices.

Definition

A major problem in assessing indices of unidi-

mensionality has been that unidimensionality has
been confused and used interchangeably with other
terms such as reliability, internal consistency, and

homogeneity. Consequently, an index is developed
from some estimate of reliability, and then it is

claimed that the index relates to unidimensionality.
It is important that the meaning of these terms is
clarified.

Reliability is classically defined as the ratio of
true score variance to observed score variance. There

are various methods for estimating reliability, such
as test-retest, parallel forms, and split-half meth-
ods. The internal consistency notion always in-

volves an internal analysis of the variances and
covariances of the test items and depends on only
one test administration. Methods of internal con-

sistency at least include split-half coefficients, al-

pha, and I~R-21. Yet, there are methods that satisfy
these criteria that have not been classified as in-

teralal consistency measures (e.g., omega). It seems
that internal consistency is defined primarily in terms
of certain methods that have been used to index it.

Homogeneity has been used in two major ways.
Lord and Novick (1968) and McDonald ( 19~ 1 ), for

example, used homogeneity as a synonym for uni-

dimensionality, whereas others have used it spe-

cifically to refer to the similarity of the item inter-
correlations. In the latter case a perfectly homo-

geneous test is one in which all the items

intercorrelate equally. That is, the items all mea-
sure the construct or constructs equally. Thus,

homogeneity is often a desirable quality, but there
have been authors who have advocated that test

constructors should not aim for high homogeneity.
Cattell (1964, 1978; Cattell & Tsujioka, 1964) has
been a principal adversary of aiming for high hom-

ogeneity, in this latter sense. He has noted that

many authors desire high homogeneity and he com-
mented that aiming for high homogeneity leads to
scales in which the same question is rephrased a
dozen different ways. He argued that a test that
includes many items that are almost repetitions of
each other can cause an essentially &dquo;narrow spe-
cific&dquo; to be blown up into a &dquo;bloated specific&dquo; or
pseudo-general factor. In Cattell and Tsujioka’s
colorful words:

the bloated specific will then ’sit on top’ of
the true general personality factor as firmly as
a barnacle on a rock and its false variance will

be inextricably included in every attempted
prediction from the general personality factor.
Moreover, the ’crime’ will be as hard to de-

tect, without a skillful factor analysis, as it is
insidious in its effects, for the intense pursuit
of homogeneity has ended in a systematically
biased measure. (p. 8)

Internal consistency relates more to a set of

methods and seems of limited usefulness. Homo-

geneity has been used in two senses, one as a syn-
onym for unidimensionality and the other as a mea-
sure of equality of item intercorrelations. In the
first sense, the term homogeneity is redundant and
may be confusing, and in the second sense it may
not be desirable. Whether internal consistency and

homogeneity are meaningful terms in describing
attributes of items and/or tests remains questiona-
ble.

Unidimensionality can be defined as the exis-
tence of one latent trait underlying the data. This
definition is based on latent trait theory and is a

specific instance of the principle of local inde-

pendence, though it is not synonymous with it. As
a consequence of this definition, it is probable that
indices based on the goodness-of-fit of data to a

comprehensive latent trait model may be effective
indices of unidimensionality. The problems of such
indices relate to ensuring that the correct latent trait
model is chosen and that the parameters of the

model are satisfactorily estimated. Rosenbaum’s
(1984) theorem is also worth further investigation
because it is so soundly based. Thus, a unidimen-
sional test is one that has one latent trait underlying
the data, and such a test may be or may not nec-
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essarily be reliable, internally consistent, or ho-
mogeneous.

The Indices

Altogether, over 30 indices of
have been identified and these were grouped into
five sections: methods based on (1) answer pat-
te~-cls, (2) reliability, (3) principal components, (4)
factor analysis, and (5) latent traits. Some indices
must fail (e.g., ratio of eigenvalues), some are

clearly suspect (e.g., alpha), others seem more ap-
propriate in specific conditions (e.g., fit statistics

from factor analyzing tetrachoric correlations), while
others look promising (e.g., fit statistics from the

Christoffersson, 1975, and Muthén, 1978, meth-

ods). The major reasons for many indices not being
adequate indices of unidimensionality are that unit
rank is desired and/or they are based on linear
models.

It has been argued above that if a one-factor

cubic provides good fit (from a nonlinear factor

analysis), then the rank of the inter-item correlation
or covariance matrix is three. The claim that unit

rank is a necessary condition for unidimensionality
is incorrect. Of the numerous methods based on

unit rank, alpha has been used most often as an
index of unidimensionality. There is, no
systematic relationship between the rank of a set
of variables and how far alpha is below the true

reliability. Further, alpha can be high even if there
is no general factor, since (1) it is influenced by
the number of items and parallel repetitions of items,
(2) it increases as the number of factors pertaining
to each item increases, and (3) it decreases mod-

erately as the item comnunalities increase. It seems
that modifications of alpha also suffer the same
problems. Despite the common use of alpha as an
index of unidimensionality, it does not seem to be

justified.
Beside the nonnecessity of unit rank, a further

problem of many procedures is that a linear model
cannot be assumed. When items are scored dicho-

tomously, then the use of a linear factor model and
the use of phi or tetrachoric correlations are not
appropriate since they assume linearly related var-
iables. Nonlinear factor analysis may be appropri-

