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Methodology Review:
Clustering Methods
Glenn W. Milligan and Martha C. Cooper
Ohio State University

A review of clustering methodology is presented,
with emphasis on algorithm performance and the re-
sulting implications for applied research. After an over-
view of the clustering literature, the clustering process
is discussed within a seven-step framework. The four

major types of clustering methods can be characterized
as hierarchical, partitioning, overlapping, and ordina-
tion algorithms. The validation of such algorithms re-
fers to the problem of determining the ability of the
methods to recover cluster configurations which are
known to exist in the data. Validation approaches in-
clude mathematical derivations, analyses of empirical
datasets, and monte carlo simulation methods. Next,
interpretation and inference procedures in cluster anal-
ysis are discussed. inference procedures involve test-
ing for significant cluster structure and the problem of
determining the number of clusters in the data. The
paper concludes with two sets of recommendations.

One set deals with topics in clustering that would ben-
efit from continued research into the methodology.
The other set offers recommendations for applied anal-
yses within the framework of the clustering process.

Classification is a basic mental process.
Relevant groupings can provide economy of mem-
ory, predictive power, or possible theoretical de-

velopment. Much classificatory activity is carried
out at a subjective level. However, with the advent
of high-speed computational ~~u~~r~~~~y many dis-
ciplines have involved in the development of

automatic or objective algorithms for the genera-
tion of classifications. Before reviewing the liter-
ature, four issues peculiar to the area deserve dis-
cussion :

1. Many researchers are not aware of the im-

~~~s~ amount of in ~1~~ field of clas-
sification. ~l~s~~~l~. and Aldenderfer (1978)
noted that the number of articles using clus-
tering methodology grew from 25 in 1964 to
501 in 1976. Between 1958 and more
than 196~&reg; articles on classification
were published. A separate literature search
indicated that in 1985 alone, 1,658 references
were found on the topic. e

Despite the wide of interest in the de-

velopment and use of clustering methodology,
the literature on the topic is remarkably seg-
mented, with authors in one academic disci-

often isolated from research in other fields.
~l~sh~~ld (1976, and Blashfield and Al-

dendeifer (1978) have documented the lack of
cross-reference between disciplines. It is not

unusual to find identical or highly similar tech-

niques being discovered in different fields and

given different names. e
The richness of this literature base presents

problems for the interested reader. Most dis-
cussions of clustering procedures are embed-
ded in content material specific to a dis-
cipline. A reader may have to deal with articles
in soil science, 9 ~~~~~lt~~l~~ biogeography, 9
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cladistics, inorganic molecular structures,

segmentation, or consistency theorems
of mathematical statistics. The interdiscipli-
nary nature of the sources makes it difficult

for an applied researcher to become fully in-
formed about developments in this methodo-

logical area. Nevertheless, it is not reasonable
to ignore the contributions in other fields. °

2. Defining the term ‘~luste~°9’ presents a prob-
lem. Numerous definitions for the concept ex-

ist, each can be valid within a particular
application or framework. Some researchers
have viewed clusters as mixtures of multivar-

iate normal populations (Biashfield, 1976; Fleiss
& Zubin, 1969; Wolfe, 1970). cluster
can be viewed as a multivariate normal pop-
ulation. Because each cluster forms a different

population, it is possible to conceptualize a
&dquo;mixture&dquo; of populations present in the da-
tabase available for sampling. This represents
a logical extension of the use of the normal
distribution in other cases. Such mixtures al-

low for clusters to overlap in the variable space.
Milligan (1980, 1985) used truncated mul-

tivariate normal mixtures to ensure that clus-

ters did not overlap. A truncated multivariate
normal population would involve constraining
all data points to fall within a specified interval
about the mean for a given variable. For ex-

ample, each point could be required to fall
within ±2.0 standard deviations of the mean.

This has the effect of eliminating the tails of
the distribution. Assuming that the centroids
for the populations are separated by a sufficient
minimum distance, the populations will not

overlap in the variable space. (The centroid is
the location that corresponds to the means of
the variables in the multivariate space.) The

concept of distinct groups was incorporated by
Cormack (1971) into a definition of natural
clusters. The definition that clusters should

exhibit cohesion and external isola-

tion. Several other authors have expressed this

concept in similar terms. Sneath (1969) stated
that &dquo;in a broad sense clusters are thought of
as collections of points which are relatively

close, but which are by empty re-

gions of from other clusters&dquo; (p. 260).
However, the concept of clusters may

be overly restrictive for applications and

inappropriate for others. If all elements within
a given cluster are to be highly similar
to each other, then more elongated clusters are
ruled out. When all data points are required
to be highly similar, the result is a compact
cluster approximating a in the variable

space. Thus, it may be desired to modify the

concept of a compact cluster to allow for clus-
ters that are or continuously con-
nected. Such elongated clusters could occur,
for example, if the cluster follows a regression
effect between variables. Similarly, requiring
clusters to be disjoint be an inappro-
model of a human population. A defi-
nition which allows for overlapping clusters is
needed in such cases. Thus, when attempting
a cluster analysis of an empirical dataset, re-
searchers must address the issue of the defi-

nition of the concept of a cluster. This is es-
sential because different clustering algorithms s

attempt to find different kinds of clusters.
3. Further difficulties are presented by the heu-

ristic nature of the clustering methods them-
selves. Unlike regression, ANOVA, even
factor analysis, is no analysis tech-

nique based on some widely accepted statis-
tical principle. The problem is compounded
by the computational involved. For the

fairly small problem of dividing 25 elements
into 5 nonoveriapping ~iust~~s 9 th~~~ are over
2.4 x i&reg;15 different possible solutions

(Anderberg, 1973). As such, each method must

attempt to find the optimal clustering, using
its own definition of cluster structure and op-

timality, without testing all possible partitions.
There is no guarantee that a given algorithm
will find the optimal partition in the data. To

compound the there are literally
hundreds of clustering algorithms in existence.
Because no single method is known to be op-
timal and so many methods are available for

use, a literature has developed on the problem
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of validating the accuracy of clustering algo-
rithms. °

4. Inference procedures have developed for
cluster analysis. For example, procedures exist
to test whether significant cluster structure has
found in the or whether there is a

partition of random data containing no
structure. This is an important problem
because virtually all clustering algorithms give
solution partitions regardless of the presence
or the of structure in the data. A dif-

but related problem deals with the task
of determining the number of clusters. This
issue has been approached from many per-
spectives. °

In large p the remainder of this review ad-
the issues of algorithm validation and the

development of inference procedures. Before turn-

ing to the literature, a discussion of the clustering
process and a general survey of the types of clus-

algorithms are presented.

m the Clustering Process

A seven-step structure is used to organize the

clustering process. This structure is consistent with
the discussions found in Anderberg (1973), Cor-
mack (1971), Everitt (1980), and Lorr (1983). An

applied article using clustering should contain in-
formation on the actions taken by the researcher
for each of steps. For the purposes of this

paper, a clustering method will refer to the specific
means by which entities are grouped together.
~I~rd~s minimum variance or K-means procedures
are examples of clustering methods. The clustering
process refers to the steps outlined in this section
which represent the sequence necessary for a com-

plete analysis. Implications of the decisions in-

volved in each of these are discussed in later
sections.

1 ° The entities to be clustered must be selected.

The of elements should be chosen to
be representative of the cluster structure in the
population.

2. The variables to be used in the cluster analysis
are selected. Again, the variables must contain

sufficient information to permit the clustering
of the objects. °

3 ° The researcher must decide whether or not to

standardize the data. If standardization is to

be performed, then the researcher must select
a procedure from several different approaches.

4. A similarity or dissimilarity measure must be
selected. These measures reflect the degree of
closeness or separation between objects. A dis-

similarity measure, such as distaince, assumes

values as two objects become less sim-
ilar. A similarity measure, such as correlation,
assumes larger values as two objects become
more similar.

5. A clustering method must be selected. The
researcher’s concept of what constitutes a clus-
ter is important because different methods have
been designed to find different types of cluster
structures. ° 

’

6. The number of clusters must be determined.

This problem has received increased attention
in the clustering literature during the last sev-
eral years. °

7. ° The last step in the clustering process is to

interpret, test, and replicate the resulting clus-
ter analysis. Interpretation of the clusters wi
the applied context requires the knowledge and

expertise of the researcher’s particular disci-

pline. Testing involves the problem of deter-
mining whether there is a significant clustering
or an arbitrary partition of random noise data.
Finally, replication determines whether the re-

sulting cluster structure can be replicated in
other samples. °

Although variations on this seven-phase process
may be necessary to fit a particular application, this

sequence represents the critical steps in a cluster

analysis. The next section describes the various

clustering methods which can be selected for use
in step 5. °

of Clustering Methods

With several hundred clustering methods in ex-
istence, some means of classification is needed to
describe the techniques. Four major categories can
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be identified: hierarchical methods, partitioning
(nonhierarchical) algorithms, overlapping cluster-

ing procedures, and ordination techniques.

