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Methodology Review: Evaluating Person Fit

Rob R. Meijer, University of Twente

Klaas Sijtsma, Tilburg University

Person-fit methods based on classical test the-
ory and item response theory (IRT), and methods
investigating particular types of response behavior
on tests, are examined. Similarities and differences
among person-fit methods and their advantages
and disadvantages are discussed. Sound person-fit
methods have been derived for the Rasch model.
For other IRT models, the empirical and theoretical

distributions differ for most person-fit statistics when
used with short and moderate length tests. The
detection rate of person-fit statistics depends on the
type of misfitting item-score patterns, test length, and
trait levels. The usefulness of person-fit statistics for
improving measurement depends on the application.
Index terms: appropriateness measurement, caution
indices, item response theory, person fit, test theory.

Since the beginning of standardized testing, measurement inaccuracy has received widespread
attention. Attempts to understand and mitigate measurement inaccuracy have been based on re-
liability theory and methods for estimating reliability (Gulliksen, 1950; Lord & Novick, 1968;
Spearman, 1910), statistics comparing groups with respect to the probability of correctly answering
an item (differential item functioning; e.g., Millsap & Everson, 1993), differential identification
of person subgroups using multiple regression analysis with dummy variables (e.g., Aguinis &
Stone-Romero, 1997), and—the focus of this review—methods for determining the fit of individual
item-score patterns to a test model.

Information that supplements a test score can be obtained by studying patterns of individual item
scores (e.g., Nunnally, 1978, p. 437). Discriminant analysis and cluster analysis have been used
for clustering similar types of score patterns (Nunnally, 1978, pp. 453–467) to determine whether
subgroups can be distinguished. Both methods, however, focus on groups, not on individual
persons. In this review, methods are reviewed that provide information at the individual level
and that detect misfitting item-score patterns. Overviews of these methods were given by Hulin,
Drasgow, & Parsons (1983, Ch. 4), Kogut (1986), and Meijer & Sijtsma (1995).

Person Fit or Appropriateness Measurement

Methods evaluating the fit of an individual’s test performance to an item response theory (IRT)
model have been referred to as “appropriateness measurement,” or more recently, “person-fit”
methods. Levine & Drasgow (1983) limited appropriateness measurement methods to those that
“recognize inappropriate test scores” (p. 110). However, in most appropriateness measurement
and person-fit studies, response behavior is described on the basis of some type of test model. This
implies that the appropriateness of a test score is defined by the fit of an item-score pattern to a test
model. Person-fit methods here refer to statistical methods for evaluating the misfit of individual
test performance to an IRT model or other item-score patterns in a sample of persons.

Rationale for Person-Fit Research

The number-correct (NC) score (or a trait level estimate) might be inadequate as a measure of
a person’s trait level. For example, a person could guess the correct answers to multiple-choice
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items, thus raising his/her score on a test; or, a person not familiar with the test format could, due
to this unfamiliarity, obtain a lower score than expected (e.g., Wright & Stone, 1979, pp. 165–
190). Inaccurate measurement of the trait level also might be caused by: “sleeping” behavior (e.g.,
inaccurately answering the first questions in a test because of problems getting started), cheating
(e.g., copying answers from another examinee), and “plodding” behavior (e.g., working very slowly
and methodically, thus generating item-score patterns that are overly ideal, given the stochastic
nature of response behaviors as assumed by most IRT models; see Ellis & van den Wollenberg,
1993; Holland, 1990).

Not all types of unusual behavior affect test scores. For example, a person might guess correctly
on some items and incorrectly on others. Due to the stochastic nature of guessing, this might not
result in substantially different test scores under most IRT models. Whether aberrant behavior leads
to misfitting item-score patterns depends on numerous factors, such as the type and amount of
aberrant behavior.

All methods discussed here can be used to detect misfitting item-score patterns. However,
several of these methods do not allow the recovery of the mechanism that created the deviant item-
score patterns. Other methods explicitly test against specific violations of a test model assumption
or particular types of deviant item-score patterns. The latter group of methods could facilitate
the interpretation of misfitting item-score patterns. Most person-fit statistics compare a person’s
observed and expected item scores across test items. Expected item scores are determined on the
basis of either an IRT model or observed item data in a sample of persons.

Table 1 gives an overview of the statistics discussed here, categorized according to the model
for which they were developed. This categorization should not be interpreted too strictly. For
example, the U statistic, developed for the Rasch model, also can be used for other IRT models.

Table 1
Person-Fit Statistics

Group-Based and Nonparametric 2PLM and 3PLM
rpbis , rbis (Donlon & Fischer, 1968) l0 (Levine & Rubin, 1979)
C (Sato, 1975) D (Weiss, 1973; Trabin & Weiss, 1983)
U (van der Flier, 1980; Meijer, 1994) ECI statistics (Tatsuoka, 1984)
Ai , Di , Ei (Kane & Brennan, 1980) lz (Drasgow, Levine, & Williams, 1985)
C∗ (Harnisch & Linn, 1981) JK, O/E (Drasgow, Levine, & McLaughlin, 1987)
ZU3 (van der Flier, 1982) lzm (Drasgow, Levine, & McLaughlin, 1991)
NCI, ICI (Tatsuoka & Tatsuoka, 1983) c (Levine & Drasgow, 1988)
H T

i (Sijtsma, 1988; Sijtsma & Meijer, 1992)
Rasch Models CAT

U (Wright & Stone, 1979) K (Bradlow, Weiss, & Cho, 1998)
W (Wright & Masters, 1982) T statistics (van Krimpen-Stoop & Meijer, 2000)
UB, UW (Smith, 1985) Zc (McLeod & Lewis, 1999)
M (Molenaar & Hoijtink, 1990)
χ2

sc (Klauer & Rettig, 1990)
T (X) (Klauer, 1991, 1995)

Person-Fit Methods Based on Group Characteristics

Statistics

A general formula is used to demonstrate similarities among person-fit statistics. Let a particular
choice of weights (w) define a particular person-fit statistic. Assume that n examinees take a test of
k items. Let πg denote the proportion-correct score on item g, estimated by π̂g = ng/k, where ng
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is the number of items scored 1. Let the items be ordered and numbered according to a decreasing
proportion-correct score (increasing item difficulty): π1 > π2 > . . . > πk . Let the realization of a
dichotomous (0, 1) item score be denoted Xg = xg (g = 1, 2, . . . , k). Examinees are indexed by
i, with i = 1, 2, . . . , n. The NC score X = r is the unweighted sum of item scores (

∑k
g=1 Xg = r).

Most group-based person-fit statistics compare a count of certain score patterns for item pairs
with the expectation under the deterministic Guttman (1944, 1950) model:

θ < δg ⇔ Pg(θ) = 0 , (1)

and

θ ≥ δg ⇔ Pg(θ) = 1 , (2)

where
θ is the person’s latent trait level,
δ is an item location parameter, which is a value on the θ scale, and
Pg(θ) is the conditional probability of a correct answer to item g.

The Guttman model excludes a correct answer on a relatively difficult item h, and an incorrect
answer on an easier item g, by the same examinee: Xh = 1, and Xg = 0, for all g < h. Item-score
combinations (0, 1) are called “errors” or “inversions.” Permitted item-score patterns, (1, 0), (0,
0), and (1, 1), are known as Guttman patterns or “conformal” patterns. The general equation for
group-based statistics is

Gi ≡

r∑
g=1

wg −
k∑

g=1

Xgwg

r∑
g=1

wg −
k∑

g=k−r+1

wg

. (3)

Person-fit statistics are often normed against a range of possible Gi values, given wi . Gi is un-
defined for 0 and perfect score patterns. For these cases, Gi = 0: for these patterns, the perfect
Guttman model holds. Thus, person-fit statistics that are based on group characteristics compare
an individual’s item-score pattern with the other item-score patterns in the sample.

Modified caution index. Harnisch & Linn’s (1981) modified caution index C∗
i is a slight vari-

ation of Sato’s (1975) caution index, Ci . C∗
i can be obtained from Equation 3 by setting wg = πg .

Ci also is obtained by setting wg = πg and multiplying
∑k

g=k−r+1 wg by r and the other terms by
k. Both statistics weigh item scores with the proportion-correct score normed against the Guttman
model. For example, C∗

i = 0 when an examinee with X = r answers the r easiest items correctly
and the k − r most difficult items incorrectly. Thus, the examinee’s item scores are in agreement
with the Guttman model. Also, C∗

i = 1 when the item-score pattern equals the reversed Guttman
pattern, indicating maximum misfit. The lower bound of Ci also equals 0 when an item-score
pattern is in agreement with the Guttman model (Sato, 1975). However, Ci does not have a fixed
upper bound, making its values more difficult to interpret than those of C∗

i .
Coefficients similar to C∗

i have been discussed (Cliff, 1983; Donlon & Fischer, 1968; Tatsuoka
& Tatsuoka, 1982, 1983; van der Flier, 1977). Donlon and Fischer proposed the personal point-
biserial correlation (rpbis) as a person-fit statistic; rpbis is the correlation across all items between an
examinee’s binary item scores and the vector containing the sample frequencies of the item scores
(including the examinee’s score). They also proposed the personal biserial correlation (rbis), which
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is the personal point-biserial correlation under the assumption of a continuous normally distributed
variable underlying the binary item responses. Van der Flier defined his U1 statistic as the number
of Guttman errors normed against the maximum number of Guttman errors given X = r; this
maximum equals r(k − r).

