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ABSTRACT: The considerable volume of data generated by sensors in the field presents 

systematic errors; thus, it is extremely important to exclude these errors to ensure mapping 

quality. The objective of this research was to develop and test a methodology to identify and 

exclude outliers in high-density spatial data sets, determine whether the developed filter process 

could help decrease the nugget effect and improve the spatial variability characterization of 

high sampling data. We created a filter composed of a global, anisotropic, and an anisotropic 

local analysis of data, which considered the respective neighborhood values. For that purpose, 

we used the median to classify a given spatial point into the data set as the main statistical 

parameter and took into account its neighbors within a radius. The filter was tested using raw 

data sets of corn yield, soil electrical conductivity (ECa), and the sensor vegetation index (SVI) 

in sugarcane. The results showed an improvement in accuracy of spatial variability within the 

data sets. The methodology reduced RMSE by 85 %, 97 %, and 79 % in corn yield, soil ECa, 

and SVI respectively, compared to interpolation errors of raw data sets. The filter excluded the 

local outliers, which considerably reduced the nugget effects, reducing estimation error of the 

interpolated data. The methodology proposed in this work had a better performance in removing 

outlier data when compared to two other methodologies from the literature.
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Introduction

Sensors in agricultural fields collect large amounts 

of spatial data needed for site-specific management; 

however, this may come with a considerable quantity 

of defective data that need to be excluded to provide 

quality to maps (Spekken et al., 2013; Lyle et al., 2014). 

In maps, outliers are spatially referenced objects whose 

non-spatial attribute values are significantly different 

from the corresponding values in their respective spatial 

neighborhoods (Shekhar et al., 2003). They can be 

observed in local regions that demand specific analysis, 

making them difficult to exclude (Singh and Lalitha, 

2017).

Authors have applied sequences of filters to 

remove defective data errors (Ping and Dobermann, 

2005; Simbahan et al., 2004; Menegatti and Molin, 

2004; Arslan and Colvin, 2002). Some filters require 

prior knowledge of the target factor to establish upper 

and lower thresholds to identify outliers; however, 

data removed outside these boundaries were the major 

causes of losses of good data (Spekken et al., 2013).

To filter a large amount of PA data, Leroux et 

al. (2018) created a data-filtering algorithm dedicated 

to data generated by the onboard sensor. The most 

abnormal data points are classified as defective 

observations based on a density-clustering algorithm. 

Vega et al. (2019) created a script for the software R to 

automate error removal from yield maps. First, the data 

were screened by filtering null and edge yield values, 

as well as global outliers. Second, spatial outliers or 

local defective observations were deleted by using the 

Local Moran index of spatial autocorrelation and the 

Moran plot. 

To create a user-friendly tool, Spekken et al. (2013) 

developed a generic software capable of identifying and 

filtering erroneous data points that are inconsistent with 

their neighboring points. Although this software is easy 

to use, removal of erroneous data could also eliminate 

relevant data. According to Leroux et al. (2018), data 

filtering methods have to be robust enough to ensure 

accuracy to the decision-making process. The objective 

of this research was to develop and test a filter to 

identify and exclude spatial outliers in the high-density 

spatial data set. We also investigated whether the filter 

could help decrease the sampling error and improve the 

characterization of spatial variability in high sampling 

spatial data.

Materials and Methods

Data sets

We processed data sets generated by sensors in high spatial 

resolution for agricultural applications. The methodology 

was tested using raw data sets of corn yield, soil ECa, and 

SVI. Yield is the main information for site-specific field 

management. Data on corn yield were generated by a 

yield monitor, composed of sensors that measure grain 

flow inside the harvester elevator thus estimating the 

number of grains harvested (Molin et al., 2015). Soil ECa 

was generated from a four-point system composed of a 

metal structure with six cutting disks serving as electrodes 

that, in contact with the soil, measure the electric current 

(Rabelo et al., 2014). According to Molin and Rabelo 

(2011), ECa data are generally used to estimate soil 

texture, because in the absence of salinity in the soil, ECa 

correlates with the water content of the soil, consequently 
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correlating with the texture or relief of the field. The 

sugarcane vegetation index was generated by an active 

canopy optical sensor that measures canopy reflectance 

of plants commonly used for the variable rate of N in the 

site-specific application in sugarcane (Amaral et al., 2018).