~~~~~.~~~~~~~ Methods

Perhaps the most popular clustering algorithm
have been the sequential hierarchi-
cal methods. Such hierarchical methods with
each entity considered as a separate cluster. At each
successive level in the clustering, two of the clus-
ters are The continues until only
one cluster, containing the entire dataset, remains.
The routine will ~~r~er~t~ ~ strictly &dquo;h~~rw

archy&dquo; of n partitions, where n is the number of
entities in the dataset. The represent non-

overlapping clusters and have the property that once
two elements become members of the same cluster, y
are never again The researcher has
the option of using the entire hierarchy as the so-
lution, or selecting a level representing the specific
number of clusters of interest.

Different hierarchical methods are distinguished
by the criterion for determining which two clusters
to merge at each level. Lance and WiHiams (1967)
demonstrated that many agglomerative hierarchical
methods are variations of a common recurrence

formula. Details concerning the recurrence formula
can be found in Cormack (1971), Everitt (1980),
Lorr (1983), and Milligan (1979). A more exten-
sive and recent reference is Gordon (1987).
The use of agglomerative clustering accelerated

in the 1960s as computers became available. Of

particular interest to the psychological community
is a series of articles published by ~~~~~~tty in
Educational and Measurement (see
McQuitty, 1987). Other important articles from this
period would include the introduction of ~Y~rd9s
(1963) minimum variance method and Johnson’s

(1967) discussion of the complete- and single-link
methods. ~~~a~~y~ ~9~~dr~d~ (1978) introduced a
routine based on the U statistic 0

At least one other type of hierarchical

clustering strategy exists. Divisive clustering met-
ods follow a pattern that is the reverse of the ag-
glomerative techniques. Divisive methods begin with
all entities in one cluster and partition the data into

two or more clusters. This process can be allowed

to continue until M clusters are which con-
tain individual entities from the dataset. The Ed-

wards and Cavalli-Sforza (1965) method attempts
to find the division which minimizes the within-

cluster error sum of squares. Unfortunately, divi-
sive methods face problems of computational com-

plexity which are not easily overcome (see An-

derberg, 1973). e

PaiDtitioixiog 84 thods

Partitioning methods produce distinct nonover-

lapping clusters. Often, the methods are known as
nonhierarcbical clustering procedures because ~~~ ~~’
a single d~~ is (Anderbcrg, 1973;
~~~~~~~ ~~ Sokal, 1973; 1980). The tech-

niques in complexity from ~~~~ ~~~~~~9s s ( 1 975)
very simple algorithms to rather -’-Ti’tricate

iterative reallocation methods, such as ISODATA (Ball
& Hall, 1965), Friedman ~~b~~9s (1967)
method, and f~a’~&dquo;:~S‘ 11~4_li~ ~~~’~,4 ~.;~~~~~ 1970).

Partitioning methods can be distinguished by five
characteristics (Blashfield, 1977a). The first char-
acteristic involves the of the initial start-

ing partition G1J: &dquo;seed points.&dquo; Some 1~’~°~JLl~FS~liA~‘J

methods use randomly selected data as

partitions, while others allow the user to

specify starting (Anderberg, 1973; 3 ~~~~.~~ ~
1966). Finally, ~~&reg;~~~5s ~~9‘~Q~ FioR1wv< rolit~,ie utses

~1~~°~’s hierarchical method to the algorithm.
The second and third characteristics deal with

the type of cluster assignment pass through
the and the statistical criterion to assign
the points to the clusters. Some K-means algo-
rithms a pass, assigning point in
turn to the cluster centroid, while others

multiple and update the centroids s ~~~~~
each point assignment. Similarly, the statistical cri-
teria range from a simple distance between
a point and a cluster centroid, to an to

optimize complex matrix borrowed
from multivariate normal distribution theory (see
Mamott, b~‘~~9 ~~a-~t~ ~ Symons, 1971). o
The final two features involve whether a fixed

or variable number of clusters will be formed, and
the eventual treatment of outliers in the solution,
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Most methods the user to specify the num-
ber of clusters, outliers are forced to ~~fi~ &reg;~~
of the clusters in the solution. Only a few
methods, such as isODATA, allow for a variable
number of clusters in the solution, or for a residual

pool of points.

O;.erlapjoing ~~~~~r ~ds

Compared with the first two categories of clus-
methods, there is a much smaller number of
algorithms which allow for overlapping clusters.
At times, are called clumping or clique for-
mation methods. An early algorithm which pro-
duced overlapping structures was published by
Needham (196’?). Many authors working in this
area have used theoretic to help
develop overlapping methods. Examples include
Ling (1973), Ozawa (1985), and the more axio-
matic approach of Jardine Sibson (1971). °
Methods first introduced in the psychological list-

include the ADCLUS procedure developed
by Shepard and Arabic (1979), as well as the Hu-
bert (1974) and Peay (1975) methods. ~’~~Ifiy9 Corter
and Tversky (1986) have introduced a technique
for identifying overlapping clusters by a graphical
representation of extended trees. °

Ordin?tioo Mettiods

Although most social scientists are unfamiliar
with the ordination, psychologists have been
primarily responsible for developments in this area.
The term is more commonly in the biological
sciences and statistics (see Cormack, 1971). Or-
dination techniques attempt to provide some type
of dimensional representation, usually based on
fewer variables than in the original dataset. Thus,
techniques such as factor analysis (R-- (?-mode)
and metric and ~&reg;~~~~.~t~c multidimensional scaling
fall into this Extensive discussions of
factor-analytic procedures as applied to classifi-
cation can be found in Cattell (~9~2) ~~d Tryon
and Bailey (1970). One feature of ordination meth-
ods is that only a representation of the en-
tities in the dataset is produced. The actual deter-

mination of cluster membership is left to the

r~s~~r~h~r9s subjective judgment.

Validation Techniques

Because all clustering methods are heuristic in
nature, the critical issue of recovery performance
must be addressed. That is it is necessary to verify
a given method can recover the true cluster
structure in a dataset. Unless a method can be shown

to reliably recover known configurations in error-
data, it will not be very useful in applied anal-

yses. Furthermore, it is desirable to determine the

sensitivity of such methods to different forms of
error in the data or to errors in judgment made

during the clustering process. A literature address-

ing these concerns exists. Generally, three strate-

gies have been used (Dubes & Jain, 1979, 1980): o

(1) mathematical or theoretical derivations, (2)
analysis of empirical datasets, or (3) monte carlo
simulation. A discussion of the advantages and lim-
itations of each approach follows.

Mathematical Deriv.%tion

An analytical or theoretical derivation would be
the method of choice. Unfortunately, the over-

whelming complexity of the process has limited
advances in this area. A few articles have appeared
which use graph theory (see Matula, 1 9%7) . Others
have a statistical approach (e.g., Bock, 1985;
Hartigan, 1985). Still others have addressed the

problem from a geometric perspective (~&reg;~i~r9 1967;
Milligan, 1979). However, progress has been slow,
derivational results have often had limited value

for applied analyses; thus, work in this has
had little impact on the &dquo;end user&dquo; applications
of cluster analysis.
A different problem with the derivational ap-

proach occurs when theoretical recommendations
conflict or run counter to applied experience with
the methods. For Jardine and Sibson ( I 97 1 )
developed an elegant axiomatic system for defining
an acceptable clustering method. As it turned out,
only the single-link hierarchical method could sat-

isfy the requirements of the system. This result

generated a heated controversy because experience
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with the single-link method indicated that it was
one of the poorest performing algorithms (Wil-
liams, Lance, ~~1~9 ~ Clifford, 1971).

Similarly, Fisher and Van Ness ( ~ 9~ ~ ) proposed
a set of nine admissibility criteria to evaluate clus-

tering methods. Again, the single-link method ap-
peared to be quite satisfactory, whereas nonhier-
archical K-means methods rated rather poorly.
However, Wong (1982) has made successful use
of the ~-means approach in a hybrid clustering
scheme. Milligan (1980) found the K-means meth-
ods to give exceptionally good recovery when well-
chosen starting centroids were used. Hence, theo-
retical findings are available which conflict with
results obtained from other approaches. Discrep-
ancies of this sort led Dubes and Jain (1980) to
conclude that the derivational approach was less
useful as a validation strategy in the clustering con-
text.

of Empirical Datasets

By far the most common validation strategy has
been the application of a clustering method to an
empirical dataset. Typical examples of such anal-
yses are found in Goldstein and Linden (1969) and

Harrigan (1985). Often, only one clustering method
is tested on the data, hence no comparative infor-
mation is offered to the reader. In fact, the most
common way to introduce a new clustering method
into the literature is to test it on an applied dataset
(see, e.g., Johnson, 1967).
However, this approach has a serious and po-

tentially fatal weakness. If the clustering algorithm
finds the subjective clustering that the researcher

suspects exists in the data, then some evidence
indicates that the algorithm may be able to find the
correct structure; however, the evidence is based
on a sample of size one. More seriously, if the

clustering results deviate from prior expectations,
then the discrepancy is difficult to explain. The
researcher’s subjective clustering may have been
incorrect, and the structure found by the algorithm
may be the correct one. On the other hand, the

algorithm may have missed the correct cluster

structure, or there may be no structure in the data

at all. Given the methodological weakness of this

approach, results from such studies should be treated
with some skepticism.

Simulation Analysis

A simulation or monte carlo study typically re-

quires three major our phases. First, artificial
datasets with known cluster structure are selected

or generated. Second, these constructed datasets
are analyzed by the various clustering methods or

procedures of interest in the study. Finally, the

level of agreement between the known cluster

structure and the structure found by the clustering
procedures is determined through the use of one
or more recovery indices. The results reported from
such simulation studies are usually based on sum-

mary statistics or inference procedures computed
from the recovery indices. °

In the first of the analysis, artificial data
are generated which contain a known cluster struc-
ture. Several methods exist for the construction

process, including use of a pencil and graph paper.
However, the most commonly employed method
is to write a computer program which generates
the datasets. Before such a program is written, the
researcher must decide on some definition or con-

ceptualization of the clusters. For example, the

clusters might be viewed as samples from a mixture
of multivariate normal populations in a specified
variable space. During the preparation of the data

generation program, routines are designed for spec-
ifying various characteristics of the clusters. These
include decisions concerning the number of clus-
ters, the number of dimensions, the number of ele-
ments per cluster, the centroids for the clusters,
and the variance-covariance matrices for the pop-
ulations from which the clusters are sampled.

These characteristics have a direct impact on the
nature of the resulting clusters. For example, if

cluster centroids are required to be widely spaced
in the multivariate space, then generally nonover-
lapping clusters will be obtained. Otherwise, an

overlapping structure can be generated. Once the
features of the clusters have been determined, the
simulation program uses a random number gen-
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erator to sample a set of points that will comprise
each cluster. Finally, the researcher may introduce
various forms of error or noise into the data. For

example, outliers and random noise dimensions could
be added to study their effect on various clustering
procedures. Examples of cluster generation rou-
tines that have seen repeated use include Blashfield
(1976) and Milligan (1985).
The second phase is to analyze the constructed

datasets using the clustering methods or procedures
of interest. Often, the computer code for the clus-

tering procedures is modified to eliminate extra-
neous output and to store the information about the

resulting cluster solution. Despite the program

modification, this phase is not overly complicated.
The analysis of the constructed data is comparable
to analysis of data provided by the same procedures
in applied research.

In the final phase, two partition sets are obtained
for each constructed dataset. The first partition is
that which was used to define the clusters in the

data generation program. This partition is the true
cluster structure of the data. The second partition
set is the one obtained from the clustering proce-
dure, and corresponds to the partition which would
have been used if this had been an analysis of an

applied (empirical) dataset. The most convenient

way to present the results of the simulation analysis
has been to compute some measure of agreement
between the true partition structure and the ob-
tained clusters. These measures have been called

recovery or consensus indices.

One measure which has seen active use is the

Rand index (see Hubert & ~r~bie, 1985). Both the
numerator and denominator of the index reflect fre-

quency counts. The numerator involves taking each

pair of elements and determining whether the clas-
sification of the pair is consistent between the known
and obtained clusterings. That is, the points must
be treated in the same manner in both partition
sets. If the pair of points is in the same cluster in
both the known and obtained clusterings, then the

frequency count for the numerator is increased by
1.0. Similarly, if the points are in different clusters
in both partitions, the numerator count is increased

by 1.0. The denominator is the total number of

possible pairwise comparisons and equals n x (n
- 1)/2, where n is the number of elements. If the
obtained clustering exactly matches that of the known

partitioning, then the numerator and denominator
are equal and the index value is 1.0. If any dis-

crepancies are found, then the numerator is less
than the denominator and the index value is less

than 1.0. The smaller the index value, the greater
the inconsistency between the known and obtained

clusterings.
The Rand index is but one of several recovery

measures that have been proposed. The process of

selecting a recovery measure can be complex-for
example, the original version of the Rand index is
no longer recommended for use in simulation stud-
ies-and the literature has begun to address the

topic (e.g., Day, 1986; Hubert & Arabie, 1985;

Milligan & Cooper, 1986).
A distinct advantage of the simulation approach

is that there is no doubt as to the true cluster struc-

ture. It is possible to examine recovery across
hundreds of datasets, thus avoiding conclusions
based on a single dataset. Furthermore, the process
circumvents the mathematical complexities found
in attempting a derivational study. The main dis-

advantage is the limited generalizability to data
distributions and structures which were not con-

sidered in the simulation experiments. This last

problem can be troublesome for an applied re-
searcher attempting to select a method for an em-

pirical analysis. However, the simulation literature
has contributed some of the clearest evidence about

method performance and will have a dominant im-

pact on the review of validation results in the next
section.

Validation Results

The following review of the validation results is

organized around the four categories of clustering
methods. The majority of the findings relate di-

rectly t&reg; clustering method performance. In gen-
eral, results will be based on the simulation liter-
ature. As discussed prwi&reg;usly9 the selection of the

clustering method for an applied analysis represents
the fifth step in the clustering process. Decision
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errors -made in the other steps also can cause re-
duced recovery performance. Thus, an additional
section presents the results obtained when speci-
fication errors are made in the other steps of the

clustering process. These include the impact of out-
liers when selecting data elements (step 1), selec-
tion of variables (step 2) standardization (step 3), 9
and dissimilarity measures (step 4).