Norm conformity and consistency indices. Tatsuoka & Tatsuoka (1983) discussed the norm
conformity index (NCI i),

NCIi ≡ 1 −
2

k−1∑
g=1

k∑
h=g+1

Xg(1 − Xh)

r(k − r)
. (4)

The numerator contains the number of Guttman conformal (1, 0) item-score pairs multiplied by
2. In a reversed Guttman item-score vector, the number of conformal (1, 0) pairs equals 0, so
NCI i = 1. In a Guttman item-score vector, the number of conformal (1, 0) item-score pairs is
r(k − r), so NCI i = −1. NCI i is perfectly related to U1: NCI i = 1 − 2U1.

Tatsuoka & Tatsuoka (1983) also discussed the individual consistency index (ICI i). ICI i is
equivalent to NCI i and is determined for subgroups of items that require the same cognitive solution
strategy. Whereas NCI i evaluates the consistency of an item-score pattern with the other score
patterns in a group, ICI i evaluates the consistency of an item-score pattern with an a priori defined
item-score pattern based on the application of a particular cognitive skill.

Agreement, disagreement, and dependability indices. Kane & Brennan (1980) discussed agree-
ment, disagreement, and dependability indices that can be used as group-based person-fit statistics.
The agreement index is

Ai =
k∑

g=1

Xgπg . (5)

Let Ai(max) be the maximum value of Ai given the NC score r . Ai(max) is obtained if, given r ,
the item-score pattern is a Guttman pattern:

Ai(max) =
r∑

g=1

πg . (6)

The disagreement index is

Di = Ai(max) − Ai . (7)

The dependability index is

Ei = Ai

Ai(max)
. (8)

Note that Di equals the numerator of C∗
i (Equation 3, with wg = πg).

H T
i statistic. Sijtsma (1986; Sijtsma & Meijer, 1992) proposed the person-fit statistic H T

i . Let
βi be the expected proportion of items to which examinee i gives the correct response across locally
independent repeated measurements, for a fixed set of k items. Let βij be the expected proportion
of items to which examinees i and j respond correctly. Then σij = βij − βiβj is the covariance
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between the scores of examinees i and j . If examinee indices i < j imply βi ≤ βj , the maximum
covariance between the two examinees is obtained when βij = βi ; therefore,

σ max
ij = βi(1 − βj ) . (9)

For a single examinee in relation to n − 1 examinees,

H T
i =

∑
j 
=i

σij

∑
j 
=i

σ max
ij

. (10)

The maximum value of H T
i is 1 when each of the covariances between the item-score patterns of

examinees i and j [for all i and j (i 
= j)] attains its maximum value. H T
i = 0 when the average

covariance (numerator) is 0; H T
i < 0 if the average covariance is negative.

H T
i is not normed against the Guttman pattern. Sijtsma (1986) showed that H T

i = 1 is not
necessary to obtain the perfect item-score pattern. Therefore, this statistic cannot be written in the
form given in Equation 3.

U3 statistic. A group-based statistic with a known theoretical sampling distribution is van der
Flier’s (1980, 1982) U3 statistic, which can be obtained from Equation 3 when

wg = ln
(

πg

1 − πg

)
. (11)

To correct for dependence on an NC score, U3 is standardized given X = r . This standardized
statistic is

ZU3 = U3 − E(U3)

[Var(U3)]1/2
, (12)

where E(U3) and Var(U3) are the expectation and the variance of U3, respectively. Van der Flier
(1980, 1982) showed that, for long tests, ZU3 is asymptotically standard normally distributed.
When X = r , all terms in Equation 3 are constant, except

∑k
g=1 Xgwg . Van der Flier (1982)

derived expressions for E(
∑k

g=1 Xgwg) and Var(
∑k

g=1 Xgwg). The logit transformation of πg

enables the derivation of the normal distribution (see van der Flier, 1980, pp. 62–67).

Research on Group-Based Statistics

Studies comparing statistics. Harnisch & Linn (1981) used empirical data from reading and
math tests to examine the correlations among Ci , C∗

i , rpbis, rbis, Ai , Di , Ei , and NCI i , and between
these statistics and NC. Harnisch and Linn found that, for both tests, the correlations among all
statistics except Ai were from .65 to .90. Ai correlated approximately .40 with each of the others.
Most statistics correlated approximately .50 with NC on both tests. However, C∗

i correlated .20
(lowest) with NC, and Ai correlated .99. Harnisch and Linn then compared the average C∗

i scores
across students for groups from different schools. They found significant inter-school differences
that they attributed to differences in instruction and curriculum.

Rudner’s (1983) simulation study compared the group-based statistics rpbis, rbis, NCI i , and Ci

with several IRT-based person-fit statistics: U , W , and l0 (discussed below). High correlations (.61–
.99) were found among the group-based statistics. Two cases were distinguished for investigating
the effectiveness of the statistics in detecting misfitting item-score patterns. In one case, for a
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minority of examinees, several correct responses were selected randomly and changed to incorrect
responses, producing spuriously low NC scores. In a second case, incorrect responses were changed
to correct responses, producing high NC scores. To identify whether the person-fit statistics could
identify the altered item-score patterns, Rudner analyzed whether the spuriously high or low scores
were correctly classified as misfitting by the statistics. Critical values were selected from a sample
of 2,000 simulees. For each statistic, the critical value was determined by: (1) ordering the item-
score patterns from decreasing to increasing misfit and (2) taking the value below which .05 of
the most extreme values (indicating misfit) fell. Generally, the effectiveness of misfit detection
increased with the number of altered items. For example, when 11% of responses were changed
from incorrect to correct, NCI i produced a detection rate of .10; when 33% of responses were
similarly changed, NCI i produced a detection rate of .20. Also, for tests consisting of 45 items, rbis

performed better than NCI i and Ci . For longer tests (80 items), the IRT-based statistic U performed
best.

Studies of a single person-fit statistic. Miller (1986) used Ci aggregated to the school class
level to identify classes having a poor match between the content of a math test and instructional
coverage. Differences in time spent on a particular subject in which students were to be tested
resulted in different types of item mean values for Ci . A low Ci was found for classes in which test
topics were emphasized, and a high Ci was found for classes in which other topics were emphasized.

Tatsuoka & Tatsuoka (1983) used NCI i to detect deviant item-score patterns in an arithmetic
test. They compared two groups of examinees: (1) students at a beginning level who made many
different kinds of errors and (2) students near a mastery level who only made “sophisticated”
errors. Item difficulties were different for the two groups, due to the different levels of expertise.
Examinees making only sophisticated errors, but still included in the beginning level group, were
classified as misfitting. When these same examinees were included in the mastery level group, they
were classified as not misfitting. Thus, NCI i obtained a relatively high value (indicating misfit)
when an examinee’s item scores deviated from the majority of item scores in the group. In the
same study, ICI i was used to identify examinees with inconsistent item-score patterns on items that
required similar cognitive skills.

Jaeger (1988) used C∗
i to identify judges whose patterns of item judgment were misfitting in a

standard-setting procedure (i.e., a procedure for establishing a decision rule for assigning candidates
to pass/fail conditions). C∗

i ranged from .05–.62, with a mean of .32, and correlated .16 with the
NC score on a reading test and .44 with the NC score on a mathematics test. Excluding judges with
extreme C∗

i values had no effect on the recommended test standard.
Van der Flier (1982) simulated item-score patterns on the basis of item difficulties from two

different populations (Populations I and II). ZU3 scores were determined on the basis of πg values in
Population I or II. Item-score patterns were allocated to Population I or II on the basis of their ZU3
scores and the significance probabilities in their corresponding populations. The exact decision
rule that formed the basis for assigning a pattern to a population was unclear. Van der Flier found
that approximately 70% of the patterns were allocated to the correct population, and the percentage
of correct allocations was not related to the NC score.

Van der Flier (1982) then investigated the use of ZU3 in a cross-cultural setting. Kenyan and
Tanzanian examinees were compared on a Kiswahili verbal reasoning test. Kenyan examinees were
known to have less knowledge of Kiswahili than Tanzanian examinees. Van der Flier hypothesized
that: (1) for examinees with low ZU3 scores (indicating misfit), the test scores would underestimate
reasoning ability; and (2) for groups of examinees with equal test scores, a more deviant group
would obtain better results on a criterion variable. It was found that Kenyans with large positive
ZU3 scores on verbal reasoning tests had better examination results (the criterion) than expected
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based on their verbal reasoning test scores (the predictor). The additional information provided by
the person-fit scores in predicting examination results, however, was rather modest.