Each raw data set was recorded with different 

frequencies and different widths between the travel 

paths (Figure 1). They were organized by rows in a text 

file. The text files must contain at least three numeric 

attributes: two attributes with latitude and longitude, and 

the target attribute that was subjected to the filter. The 

first row of the file must contain a header (denomination) 

of attributes. Coordinates must be in either WGS 84 

datum provided in geographic coordinates (decimal 

degrees), commonly used for storage of coordinates in 

agricultural data loggers, or the metric form (UTM). The 

headers were named with initials “Lat” and “Long” or “X” 

and “Y” for automatic identification, while the user must 

inform the column to filter the attribute variable. The 

original coordinates in the geographic format (decimal 

degrees) were then converted into UTM coordinates, 

allowing the points to be analyzed in a regular metric 

2D plane and to calculate distances between them.

Filtering data

According to Vega et al. (2019), the global filter avoids 

variance inflation in the local analysis due to very low or 

very high data values; therefore, a global filter method 

was added to precede the local filter. In the global filter, 

the median value of the attribute points values under 

analysis is used to calculate the upper (Eq. 1) and lower 

(Eq. 2) cut-off limits of discrepant values (Maldaner and 

Molin, 2020).

LimS = M
k
 + M

k
 × v    (1)

LimI = M
k
 – M

k
 × v    (2)

where: LimS is the upper limit; LimI is the lower limit; 

M
k
 is the median of all values located in the data set; 

v is the maximum variation accepted for the median. 

A global outlier in the data set is a point with a value 

greater or smaller than upper and lower cut-off limits, 

respectively.

The local filter was divided into two steps: 

anisotropic and isotropic local filters. The anisotropic 

filter created by Maldaner and Molin (2020) was used to 

filter sugarcane yield data. The filter detected all points 

located in a radius range (R) around a point x
i
 within 

a single direction (Figure 1). The point x
i
 is compared 

with previous and subsequent k neighbors. The k is the 

number of neighbors whose Euclidean distance is less 

than or equal to the radius R (blue line in Figure 2). The 

median of these k neighbors was calculated, and Eq. 1 

and Eq. 2 were applied to point x
i
. If the value of the 

point x
i
 was greater or smaller than the upper and lower 

cut-off limits, it was considered a local outlier and then 

excluded from the data set.

In the isotropic filter, the methodology created by 

Spekken et al. (2013) was adapted to identify outliers in 

the data set. The isotropic filter, by contrast, detected 

all k points neighbors located in an R around a point x
i
 

in any direction (Figure 2). Then, the median of these 

k neighbors was calculated, and Eq. 1 and Eq. 2 was 

applied to point x
i
. While Spekken et al. (2013) added 

weight to the points with values outside the cut-off 

limits, our filter methodology excludes the point x
i
 with 

a value greater or smaller than the upper and lower cut-

Figure 1 – Raw data sets of corn yield, sugarcane vegetation index (SVI), and soil electrical conductivity (ECa).
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off limits. Finally, the points not excluded by the filter 

were saved in a text file.

Software development

We built an algorithm-application with the methodology 

to remove spatial outliers in the software NetBeans 

IDE 8.1, which is a free-integrated development 

environment and is an open-source for the development 

of desktop applications when using the Java platform. 

The application was structured on a single interface 

(Figure 3) with three user inputs. The user input variable 

was the maximum acceptable variation of the median 

used to calculate Eq. 1 and Eq. 2 for the global and local 

filter. The value of the radius R was used to identify the 

neighboring spatial points in the local filter. The filtering 

Figure 3 – The interface of the algorithm-application.

Figure 2 – Identification of neighboring points in the anisotropic and isotropic filter. 
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data were plotted on the display and the application 

calculates the descriptive statistic before and after the 

cleaning process. Therefore, the user could perform a 

visual analysis of the data and reapply the global and 

local filtering with other input values.

