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The goal of pathway analysis is to identify the pathways significantly impacted in a given

phenotype. Many current methods are based on algorithms that consider pathways as

simple gene lists, dramatically under-utilizing the knowledge that such pathways are meant

to capture. During the past few years, a plethora of methods claiming to incorporate

various aspects of the pathway topology have been proposed. These topology-based

methods, sometimes referred to as “third generation,” have the potential to better

model the phenomena described by pathways. Although there is now a large variety

of approaches used for this purpose, no review is currently available to offer guidance

for potential users and developers. This review covers 22 such topology-based pathway

analysis methods published in the last decade. We compare these methods based on:

type of pathways analyzed (e.g., signaling or metabolic), input (subset of genes, all genes,

fold changes, gene p-values, etc.), mathematical models, pathway scoring approaches,

output (one or more pathway scores, p-values, etc.) and implementation (web-based,

standalone, etc.). We identify and discuss challenges, arising both in methodology and

in pathway representation, including inconsistent terminology, different data formats, lack

of meaningful benchmarks, and the lack of tissue and condition specificity.

Keywords: pathway analysis, topology, signaling pathways, metabolic pathways, mathematical model, network

topology, statistical significance

1. INTRODUCTION

In molecular biology and genetics, there is a large gap between

current data analysis techniques and their ability to derive precise

and accurate functional information from the large and con-

stantly growing volume of high throughput molecular data. The

capability of obtaining a comprehensive lists of genes/proteins

that are different between two phenotypes is routine1 in research

today. And yet, the holy grail of high-throughput has not deliv-

ered so far. Even though high-throughput comparisons are

relatively easy to perform, understanding the phenomena that

determine the measured changes is as challenging as ever, if not

more so. Therefore, it is crucial to develop effective ways to ana-

lyze the vast amount of data that has been and will continue to be

collected.

A major contributor to the gap between our ability to collect

data and our ability to interpret it, is the fact that living organisms

are complex systems whose emerging phenotypes are the results

of thousands of complex interactions taking place on various

metabolic and signaling pathways. The ability to correctly infer

1Such experiments are currently offered by a number of academic cores

and private companies for a fixed and reasonable fee. Examples of such

cores include: Duke Proteomics Core Facility, Johns Hopkins Microarray

Core, CMMB Research Facility (Univ. of South Florida), MD Anderson Core

Facility, UCLA DNA Microarray Core Facility, Stanford Genomic Resources,

Dana-Farber Microarray Core, etc.

the perturbed pathways responsible for a phenotype from a list

of differentially expressed (DE) genes or proteins may be the key

to transforming the now abundant high-throughput expression

data into biological knowledge. In turn, this can help understand

mechanisms of disease, develop better drugs, personalize drug

regimens, etc. For our purposes, pathways are models describ-

ing the interactions of genes, proteins, or metabolites within cells,

tissues, or organisms, not simple lists of genes. This is why, in

this paper, we focus exclusively on pathway analysis methods that

aim to identify the pathways that are significantly impacted in

a condition under study, taking pathway topology into account.

This process uses two types of data: (i) previously accumulated

knowledge in the form of known pathways, represented as graphs

and (ii) experiment data, such as gene expression values or pro-

tein or metabolite abundance data obtained when comparing two

phenotypes.

In spite of the crucial importance of this problem and of the

recent increase in the number of methods and approaches for

pathway analysis, to our knowledge there is no current review

focused on topology-based methods. A reason for this may be

related to the challenges currently associated with this problem.

A first such challenge is the lack of standards for the evaluation

of the results of the analyses. This has lead to the proliferation of

many techniques that have never been compared with each other

in a consistent way. Another set of challenges is related to the

pathways themselves. Not only there is no universal agreement for
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the representation of information content in pathway databases,

but the very definition of a pathway is not completely agreed

upon Chowbina et al. (2009). Some authors use the term “path-

way” to refer to a simple list of genes (such as those associated

with a given Gene Ontology (GO) term), lacking any structure

and any information about the interactions between these genes.