Studies of detection rates. Meijer (1994), using simulated data, found that the detection rates
of U1 and U3 were comparable. Also using simulated data, Meijer, Molenaar, & Sijtsma (1994)
investigated the influence of test length, misfitting response types, and item discrimination on the
detection rate of U3. They found that a priori defined misfitting item-score patterns were easier to
detect in longer tests with higher item discriminations. Moreover, the type of misfitting behavior
had a strong influence on the detection rate of U3. For example, misfitting item-score patterns
were simulated by changing scores of 0 to 1 on the most difficult items (simulating cheating) or by
assigning a probability of .25 to each item with a score of 1 (simulating guessing). Cheaters were
easier to detect than guessers.

Meijer (1996) used simulated data to investigate the influence of the amount and type of misfitting
patterns in a calibration sample on the detection rate of ZU3. As the number of misfitting simulees
increased, the estimates of πg were biased and the detection rate of ZU3 decreased. Test length and
type of misfit also influenced the detection rate. Re-estimating the proportion-correct score after
removing misfitting patterns from the data using an iterative procedure also was investigated. This
procedure was used until no further improvement in the detection rate was found. Results suggested
that this method can be used to improve the detection rate of ZU3 when there are misfitting persons.

Evaluation of Group-Based Statistics

In group-based person-fit statistics, a score pattern is classified as misfitting when items with
proportion-correct near 0 are answered correctly, and items with proportion-correct near 1 are
answered incorrectly. With the exception of ZU3, critical values for classifying item-response
patterns as misfitting are usually chosen based on the characteristics of the data. For example,
Harnisch (1983) suggested that a value higher than .6 indicated misfit for Ci , whereas Harnisch &
Linn (1981) labelled item-score patterns with C∗

i > .3 as misfitting. These critical values, however,
were based only on one or two empirical datasets.

Harnisch & Linn (1981) and Rudner (1983) used the following criteria to select useful person-
fit statistics: (1) low correlation with the NC score and (2) detection rate. Harnisch and Linn
concluded that, of the statistics considered in their study, C∗

i was related least to the NC score and
was the most suitable statistic for detecting misfitting item-score patterns. A complete comparison
of the correlations between person-fit statistics and test scores, and of the detection rates, seems
impossible, however—the studies are incomplete, and the characteristics of the datasets are unclear.

Group-based statistics might be sensitive to misfitting item-score patterns, but their null distri-
butions are unknown (with the exception of ZU3). As a result, significance probabilities cannot
determine whether a score pattern is unlikely, given a nominal Type I error rate.

Let t be the observed value of a person-fit statistic T . Then, the significance probability, p∗
(probability of exceedance), can be defined as the probability under the sampling distribution that
the value of the test statistic is smaller or larger than the observed value [p∗ = P (T ≤ t) and
p∗ = P (T ≥ t), respectively], depending on whether low or high values of the statistic indicate
misfit. Although this might not be a serious problem when a person-fit statistic is used as a
descriptive measure, the distribution of values for most group-based statistics is dependent on the
test score (e.g., Drasgow, Levine, & McLaughlin, 1987). This dependence implies that, when
a single critical value is used across test scores, the probability of classifying a score pattern as
misfitting is a function of the test score, which is undesirable.

Group-based statistics such as NCI are similar to rank-order correlation measures [e.g., Kendall’s
(1970) τ ], with two important differences. First, the values of Kendall’s τ cannot be compared
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across test scores. Second, the distributional properties of Kendall’s τ are not easily applicable to
those of person-fit statistics. In Cliff’s (1996, pp. 66–88) overview of inferences based on ordinal
correlation, the null hypotheses are different from those of interest here. For example, the null
hypothesis that τ = 0 for two variables can be tested against the alternative that there is positive
or negative association. This null hypothesis is not very useful for person-fit research, because
then it must be determined whether the item scores follow the Guttman model (implying perfect
association; the alternative would be no perfect association, but often positive covariance).

IRT-Based Person-Fit Measures

Statistics

Prerequisites. In IRT, the probability of correctly answering item g (g = 1, 2, . . . , k) is a func-
tion of θ and item characteristics (e.g., δ; Embretson & Reise, 2000; Hambleton & Swaminathan,
1985; van der Linden & Hambleton, 1997). This conditional probability Pg(θ) is the item response
function. A vector with item-score random variables is X = (X1, X2, . . . , Xk), and a realization is
x = (x1, x2, . . . , xk). IRT often assumes that the item scores are locally independent,

P (X = x|θ) =
k∏

g=1

Pg(θ)xg [1 − Pg(θ)]1−xg . (13)

For any cumulative probability distribution F (θ), θ can be integrated out, resulting in

P (X = x) =
∫
θ

k∏
g=1

Pg(θ)xg [1 − Pg(θ)]1−xg dF (θ) . (14)

For testable restrictions on the distribution of X, specific choices for Pg(θ), F (θ), or both must be
made. Although F (θ) sometimes is selected to be normal, Pg(θ) often is specified using the one-,
two-, or three-parameter logistic model (1PLM, 2PLM, and 3PLM, respectively). For the 3PLM,

Pg(θ) = γg + (1 − γg) exp[αg(θ − δg)]
1 + exp[αg(θ − δg)] , (15)

where
γg is the lower asymptote (γg is the probability of a 1 score for persons with low θs—that is,

θ → −∞),
αg is the slope (item discrimination) parameter, and
δg is the item location parameter.

The 2PLM can be obtained by fixing γg = 0 for all items, and the 1PLM or Rasch (1960/80) model
by additionally fixing αg = 1 for all items.

A major advantage of IRT models is that a model’s goodness of fit to empirical data can be inves-
tigated. Compared to group-based person-fit statistics, this provides the opportunity of evaluating
the item-score pattern fit to an IRT model.

Following Snijders (in press), a general form in which most person-fit statistics can be ex-
pressed is

k∑
g=1

Xgwg(θ) − w0(θ) , (16)
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where wg(θ) and w0(θ) are suitable functions for weighting the item scores and adapting person-fit
scale scores, respectively.

So that the expectation of a person-fit statistic is 0, many person-fit statistics are expressed in
the centered form

V =
k∑

g=1

[Xg − Pg(θ)]wg(θ) . (17)

Note that, as a result of binary scoring, X2
g = Xg . Thus, for a suitable function vg(θ),

V ∗ =
k∑

g=1

[Xg − Pg(θ)]2vg(θ) (18)

can be re-expressed as Equation 16.
Residual-based statistics. Wright & Stone (1979) and Wright & Masters (1982, pp. 108–111)

proposed two mean-squared residual-based statistics, U and W . U is based on squared standardized
residuals. The weight

vg(θ) = 1

kPg(θ)[1 − Pg(θ)] (19)

results in

U =
k∑

g=1

[Xg − Pg(θ)]2

kPg(θ)[1 − Pg(θ)] . (20)

The denominator of these equations contains the conditional variances of the individual item scores:
Var(Xg|θ) = Pg(θ)[1 − Pg(θ)]. U can be interpreted as the mean of the squared standardized
residuals based on k items. Further,

W =

k∑
g=1

[Xg − Pg(θ)]2

k∑
g=1

Pg(θ)[1 − Pg(θ)]
. (21)

Wright & Stone (1979) assumed that W is less sensitive than U to an unexpected response to an
item with a difficulty distant from an examinee’s θ . According to Wright and Stone and Wright &
Masters (1982),

ZU = [ln U + U + 1](df/8)−1 , (22)

with k − 1 degrees of freedom (df). Similarly,

ZW = 3(W 1/3 − 1)/q + (q/3) , (23)

where q is the variance of W . Wright and Stone and Wright and Masters claimed that these
transformations are asymptotically standard normally distributed. The appropriateness of ZU and
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ZW for approximating the normal distribution can be questioned, however, as will be discussed
below.

Smith (1985) proposed two related statistics. He assumed that a test can be divided into S

nonoverlapping subsets of items, As(s = 1, 2, . . . , S). He then defined an unweighted between-
sets fit statistic as

UB = 1

S − 1

S∑
s=1

{ ∑
g∈As

[Xg − Pg(θ)]
}2

∑
g∈As

Pg(θ)[1 − Pg(θ)]
. (24)

Let ms be the number of items in subset As ; then, the unweighted within-sets fit statistic is

UW = 1

ms

∑
g∈As

[Xg − Pg(θ)]2

kPg(θ)[1 − Pg(θ)] . (25)

Smith (1985, 1986) used critical values obtained from a simulation study for classifying exami-
nees as model-fitting or misfitting. For the Rasch model, Kogut (1988) showed that (1) the joint
distribution of subtest residuals,

∑
g∈As

[Xg − Pg(θ)]
∑
g∈As

Pg(θ)[1 − Pg(θ)]
, (26)

is asymptotically multivariate normal; and (2) UB has an asymptotically χ2 distribution with S df
when θ is used, and S − 1 df when the maximum likelihood estimate (MLE) θ̂ is used. Empirical
distributions were simulated to investigate whether the asymptotic distributions held reasonably
well for tests of realistic length (40 items; Kogut, 1988). The empirical distributions were accurate
enough to approximate the asymptotic distributions. UW can investigate whether a priori specified
subsets of items fit the IRT model.