Analysis

A process with the different variables R and v was 

performed to analyze the influence of these variables 

on the identification of spatial outliers. Each data set 

was filtered using an initial R value 1.5 times the width 

of the travel paths, and at the end of each processing 

step, the radius (R) was increased by adding a path 

width. 

The spatial dependence of the raw data generated 

by the semivariogram was the maximum R value (Table 

1). For each R, the raw data processed with v between 

5 % and 50 % were tested. Table 1 presents the numbers 

of the filter process for each raw data.

The impact of the proposed filter to exclude 

spatial outliers on raw data was quantified by evaluating 

changes of semivariogram parameters and the kriging 

prediction accuracy between raw and cleaned data 

(Vega et al., 2019). To choose the output with the lower 

root mean square error (RMSE) of cross-validation 

result (Isaaks and Srivastava, 1989), semivariograms 

were individually modeled to test the spherical, 

exponential, and Gaussian models. These models were 

fitted to each raw dataset and after applying the filter. 

The data filtered were compared by the 

methods of Spekken et al. (2013) and Vega et al. 

(2019). All statistical analyses were performed using 

R software (R Core Team, version 3.6.0) using the 

gstat library (Pebesma, 2004) to study the evolution 

of semivariogram parameters and evaluate the kriging 

prediction accuracy. 

Results and Discussion 

The global filter excluded points with values 

below 0.10 mS m–1, 3.06 Mg ha–1, and 0.09, and above 

150.60 mS m–1, 8.09 Mg ha–1, 0.31 for the data set of soil 

ECa, corn yield, and SVI respectively (Figure 4). This 

accounted for the removal of 12 %, 15 %, and 14 % of 

raw data points, respectively. Removal of global outliers 

substantially decreased the mean of the soil ECa and 

SVI by almost 29 % and 2 %. This is because the high 

values points have more influence than the lower values, 

unlike grain yield data filtering in which most errors in 

yield values are below average or close to zero (Vega 

et al., 2019; Leroux et al., 2018; Spekken et al., 2013; 

Sudduth and Drummond, 2007; Menegatti and Molin, 

2004). There was an increase of 5 % in the corn yield 

mean after the removal of the global outliers (Figure 4). 

The filtering processes were compared by removing data 

outside the mean ± 4 SD (Vega et al., 2019). However, it 

was not possible to exclude all global outliers (Figure 4). 

Despite the use of the mean ± 3 SD criteria, as suggested 

by Vega et al. (2019), there was additional removal of 

Table 1 – Raw data set characterization.

Data set Min Max Mean SD CV (%) Freq. Width n n ha–1 Range nP

Hz m m

ECa 0.1 557.7 70.5 68.8 102.4 1.0 15.0 11453 204.9 480.0 320

CY 0.0 99.3 5.4 4.2 129.6 1.0 5.7 58186 502.4 319.0 560

SVI 0.0 0.6 0.2 0.1 257.2 5.0 1.5 423040 18393.0 19.2 320

ECa = Apparent soil electricity conductivity (mS m–1); CY = Corn yield (Mg ha–1); SVI = Sensor vegetation index in sugarcane; SD = standard deviation; CV = coefficient 
of variation; Freq. = Data collection frequency; Width = travel path width; n = number of points in raw data set; Range = a range of the spatial dependence calculated 
by the semivariogram; nP = The numbers of the process for each raw data.

Figure 4 – Boxplot of raw data set before filtering, after the global filter of the current study (Filter 1), and the methodology of Vega et al. (2019) 

(Filter 2).
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in the cross-validation when compared to the raw data 

set (Table 2). There was a reduction of 85 %, 97 %, and 

79 % in the RMSE for the corn yield, soil ECa, and 

SVI data sets, respectively. The smaller RMSE in the 

filtered data sets presented filter cut-off limits with a 

median variation of 5 %. Therefore, the lower values of 

median variation resulted in smaller interpolation error 

(smaller RMSE). There was a decrease in the correlation 

coefficient values during the cross-validation, dropping 

from 0.8 to 0.5 (corn yield), 0.9 to 0.8 (soil ECa), and 

0.9 to 0.5 (SVI), while the median variation increased. 