Many others use graphs to capture relationships but the mean-

ing of edges and nodes varies dramatically from one source to

another. Figure 5 shows not fewer than five different types of

graphs, all referred to as “pathways.” Even pathways from the

same source, often use different representations. For instance,

genes/proteins are associated with nodes in KEGG signaling path-

ways while they are associated with edges in KEGG metabolic

pathways.

The subset of available techniques that consider the path-

ways as simple lists of genes, such as those associated with a

GO term (or another arbitrary descriptor) are worth of further

discussion. Here, we will refer to these as gene set analysis meth-

ods, rather than pathway analysis methods. A comprehensive list

of such techniques, as well as some comparisons between them

can be found in several well-developed surveys (Misman et al.,

2009; Chuang et al., 2010; Kelder et al., 2010; Emmert-Streib and

Glazko, 2011; Khatri et al., 2012). While useful for the purpose for

which they have been developed - to analyze sets of genes - these

methods do not take into consideration the topology of the path-

ways, and hence completely ignore the interactions described by

the pathways, the different types of genes, the position of the genes

on their respective pathways, etc. This is illustrated in Figure 1. In

some sense, the very reason for the existence of the pathways is to

describe the way various genes interact. Therefore, methods that

perform the analysis only on sets of genes, ignoring the topol-

ogy of the pathway, are not included in the scope of the present

review.

Recent pathway analysis algorithms have become more refined

than gene set analysis methods by incorporating topology

(Figure 2). A first attempt to incorporate topology informa-

tion in the analysis of pathways was through the use of graph

theory methods. This approach became popular in the last

decade (Chuang et al., 2010; Barabási et al., 2011). Aittokallio and

others survey graph-based analysis methods. They identify cate-

gories based on global structural properties, local structural con-

nectivity, or hierarchical functional organization, and describe

the features of gene regulatory networks, metabolic networks,

and protein-protein interaction (PPI) networks (Aittokallio and

Schwikowski, 2006). Some of these graph theory methods and

concepts are relevant to the pathway analysis methods able to

compare phenotypes, which are the focus of the current review.

However, as a broad category, the approaches based on graph

theory methods are not able to identify the pathways that are sig-

nificant in a given phenotype comparison and therefore, do not

fall within the scope of this review.

Varadan and others (Varadan et al., 2012) review the use of

biological knowledge bases for cancer diagnosis and prognosis.

They attempt to evaluate the performance of three topology-

based methods, SPIA, PARADIGM, and PathOlogist, on the same

input datasets to compare the biological relevance of their out-

puts. Unfortunately, since the 3 tools did not use the same

pathway database, the authors chose to re-implement SPIA and

adapt it to the pathway database used by the other two, so that the

result from all three would be comparable. The authors discuss

FIGURE 1 | Gene sets are not pathways. (A) shows a small part of

the MAPK signaling pathway from KEGG. This pathway shows the

location of various genes or gene products (inside the cell, outside of

it, or in the membrane), what gene interacts with what other gene(s),

the type of each interaction (activation, repression, phosphorylation,

etc.), the direction of the signal propagation, and potentially many other

things (e.g., complex formation, etc.). (B) presents the same part of the

same pathway as a gene set (no interactions). The gene set has lost

all the structure and the additional information captured by the original

pathway. This comparison shows how much important knowledge

existent in pathway database is ignored when pathways are treated as

simple gene sets.
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FIGURE 2 | Generalized overview of the data flow in pathway analysis methods. For each module, the various options available for different methods

surveyed, as well as the comparison criteria used in this paper are presented in the white boxes.

relative performance of the three methods, but could not draw

definitive conclusions regarding the superiority of one tool ver-

sus another. We also ran their version of SPIA and the original

SPIA implementation from Bioconductor, using exactly the same

input, and obtained different results. This indeed demonstrates

some of the inherent problems encountered when comparing

pathway analysis methods. First of all, it is difficult to success-

fully re-implement an algorithm to force it to work on other

data sources, especially when the re-implementation is done by

third parties. Furthermore, sometimes the mere ability to repro-

duce published results - which is at the base of modern scientific

research - is questionable in this area. For instance, in spite of hav-

ing access to the source code and having the full cooperation of

the authors, we could not even reproduce the results reported in

Vaske et al. (2010).