Likelihood-based statistics. The log-likelihood function

l0 =
k∑

g=1

{Xg lnPg(θ) + (1 − Xg) ln[1 − Pg(θ)]} , (27)

first used by Levine & Rubin (1979) to assess person fit, has been further developed and applied
(e.g., Drasgow, Levine, & McLaughlin, 1991; Drasgow, Levine, & Williams, 1985; Levine &
Drasgow, 1982, 1983). l0 is determined as the logarithm of the likelihood function evaluated at the
MLE of θ . Two problems occur when using l0 as a fit statistic.
1. l0 is not standardized, implying that the classification of an item-score pattern as model-fitting

or misfitting depends on θ .
2. For classifying an item-score pattern as misfitting, a distribution of l0 under the null hypothesis

of fitting item scores is needed. This null distribution is unknown for l0.
To overcome these problems, Drasgow et al. (1985) proposed a standardized version of l0 that is
less confounded with θ and purported to be asymptotically standard normally distributed. This
standardized version of l0 is
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lz = l0 − E(l0)

[Var(l0)]1/2
, (28)

where E(l0) and Var(l0) are the expectation and variance of l0, respectively:

E(l0) =
k∑

g=1

{Pg(θ) ln[Pg(θ)] + [1 − Pg(θ)] ln[1 − Pg(θ)]} , (29)

and

Var(l0) =
k∑

g=1

Pg(θ)[1 − Pg(θ)]
[

ln
Pg(θ)

1 − Pg(θ)

]2

. (30)

Molenaar & Hoijtink (1990, 1996) argued that lz is standard normally distributed only when true θ

values are used. A problem arises in practice when θ is replaced by the MLE, θ̂ . Using an estimate
instead of true θ has an effect on the distribution of a person-fit statistic (Molenaar & Hoijtink,
1990; Nering, 1995, 1997; Reise, 1995). When θ̂ is used, the variance of lz is smaller than expected
under the standard normal distribution using the true θ , particularly for tests of moderate length
(e.g., 50 items or fewer). The empirical Type I error was found to be smaller than the nominal Type
I error. This effect could not be reduced using Warm’s θ estimator, which corrects for overestimated
positive values and underestimated negative values of θ (van Krimpen-Stoop & Meijer, 1999).

For the Rasch model, Molenaar & Hoijtink (1990, p. 96) showed that l0 can be written as the
sum of two terms,

l0 = d0 + M , (31)

with

d0 = −
k∑

g=1

ln[(1 + exp(θ − δg)] + rθ , (32)

and

M = −
k∑

g=1

δgXg . (33)

Given
∑k

g=1 Xg = r (that is, given θ̂ , which in the Rasch model depends only on the sufficient
statistic r), d0 is independent of the item-score pattern X, and M is dependent on it. l0 and M have
the same ordering in X.

Because of its simplicity, Molenaar & Hoijtink (1990) used M rather than l0 as a person-fit
statistic. They proposed three approximations to the distribution of M: (1) complete enumeration;
(2) monte carlo simulation; and (3) a χ2 distribution, in which the mean, standard deviation (SD), and
skewness of M are taken into account. (See Molenaar & Hoijtink, 1990, for when these approaches
should be used; Liou & Chang, 1992, for a network algorithm that enumerates all possible response
patterns to construct exact tail probabilities for l0; and Bedrick, 1997, for alternative methods to
approximate the first two moments of M .)
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Group-based statistics such as G (Equation 3) can be used to detect misfitting item-score patterns
under an IRT model. However, they might classify different item-score patterns as misfitting in
comparison to fit statistics based on IRT parameters. Molenaar & Hoijtink (1990) argued that
calculating a distribution for statistics such as G is equally laborious as for M , which was designed
especially for detecting misfit under the Rasch model. Molenaar and Hoijtink examined possible
discrepancies between M and other statistics. They found that many model-fitting response patterns
identified using M were identified as misfitting using (a weighted version of) the number of Guttman
inversions. Thus, G is not recommended in the context of the Rasch model.

Drasgow et al. (1991) proposed a generalization of lz for tests consisting of S unidimensional
subtests. This statistic has a form similar to lz, but the expectation and variance are taken over S

subtests,

lzm =

S∑
s=1

{
l
(s)
0 − E[l(s)

0 ]
}

S∑
s=1

{
Var[l(s)

0 ]
}1/2

. (34)

Although lzm was effective in detecting misfitting item-score patterns, detection rates were approx-
imately equal to those for long, unidimensional tests with a number of items equaling the total
number of items in the S subtests. In practical testing situations, lzm has the same problems as lz: θ̂

is used, resulting in inappropriate approximations to probabilities of exceedance. Using lz with the
3PLM, Nering (1995) found that the empirical Type I error in general was lower than the nominal
Type I error.

Snijders (1998) derived the asymptotic sampling distribution for a group of person-fit statistics
using θ̂ instead of θ and taking the form of Equation 17. Snijders showed that l0 − E(l0) can be
written in the form of Equation 17 when

wg = Pg(θ)

1 − Pg(θ)
. (35)

Snijders (in press) derived expressions for the first two moments: E[V (θ̂)] and Var[V (θ̂)]. A
simulation study then was performed for relatively small tests (8 and 15 items) using the 2PLM and
θ̂ . The approximation was satisfactory for α = .05 and α = .10, but the empirical Type I error was
higher than the nominal Type I error for smaller values of α.

Drasgow et al. (1987) proposed two fit statistics that are sensitive to the flatness of the likelihood
function. They indicated that, when there is no single value of θ providing a good fit for an
item-score pattern, the likelihood function will be relatively flat. The first statistic is a normalized
jackknife variance estimate (JK). If θ̂ is the usual 3PLM MLE of θ based on all k items and θ̂∗

(g)
is

the 3PLM MLE of θ based on the k − 1 items remaining when item g is excluded, then

θ̂∗
g ≡ kθ̂ − (k − 1)θ̂∗

(g) , g = 1, 2, . . . , k . (36)

The jackknife estimate of θ is

θ̂∗ = 1/k

k∑
g=1

θ̂∗
g , (37)

with
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Var(θ̂∗) =

k∑
g=1

(θ̂∗
g )2 − 1/k


 k∑

g=1

θ̂∗
g




2

k(k − 1)
. (38)

Because there is more Fisher information about θ within certain ranges, Var(θ̂∗) depends on θ . It
therefore is weighted by the Fisher information, I (θ̂), the reciprocal of which is the asymptotic
variance of θ̂ . This results in

JK = Var(θ̂∗)I (θ̂) . (39)

When an item-score pattern does not fit the model, the likelihood function is relatively flat and the
variance estimate is higher than for a fitting item-score pattern. Drasgow et al.’s (1987) second
person-fit statistic is the ratio of observed and expected information,

O/E =

∂2l0

∂θ2

∣∣∣∣∣
θ=θ̂

I (θ̂ )
. (40)

When the likelihood l0 (see Equation 27) is flatter for misfitting responses than for model-fitting
responses, the observed information is expected to be smaller than the expected information.

Statistics based on the caution index. Tatsuoka & Linn (1983) developed several person-fit
statistics similar to the caution index Ci (Harnisch & Linn, 1981) that use IRT modeling. The
caution index can be written as

Ci = 1 − Cov(Xi , n)

Cov(X∗
i , n)

, (41)

where
Xi is a vector of item scores of examinee i,
X∗

i is the theoretical Guttman vector, and
n is a vector with the item NC scores across examinees.

By norming against the covariance between the probability of a correct response under an IRT model
and n, ECI1 was obtained as

ECI1 = 1 − Cov(Xi , n)

Cov[P(θ), n] , (42)

where P(θ) is a vector defined for each θ with conditional probabilities Pg(θ) across items.
ECI2 and ECI3 were obtained by computing the covariance (correlation) between an item-score

vector and the vector with the mean probability of correctly answering an item across n examinees,

ECI2 = 1 − Cov[Xi , G]
Cov[P(θ), G] , (43)

and

ECI3 = 1 − Corr[Xi , G]
Corr[P(θ), G] , (44)
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where G = (G1, G2, . . . , Gk) with elements Gg = 1/n
∑n

i=1 Pg(θ).
ECI4, ECI5, and ECI6 were obtained by computing the covariance or the correlation between

the response vector Xi and P(θ), resulting in

ECI4 = 1 − Cov[Xi , P(θ)]
Cov[G, P(θ)] , (45)

ECI5 = 1 − Corr[Xi , P(θ)]
Corr[G, P(θ)] , (46)

and

ECI6 = 1 − Cov[Xi , P(θ)]
Var[P(θ)] . (47)

Although ECI2 and ECI3 compare an individual item-score pattern with the mean probability across
persons—thus comparing an individual item-score pattern with group characteristics—ECI4, ECI5,
and ECI6 compare an individual item-score pattern with the expected probability on the basis of
a model. ECI4 is normed against the mean probability across items; ECI6 is normed against the
variance of P(θ). ECI3 and ECI5 are similar to ECI2 and ECI4, except that in ECI3 and ECI5,
correlations are used instead of covariances. Tatsuoka (1984) derived the expectations and variances
of ECI1, ECI2, ECI4, and ECI5 to obtain standardized versions of these indices (subtracting the
expected values and dividing by the SDs). These standardized indices were denoted ECI1z, ECI2z,
ECI4z, and ECI5z.