According to Simbahan et al. (2004), the prediction error 

decreases with the increased detection of local outliers 

in the protocol for error. These results are smaller than 

the RMSE of data filtered by the methodologies of 

Spekken et al. (2013) and Vega et al. (2019). These two 

methodologies also presented lower values than the raw 

data. However, the methodology using the Local Moran 

index (Vega et al., 2019) could not process the SVI data 

due to the high density of sampled points per area.

All raw data sets present greater nugget effects 

(Leroux et al., 2018) and the presence of the global 

and local outliers influenced these values. There was 

a considerable reduction in the nugget effects after the 

exclusion of spatial outliers. The exclusion of outliers 

when using the local filter with a median variation of 10 

% was more efficient than the methodologies of Spekken 

et al. (2013) and Vega et al. (2019), which presented a 

reduction of 99 % in the corn yield, 80 % in the soil 

ECa, and 82 % in the SVI compared to their respective 

raw data sets. Other studies that compared the methods 

to filter grain yield data also showed a decrease in the 

nugget effects after data filtering (Leroux et al., 2018; 

Menegatti and Molin, 2004; Sudduth and Drummond, 

2007). The primary aim in filtering spatial errors is to 

improve the interpolation by kriging, and a reduction in 

nuggets usually indicates improvement in data quality. 

valid points, which eliminated data with low and high 

spots within the field, possibly because extreme values 

influence the methodology that uses these parameters 

(mean and SD). The mean is used for normal numerical 

distributions with a small number of discrepant values 

(Hubert and Van der Veeken, 2008). This is in contrast 

to data collected by sensors in agricultural fields, which 

present a large number discrepant values and, notably, 

mostly in a non-symmetric distribution (Menegatti and 

Molin, 2004; Vega et al., 2019; Leroux et al., 2018). This 

does not happen with the median because it returns the 

central tendency for distorted numerical distribution. 

The use of the upper and lower cut-off limits calculated 

from the median allowed removing more points (Figure 

4) without loss of data that characterized the spatial 

variability, keeping data that showed the low and high 

spots within the field.

When using the local filter, the lower median 

variation within the radius resulted in a greater 

number of points excluded. However, the R values do 

not influence the number of points excluded. By using 

5 % variation and radius equal to the semivariogram 

range (Table 1), 71 %, 34 %, and 57 % of the points 

were excluded in the data set of corn yield, soil ECa, and 

SVI, respectively. The amount of data excluded from 

corn yield data set was larger than what is normally 

observed done by other authors (Menegatti and Molin, 

2004; Simbahan et al., 2004; Sudduth and Drummond, 

2007; Sun et al., 2013; Leroux et al., 2018; Vega et al., 

2019). This indicates that the use of 5 % may exclude 

valid data, leading to loss of data information on small 

scales. By using the coefficient of variation (CV) in the 

local filter, Spekken et al. (2013) suggested that a range 

between 10 and 25 % of CV is capable of eliminating 

most spatial outliers in yield maps.

Global and local filtering reduced errors between 

the actual and predicted values by the semivariogram 

Table 2 – Geostatistical analysis of the data sets before and after applying the filter.