Four topology-based tools, along with several gene-based

methods, were recently reviewed by Khatri and others Khatri et al.

(2012). This recent survey groups functional analysis based on

GO together with pathway analysis methods. With this very loose

definition of a pathway and pathway analysis, the authors present

the limitations and challenges of various methods in general,

and categorize topology-based methods as “third-generation”

tools. However, even though it is very recent, this existing survey

only includes 4 out of the 22 topology-based analysis methods

reviewed here.

In a different direction, researchers tackle the problem of

understanding disease by looking at signaling networks from the

perspective of fault tolerance. Fault tolerance is a measure of the

vulnerability of signaling networks to the abnormal function of its

components. Abdi and Emamian survey this direction in a com-

prehensive study Abdi and Emamian (2010). Valuable results are

presented highlighting vulnerable molecules in different molec-

ular networks for biological phenomena such as mitosis or p53

signaling.
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Kinetic/stoichiometric models based on the molecular mecha-

nisms of interaction have been used for over 25 years in order to

simulate biochemical phenomena. Such models are in some sense

the ultimate tools because they can predict exact quantities for

any variable in the system. However, their use is limited by the

need to know the precise initial concentration for most reactants,

exact reaction constants for all reactions, as well as the appro-

priate time scale for the studied phenomenon. Furthermore,

the goals of such models are very different from the goals of

pathway analysis methods. The goal of such kinetic models is

to fully describe the biochemical phenomena involved and to

make quantitative predictions about some of the reaction prod-

ucts involved. In contrast, the goal of pathway analysis methods

is to identify the most significantly impacted pathways from a

large collection of heterogeneous pathways, based on incomplete

information. Furthermore, kinetic models work for biochemi-

cal pathways describing reactions of the same type (biochemical)

with known reaction constants (Steuer, 2007). The pathways

we are considering here include gene signaling pathways con-

taining different “signals” (inhibition, activation, phosphoryla-

tion, methylation, etc.) happening at many levels (transcription,

translation, post-translational, etc.) between heterogeneous com-

ponents (mRNA, DNA, protein, metabolites, etc.). Therefore,

the entire body of work concerned with modeling biochem-

ical pathways using mathematical models (e.g., differential or

difference equations) does not fall within the scope of this

review.

Finally, it is important to state that we do not intend to assess

the efficacy of each method, since there is not a universally recog-

nized correct output of such tools. Designing benchmark datasets

would help to determine the most effective mathematical model

but this is beyond the intended scope of the current review and

hence, it is not attempted here.

In this paper, we describe 22 topology-based pathway analy-

sis methods designed to analyze either signaling pathways (see

Figure 3), or metabolic pathways (Figure 4). There are sev-

eral commercial tools used for pathway analysis, which do not

incorporate the pathway topology when computing pathway

scores including Ingenuity Pathway Analysis (Ingenuity Systems,

www.ingenuity.com) and Genomatix (Genomatix Software,

www.genomatix.de). Since these tools only perform a gene set

analysis, failing to take advantage of the additional knowledge

incorporated in the pathways, they will not be considered

here. We found only two commercial tools that do incor-

porate topology in the pathway analysis. These are Pathway-

Guide (Advaita Corporation, http://www.advaitabio.com) and

MetaCore (Thomson Reuters, http://www.thomsonreuters.com).