~~~~~.~~hg~~~ Methods

Agglomerative hierarchical clustering proce-
dures have the most frequently examined. At
least 1 ~ 1 systenlatic studies have been conducted;
results from these experiments are summarized in
Table 1. The most commonly tested algorithms
have been the single link, complete link, group
average, and ~I~°d’s method. In addition, recovery
information concerning Lance and Williams’ (1967)
beta-flexible method has been included in the table.

Other hierarchical routines have been examined,
such as the centroid and median methods; however,
the performance of these methods has not been
particularly noteworthy and they have not been listed.
Additional smaller-scale or more specialized stud-
ies (Blashfield & Morey, 1980; Cunningham &
Ogilvie, 9 1972; 9 D’Andrade, 9 1978; 9 Gross, 9 1972;

I~I&reg;r~y9 Blashfield Skinner, 1983; Rand, 1971)
also omitted.

When examining Table 9 and subsequently Ta-
ble 2, it is important to note that the criterion index
used in the experiments may differ from study to
study. Thus, direct numerical comparisons of cri-
terion values can be made only within a study and
not across reports. However, all criteria have the

property that perfect recovery of the true cluster
structure would generate values of 1.0. As such,
the closer the average or median criterion value is

to 1.0, the better the recovery performance of the
algorithm. The values presented in the tables have
been selected as typical representations of the re-
spective experiments, or reflect sununary statistics
for an entire study.
One of the earliest systematic studies was con-

ducted by Baker (1974). examined three hi-
erarchical structures consisting of chained, binary,

and random-link trees. A total of 100 datasets were

generated for each type error condition.

Findings in Table 1 are for the binary
tree and are typical of the overall results. Only the
single- and complete-link methods were consid-
ered. found that the performance of the sin-

gle-link method was severely impaired by the pres-
of error of the interpomt
distances. The complete-link method exhibited less
sensitivity to this factor. Even in error-free data,
the complete-link method usually gave better re-
covery performance than the single-link procedure.

Kuiper Fisher (1975) conducted a more ex-
tensive study which examined the impact of a va-
riety of design factors on cluster recovery, In gen-
eral, bivariate normal mixtures were used to generate
the artificial datasets. A total of 30 datasets were

created for each experimental condition. Selected
results from the study appear in Table 1. The first
two lines for the Kuiper Fisher study in the
table correspond to the case when the clusters were
of equal size. In this case, Ward’s method produced
the best recovery of the underlying structure. How-
ever, when unequal size clusters were present in
the data, the complete-link and group-average
methods gave superior recovery. Except for this
last condition, Ward’s method appeared to be the
best clustering procedure for recovering clusters
from bivariate normal mixtures. Finally, the single-
method produced recovery which was signif-
~ t~y inferior to any other method.
The next study listed in Table 1 was performed

by Blashfield (1976). Unlike many researchers,
Blashfield used nonzero covariances and more re-

alistic principal component structures to construct
50 datasets. Multivariate normal mixtures with

complex covariance patterns were used to generate
2 to 6 clusters embedded in a space of 3 to 22

dimensions. Cluster varied from 5 to 40. These

characteristics were selected randomly for each da-
taset. In retrospect, it is unfortunate that these fea-
tures were not systematically controlled in an ex-

perimental context. Recovery was averaged over
datasets with differing numbers of clusters and with
clusters of unequal sizes. Nevertheless, Blashfield
found that Ward’s method gave significantly better
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Table 1