Corn yield1 Soil electrical conductivity Sensor vegetation index

Median variation2 Nugget R23 RMSE Nugget R2 RMSE Nugget R2 RMSE

5 0.177 0.844 0.157 91.998 0.981 2.453 0.00080 0.915 0.008

10 0.1775 0.683 0.278 89.630 0.965 3.660 0.00078 0.843 0.014

15 0.178 0.595 0.355 92.350 0.942 5.141 0.00079 0.763 0.020

20 0.177 0.547 0.402 89.980 0.917 6.403 0.00078 0.684 0.025

25 0.178 0.523 0.431 92.176 0.891 7.548 0.00080 0.621 0.029

30 0.177 0.514 0.446 90.208 0.866 8.606 0.00078 0.577 0.031

35 0.179 0.509 0.453 93.680 0.848 9.613 0.00082 0.555 0.033

40 0.179 0.507 0.456 90.737 0.821 10.616 0.00081 0.540 0.034

45 0.180 0.506 0.457 96.517 0.811 11.722 0.00082 0.533 0.035

50 0.179 0.506 0.457 92.994 0.805 12.560 0.00080 0.527 0.035

Spekken et al. (2013) 0.780 0.589 0.850 106.309 0.823 7.891 0.00070 0.698 0.027

Vega et al. (2019) 0.578 0.573 0.989 110.967 0.885 7.832 -4 - -

Raw data set 17.810 0.539 1.057 261.400 0.658 105.2 0.00441 0.510 0.038
1The results represent the average values of all files processed according to Table 1. 2Median variations used in the Eq. 1 and Eq. 2 (cut-off limits). 3The correlation 
coefficient between actual and predicted by the semivariogram in the cross-validation. 4The methodology by Vega et al. (2019) was unable to filter the data set of the 
sugarcane vegetation index. 5Lowest value for each parameter.
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However, even after the reduction of nuggets by the 

methodologies of Spekken et al. (2013) and Vega et al. 

(2019), it is still possible to identify some spatial outliers 

in the yield map (Figure 5). These methodologies were 

able to exclude data with only high variation in relation 

to their neighbors, such as the width platform error in the 

corn yield data set. Additionally, all points close to field 

edges were excluded, which should be included as valid 

data. On the other hand, the filter proposed was capable 

of excluding erroneous data, such as harvester feed and 

fill time errors, while keeping the valid data points.

The method proposed (Method 3 in Figure 5) was 

efficient in filtering points whose values were inconsistent 

with the neighboring points, which represented most 

spatial outliers in the maps. The filtering of local 

spatial outliers resulted in noise reduction within 

the field, smoothing the variation in values. A certain 

degree of data smoothing in the field is necessary for 

interpretation of maps and their use in site-specific 

management practices (Blackmore and Moore, 1999). 

Both methodologies of Spekken et al. (2013) and Vega et 

al. (2019) kept small variations within the field. This was 

the case for the soil ECa, where both methodologies kept 

small variations in small distances. The density of points 

is significantly high, even after the removal of local 

outlier points. Furthermore, high variability in the SVI 

values was expected even after filtering. This was due 

to the large density of points collected by the on-the-go 

sensor, especially because sugar cane has high biomass 

variability at short distances (Amaral et al., 2018). The 

filter proposed characterized the regions (stains) of high 

and low SVI values within the field.

The algorithm-application developed demonstrated 

the potential practical use of filtering spatial data by 

end-users and it was granted the Brazilian patent n° 

BR512019002014-6.

Figure 5 – Maps of the data sets after the filtering process. Method 1: Vega et al. (2019); Method 2: Spekken et al. (2013); Method 3: proposed 

in this study. 
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Conclusion

According to the results, the methodology proposed in 

this work had a better performance in removing outlier 

data when compared to the other two methodologies. 

The algorithm-application is a simple tool that could 

be used in different high-density data sets collected by 

sensors in agriculture. The results, based on different 

data sets, showed that the filter improved accuracy 

of maps. The filter reduced the RMSE compared to 

interpolation errors of the raw data. The filter excluded 

the local outliers, which considerably reduced the 

nugget effects. The global and local filter smoothed the 

data, characterizing the regions of greater and lower 

values of the attributes used in this study within the 

field. The algorithm-application developed has the 

potential for daily use by end-users as it is practical for 

filtering spatial data.

Acknowledgments

The authors would like to thank the Brazilian National 

Council for Scientific and Technological Development 

(CNPq) for the Ph.D. scholarship granted to the first 

author (Process 168643/2017-0). We would also like 

to thank Michael James Stablein of the University of 

Illinois Urbana-Champaign for his translation services 

and review of this work.

Authors’ Contributions

Conceptualization: Molin, J.P.; Spekken, M.; Maldaner, 

L.F. Design of methodology: Molin, J.P.; Spekken, M.; 

Maldaner, L.F. Software development: Spekken, M.; 

Maldaner, L.F. Writing and editing: Maldaner, L.F.; 

Molin, J.P.