We categorize and compare all surveyed methods based on dif-

ferent criteria including: the type of input required, the type of

output provided, the mathematical models used, and the imple-

mentation used. In section 2, we discuss the options for input

data in different tools, in particular, the challenges specific to

topology-based methods. Section 3 reviews the underlying math-

ematical models and scoring methods currently available to rate

pathway deregulation. Section 4 focuses on the types of out-

put provided. Finally, section 5 presents issues regarding the

implementation of the methods. To the best of our knowledge,

FIGURE 3 | Timeline showing when the surveyed pathway analysis

tools, working mainly with signaling pathways, became available (this

time may be different from publication time shown in Table 1). Some

of the methods use additional interaction information that may be from an

in-house or public gene/protein interaction knowledge base.

BAPA-IGGFD (Zhao et al., 2012) and TBScore (Ibrahim et al., 2012)

acronyms were assigned to the respective methods, in this manuscript, for

ease of reference. The commercial tools, Pathway-Guide and MetaCore are

not included in this figure.

FIGURE 4 | Timeline showing the availability of pathway analysis tools

that work mainly with metabolic pathways.

our review is the only comprehensive survey of topology-based

pathway analysis methods to date.

2. INPUT DATA

This review focuses on pathway analysis methods that try to

exploit some of the information contained in the pathway topol-

ogy in order to identify the pathways that are significantly

impacted in a condition under study. In order to address this

problem, any pathway analysis method will need: (i) a collec-

tion of pathways capturing our current knowledge about the

interactions of genes, proteins, metabolites, or compounds in

an organism (usually from a pathway database), and (ii) exper-

imental data in the form of measurements of gene expression,

protein abundance, metabolite concentration, or copy numbers.

The pathway data is accumulated, updated, and refined by amass-

ing knowledge from scientific literature describing individual

interactions or high throughput experiment results. The experi-

ment data is usually provided by measurements comparing two or

more phenotypes such as treated vs. untreated, disease vs. healthy,

or treated with drug A vs. drug B.

Analysis methods take various approaches to accommodate

the different formats commonly used for both types of data. In

this section, we compare all methods reviewed based on their

input types and formats, and discuss the particular difficulties

encountered when incorporating the pathway interactions into

topology-based analysis methods.
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2.1. EXPERIMENT DATA

Most methods analyze data from high-throughput experiments,

such as microarrays, next-generation sequencing, or proteomics.

Most analysis methods accept either a list of gene IDs or a list of

such gene IDs associated with measured changes. These changes

could be measured with different technologies and therefore can

serve as proxies for different biochemical entities. For instance,

one could use gene expression changes measured with microar-

rays, or protein levels measured with a proteomic approach, etc.

Transcription data is often used to approximate the proteome,

since high-throughput protein abundance data is not readily

available. Most methods expect a consistent input i.e., all val-

ues are expected to be of the same type. MetPA, which is a

metabolic pathway analysis method, is the only method that does

not accept gene expression. This method uses as input either a list

of “important” compounds, or a metabolite concentration table.