Although likelihood and ECI statistics are based on different approaches to person fit (e.g.,
Harnisch & Tatsuoka, 1983; Kogut, 1986; Nering, 1997), both approaches are of the form of
Equation 17. For example, the centered form of ECI4, ECI4 − E(ECI4), can be obtained when

wg = Pg(θ) − P̄ (θ) , (48)

where P̄ (θ) = 1/k
∑k

g=1 Pg(θ). The centered form of ECI2 can be obtained when

wg = Gg − G , (49)

where

G = 1/k

k∑
g=1

Gg . (50)

Optimal Person-Fit Statistics

Levine & Drasgow (1988; Drasgow & Levine, 1986; Drasgow, Levine, & Zickar, 1996) proposed
a statistically optimal method for the identification of misfitting item-score patterns: no other
method can achieve a higher rate of detection at the same Type I error rate. A likelihood ratio
statistic was proposed that provides the most powerful test for the null hypothesis that an item-
score pattern is model-fitting (versus misfitting). A model for model-fitting behavior (e.g., 1-, 2-,
or 3PLM) and a model for a particular type of misfitting behavior (e.g., a model with violations of
local independence) are specified in advance. The likelihood ratio statistic used is

λ(X) = P (X = x)misfitting

P (X = x)fitting
. (51)
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Response patterns are classified as misfitting if they have (1) the largest λ(X) and (2) likelihoods
under the model describing model-fitting response behavior that sum to the α level.

Klauer (1991, 1995) investigated misfitting item-score patterns by testing a null model of model-
fitting response behavior (Rasch model) against an alternative model of misfitting response behavior.
Writing the Rasch model as a member of the exponential family,

P (X = x|θ) = µ(θ)h(x) exp[θR(x)] , (52)

where

µ(θ) =
k∏

g=1

[1 + exp(θ − δg)]−1 , (53)

and

h(x) = exp(−
∑

xgδg) , (54)

where R(x) is an NC score. Klauer (1995) modeled misfitting response behavior using the two-
parameter exponential family with an extra person parameter, η, as

P (X = x|θ, η) = µ(θ, η)h(x) exp[ηT (x) + θR(x)] , (55)

where T (x) depends on the particular alternative model considered. Using the exponential family of
models, a uniformly most powerful test (Lindgren, 1993, p. 350) can be used for testing H0:η = η0

against H1:η 
= η0. Let a test be subdivided into two subtests, A1 and A2. Then, as an example of
η, η = θ1 − θ2 was considered, where θ1 is an examinee’s θ on subtest A1, and θ2 is an examinee’s
θ on subtest A2. Under the Rasch model, θ is expected to be invariant across subtests; therefore,
H0:η = 0 can be tested against H1:η 
= 0. For this type of misfitting behavior, T (x) is the NC score
on either of the subtests.

Klauer (1995) also tested the H0 of equal item discrimination parameters for all examinees
against person-specific item discrimination and the H0 of local independence against violations of
local independence. Klauer found that the power of these tests depended on the type and severity
of the violations. Violations against noninvariant θ (H0:η = 0) were found to be the most difficult
to detect. Liou (1993) discussed refinements using these types of tests.

Levine & Drasgow (1988) and Klauer (1991, 1995) specified model violations in advance,
and tests were proposed to investigate these violations. In most person-fit studies, the alternative
hypothesis is simply the logical reverse of the null hypothesis. An obvious problem is which
alternative models to specify. A possibility is to specify a number of plausible alternative models
and then successively test model-conformed item-score patterns against those alternatives. Another
option is to investigate which model violations are most detrimental to the use of the chosen test,
and then test against the most serious violations (Klauer, 1995).

The Person Response Function

Trabin & Weiss (1983; see also Weiss, 1973) proposed using the person response function (PRF)
to identify misfitting item-score patterns. At a fixed θ value, the PRF specifies the probability of a
correct response as a function of the item location, δ (and other item parameters). In IRT, the item
response function for dichotomously scored items is assumed to be a nondecreasing function of θ ,
whereas the PRF is assumed to be a nonincreasing function of δ (Trabin & Weiss, 1983). To construct
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an observed PRF, Trabin and Weiss ordered items from low to high δ̂ and then formed subtests by
grouping items according to δ̂. For fixed θ̂ , the observed PRF was constructed by determining the
proportion of correct responses in each subtest. The expected PRF was constructed by estimating,
according to the 3PLM, the mean probability of a correct response. A large difference between
the expected and observed PRFs was interpreted as an indication of misfitting responses for that
examinee.

Let k items be ordered by their δ, and let item rank numbers be assigned such that δ1 < δ2 <

. . . < δk . Assume that S ordered subtests As(s = 1, 2, . . . , S) can be formed, each containing
m items. Then, A1 = {1, 2, . . . , m}, A2 = {m + 1, . . . , 2m}, . . . , AS = {k − m + 1, . . . , k},
and S × m = k. To construct the expected PRF, an estimate of the expected proportion of correct
responses under the 3PLM in each subtest is

m−1
∑
g∈As

Pg(θ̂) , s = 1, 2, . . . , S . (56)

This expected proportion is compared with the observed proportion of correct responses, given by

m−1
∑
g∈As

Xg , s = 1, 2, . . . , S . (57)

For a particular θ̂ within each subtest, the difference between observed and expected correct scores
is taken and divided by the number of items in the subtest, yielding

Ds(θ̂) = m−1
∑
g∈As

[
Xg − Pg(θ̂)

]
, s = 1, 2, . . . , S . (58)

Ds then are added across subtests, yielding

D(θ̂) =
S∑

s=1

Ds(θ̂) . (59)

D(θ̂) is a measure of an examinee’s fit to the model. For example, when examinees copy answers
to the most difficult items from another examinee, their scores on those subtests are likely to be
substantially higher than predicted by the expected PRF. (For related ideas, see Lumsden, 1977,
1978.)

Klauer & Rettig (1990) expanded the methodology of Trabin & Weiss (1983) by proposing three
standardized person-fit statistics that asymptotically follow a χ2 distribution for long tests. One of
their statistics is

χ2
sc =

S∑
s=1

V 2
s (θ̂ )

Is(θ̂ )
, (60)

where Vs(θ̂) is (based on Equation 17)

Vs(θ̂) =
∑
g∈As

[
Xg − Pg(θ̂)

]
wg(θ̂) , (61)

where

wg(θ) = dPg(θ)/dθ

Pg(θ)[1 − Pg(θ)] , (62)
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and Is(θ̂) is the estimated Fisher information function. To determine whether θ is invariant across
subtests, the null hypothesis H0:θ1 = θ2 = . . . = θS is tested. Under H0, χ2

sc has df = S − 1.
Although similar to Trabin & Weiss’s (1983) method, χ2

sc is standardized and asymptotically χ2

distributed.
Klauer & Rettig (1990) also proposed two related tests. The first was the Wald test, which

compares an examinee’s θ̂s from different subtests. The other was a likelihood ratio test. Through
monte carlo research, Klauer and Rettig showed that χ2

sc was distributed as χ2 for tests of at least 80
items. For the Wald and likelihood ratio tests, the difference between the theoretical and empirical
χ2 distributions was too large to be of practical use.

Sijtsma & Meijer (in press) proposed a PRF approach to person-fit research in a nonparametric
IRT context. They found that the nonparametric PRF approach can provide diagnostic information
about the type of misfit; it can be used in addition to an overall person-fit statistic, which only
identifies misfitting item-score patterns.

Person-Fit Research in Computerized Adaptive Testing

With the increasing use of computerized adaptive testing (CAT; Meijer & Nering, 1999; Weiss,
1982), person-fit statistics might be helpful for detecting item memorization or examinees who
are familiar with some of the items (due to continuous test administration from the same item
bank). In CAT, the distributional characteristics of existing person-fit statistics (e.g., lz and ECI4)
do not agree with the expected theoretical distributions (McLeod & Lewis, 1998, 1999; Nering,
1997; van Krimpen-Stoop & Meijer, 1999). This might be explained by the modest variability in
item difficulties in a CAT, which results in reduced variability of the assumed null distribution of
person-fit statistics. Consequently, empirical Type I errors are small compared to nominal Type I
errors (van Krimpen-Stoop & Meijer, 1999). Person-fit statistics designed especially for CAT might
be more powerful than “conventional” person-fit statistics.