References

Amaral, L.R.; Trevisan, R.G.; Molin, J.P. 2018. Canopy sensor 

placement for variable-rate nitrogen application in sugarcane 

fields. Precision Agriculture 19: 147-160.

Arslan, S.; Colvin, T.S. 2002. Grain yield mapping: yield sensing, 

yield reconstruction, and errors. Precision Agriculture 3: 135-

154.

Blackmore, S.; Moore, M. 1999. Remedial correction of yield map 

data. Precision Agriculture 1: 53-66.

Hubert, M.; Van der Veeken, S. 2008. Outlier detection for skewed 

data. Journal of Chemometrics 22: 235-246.

Isaaks, E.H.; Srivastava, R.M. 1989. An Introduction to Applied 

Geostatistics. Oxford University Press, New York, NY, USA.

Leroux, C.; Jones, H.; Clenet, A.; Dreux, B.; Becu, M.; 

Tisseyre, B. 2018. A general method to filter out defective 

spatial observations from yield mapping data sets. Precision 

Agriculture 19: 789-808.

Lyle, G.; Bryan, B.; Ostendorf, B. 2014. Post-processing methods 

to eliminate erroneous grain yield measurements: review and 

directions for future development. Precision Agriculture 15: 

377-402.

Maldaner, L.F.; Molin, J.P. 2020. Data processing within rows for 

sugarcane yield mapping. Scientia Agricola 77: e20180391.

Menegatti, L.A.A.; Molin, J.P. 2004. Removal of errors in 

yield maps through raw data filtering. Revista Brasileira de 

Engenharia Agrícola e Ambiental 8: 126-134 (in Portuguese, 

with abstract in English).

Molin, J.P.; Rabello, L.M. 2011. Studies about soil electrical 

conductivity measurements. Engenharia Agrícola 31: 90-101 

(in Portuguese, with abstract in English).

Molin, J.P.; Amaral, L.R.; Colaço, A. 2015. Precision Agriculture 

= Agricultura de Precisão. Oficina de Textos, São Paulo, SP, 

Brazil (in Portuguese).

Pebesma, E.J. 2004. Multivariable geostatistics in S: the gstat 

package. Computers & Geosciences 30: 683-691.

Ping, J.L.; Dobermann, A. 2005. Processing of yield map data. 

Precision Agriculture 6: 193-212.

Rabello, L.M.; Bernardi, A.C.C.; Inamasu, R.Y. 2014. Soil Electric 

Conductivity Aparent. p. 48-57. In: Bernardi, A.C.C.; Naime, 

J.M.; Resende, A.V.; Bassoi, L.H.; Inamasu, R.Y., eds. Precision 

farming: results from a new look = Agricultura de precisão: 

resultados de um novo olhar. Embrapa, Brasília, DF, Brazil (in 

Portuguese, with abstract in English).

Shekhar, S.; Lu, C.T.; Zhang, P.S. 2003. A unified approach to 

detecting spatial outliers. Geoinformática 7: 139-166.

Simbahan, G.C.; Dobermann, A.; Ping, J.L. 2004. Screening yield 

monitor data improves grain yield maps. Agronomy Journal 

96: 1091-1102.

Singh, A.K.; Lalitha, S. 2017. A novel spatial outlier detection 

technique. Communications in Statistics-Theory and Methods 

47: 247-257.

Spekken, M.; Anselmi, A.A.; Molin, J.P. 2013. A simple method 

for filtering spatial data. p. 259-266. In: Stafford, J.V., ed. 

Precision agriculture. Wageningen Academic Publishers, 

Wageningen, The Netherlands.

Sudduth, K.; Drummond, S.T. 2007. Yield editor: software for 

removing errors from crop yield maps. Agronomy Journal 99: 

1471.

Sun, W.; Whelan, B.; McBratney, A.B.; Minasny, B. 2013. An 

integrated framework for software to provide yield data 

cleaning and estimation of an opportunity index for site-

specific crop management. Precision Agriculture 14: 376-391.

Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. 2019. 

Protocol for automating error removal from yield maps. 

Precision Agriculture 21: 1-15.