Different analysis methods use different input formats. Many

methods accept a list of all genes considered in the experiment

together with their expression values. Some analysis methods

select a subset of genes, considered to be differentially expressed

(DE), based on a predefined cut-off. The cut-off is typically

applied on fold-change, statistical significance, or both. A selec-

tion based on both criteria can be performed easily if the data is

displayed as a volcano plot, i.e., in a coordinate system that has

fold changes on the x axis and the negative log of the p-value

on the y axis. In such a plot, genes that have large absolute fold

changes as well as significant p-values will appear in the top part

of the plot, towards the sides. These methods use the list of DE

genes and their corresponding fold-change values as input. Other

methods use only the list of DE genes, without corresponding

expression values, because their scoring methods are based only

on the relative positions of the genes in the graph. Methods which

use cut-offs are sensitive to the chosen threshold value, because a

small change in the cut-off may drastically change the number

of selected genes (Nam and Kim, 2008). As a consequence, some

genes with moderate differential expression may be lost, even

though they might be important players in the impacted path-

ways (Ben-Shaul et al., 2005). Furthermore, the genes included in

the set of DE genes can vary dramatically if the selection meth-

ods are changed. Hence, the results of pathway analyses based on

DE genes may be vastly different depending on both the selection

method as well as the threshold value (Pan et al., 2005). On the

other hand, methods which do not use a threshold are more sen-

sitive to the noise coming from the (very many) genes that do not

change much between the two phenotypes, genes that are nor-

mally eliminated by the DE selection process. An approach used

to address this issue while still using all gene measurements uses

the individual p-values of each gene (Voichiţa et al., 2012).

Among the surveyed methods, ScorePAGE, PathOlogist,

NetGSA, TopologyGSA, PWEA, TAPPA, ACST, BPA, BAPA-

IGGFD, and DEGraph use all genes together with their expression

values as input. However, for BPA and BAPA-IGGFD 2, the fold

changes are only used to label each gene and not considered in

2BAPA-IGGFD (Zhao et al., 2012) and TBScore (Ibrahim et al., 2012)

acronyms were assigned to the respective methods, in this manuscript, for

ease of reference.

the analysis itself. In BPA, this label is whether the gene is DE or

not and in BAPA-IGGFD, the label states whether the gene is up-

regulated or down-regulated. Therefore, these two methods can

be categorized as using a cut-off on the input gene list. Methods

that use the DE gene list and their associated values include

Pathway-Guide, Pathway-Express, SPIA, and TBScore. However,

the impact analysis which is the approach used by Pathway-Guide,

Pathway-Express and SPIA has been recently extended to work

with the set of all genes as well (Voichiţa et al., 2012), so these

can now be used either with or without DE genes. Moreover, this

functionality is now available as part of the Bioconductor pack-

age ROntoTools.3 MetaCore, TopoGSA, and EnrichNet use only

the DE gene list without associated expression values. CePa is a

method that has two options. It can work with either a list of DE

genes, or the whole list of genes with their expression values and

phenotype labels. GANPA and THINK-Back Density Analysis

(DS) modify existing gene set analysis methods, such as GSEA, by

calculating topology-based weights for each gene before applying

the main gene set analysis method. In these methods, the gene set

analysis used in the second stage uses as input the list of all genes

with their expression values. However, the weighting process used

in the first stage requires DE genes with their values, for GANPA,

and the list of DE genes, for THINK-Back-DS.

2.2. PATHWAY DATA

Biological processes can be represented by different types of mod-

els. Usually pathways, such as signaling or metabolic pathways, are

sets of genes and/or gene products that interact with each other

in a coordinated way to accomplish a given biological function

or process. A typical signaling pathway (in KEGG for instance)

uses nodes to represent genes or gene products and edges to

represent signals, such as activation or repression, that go from

one gene to another. A typical metabolic pathway uses nodes to

represent biochemical compounds and edges to represent reac-

tions that transform one or more compound(s) into one or more

other compounds. These reactions are usually carried out or con-

trolled by enzymes, which are in turn coded by genes. Hence, in

a metabolic pathway, genes or gene products are associated with

edges rather than nodes, as in a signaling pathway. The immediate

consequence of this difference is that many techniques cannot be

applied directly on all available pathways. There are other types

of biological networks that incorporate genome wide interactions

between genes or proteins such as protein-protein interaction

(PPI) networks. These networks are not restricted to specific bio-

logical functions. The main caveat related to PPI data is that most

such data are obtained from a bait-prey laboratory assay, rather

than from in vivo or in vitro studies. The fact that two proteins

stick to each other in an assay performed in an artificial envi-

ronment can be misleading since the two proteins may never be

present at the same time in the same tissue or the same part of the

cell.