McLeod & Lewis (1999) proposed the Zc statistic for detecting item-score patterns that result
from memorization. Before Zc is calculated, the item bank is divided into three parts: easy, medium
difficulty, and difficult items. Let Easy[Pg(θ) − Xg] denote the mean residual for the easy items,
and Diff[Pg(θ) − Xg] the mean residual for the most difficult items in a CAT. Then,

Zc = Easy[Pg(θ) − Xg] − Diff[Pg(θ) − Xg]{∑
Easy{Pg(θ)[1 − Pg(θ)]}/n2

Easy

}
+

{∑
Diff{Pg(θ)[1 − Pg(θ)]}/n2

Diff

} . (63)

Zc is positive when an examinee incorrectly answers easy items and correctly answers difficult
items. However, applying Zc to an operational Graduate Record Examination Quantitative CAT

bank with 14 memorized items resulted in low detection rates.
Bradlow, Weiss, & Cho (1998) and van Krimpen-Stoop & Meijer (2000) proposed person-

fit statistics in which a model-fitting item-score pattern consists of an alternation of correct and
incorrect responses, especially at the end of the test when θ̂ converges on θ . A string of consecutive
correct or incorrect answers could indicate misfit. Sums of consecutive negative or positive residuals
[Pg(θ) − Xg] can be investigated using a cumulative sum procedure (Page, 1954). For each item
g in the test, a statistic Tg can be calculated that is a weighted version of [Pg(θ) − Xg]. Then, the
sum of these Tgs is

C+
g = max[0, Tg + C+

g−1] , (64)

C−
g = min[0, Tg + C−

g−1] , (65)

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteit van Tilburg on April 25, 2008 http://apm.sagepub.comDownloaded from 

http://apm.sagepub.com


Volume 25 Number 2 June 2001
124 APPLIED PSYCHOLOGICAL MEASUREMENT

and

C+
0 = C−

0 = 0 , (66)

where C+ and C− reflect the sum of consecutive positive and negative residuals, respectively.
Let UB and LB be appropriate upper and lower bounds, respectively. Then, when C+ > UB or
C− < LB, the item-score pattern can be classified as not fitting the model; otherwise, the item-score
pattern can be classified as fitting.

Research Using IRT-Based Person-Fit Statistics

Studies using simulated or empirical data and addressing the usefulness of IRT-based person-fit
statistics have investigated:
1. The detection rate of fit statistics, and comparison of fit statistics with respect to several criteria

(e.g., distributional characteristics, relation to test scores).
2. The influence of item, test, and person characteristics on the detection rate.
3. The applicability of person-fit statistics for detecting particular types of misfitting item-score

patterns.
4. The relation between misfitting score patterns and the validity of test scores.
Although some studies can be categorized under more than one heading, they are discussed under
the heading for which they appear to have made their largest contribution.

Detection Rate and Fit-Statistic Comparison

Levine & Rubin (1979) evaluated l0 in a study simulating item-score vectors using item parame-
ters estimated from the Scholastic Aptitude Test (Verbal). Spuriously high-scoring examinees were
simulated by randomly sampling a fixed percentage of the item scores of model-fitting examinees
(generated using the 3PLM) and changing these scores to correct. Spuriously low-scoring examinees
similarly were simulated by rescoring randomly selected items as incorrect with a probability of
.20. For each group, 4%, 10%, 20%, and 40% of the item responses were changed. Levine and
Rubin found that the larger the group of misfitting item scores, the better l0 could distinguish fitting
from misfitting score patterns. They also found that spuriously high-scoring simulees were easier
to detect than spuriously low-scoring simulees, because (as a result of the procedures they used for
changing scores) more item scores were changed for those with spuriously high scores.

Drasgow (1982) compared the detection rates of l0 using either the Rasch model or the 3PLM with
data from the Graduate Record Examination. He also found higher detection rates for examinees
with spuriously low manipulated item scores than for those with spuriously high manipulated item
scores. Detection rates for this dataset were higher using the 3PLM than the Rasch model.

Harnisch & Tatsuoka (1983) used National Assessment of Educational Progress (NAEP) data
on mathematics to investigate distributional characteristics and relationships among several ECI
indices, U , W , l0, and lz. U was used under the 2PLM and 3PLM, and l0 was used under the 3PLM

and normal-ogive model (Hambleton & Swaminathan, 1985, pp. 35–36). Harnisch and Tatsuoka
found that ECI1, ECI2, and ECI4 had SDs of approximately 1 and means of approximately .20. U

correlated lowest with the other statistics (approximately .10), and the other statistics correlated
between .50 and .98 with each other. lz and l0 correlated highest with the NC score (.36 and .27,
respectively). The strongest curvilinear relationships were between the NC score and l0 and W .

Drasgow et al. (1987) used the 3PLM for comparing lz, ZU, ZW, C, JK, O/E, ECI2z, and ECI4z

(1) to optimal statistics, (2) on their numerical values across θ , and (3) with regard to their detection
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rates. Similar to Levine & Rubin (1979), detection rates were found by determining the proportions
of misfitting item-score patterns correctly identified as misfitting. Drasgow et al. concluded that
ZU and C were poorly standardized compared to the other indices. They also found that ECI4z was
better standardized and had a higher detection rate than ECI2z. O/E and JK were reasonably well
standardized, but they were ineffective for detecting misfit. lz, ZW, and ECI4z had high detection
rates for spuriously high-scoring examinees with low θs and spuriously low-scoring examinees
with high θs (e.g., the detection rate of ECI4z was .75 for low θs at a Type I error of .01 for 30
spuriously high-scoring examinees). However, these statistics were less sensitive to manipulated
response patterns for θs near 0 (e.g., for ECI4z, the detection rate decreased from .75 to .51 for low
θs at a Type I error of .01). Optimal indices had detection rates ranging from 50–200% higher than
other indices for average θs and item-score patterns with spuriously high or low test scores.

Rogers & Hattie (1987; see also Reise, 1990) investigated the detection rates of ZU and ZW.
Transformations of both statistics were claimed (Wright & Stone, 1979) to be asymptotically
standard normally distributed. Rogers and Hattie found the detection rates of ZU and ZW using
theoretical critical values for: (1) guessing, (2) heterogeneity of the discrimination parameters, and
(3) multidimensionality. They concluded that ZW was insensitive to heterogeneity and multidi-
mensionality and sensitive to guessing. ZU was insensitive to all three types of misfit. Detection
rates increased by no more than 2%, compared to detection rates for model-fitting examinees.

Noonan, Boss, & Gessaroli (1992) investigated the distributional characteristics and empirical
critical values of lz, ECI4z, and ZW as functions of test length and IRT model (2PLM and 3PLM). They
found that lz and ECI4z had means and SDs that approximated the standard normal distribution.
However, ZW had a mean over replications of approximately 1.00, but an SD between .144 and .232.
ECI4z and ZW were positively skewed, and lz was negatively skewed; the skewness of ECI4z was
half the skewness of the other two statistics. For all three statistics, the critical values were affected
by test length and IRT model, with ZW most affected. They concluded that ECI4z best approximated
the normal distribution and was least affected by test length and IRT model. lz and ECI4z were
highly correlated (.95), whereas ECI4z and ZW had the lowest correlation (.58). However, true θ

values were used, which makes generalizations to empirical distributions difficult.
Li & Olejnik (1997) compared the distributions of lz, ECI2z, ECI4z, ZU, and ZW using the Rasch

model. They found that (1) the statistics had low correlations with NC scores; (2) the statistics were
positively skewed and deviated significantly from normality (ECI4z was better normalized than
ECI2z); (3) lz performed at least as well as the other statistics in detecting misfitting behavior; (4)
examinees with spuriously low and spuriously high NC scores were equally well detected when
unidimensional data were used, whereas detection rates of spuriously low NC scores were lower
than detection rates of spuriously high NC scores when a multidimensional test was used; and (5)
person-fit statistics were not very powerful in identifying misfitting item-score patterns (lz was
most powerful and detected at most 67% of the misfitting item-score patterns). However, it was
assumed that the true θ equaled the MLE θ̂ . As discussed above, when using the Rasch model, it is
better to condition on the NC score, which is independent of θ̂ , and to use the M statistic. This was
done by Kogut (1987), who used simulated Rasch model data to show that the detection rate of M

for detecting misfitting item-score patterns was higher than lz.
Trabin & Weiss (1983) applied the PRF approach to a 216-item vocabulary test administered

to 151 undergraduate students. To investigate whether the responses were in agreement with the
3PLM, they used D(θ) to evaluate the discrepancy between the observed and expected PRFs for each
student, and assumed that D(θ) was χ2 distributed. Some students had significant χ2s, but the
cause of misfit could not be explained.
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Nering & Meijer (1998) used simulated data for comparing the PRF approach with lz. They
found that the detection rate of lz was higher than that of the PRF method in most cases. They
suggested that the PRF approach and lz can be used in a complementary way: misfitting item-score
patterns can be detected using lz, and differences between expected and observed PRFs can be used
to retrieve additional information at the subtest level.

Influence of Item, Person, and Test Characteristics

Levine & Drasgow (1982, 1983) investigated (1) the influence of using estimated item parameters
instead of true parameters on the detection rate of l0, and (2) the influence of the presence of
misfitting item-score patterns on item parameter estimates and detection rates. Response vectors
were simulated using the 3PLM and estimated item parameters from a previous calibration study of
the Scholastic Aptitude Test (Verbal). Misfitting item-score vectors were simulated by randomly
selecting 20% of the item scores (0s and 1s) from each vector and changing them with a probability
of .20 (1s became 0s and 0s became 1s). They concluded that the detection rate of l0 was not
seriously affected by the estimated item parameters or the presence of misfitting item-score patterns.
Kogut (1987), however, concluded from his simulation study that, as a result of the presence of
deviant item-score patterns, the power of lz and M was seriously reduced. Possible explanations
for the different results from these studies are the different statistics used and the different numbers
of simulated item-score patterns. In Levine and Drasgow, there were 6–7% misfitting response
vectors, whereas there were 20% in the Kogut study. The higher percentage of misfitting item-score
patterns might have reduced the power. Furthermore, the type of misfitting item-score vectors also
might have been responsible for reduced power.