Validation Results for Hierarchical Clustering Methods

recovery performance than any other procedure.
The complete-link method was the next best, with
the group-average method a distant third. Finally,
as found with the previous studies, the single-link
method gave the poorest recovery performance. (It
should be noted that the data possessed overlapping
clusters; ~~~~1~~~~9 1981b, found that cluster over-

lap favored Ward’s technique over other methods.) )

~~~~~~&reg;~~~ (1979) conducted a simulation study
using 10 of the 50 datasets generated by Blashfield
Rather than on recovery of the
exact number of the Edelbrock argued in
favor of reduced coverage. Solutions in the hier-

archy that contained more clusters than actually
existed in the data were examined. The results pre-
sented in Table 1 were obtained at the 90% cov-

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



338

erage level. Recovery did improve when lower
coverage was allowed. Edelbrock found a signifi-
cant advantage for the use of the correlation sim-
ilarity measure. The best recovery was obtained
from the group-average method using correlation.
Ward’s method was not tested with the correlation

measure, but its performance using Euclidean dis-
tance was quite good.

Mojena ( 1977) generated 12 datasets consisting
of clusters based on mixtures from multivariate

gamma populations. The univariate gamma prob-
ability function represents a fairly rich family of
distributions that includes, as a special case, the

chi-square family. As such, gamma populations are
not generally symmetric; as the mean increases,
the variance increases. For the multivariate case,

Mojena set all of the covariances to 0. Clusters
were of equal size, and consisted of 30 points each.

Mojena systematically varied the degree of cluster
overlap in the experiment. The results in Table 1

represent mean recovery values for each method.
The overall ranking and performance of the meth-
ods is quite consistent with that of Blashfield (1976).
Ward’s method gave significantly better recovery
than any other procedure. The single-link method

performed significantly worse. Mojena did find that
as the level of overlap increased, the impact on
Ward’s method was less severe than the impact on
the group-average algorithm.

Mezzich’s (1978) study has received fairly ex-
tensive coverage. However, only two artificial da-
tasets were examined. The results in Table 1 show

the complete-link procedure was much more
effective at recovering the cluster structure than the

single-link method. Unlike Edelbrock (1979), the

study found little impact from the use of differing
dissimilarity measures, and the effect was not con-
sistent from method to method.

Milligan and Isaac ( 19~0) generated clusters that

corresponded to ultrametric tree structures. Ultra-
metric distances are more restrictive than Euclidean

distances. In an ultrametric space, the distances

between any three points must form an equilateral
or isosceles triangle where the base is shorter than
the two equal sides. No such restriction applies to
Euclidean space (see Milligan, 1979). Various non-

overlapping configurations and error levels were
included in the experiment. Typical results from
the study are presented in Table 1. The authors

found that the group-average method gave the best

overall recovery. The complete-link procedure was
second best, with Ward’s method a distant third in

recovery performance. The performance of the sin-

gle-link method was found to be seriously impaired
by the presence of error in the data. This charac-
teristic caused the method to give the poorest over-
all recovery. Finally, as would be expected, re-
covery declined as the separation between clusters
decreased for all methods.

Bayne, ~e~uch p9 and Kane (1980)
used a variety ofparameterizations of two bivariate
normal populations. Each was
based on 200 constructed datasets. The results pre-
sented in Table 1 represent typical realizations from
their experiment after converting their criterion to
a percentage-correct value. Overall, the results

showed that Ward’s method gave the best perfor-
mance, with the group-average and complete-link
algorithms placing a close second. The single-link
method performed much worse than all other meth-
ods. The authors found that the performance of the

group-average method declined rapidly as the sep-
aration between populations decreased. Ward’s

method was less affected by this factor.
Edelbrock and McLaughlin (1980) reported a

study based on the same principles and logic as the
Edelbrock (1979) experiment. For validation pur-
poses, a total of 20 datasets from Blashfield (1976)
and 12 datasets from Mojena ( 1977) were used. As
can be seen in Table 19 the results were basically
the same as those found by Edelbrock (1979). Edel-
brock and McLaughlin also examined additional
similarity measures which involved one- and two-
way intraclass correlation coefficients. The one-

way intraclass correlation was found to provide
enhanced recovery performance for the group-av-
erage method.

In an extensive validation experiment, Milligan
(1980) examined 11 hierarchical clustering pro-
cedures, including the five listed in Table 1. A total
of 108 error-free datasets were created which con-

sisted of truncated multivariate normal mixtures.
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The generation process ensured that the clusters
were nonoveriapping in the variable space. Two
additional error conditions were created which in-

volved perturbing the interpoint distances at low
and high levels. The results in Table 1 indicate that
the group-average and beta-flexible methods gave
the best recovery, with Ward’s method a close sec-

ond. None of the other hierarchical algorithms ex-
amined in the experiment produced superi&reg;r re-
covery rates. The error perturbation process showed
a impact on the complete-link procedure, 9
and a very marked impact on the single-link method.
The last and most recent study was conducted

by Scheibler and Schneider (1985). The authors

generated 200 constrained normal mixtures. Again,
all five methods listed in Table 1 were tested. Ward’s s

procedure and the beta-flexible methods performed
well using either correlation or Euclidean distance
measures. However, the group-average method gave
excellent recovery when using the correlation in-

dex, but performed badly with Euclidean distance.
This result is similar to that found in the Edelbrock

(1979) study, but is less similar to the results of
Edelbrock and B4cLaughlin (1980). It is not con-
sistent with the results of Milligan (1980, 1981b).
Finally, the complete-link and single-link methods

(especially the latter) gave poor recovery of the

underlying cluster structure.
Several conclusions can be drawn from the series

of experiments summarized in Table 1. Ward’s

method tended to perform well in the cases where
it was tested. Often, it gave the best cluster recov-

ery. The performance of the group-average method
was more erratic. At times, it produced the best

recovery of cluster structure. However, its perfor-
mance was not good on other occasions. The rea-
sons for the discrepant recovery behavior have not

yet been identified. On the other hand, the beta-
flexible method performed well in the few studies
where it has been included. The enhanced perfor-
mance pattern of the beta-flexible method was con-
firmed in a recent study which systematically var-
ied the beta parameter across a wide range of values

° lg~~a9 1987a). The complete-link algorithm has

occasionally performed better than the group-av-
method, but it is usually inferior to Ward’ s

procedure. The single-link method, while theoret-
ically attractive, has been repeatedly shown to give
poor cluster recovery and to be seriously affected
by the presence of even small levels of error in the
data.

Methods

A fairly substantial validation literature exists for
nonhierarchical procedures. Five major systematic
studies have been conducted; their results are com-

pared in Table 2. The first study was conducted by
Blashfield (1977a) and was based on 20 multivar-
iate normal mixture datasets generated in an earlier

study (Blashfield, 1976). The best recovery was
obtained from three methods which gave similar

median recovery values. These were the CLUSTAN

K rn~ procedure with random starting seeds, and
the two methods that used the JW) criterion. (For
purposes of this paper, ~ 9 ~ and T represent the

within-cluster, between-cluster, and total sum of

squares and cross-products matrices, respectively.)
It is difficult to explain the reduced performance
level (.643) of the CLUSTAN K-means procedure
when the starting centroids were obtained from
Ward’s method. Given the results for Ward’s method

from B lashfield (1976), these centroids should have
been fairly accurate.

In Mezzich’s (1978) study, all but one parti-
tioning procedure gave recovery values which did
not differ much from method to method, as seen
in Table 2. These recovery values were equivalent
to the results for the complete-link hierarchical
method in Table 1 for Mezzich. The best parti-
tioning technique was a K-means procedure using
Euclidean distances. The only procedure which did
not produce equivalent recovery was Wolfe’s (1970)
NORMIX method. It performed rather poorly despite
the fact that centroids from Ward’s method were

used as the starting seeds for the algorithm. .
Bayne et al. (1980) also considered four parti-

tioning methods, as listed in Table 2, in addition
to the hierarchical methods listed in Table 1. The

authors found that the convergent K-means method
and the two versions of the Friedman and Rubin

algorithm gave the best recovery of all methods
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Table 2

Validation Results for Nonhierarchical Clustering Methods

Note. Parenthetical entries indicate recovery performance
for methods starting centre ids obtained
from Ward’s or group hierarchical clustering proce-
dures. Otherwise:, randomly selected data used as seed
points.

tested. The performance of the K-i>eans and W
criterion is consistent with the studies by Blashfield
(1977a) and Mezzich (1978)~ ~~~~~~~~°9 the en-
hanced performance of the Trace W criterion is not
in accord with the Blashfield study. Finally, ~T~~~~’~ s
(1970) NORMIX method gave rather poor recovery 9
which is similar to h4ezzich’s result.

Milligan (1980) conducted a study which in-
cluded four partitioning ~-means methods. The re-
sults indicated that the methods were ~~a~~~~~~~ to

the nature of the starting but lllll ~S manner

different that found by Blashfield (1977a).
When randomly selected data elements were used
as seeds, the four K-means procedures gave
reduced recovery values. The results for the ran-

dom condition are given as the first column
of values for Milligan (1980) in Table 2. When
obtained the group-average hierar-

chical method were used as starting seeds, the pro-
cedures in Table 2 for recovery. The the recovery
entries in Table 2 for Milligan the recovery
values when the starting centroids were based on
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the group-average method. The four ~-means

methods seemed to be equivalent except for

~I~~~~~~~9s procedure, which tended to give lower

recovery values th the other three methods. e

The recent study by Scheibler and Schneider
(1985) included two different versions of the K-

algorithms. The results indicated that both
clustering methods gave better recovery when cen-
troids from Ward’s procedure were used to specify
initial seed points. This result is consistent with

Milligan (1980) but not with Blashfield (1977a).
Finally, the CLUSTAN ~-means method gave better

recovery than ,~~~th9s (1980) technique. (It should
be noted that ~p~th9s procedure uses medians rather
than centroids to locate the clusters.) )

The success of the K-means procedures with im-

proved starting seeds found in some studies has led
several authors to propose hybrid algorithms for

applied clustering (~~~~i~~~ ~ Sokol, 1980; Punj
& Stewart, 1983). These procedures use the cen-
troids obtained from a hierarchical method to start

a ~-means algorithm. A different hybrid model was

suggested by Wong and Lane (1983). The first

involves a Kth nearest-neighbor density es-
timation process followed by a hierarchical clus-

of the nearest-neighbor distance matrix. Ex-

ample analyses in Wong Lane suggest good
recovery perfon-nance.

In summary, the convergent K-means method
to give the best recovery of cluster structure.