The pathway data that is the input of the pathway analysis

methods, generally come from a single source such as a single

pathway database. In some analysis methods a second source

of interaction data is used, such as a gene/protein interaction

3http://bioconductor.org/packages/release/bioc/html/ROntoTools.html
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knowledge base or a genome scale network. Most of the meth-

ods use one data source. However, among the surveyed meth-

ods, MetaCore, GANPA, BAPA-IGGFD, and EnrichNet use two

sources of interaction data. MetaCore uses two types of propri-

etary knowledge: an interaction database, as well as canonical

pathways. The interaction information is protein-protein inter-

action data gathered from literature which is used to generate a

directed global network. There is no public information regard-

ing the details of how the MetaCore interaction network and

canonical pathways are created.

Another analysis method that uses two sources of data is

BAPA-IGGFD. The first source is a predefined pathway knowledge

base. BAPA-IGGFD is advertised as able to analyze any pathway

format; however the example in Zhao et al. (2012) is restricted

to pathways from the KEGG database. The second source is an

interaction knowledge base, called PrimeDB, which was created

by the authors of Zhao et al. (2012), by extracting directed gene-

gene interaction information from scientific publications and

past experiments. PrimeDB lists potential interactions between

each pair of genes and counts reported instances of activation and

inhibition separately.

EnrichNet and GANPA are other methods with two input

sources. They use genome-scale interaction networks in addi-

tion to predefined pathway datasets as input. For the genome-

scale interaction networks, EnrichNet uses PPI networks such

as STRING (Snel et al., 2000; Von Mering et al., 2003) and

GANPA builds a network, called gNET, based on different types

of gene/protein association databases such as PPIs, co-annotation

in GO Biological Process (BP), and co-expression in large-scale

gene expression microarray data.

Pathway analysis methods can use public or proprietary input

sources. MetaCore, BAPA-IGGFD, and GANPA use proprietary

interaction networks. All other surveyed methods use public

sources. Among them, TopoGSA infers PPI networks on the

fly, for human and some model organisms, from databases

such as MIPS (Mewes et al., 1999), DIP (Xenarios et al.,

2000), BIND (Bader et al., 2001), HPRD (Peri et al., 2004),

IntAct (Hermjakob et al., 2004), and BioGRID (Stark et al., 2006).

TopoGSA also accepts any kind of predefined pathways as input

which it scores and compares with the constructed network.

Publicly available curated pathway databases used by the sur-

veyed methods are KEGG (Ogata et al., 1999), NCI-PID (Schaefer

et al., 2009), BioCarta (BioCarta, 2000), WikiPathways (Pico et al.,

2008), PANTHER (Mi et al., 2005), and Reactome (Joshi-Tope

et al., 2005). These curated knowledge bases are more reliable

than protein interaction networks but do not include all known

genes and their interactions. As an example, KEGG included only

about 5000 human genes in signaling pathways, at the time of

writing this article.

Various research groups have tried different strategies to

address the challenge of modeling complex biomolecular phe-

nomena. These efforts have lead to variation among knowledge

bases, complicating the task of developing pathway analysis meth-

ods. There is currently no accepted standard for constructing

pathways, and as pathway paradigms evolve to better represent the

biology, pathway analysis methods evolve in parallel. Depending

on the database, there may be differences in: information sources,

experiment interpretation, models of molecular interactions, or

boundaries of the pathways. Therefore, it is possible that pathways

with the same designation and aiming to describe the same phe-

nomena may have different topologies in different databases. As

an example, one could compare the insulin signaling pathways of

KEGG and BioCarta. BioCarta includes fewer nodes and empha-

sizes the effect of insulin on transcription, while KEGG includes

transcription regulation as well as apoptosis and other biological

processes. However, BioCarta includes the C-JUN transcription

factor, which is missing from the KEGG representation.