Reise & Due (1991) found that longer tests and a larger spread of item difficulties resulted
in higher detection rates for lz. They simulated item scores with lower Fisher information for
estimating θ than was predicted by IRT model parameters. Different levels of the α parameter
(which is related to item information; Hambleton & Swaminathan, 1985, p. 105) were used. Test
length was 7, 21, 35, or 49 items, and the spread varied in the δs and γ s. Reise and Due concluded
that test length, δ spread, and γ each affected the detection rate of lz. They found that, in general,
longer tests, larger spread of δ, and lower γ values resulted in higher detection rates. Furthermore,
lz obtained its lowest detection rate for low θs.

Parsons (1983) investigated the effectiveness of a transformed version of l0 for detecting simu-
lated misfit on the Job Descriptive Index, which measures satisfaction with multiple facets of a job.
Data were generated using the 2PLM and estimated item parameters from an empirical calibration
sample. Twenty of the 60 items were selected, and scores were generated with a .30 probability
of obtaining the correct response. Results indicated that higher detection rates were obtained at
higher θs. The explanation was that, for these simulees, more item scores were changed. Further-
more, it was found that the variance of the NC score was lower for misfitting than for model-fitting
patterns, because misfitting item scores were probably uncorrelated with each other, thus reducing
the variance of the NC score compared to the variance of the NC score on a set of correlated items.

Smith (1985) compared robust estimators with person-fit statistics. Robust estimators correct
for unexpected responses and weight them less to obtain a representative θ̂ . Smith concluded that it
is better to use person-fit analysis, because the robust estimators introduce a bias into θ estimation.

Reise (1995) investigated the detection rate of lz as a function of true θ and several θ estimates:
MLEs, expected a posteriori (EAP) estimates, and biweight (BIW) estimates. To estimate θ , datasets
were simulated based on the estimated item parameters of four personality scales that fit the 2PLM.
Reise found that using true θ consistently resulted in the highest detection rate for lz. The detection
rate differed among the three estimation methods, but the differences depended on the type of test,
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θ level, and percentage of misfitting responses. Reise found higher detection rates for scales with a
larger spread in item difficulties. BIW estimation typically resulted in a somewhat higher detection
rate than EAP and MLE.

Meijer & Nering (1997) investigated the detection rate of lz using MLE, EAP, and BIW, and also
the bias in θ̂ as a function of different types of misfitting behavior. They found that the presence
of misfitting item-score patterns influenced the bias in θ̂ , and this depended heavily on the type of
misfit and the θ level. The BIW scoring method reduced the bias in θ̂ and improved the detection
rate relative to MLE and EAP for examinees located at both extremes of the θ continuum.

Application of Person-Fit Statistics to Empirical Data

Birenbaum (1985) compared the effectiveness of ECI1, ECI2, ECI4, their standardized versions,
l0, lz, and U in distinguishing among empirical item-score patterns: item scores of an uncooperative
group, item scores of a cooperative group, and randomly generated item scores. The first two
groups were distinguished from each other on the basis of (1) motivation to take a test (rated by a
test administrator) and (2) whether the student wrote his/her name on the test answer sheet. The test
was administered only for research and development purposes. Except for U , Birenbaum found
significant differences in the mean value of the statistics among the three groups. The correlations
among the standardized indices were high (.90), but l0 and U had a low correlation (.10). Most
statistics had low correlations with NC scores (.13–.22). Curvilinearity between person-fit statistics
and NC scores was not rejected for any of the unstandardized ECIs. Largest curvilinearity was
detected for l0, indicating that it yielded the most inflated values at both extremes of the θ scale.

In another study, Birenbaum (1986) investigated the relationships among ECI1z, ECI2z, ECI4z,
and lz, the scores on an anxiety scale and a lie scale of the MMPI, and a general ability test.
Birenbaum predicted that a sample of examinees with low anxiety scores and high lie scores would
have less appropriate item-score patterns on the test than would low-anxiety examinees with low
lie-scale scores. These predictions were based on the assumption that persons with high lie scores
typically have the desire to deliberately impress the assessor by saying that they have low anxiety,
but are unable to conceal the effect of their anxiety on the cognitive reasoning test scores. High
correlations were found among the person-fit statistics (.97–.99). Low correlations were found
between the scores on the lie scale and the fit statistics (mean = .10) and between the scores on the
anxiety scale and the fit statistics (mean = .14). Scores on the ability test correlated .50 with the fit
indices. There was a significant difference between the mean scores of the person-fit statistics for
two groups: examinees with low anxiety and high lie scores were more misfitting than examinees
with low anxiety and low lie scores.

Hoijtink (1987) investigated the effect of misfitting item-score patterns on item fit to the Rasch
model. Item-score patterns were from two empirical datasets of a questionnaire measuring neuro-
logical and ophthalmic skills for general practitioners. Misfitting item-score patterns were removed
from the dataset to determine whether this resulted in a better fit of misfitting items to the Rasch
model. To minimize the danger of adapting the data to the model, item-score patterns were removed
only under the condition that (1) they were classified as misfitting using both the original and im-
proved item estimates, and (2) the fit of the dataset as a whole would be improved after removing
misfitting examinees. Hoijtink showed that removing misfitting item-score patterns resulted in a
better fit to the model for some items. However, it could not be explained why some examinees
answered the questionnaires in a deviant way, as was done in the Birenbaum (1985) study.

Phillips (1986) also investigated the effect of deleting misfitting item-score patterns on the fit
of the Rasch model, estimated item parameters, and equipercentile equating results. It was found
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that substantially more items fit the Rasch model after deleting misfitting item-score patterns (an
increase of approximately 50%). The effect of removing misfitting items scores on the estimated
item difficulty parameters was small. Equating results were similar for datasets with and without
misfitting item-score patterns.

Rudner, Bracey, & Skaggs (1996) investigated the use of W in the 1990 NAEP Trial State Assess-
ment. They found almost no examinees with extreme item-score patterns. Eliminating examinees
with the worst fit did not result in meaningful differences in the mean NAEP scale scores between
trimmed and untrimmed data.

Reise & Waller (1993) explored the use of lz in personality measurement by analyzing empirical
data from the Multidimensional Personality Questionnaire (Tellegen, 1982). They noted that it is
difficult to distinguish persons not fitting the particular trait from misfit due to measurement error or
faulty responding. To reduce the chances of misfit due to measurement error or faulty responding,
they used unidimensional subscales and information from detection scales that identify inconsistent
answering behavior. lz was able to identify persons not responding according to the 2PLM who
were not identified by inconsistency scales. However, the accuracy of the classification could not
be evaluated, because it was unknown which persons really behaved in an unusual manner.

Zickar & Drasgow (1996) analyzed a dataset from a personality test consisting of item scores
from examinees instructed either to respond honestly or to fake the answers to convey a favorable
impression. They found that optimal person-fit statistics classified a higher number of faking
examinees than did a social desirability scale. The detection rates, however, were low (mostly
between .10 and .30).

Molenaar & Hoijtink (1996) investigated the use of M (Equation 33) in the Rasch model for
a test in which four- to seven-year-old children indicated which of three pictures presented was
consistent with an item. Each picture had a number of balls and stars, colored white and black.
They identified patterns with low probability of exceedance. For example, ordering the items from
easy to difficult, an 11-item test had the response pattern (00000010011), which had a significance
probability of .002. They concluded that this pattern was a candidate for closer inspection.

Schmitt, Chan, Sacco, McFarland, & Jennings (1999) used lzm for investigating the relationship
between test-taking motivation and conscientiousness in personality and cognitive tests. The rela-
tionship between gender and race (African-Americans and Whites) and lzm also was investigated.
Based on literature about the visual inspection of item-score patterns, males and African-Americans
were expected to produce more irregular item scores than females and Whites. These differences
might be explained by different test-taking motivation across race and gender subgroups. Schmitt
et al. found that test-taking motivation correlated .26 with lzm for personality tests and .12 for
cognitive tests. Conscientiousness correlated .34 with lzm for personality tests. Males had lower
lzm mean values than females (indicating misfit) on both cognitive and personality tests, but con-
trolling for conscientiousness reduced or eliminated this association. This result was not observed
for test-taking motivation. For cognitive tests, African-Americans obtained lower mean person-fit
scores than Whites, but for personality data there was no difference. These scores were not related
to conscientiousness or test-taking motivation. Schmitt et al. concluded that carelessness might
explain the misfit of males, whereas a more general trait-like measure might influence reactions of
African-Americans. Meijer & van Krimpen-Stoop (2001), using achievement test data, also found
smaller mean values of lz for men than for women and smaller lz values for African-Americans
than for Whites.