This result was obtained despite the theoretical
findings of Fisher Van Ness (1971), which
indicated that the K-means procedures were fairly
unattractive methods. Furthermore, method so-

phistication or complexity may have little impact
on the quality of the obtained solution. The ~~-
whereas the methods using direct criterion are
whereas the methods using the IWI criterion are
rather complex. Yet the methods tended to give
equivalent recovery. The results for the Trace W
criterion were inconsistent. Bayne et al. found it

to be the best methods tested, whereas
Blashfield found the criterion to give the lowest
recovery values. The reduced performance level is
consistent with less systematic studies of clustering
criteria (~~~da~~r~ ~ Rubin, 1967; Scott ~~. Sy-

mons, 9 ~ 97 ~ ) Finally, Wolfe’s NORMix method
performed poorly in all cases where it was tested.

Overlapping Methods

It appears that no systematic validation study of

overlapping clustering methods has been con-

ducted. Jardine and Sibson (1971) presented a sin-

gle clustering of 23 Indian caste groups to dem-
onstrate their B, overlapping clustering method.
Jardine and Sibson apparently felt that their axio-
derivation provided sufficient justification for
the algorithm. Hubert (1974) used a dataset based
on 13 diagnostic psychiatric categories to study his
two-diameter clustering procedure. Peay (1975) used
two datasets to demonstrate his method, one re-

lating to the study of marriages in eight ethnic

groups, and the other an artificially constructed
of six elements. Shepard and Arabic (1979)
studied ADCLUS with five datasets, of which
dealt with similarities or confusions in letters or

numbers based on set sizes of 10, 16, and 26. The

remaining two datasets studied a communication
network of 14 industrial workers and results based

on sorting names of 20 anatomical terms. Finally, 9
Ozawa (1985) used a constructed dataset of eight
points. Included for comparison against his own

algorithm was Jardine and Sibson’s ~1~ method.
Both methods found the same correct structure.

Several conclusions can be drawn from the lit-

erature. First, the information that is available on
the performance of overlapping methods is based
on the analysis of empirical datasets. As such, re-

covery performance is difficult to judge. Second,
the example datasets possessed small samples
sizes; the average sample size in the studies was

only 14.4. This may not be representative of the
more typical applications of clustering. Finally,
without comparative information, it is uncertain

which method may have the more desirable recov-

ery characteristics.

Ordination Methods

Social scientists have been using or exploring
the properties of ordination methods for several
decades (Blashfield, 1980). Among the early ad-
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vocates of the use of inverted or ~-f~ct&reg;r analysis
for clustering applications were Cattell ( 1952) and
Tryon (see Tryon & Bailey, 1970). Certainly, if
the clusters exist in the reduced factor space9 9 ~d

if these clusters correspond to the type of simple
structure that most ~&reg;de orthogonal factor ro-
tation programs seek, then a 6-anatysis should al-
low the user to identify the correct cluster structure.
However, if any of the prerequisite conditions can-
not be satisfied, then recovery may be marginal at
best. For example, if the clusters are found in or
defined by an oblique factor space, then an or-
thogonal varimax rotation may make it difficult for
the user to determine correct cluster membership.
A discussion of other methodological difficulties
follows.

First, assume that clusters exist in the space de-
fined by the original dataset. Sneath (1980) has
shown that there is a high that a re-
searcher will conclude that a subset of points com-
prises one cluster, when in fact the points comprise
two or more clusters. The reduction in dimen-

sionality produced by the ~-analysis impairs the
user’s to detect clusters that existed in the

space defined by the original variables.
Fleiss, Lawlor, Platman, and Fieve (1971) reached

a parallel conclusion in their study of inverted fac-
tor analysis. These authors felt that some indication
of distinct grouping should be present in the orig-
inal data before a 6-analysis is attempted. If evi-
dence for clustering existed, such as n1ultinxodaI
or n&reg;nsy etric variables, then Fleiss et al. further
concluded that methods other than inverted factor

analysis might do a better job at finding the clusters.
Blashfield and Morey (1980) confirmed this ex-
pectation in a study of simulated mmpi profiles.
They found that both the group average and Ward’s s
hierarchical methods gave better recovery and were

less problematic in application than 6-factor anal-
ysis. Mezzich (1978) reached similar conclusions
when using simulated psychiatric profiles.
A different issue in the use of ordination methods

is the subjective nature of the cluster identification
task. Different researchers may interpret the output
from the same ordination analysis as forming dif-
ferent groups. Mezzich (1978) studied the inter-

rater reliability for determining cluster membership
with nonmetric multidimensional scaling. Relia-

bility was found to average about .77 using Cra-
mer’s statistic. Mezzich did not measure interrater

reliability when clusters were derived from an in-
verted factor analysis. It would seem reasonable to
assume that moderate to low reliability values also
would be found for this technique.

Given these and other logical difficulties, many
researchers have expressed reservations about the
use of ordination methods as clustering procedures.
Lorr (1983) noted that the appropriateness of Q-
analysis has long been in dispute. Even one of the
early advocates of the method, Cattell (1978), has
stressed the fact that Q-analysis is not a procedure
for finding types (clusters), but a technique for

finding dimensions. Similar comments would hold
for other ordination methods, such as multidimen-
sional scaling.

Ordination methods have been proposed as a

strategy for data preparation prior to the application
of a clustering procedure. This factoring or scaling
would then be part of the third step in the clustering
process. Some authors would suggest a dimen-

sional analysis if a large number of variables has
been collected in a study. Rather than conducting
a ~-~alysis on the entities, a regular factor anal-
ysis would be performed on the variables. How-
ever, if the clusters were defined (or existed) in the

original variable space, then an ordination method
would serve to distort or hide the true structure as

shown in Sneath’s (1980) study. On the other hand,
if the clusters existed in the reduced variable space,
then an ordination method should be useful for

detecting the true clustering.
Kaufman (1985) reported the results of a sim-

ulation study where the clusters were first defined
and generated in the reduced variable space. Five

strategies for preprocessing the data were studied.
Four strategies were based on principal components
analysis, taking into account whether all compo-
nents were used or just those with above
1.09 ~nd whether the scores were weighted ac-

cording to the corresponding eigenvalues. A fifth
condition involved using the original standardized
variables directly with the clustering method. All
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processed datasets were clustered with ~J~rd9s hi-
’ erarchical method. The results indicated that

weighted principal components analysis gave the
best recovery of the correct cluster structure. °

This result is logical, given the way in which
the data were constructed. However, it is interest-

ing to note that simple standardization performed
nearly as well as the more complex analysis. Thus,
the assumption that principal components process-
ing is a necessity was not confirmed, even when
the data were constructed to be most favorable for

such an analysis. Kaufman failed to include a con-
dition where the unstandardized data were analyzed
directly. Such a condition would have addressed
the question of whether standardization itself was
necessary

Other Validation Results

Validation results exist for a variety of other
or in the clustering process. These
include the effect of outliers and the corresponding
issue of coverage, improper selection of a dissim-

ilarity measure, inclusion of random noise dimen-
sions in the variable set, standardization of vari-

ables, and the impact of overlapping data structures
on nonoverlapping clustering methods.

Outliers. ° which are not members of

any cluster in the dataset can be considered outliers

to all clusters. Of course, such elements could be

intermediates between clusters and not outliers to

the entire data mass. Milligan (1980) examined the
effect of adding 209h or 40% additional data points
as outliers. As would be expected, the presence of
outliers served to confuse or mask the assignment
of data elements which did belong to a cluster.
Edelbrock (1979) argued that, from a psychological
perspective, it is not necessary for all persons in a
dataset to be classified in order to obtain useful

partitions. Edelbrock found that reduced coverage
resulted in improved recovery performance with a
set of hierarchical methods. Similar results were

obtained in the study by Scheibler and Schneider
(1985), which included nonhierarchical routines.
However, both studies were based on the use of

the kappa statistic, and there is a that

the results on reduced coverage were confounded

with characteristics of this recovery measure (Mil-
ligan, 1987a).

measures. In terms of the clustering
process, it is important to note that the use of the

wrong dissimilarity measure for a dataset might
lead to reduced recovery of the cluster structure

present in the data. Hence, some care should be
taken when selecting a dissimilarity measure. For
example, if the clusters are embedded in a Euclid-
ean space, then a Euclidean distance dissimilarity
measure would be appropriate. A three-dimen-
sional Euclidean space corresponds to that nor-

mally encountered by people in their day-to-day
activities. ° ~l~shf~e~d (1977b) warned that several
formulas for Euclidean distance exist in the clus-

tering literature. For purposes of the present dis-
cussion, the following formulation will be used:

In Equation 1, dj is the 6 sta°~~~h~,-lb~e’ distance
between objects and j. The summation is com-

puted over all variables in the d~t~set9 k is the index
value for the summation operator. The values xi,,
and xj, the variable values for objects i

and j, on variable k. The values w,
are weights applied to the squared difference on
each variable and are usually set to 1.0. A priori
weights determined by the researcher can also be
used. Other weighting schemes exist; a particularly
effective procedure will be discussed below.

Euclidean distance is a case of the more

general Minkowski family of metric distances. An-
other member of the family is the so-called city
block or Manhattan distance. Rather than measur-

ing straight-line distance, the city-block measure
would determine the distance by finding the short-
est path in a grid system, similar to that taken by
an automobile through city streets.
A different measure of similarity which has been

popular in the social sciences is the Pearson cor-
relation computed between two objects. The Pear-
son correlation is the cosine of the angle between
two vectors representing the standardized scores of

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



344

the objects. The correlation measure has the ad-
vantage (or disadvantage, depending on the con-

text) of eliminating the effects of differing means
and variances between variables when computing
the similarity measure (see Cronbach & Gleser,
1953; Skinner, 1978). Neither Euclidean distance
nor the city-block measure eliminates these differ-
ences. Many other measures have been proposed;
see the discussions in Anderberg (1973), Cormack
(1971), Everitt (1980), and Lorr (1983) for a more

complete introduction to this topic.
In the validation literature, a number of research-

ers have considered the consequences of the use

of alternative or incorrect dissimilarity measures.
The research indicates that differing dissimilarity
measures can change the extent of cluster recovery.
However, Punj and Stewart (1983) have argued
errors in the choice of a dissimilarity measure
do not seem to be as serious as other decision errors

in the clustering process.
~~~~~w~~~ variables. A few experiments have