ate, but the present problems appear to relate to
efficient computer programs for estimating the pa-
rameters and a lack of understanding of the be-
havior of indices based on nonlinear methods. Re-

cent research and computer programs by Etezadi

(1981), however, could change this situation.
The indices based on latent trait methods seem

to be more justifiable. Yet, if the incorrect model
is used, then the resulting indices must fail. It seems

unlikely that indices based on the one-parameter
or Rasch model will prove useful. The increasing
number of indices based on the Rasch model is of

concern, particularly since most seem to lack a
clear (if any) rationale and there is no supporting
evidence, such as simulation studies, to demon-
strate their effectiveness. The methods of Chris-

toffersson (1975), Muthen (1978), and McDonald

(1982) are based on a weaker form of the principle
of local independence and it is likely that some
function of the residuals after estimating the pa-
rameters may serve as adequate indices of unidi-

mensionality.
Yet, there are still no known satisfactory indices.

None of the attempts to investigate unidimension-
ality has provided clear decision criteria for deter-
mining it. What is needed is a monte carlo simu-
lation to assess the various indices under known

conditions. Such a simulation is outlined in Hattie

(1984a). The simulation assessed the adequacy of
most of the indices cited in this review. Data with

known dimensionality were generated using a three-

parameter latent trait model. Altogether, there were
36 models: two levels of difficulty ( - 2 to 2, - 1
to 1), thre~ levels of guessing (all .0, all .2, and
a mixture of .0, .1 and .2), and six levels of di-

mensionality (one factor with mixed discrimina-
tion, one factor with discrimination all 1, two fac-
tors intercorrelated .1, two factors intercorrelated

.5, five factors intercorrelated .1, and five factors
intercorrelated .5).

Only four of the indices could consistently dis-
tinguish one-dimensional from more than one-di-
mensional data sets. The four indices were the sum

of (absolute) residuals after fitting a two- or three-

parameter latent trait model using NOHARM

(Fraser, 1981; McDonald, 1982) or FADIV (An-
dersson, Christoffersson, & Muthen, 1974). The
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advantages of using 1~1&reg;I-IARM are that it is com-

putationally faster and it can handle large data sets.
In subsequent simulations, Hattie (1984b) has

investigated decision rules based on these four in-
dices. It seems that if the sum of (absolute) resid-
uals after specifying one dimension is reasonably
small, and if the sum of residuals after specifying
two dimensions is not much smaller, then it can

be confidentally assumed that the set of items is
unidimensional.

Final Caveat

Finally, it must be considered that it may be

unrealistic to search for indices of unidimension-

ality or sets of unidimensional items. It may be

that unidimensionality could be ignored and other
desirable qualities of a set of items sought, such
as whether the estimates are consistent, or whether
the estimates provide a useful and effective sum-

mary of the data. Certainly, psychological mea-
surement has so far done without these indices.

Moreover, it may be that a set of items will not be
unidimensional except for the most simple vari-
ables, yet it seems reasonable to claim that uni-

dimensional tests can be factoiially complex. Maybe
it is meaningful to quest after an index if the ques-
tion is rephrased from ’ ’ Is a test unidimensional or
not?&dquo; t&reg; &dquo;Are there decision criteria that determine

how close a set of items is to being a unidimen-
sional set?&dquo;

It may be that multidimensional tests can be con-

fused as unidimensional tests if the multiple di-
mensions have proportional contributions to each
item. In such a case, scores on a test would rep-
resent a weighted composite of the many under-

lying dimensions. In some cases the problem is

theoretical in that the labeling of such a test is the

major concern. For example, with an arithmetic-

reasoning test it can be argued that such a test could
be unidimensional, whereas others may wish to

argue that it is multidimensional. This is a concern

for the test developer and user. It would be ad-

vantageous for an index of unidimensionality to

distinguish between tests involving one and more
than one latent trait, but if the two dimensions

contribute equally to the item variances, this might

not be possible. The use of second-order factor

analysis specifying one second-order factor may be

necessary to detect such unidimensional sets of items.

The existence of more than one second-order factor

is convincing evidence of a multidimensional data
set. Certainly, identifying a unidimensional set of
items and labeling the set are separate processes.

Throughout this review the issue has been the
unidimensionality of an item set. Obviously, it must

be remembered that dimensionality is a joint prop-
erty of the item set, or the pool of which it is a

sample, and a particular sample of examinees from
its underlying population. Much recent research
has indicated that the same set of test items may
be attacked by persons using different cognitive
strategies (l~lich & Davidson, 1984). Although
agreeing that this occurs, it still seems worthwhile
to devise tests that measure similar content and/or

styles and thus aim for more dependable infor-
mation about individual differences.

Further, it may be that an act of judgment and
not an index is required. Kelly (1942) argued that
embodied in such concepts as unidimensionality is
a belief or point of view of the investigator such
that an act of judgment is demanded when a re-
searcher asserts that items measure the same thing.
Thus, not only may it be possible to recognize by
inspection whether one test appears to be unidi-
mensional when compared to another, but also even
if there is an index, then judgment must still be
used when interpreting it, particularly as the sam-

pling distribution for most indices is not known.
An index must therefore be seen as only part, but

probably a very important part, of the evidence
used to determine the degree to which a test is

unidimensional.
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