Validity and Misfitting Response Behavior

The relationship between deviant response behavior and decision making was studied by Dras-
gow & Guertler (1987). They suggested that overestimating θ̂ might result in selecting persons
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unable to perform adequately on a job; similarly, underestimating θ̂ might be expensive for an
organization due to extra selection efforts needed. They presented a utility theory approach to
the use of person-fit statistics in practical settings. The approach requires the distribution of a
statistic in samples with model-fitting and misfitting item-score patterns. Using the probabilities
of score patterns under these distributions, the utility can be estimated and the critical value of a
statistic can be determined. Drasgow and Guertler illustrated their approach using empirical data
from the Armed Services Vocational Aptitude Battery. They concluded that combining utilities
with classification on the basis of a person-fit statistic is complicated and involves many subjective
judgments.

Schmitt, Cortina, & Whitney (1993) investigated whether misfitting item-score patterns dis-
torted criterion-related validity estimates and estimates of the relationship between trait levels and
performance constructs. Using lz, the 3PLM, and four empirical datasets, they found little or no
improvement of the correlation between a predictor and a criterion when misfitting item-score
patterns were removed from the data. However, a hierarchical regression analysis in which the
criterion scores were regressed onto (1) the predictor scores, (2) group membership based on lz
scores (model-fitting or misfitting), and (3) their cross-products, showed a significant interaction
term for some datasets, implying that lz scores might improve prediction.

Meijer (1997) used simulated data to investigate the relationship between misfit and test-score
validity. He concluded that misfitting item-score patterns can influence the validity of a test if
the type of misfit is severe, the correlation between the predictor and criterion scores is .3 or
.4, and the percentage of misfitting item-score patterns is relatively high (at least .15 or higher).
However, using lz for removing misfitting item-score patterns from a predictor test had little impact
on criterion-related validity. These results confirmed the results found by Schmitt et al. (1993)
and can partly be explained by the less-than-perfect detection rate. In the most favorable case,
approximately 40% of the misfitting item-score patterns remained in the sample.

Meijer (1998) used ZU3 to identify persons with unexpected item scores on empirical selection
data. In general, persons with inconsistent item scores were less predictable than persons with
consistent item scores. Persons with both lower and higher criterion scores than predicted could
be identified.

Discussion and Conclusions

Choosing a Statistic

For short or moderate test length (e.g., 10–60 items) and assuming a standard normal distribution
of a person-fit statistic, the nominal and empirical Type I error rates are not in agreement for most
statistics, because θ̂ is used instead of θ . Recently, Snijders (1998) proposed statistical theory for
correcting the bias caused by using θ̂ rather than θ . Sound person-fit methods have been derived
for the Rasch model, but because it is restrictive with respect to empirical data, the use of these
statistics also is restricted.

Before using a particular person-fit statistic, a researcher should investigate possible threats to
the fit of individual item-score patterns. If violations of local independence are expected, a method
proposed by Klauer (1991) might be used instead of, for example, Molenaar & Hoijtink’s (1990)
M . Tests against a specific alternative generally are more powerful than general statistics, and the
type of deviance is easier to interpret. Statistics like M are helpful when the threats are unknown.
UB (Equation 24) and UW (Equation 25) or the PRF can be used as diagnostic tools to test whether
item-score patterns on a priori specified subtests fit an IRT model.

For some person-fit statistics (e.g., lz), only deviations against the model are tested, resulting
in interpretation problems. For example, item-score patterns not fitting the Rasch model might be
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better described by the 3PLM. If a model does not fit the data, other explanations are possible. It
is often difficult to substantively distinguish different types of item-score patterns and/or to obtain
additional information using background variables. Testing against specific alternatives might be
a better strategy.

Almost all statistics are of the form given in Equation 17, but with different weights. The use of
a statistic depends on which model is used. Using the Rasch model, Molenaar & Hoijtink’s (1990)
M is a good choice. M should be preferred over lz or ZW, because the critical values for M are
more accurate. M is available in the computer program RSP (Glas & Ellis, 1993); practitioners can
easily add person-fit values to their datasets.

Residual-based statistics (e.g., Equations 24 and 25) do not reflect the probability of ordering
of the score patterns, because 1/{Pg(θ)[1 − Pg(θ)]} is not an increasing function in Pg(θ).

In a nonparametric context, ZU3 might be preferred over the other fit statistics (e.g., C∗), be-
cause it is also an increasing function of the probability of the item-score pattern. Moreover, the
distribution of ZU3 is known to be standard normal conditional on the NC score. However, Emons,
Meijer, & Sijtsma (in press) showed that the empirical distribution is not in agreement with the
theoretical distribution when nonparametric IRT models are used.

Improving Measurement Practice

The objective of person-fit measurement is to detect item-score patterns that are improbable
given an IRT model or given the other patterns in a sample. Thus, person-fit statistics must be
sensitive to misfitting item-score patterns. Research has shown that detection rates are highly
dependent on the (1) type of misfitting response behavior, (2) θ value, and (3) test length. When
item-score patterns do not fit an IRT model, high detection rates can be obtained for extreme θs,
even when Type I errors are low (e.g., .001). This is because deviations from model predictions
tend to be larger for extreme θs than for moderate θs. The bias in θ̂ tends to be larger for extreme
θs than for moderate θs (Meijer & Nering, 1997).

Relatively few studies have investigated the usefulness of person-fit statistics for analyzing
empirical data. The few studies that exist have found some evidence that groups of persons with
a priori known characteristics, such as low test-taking motivation, produced deviant item-score
patterns that are unlikely given an IRT model. However, the usefulness of person-fit data depends on
the degree of misfitting response behavior. Although additional empirical research is needed (Reise
& Flannery, 1996; Rudner et al., 1996), more empirical studies will not necessarily demonstrate
whether person-fit statistics can be helpful in improving measurement practice. Empirical studies
can illustrate their use; however, whether person-fit statistics can help a researcher in practice
depends on the context in which research takes place.

Smith (1985) mentioned four actions that could be taken when an item-score pattern is classified
as misfitting: (1) report several θ estimates (rather than just one) for an examinee based on subtests
that are in agreement with the model, (2) modify the item-score pattern (e.g., eliminate the unreached
items at the end) and re-estimate θ , (3) do not report the θ estimate and retest the examinee, or
(4) decide that the error is small enough for the impact on θ̂ to be marginal. The latter action
can be based on comparing the error introduced by misfitting item-score patterns and the standard
error associated with each θ estimate. Which of these actions is taken depends on the context in
which testing takes place. The usefulness of person-fit statistics thus also depends heavily on the
application for which it is intended.

Suggestions for Future Research

1. Research is needed for methods that compensate for the use of θ̂ . Snijders (1998) proposed
a correction for the standard error of a group of person-fit statistics. However, the skewness
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and kurtosis of the sampling distributions also should be taken into account, especially when
the nominal Type I levels are small (i.e., when nominal and empirical Type I error levels are
not in agreement; van Krimpen-Stoop & Meijer, 1999).

2. The use of new statistics (e.g., Bradlow et al., 1998; McLeod & Lewis, 1999; van Krimpen-
Stoop & Meijer, 2000) within the context of CAT should be more thoroughly investigated.

3. Studies are needed analyzing empirical data together with background variables to obtain extra
information about the type of misfit (Meijer & de Leeuw, 1993). Research is also needed to
distinguish between examinees with item-score patterns for whom an inappropriate IRT model
is used and those whose item-score patterns can be explained using additional information.
Reise & Flannery (1996) mentioned the application of person-fit research in cross-cultural
studies to investigate the scalability of examinees with different ethnic backgrounds.

4. Few person-fit statistics with known statistical properties exist within nonparametric IRT mod-
eling that test an item-score pattern against model assumptions. More research is needed here
to obtain sound statistical methods.

5. Testing against a specified alternative might be a solution to the relatively low power of person-
fit statistics in detecting misfit. More information is needed about the influence of misfitting
response behaviors on test scores.

6. Misfitting item-score patterns might be more easily interpreted using external frames of ref-
erence (e.g., evaluating the fit of an item-score pattern using the item difficulties determined
in a well-defined group of examinees or on the basis of a cognitive theory; Embretson, 1993).
Latent class analysis might be useful, if classes with a specific type of misfitting response
behavior can be incorporated into the model (see van den Wittenboer, Hox, & de Leeuw,
1997, 2000, for an example).

7. The PRF also might be used to enhance the interpretation of misfitting item-score patterns
(Sijtsma & Meijer, in press). Because a plot of the observed and expected response func-
tions immediately clarifies which groups of observed responses disagree with the expected
responses, researchers might more easily hypothesize the explanation of the misfitting item-
score patterns. Reise (2000) described the application of multilevel analysis to the analysis of
person fit using the PRF.

8. Although most studies using person-fit statistics are based on IRT models, recently Reise &
Widaman (1999) explored the use of person-fit statistics within covariance structure models.
Reise and Widaman proposed an index to assess the contribution of an examinee’s fit to
a covariance structure model. A first comparison of the lz statistic and this index using
empirical data resulted, however, in a correlation of almost 0—indicating that both indices
classified different examinees as misfitting. More research with this approach is indicated.
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