conducted to determine the impact of adding
variables to the which are irrelevant to the

cluster structure. These variables can be viewed as

random noise dimensions. Milligan (1980) inves-
tigated the impact of adding one or two irrelevant
dimensions to the set of variables which define the

clustering. The results indicated that the ad-
dition of even one irrelevant variable seriously re-
duced the extent of cluster recovery. Thus, it seems
ill-advised to indiscriminately include variables in
a dataset for an applied cluster analysis.
The use of all available data will likely obscure

any clustering present in a subset of the variables. °
Similar masking effects were obtained by Fowlkes
in two unpublished studies (see De Soete, DeSarbo,
& C ~~i9 1985). These results led De Soete et al.
to develop an optimal weighting scheme for vari-
ables in a hierarchical cluster analysis. That is,
values other than 1.0 are assigned to the weights
w, in Equation 1 when computing the Euclidean
distance between points. The weights provide an
optimal fit between the resulting distances and an
ultrametric tree structure. The logic behind the op-
timal fit is that most hierarchical clustering methods

force the ultrametric structure on the clustering so-
lution. Results obtained by Milligan (1987b) in-
dicated that the De Soete et al. is quite
effective in assigning near-zero weights to irrele-
vant variables. Recovery of true cluster structure
was enhanced in all cases examined, and the impact
of the masking effect was greatly reduced.

Standardization. A researcher must decide

whether to standardize the variables in a dataset.

Edelbrock (1979) found a slight advantage for stan-
dardized data when all elements were required to
be clustered. When coverage was reduced, stan-
dardization produced no improvement in cluster

recovery. However, Milligan (1980) found that
standardization can lead to iimi~~d reduction in

recovery performance when the clusters exist in the
unstandardized space. In a more recent study, Mil-

ligan and Cooper (in press) conducted a large-scale
simulation study of eight standardization proce-
dures. Results of the experiment indicated that

standardization procedures based on division by the

range of the variable were more ef-
fective than any other approach, including the tra-
ditional z-score procedure. The Milligan and Cooper
paper includes a fairly review of the is-
sues on the topic and references to the literature.

&reg;~~~~~p~~~~ .~~~~~a~~e~° Some researchers have

considered the problem of cluster recovery by hi-
erarchical and partitioning methods when the data
consist of overlapping clusters. Effectively, there
is a mismatch between the clustering algorithm se-
lected and the structure of the data. Of course, in

an applied ~~~iysis 9 ~ researcher may not be aware
that an overlapping structure is in the data.
Mojena (1977) conducted a small where
the overlap between clusters was systematically
varied. As the extent of overlap increased, the pro-
portion of correct cluster assignments decreased.

Similarly, half of the datasets generated by Blash-
field (1976) possessed overlapping characteristics
(see ~iili~~~ ~ Isaac, 1980). Unfortunately, the
results were not broken down according to this
characteristic. °

This led Milligan (1981b) to conduct an exper-
iment which directly compared performance on
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overlapping disjoint structures. Ward’s hier-
archical method was found to give the best per-
formance when overlap was allowed to exist in the
data. The group-average method tended to perform
better with structures. These results
are consistent with those of Bayne et al. (1980).
Scheibler and Schneider (1985) reported that they
could not confirm the finding. However, Scheibler
and Schneider did not examine overlapping s
tures in their experiment.

It appears that no studies have considered the

reverse situation. A study of the performance of
overlapping methods on consisting of disjoint
clusters would be of interest. An &dquo;optimal&dquo; clus-

algorithm would produce an overlapping or
a disjoint clustering solution, as appropriate for the
structure in the data.

Inference, ~~~~g~~~~~~9
and Procedures

Several of research can be identified which

have addressed issues relating to the last two steps
in the clustering process. The following sections
deal with the problem of determining the number
of clusters (step 6), hypothesis testing in a clus-

context, replication analysis, and aids to

interpretation (the last three comprise step 7).

the Clusters

Most clustering procedures require the user to

specify or to the number of clusters in
the final solution. A substantial segment of the

literature which addresses this decision task is ref-

erenced in and Cooper These au-
thors conducted a simulation study of the perfor-
mance of 30 decision rules. the experiment
used only hierarchical clustering methods, all de-
cision rules are to nonhierarchical al-

~~~~:~a. Only well-separated, distinct clusters were

in the structure of the 108 test datasets.
Given such well-defined clustering, it would be

that the performance of any rule for de-

termining the number of clusters would be fairly
good. Milligan Cooper did find a set of rea-

sonably effective rules. This set included the tech-

niques developed by Baker and Hubert (1975), 9 ~~~-
inski and Harabasz (1974), Duda and Hart (1973), 9
Beale and the cubic clustering criterion
used in SAS (Sarle, 1983). The set of techniques is
fairly and includes adapted
from classical parametric and nonparametric pro-
cedures. The Calinski and Harabasz, Duda and Hart,
and Beale indices use various forms of sum of

squares within or between clusters, or both.
The Milligan and Cooper study also revealed that

a number of methods did not work well. Among
methods which performed poorly were Trace ~ 9
criteria based on IWI, and a generalized distance
measure. Unfortunately, the Trace W (error sum
of squares) criterion has been the most frequently
method. Further, most criteria borrowed
from traditional multivariate normality approaches,
such as Wolfe’s (1970) likelihood ratio test, gave
at best only mediocre correct detection rates. Ev-
eritt (1981) found that Wolfe’s (1970) likelihood
ratio test well for large sample sizes.

In a more limited study, Begovich and Kane

(1982) confirmed that a criterion based on IWI per-
formed rather poorly. In contrast to Milligan and

Cooper, the authors found that the Calinski and
Harabasz procedure did not work well when the
clusters possessed unequal covariance matrices. A
different strategy, called simulation cluster anal-

ysis (scA), gave the best in their study.
SCA is similar to parallel analysis in factor analysis, 9
and involves creating a series of datasets by adding
random error to the original data. Each error-per-
turbed dataset is subjected to a cluster analysis and
the results from the simulations are combined to

provide a likelihood of the number of groups
in the data.

Milligan and Cooper did not consider techniques
for determining the number of clusters which re-

quired the user to subjective judgments (see,
e.g., Gower, 1975). Similarly, techniques which
are dependent on the use of a specific clustering
method were not studied. ~~r~~~9 potentially useful
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methods such as that of Wong and Schaak (1982)
have not been independently validated.

Hypothesis Testing

Despite ~~m~sba~r~’s (1984) assertion to the

contrary, hypothesis testing in a cluster-analytic
situation can certainly be performed. Studies by
Bock (1985), Hartigan (1977, 1978, 1985), Lee

(1979), and Sneath (1977) indicate that many re-
searchers have been addressing the distributional

problems in cluster analysis. Most testing proce-
dures have been developed to determine whether

significant cluster structure exists in the partitions
found by a clustering method. The null hypothesis
typically specifies that the data consist of a random

pattern of points with no distinct clustering present.
For example, the hypothesis may specify that the
data were sampled from a single multivariate nor-

population, or the data correspond to what
would be expected from a uniform distribution con-
tained in a hypercube. °

In general, the testing procedures can be divided
into two approaches (Sneath, 1969). In the first

approach, it is assumed that an external criterion

variable is available to validate the clustering re-
sults. The second approach, using an internal cri-
terion, information which is contained within
the cluster analysis. Before considering the two
approaches, comments are in order regarding the
naive application of standard hypothesis testing
procedures in a cluster-analytic framework.

After clustering results have been obtained, it is
tempting to conduct a disciiminant analysis, or some
other standard testing procedure such as ANOVA or
MANOVA. Examples of such applications can be
found as early as Turner (1969) and as recently as
Andes (1986). The logic is that if significant dif-
ferences exist between the groups found in the clus-

ter analysis, then significant clustering must be
present in the data. The variables used in the cluster

analysis are employed as the variables
in the tests, and the cluster partitions define the

groups for the testing procedure.
It is widely recognized by clustering methodol-
that this strategy is invalid, but this has not

been stressed in the literature (see Dubes & Jain,
1979; T~~~~~~~ ~ Mahajan, ~~~~69 Morey et ~~° 9
1983). Such procedures will almost always return

test results, even for random data
that contain no cluster structure. The reason for the

bias when discriminant analysis is that the

groups were not defined a priori. More seriously,
the variables tested were the same ones used to

define the groups in the first place. Similarly, in
the case of MANOVA, there is systematic violation
of the assumption of random assignment of obser-
vations to the different groups. °

The cluster analysis process does not haphaz-
ardly assign the to groups, but assigns
them to maximize the similarity between obser-
vations within the groups. Most clustering algo-
rithms will find homogeneous groups of points in
random noise data, even though such partitions do
not represent any significant clustering property.
Fortunately, the testing procedures which follow
are valid and avoid the problems in the use of
traditional methods.

External criterion An external cri-

terion represents information which is external so
the cluster analysis. That is, the information in the
external criterion was not used at any other point
in the clustering process. This information could
be in the form of one or more variables which can

help validate the grouping, or in terms of a partition
of the elements into groups. The must be

specified a priori or obtained from a clus-

tering of a dataset. When the cri-
terion is in the form of one or more variables, it

is permissible to perform a standard parametric
analysis such as ANOVA or MANOVA to validate the

clustering results. Unfortunately, many applied re-
searchers find it difficult to omit such variables

from the cluster analysis if they believe that the
variables contain information the true
cluster structure. Hence, few studies have used the
external criterion approach.

If the researcher has a criterion which represents

an independent partitioning of the data, then a pro-
cedure developed by Hubert and Baker (1977) can
be used to test the validity of the results.
It is important to note that the Hubert and Baker

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



347

cannot be used to test the similarity of
two clusterings of the same dataset.

Internal criterion analysis. An internal crite-

rion measure uses information obtained from within

the clustering process. Internal criterion measures

typically reflect the goodness of fit between the
input dissimilarity matrix the resulting clus-
tering. ~~r~~~9 the of the clustering with

respect to the input data is measured. Two specific
examples of such measures are the Baker and Hu-
bert (1975) gamma index and the cor-
relation measure 1980).

The gamma index is the ratio of two frequency
counts. The numerator is the difference between

the counts for consistent and inconsistent pairings
of distances. The denominator is simply the sum
of the number of pairings of both kinds. A con-
sistent pairing occurs when a within-cluster dis-
tance is found to be smaller than a between-cluster

distance. An inconsistent pairing is recorded when
a within-cluster distance is larger than a distance

: between two points not in the same cluster. Thus,
the gamma index has a value of .&reg; when the ~~~as-
solution is perfectly consistent with respect
to between- and within-cluster distances.

The point-biserial measure is a Pearson corre-
lation between a variable coded 0 or 1 and a var-

iable corresponding to the input distances. For a
given distance between two points, the binary
variable is ~ss~~~~d ~ value of 0 if the resulting
clustering solution placed the two points in the
same cluster. Otherwise, a 1 is recorded, denoting
a between-cluster distance. Larger values of the

point-biserial measure would indicate greater
agreement between the clustering of the and
the input distances.

Reviews of internal criteria can be found in Cor-

mack Jardine and Sibson ( ~ 971 ) and Rohlf

(1974). A comparative study of 30 internal criteria
was conducted by Milligan (1981a). found
a set of highly effective internal criteria which in-
eluded the gamma index and the mea-
sure. It was found that Trace W and criteria adapted
from the multivariate normality literature (such as
those based on functions of W and IWI) performed
poorly. These results do not give much support to

the testing procedures proposed by Arnold (1979)
using !og(jTj/jW)) as the test statistic.
Once an effective internal criterion has been se-

lected, it can be used as test statistic. The statistic
is used to test an alternative hypothesis that spec-
ifies that some form of significant cluster structure
exists in the obtained data partitions. The main
difficulty in conducting the test is to determine an

appropriate sampling distribution for the statistic.
One approach has been to use permutation or monte
carlo procedures to generate an approximate sam-

distribution. Milligan and Sokol (1980) de-

veloped such a test based on the point-biserial cri-
terion. Other authors have adopted this approach,
including Begovich and Kane (1982) and Good
(1982).

Replication ~~ysis

A different approach, on the logic of cross-
validation as used in regression analysis, was pro-
posed by Mclntyre and Blashfield (1980):
1. ° Two samples are obtained for clustering pur-

poses. This can be accomplished by randomly
dividing one larger dataset into two samples.

2. The first sample is cluster-analyzed, and the
centroids for the clusters are computed. (This
step assumes that a determination of the num-

ber of clusters was made.)
3. The distance (or other dissimilarity measure)

is computed between each element in the sec-
ond and each of the centroids deter-
mined from the clustering of the first sample.

4. Each element in the second sample is assigned
to the nearest cluster centroid from the first

sample. This last assignment activity produces
a clustering of the second sample based on the
characteristics of the first sample. °

5 ° The second sample is directly cluster-analyzed
using its own data. There are now two clus-

of the sample for comparison
purposes.

6. Some measure of agreement is computed be-
tween the two partitions of the same data. The
consistency between the original cluster so-
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lution the cross-validated cluster assign-
ments indicates the stability of the solution. °

Mclntyre and Blashfield suggested the use of the

statistic as a measure of consistency. The
authors provided some initial information on the
numerical values of kappa that would occur in sit-
uations where the agreement between the partition
sets was high. However, Hubert and Arable’s (1985)
corrected Rand index to exhibit prop-
for the comparison of partitions (Milligan,
1987a). Unfortunately, no typical for the
Hubert and Arabic index have published for
the cross-validation application.
A different strategy involves comparisons of

clusterings from fairly different sources. However,
comparisons usually are based on a single
dataset. For example, it is possible to compare
partitionings from different clustering methods. A
level obtained from a clustering method
could be selected, and the clusters could be com-

pared to those found by a nonhierarchical proce-
dure. If the cluster structure fairly con-
sistent across different clustering methods, it would
seem reasonable to conclude that the structure is

strong and not an artifact of any given method. In
fact, comparisons are not restricted to those in-

volving the same number of clusters in the two

partition sets, although in most situations the equal-
number case would be the most interesting to an

applied researcher. Finally, comparisons based on
the use of different similarity or dissimilarity mea-
sures are also possible. a

These more comparisons a level
of confounding in the results if a successful rep-
lication does not occur. A failure to replicate may
be due to a lack of structure in the data, or to
differences in the types of structures that differing
clustering methods impose on the resulting solu-
tions. More general comparisons could provide
useful information if the context of the clustering
problem suggested that the selected comparison was

logical and meaningful.
The use of a single sample in the comparisons

comes at a very heavy cost to the researcher, in
that the ability to generalize the clustering results
to other datasets is lost. The subtle shift from two-

to one-sample comparisons rather dramatically
the analysis from involving external

validity to one giving results only on internal con&dquo;

sistency. e

for interpretation

A very important characteristic of any applied
cluster analysis is the interpretability of the result-

ing partitions. Because interpretation is dependent
on the underlying context of the problem, the re-
sponsibility for this part of the analysis fails upon
the user. ~~~~~~~~~~ clustering metbodologists have

developed a variety of techniques to help with the
interpretation task. °

Logically, descriptive statistics for each cluster
should be computed. Any understanding of the na-
ture of the variables employed in the analysis can
be used for interpretive purposes. Note that any
preprocessing of the input variables, such as stan-
dardization or principal components, would make
this activity more difficult. A different approach
suggested by Anderberg (1973) involves permuting
the dissimilarity matrix according to the groups
specified by a cluster analysis. That is, the rows
and columns are reordered in such a as to

place points within the cluster in consecutive
order. This should form a block diagonal matrix.
The within-block values would correspond to the
within-cluster distances, and the remaining entries
would be between-cluster distances. If distinct

clusters exist in the data the clustering method
detected them, the within-block should
be small compared to those outside the block.

In fact, most interpretive methods are graphical
in nature. For example, Kruskal Landwehr
(1983) developed a method for presenting the re-
sults of a hierarchical cluster analysis. Their tech-

nique, called &dquo;icicle&dquo; plots, is an improvement on
the more standard dendrogram or s~~~~~~~ plots pro-
duced by clustering packages. More elabor-a~~e ap-
proaches proposed by Kleiner and Hartigan
(1981) based on natural-appearing &dquo;trees&dquo; and

11 castles.&dquo; Besides showing the clustering of the
data points, the trees presented by these authors
are to encode additional information. This is
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accomplished by varying the thickness of the

branches, the between branches, the length
of the branch or stem, and the order of the elements

as determined by the branch (left vs. right). ~&reg;~~-

ever, as the comments rejoinder which im-

mediately follow the article indicate, there is no
consistent as to the most effective way
of displaying clustering results. Finally, a different

graphical approach, based on hierarchical but
allowing for overlapping structures, was intro-

duced by Corter and Tversky (1986).
There have been several attempts to develop

mathematical approaches which measure the sta-

bility or replicability of the generated cluster so-
lution. One such approach is the cluster validity
profiles introduced by Bailey and Dubes (1982).
Validity profiles are obtained for each cluster in
the solution and indicate the relative compactness
or isolation of the cluster. The profiles are scaled
in probability units and are derived from the math-
ematical field of graph theory see ~~ta~i~9
1977). The profiles are compared with the best

compactness and isolation values that would be

expected in a randomly chosen graph. The profiles
help reject spurious and appear to identify
valid ones. °

Discussion

for in ~~a~~~~~~~~~

Clearly, much remains to be done to more com-
pletely understand the characteristics and limita-
tions of existing clustering methods, in addition to
dealing with the introduction of new procedures. °
Research based on the following recommendations
would provide results of direct benefit to research-
ers undertaking applied analyses. °
1. ° More information is concerning the

sensitivity of clustering procedures to differing
data characteristics. Such an understanding
could eventually result in guidelines which in-
dicate the most appropriate clustering proce-
dure to use, given the properties of the input
dataset. This would include all components in
the clustering process, such as the selection of
the data elements, the similarity measure, and
the clustering method. For example, the pres-

ence of outliers may affect the decision made

at each step in the clustering process. Re-

markably little research has been conducted on
this issue, but it is a rather complex problem.
A good review of the difficulties involved can
be found in Soon (in press).

2. Little is known about the performance of the
clustering routines that yield overlapping clus-
ters. A careful examination of this issue is

needed. It would be useful to determine whether

any of the existing methods can reliably dis-
criminate between disjoint structures and those
that require an overlapping representation.
Similarly, the of overlap that can be
tolerated before algorithm performance de-

grades would be helpful information. Finally,
the impact of various sources of error on clus-
ter recovery for these methods is unknown.

3. More information is needed on the reliability
of subjective decisions that must be made in

conjunction with some clustering procedures.
In particular, the determination of cluster

membership is often left up to the researcher’ s

judgment when ordination methods are used.
If the assignment, process is reliable, is it valid?

Similarly, the impact of the various graphical
procedures used in clustering is not well under-
stood. Issues concerning which graph is best
for displaying cluster membership, inter-clus-
ter relationships, and other features have not
addressed in a thorough manner.

4. When new derivational or simulation experi-
ments are conducted, one or more of the meth-
ods which have been widely used in past re-
search should be included. This provides a
basis for comparison and linkage with the pre-
vious literature. In particular, when a new

clustering method is introduced into the lit-

erature, comparative performance information

against existing procedures is essential for

evaluating the usefulness of the contribution.

for Applied Analyses

The clustering process is a complex sequence of
tasks that must be carefully executed to obtain a
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proper clustering of the ~aser’s data. Furthermore,
the literature in the area of classification is quite
diverse, with contributions coming from all fields
of science. Ce y, much progress has been made
since Everitt (1979) published a paper on unre-
solved problems in cluster analysis. Among the
concerns listed by Everitt were the problem of de-

termining the number of clusters, selection of clus-

tering method, graphical techniques, development
of computer packages, more efficient algorithms,
and the application of the jackknife (a permutation-
like estimation procedure). Work in all of these

areas is continuing. Using the results that are cur-

rently available, some guidelines can be offered to
the researcher interested in performing a cluster

analysis. These recommendations will be presented
within the context of the seven-step clustering pro-
cess. Although the overview is necessarily some-
what cursory, the critical decisions have been in-

cluded.

l . The sample of the entities to be clustered should
be representative of the population. The s

ple could be systematic in nature and not ran-
dom. If it is suspected that a particular cluster
consists of a fairly small proportion of the pop-
ulation, then this cluster might be over-rep-
resented in the sample in order to facilitate
cluster detection and to obtain more stable es-

timates of cluster centroids. The user might
consider the inclusion of persons who serve

as markers or &dquo;ld~~l types,9 that persons
known or believed to be members of different

clusters. Finally, it seems reasonable to delete
outlier observations because these may de-

grade algorithm performance.
2. Care must be exercised in the selection of the

variables used in the cluster analysis. Some

applied researchers seem to believe that they
should use as many variables as are available.

However, selecting the correct variables is a
critical part of the analysis. The addition of

only one or two irrelevant variables can have
a serious effect on cluster recovery. Thus, the

inclusion of irrelevant variables should be

avoided. The researcher might consider pro-
viding a justification for the inclusion of each

variable in terms of how it should discriminate

among clusters. The use of the optimal vari-

weighting scheme of De Soete et al. (1985)
can be used to improve cluster recovery in
those cases where it is uncertain which vari-

ables contribute to the clustering in the data.
Finally, the practice of using principal com-

ponents to preprocess the data may result in
undetected clusters and interpretation prob-
lems with the reduced variable space.

3. The issue of variable standardization must be

addressed. The routine application of stan-
dardization in all is not necessarily
appropriate, especially when the variables have
similar means and variances. If sizable dif-

ferences in means or variances do exist and

these differences are not related to the clus-

tering in the data, then standardization would
seem to be necessary. Alternative standard-

ization procedures which are not based on the
well-known z score appear to be more effective

(Milligan & Cooper, in press). In particular,
standardization based on division by range of
the variable may improve recovery when stan-
dardization is needed.

4. The researcher will need to select a similarity
or dissimilarity measure. The measure should
reflect those characteristics that are suspected
to define the clusters believed to be present in

the data. At times, a tailor-made index may
be needed and this is permissible. In order f&reg;r
an applied user to understand the properties of
various dissimilarity measures, a few typical
profiles can be constructed. The dissimilarity
measures can be computed between profiles, 9
and the resulting values can be studied to de-
termine whether the relevant characteristics are

being reflected in the values. The present au-
thors have found this to be an effective ex-

ercise.

5. A clustering method must be selected. Three

must be considered here. First, the

clustering method should be one designed to
recover the cluster types to be pres-
ent in the data. A mismatch between the cluster

type being sought by the clustering algorithm
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and the cluster types that actually exist in the
data may result in reduced or distorted recov-

ery. Second, the method should be effective
at recovering the specified structure, even when
error is present in the data. For hierarchical

methods, this would tend to rule out the use
of the single and complete methods in favor
of Ward’s method or the group-average tech-

nique. In the case of partitioning methods such
as K-means, the use of fairly accurate starting
seeds seems to be important.

Finally, access to computer software to run
the selected method is crucial. More often than

’ 

not, the actual clustering technique selected by
an applied user is determined by this last fac-
tor, and not by the first two criteria. For ex-

ample, D’Andrade’s (1978) hierarchical method
would be an attractive alternative to the single-
and complete-link methods when the user pos-
sesses ordinal data. However, software to run
l~’Andr~dc’s routine has not been made avail-

able. Fortunately, the major statistical com-
puter packages have been improving their clus-
tering software over time, and this is becoming
less of a problem. The Statistical Analysis Sys-
tem (SAS Institute, 1985) is one such package
that has greatly enhanced its clustering options
over the past decade. Continued improvements
are expected and desirable.

6. The number of clusters will need to be deter-

mined or specified for most clustering meth-
ods. Milligan and Cooper (1985) provided a
useful summary and bibliography of most of
the techniques that have been proposed to ad-
dress this decision task. Again, sAs has been

implementing many of the rules which have
been found to be reasonably effective.

7. ° The last step involves the interpretation, test-

ing, and replication of the clustering results.
The introduction of improved graphical tech-

niques for interpretation purposes has certainly
been a welcome development in the clustering
literature. Access to these procedures is still

somewhat limited, as is access to the testing
routines that will allow a user to test the hy-
pothesis of significant clustering in the data.

Unfortunately, limited access exacerbates a

longstanding problem in the practice of applied
clustering. Often, an applied researcher brings
to a cluster analysis the assumption that clus-
ters actually do exist in the data. The idea of

testing this assumption escapes some research-
ers. These same researchers would not as-

sume, say in the context of a laboratory ex-

periment, that the groups were significantly
different as a result of the experimental ma-

nipulations. Rather, the researcher would test
for this result. The same logic is valid in the
clustering context. Finally, the two-sample
cross-validation process proposed by R4cIntyre
and ~l~shfield (1980) is an excellent strategy
for establishing the generalizability of a cluster
analysis.
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