Differences in graph models for molecular interactions are

particularly apparent when comparing the signaling pathways

in KEGG and NCI-PID. While KEGG represents the interaction

information using the directed edges themselves, NCI-PID intro-

duces “process nodes” to model interactions (see Figure 5). Most

pathway analysis methods are designed to use only one pathway

graph model, which limits the user’s possibilities. Developers are

faced with the challenge of modifying methods to accept novel

pathway databases or modifying the actual pathway graphs to

conform to the method.

Pathway databases not only differ in the way that interactions

are modeled, but their data are provided in different formats

as well (Chuang et al., 2010). Common formats are Pathway

Interaction Database eXtensible Markup Language (PID XML),

KEGG Markup Language (KGML), Biological Pathway Exchange

(BioPAX) Level 2 and Level 3, System Biology Markup Language

(SBML), and the Biological Connection Markup Language

(BCML) (Beltrame et al., 2011). The NCI provides a unified

assembly of BioCarta and Reactome, as well as their in-house

“NCI-Nature curated pathways,” in NCI-PID format (Schaefer

et al., 2009). In order to unify pathway databases, pathway infor-

mation should be provided in a common format. XML is a flexible

text format with increasing use for data exchange across different

systems. However, XML is very low-level and lacks standard con-

structs to accurately describe biological phenomena. PID XML

is both human- and machine-readable, and allows a platform-

independent means of exchanging PID data. The BioPAX project

is an effort to unify the format and exchange of pathway data,

and has incorporated independent sources such as NCI, BioCarta,

Reactome, and WikiPathways, UCSC, NIH, and others (BioPAX,

2002).

The implementation of analysis methods constrains the soft-

ware to accept a specific input pathway data format, while the

underlying graph models in the methods are independent of the

input format. Regardless of the pathway format, this must be

parsed into a computer readable graph data structure before being

processed. The implementation may incorporate a parser, or this

may be up to the user. For instance, SPIA accepts any signaling

pathway or network if it can be transformed into an adjacency

matrix representing a directed graph where all nodes are compo-

nents and all edges are interactions. NetGSA is similarly flexible

with regard to signaling and metabolic pathways. SPIA provides

KEGG signaling pathways as a set of pre-parsed adjacency matri-

ces. The methods described in this paper may be restricted to

only one pathway database, or may accept several. The cor-

responding databases for the surveyed methods are shown in

Table 1.
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FIGURE 5 | Comparison of representative graph models for molecular

interactions as used by different pathway databases. In a KEGG

signaling pathway (A) nodes represent genes/gene products and edges

represent regulatory signals such as activation, inhibition, phosphorylation,

etc. (see http://www.genome.jp/kegg/document/help_pathway.html for

details). In the chemical network representation of a KEGG metabolic

pathway (B) the nodes represent biochemical compounds and edges

represent chemical reactions. These chemical reactions are performed by

enzymes which are proteins encoded by genes. Hence, in contrast with

the signaling pathways in which genes are associated with nodes, in a

metabolic pathways genes are associated with edges. This is the main

reason most methods developed for signaling pathways cannot be applied

directly to metabolic pathways. In an NCI-PID signaling pathway (C) nodes

fall in two categories: component nodes representing biomolecular

components, or process nodes representing biochemical reactions or

biological processes. Edges connect two biomolecular components

through a biochemical reaction or a biological process. Process nodes can

have 3 states: positive regulation, negative regulation, or “involved in.”

(see http://pid.nci.nih.gov/userguide/network_maps.shtml for details). In a

protein-protein interaction network (D) nodes represent proteins and the

interactions among them represent physical binding. These interactions

can be inferred from two-hybrid assays and they may be either undirected

(top), or directed from the bait protein to the prey protein (bottom). In the

Biological Pathway Exchange (BioPAX) (E) nodes are physical entities and

edges are conversions. BioPAX entities can represent complexes, DNA,

proteins, RNA, small molecules, DNA regions or RNA regions. Conversions

can represent biochemical reactions complex assembly or degradation,

transport or transport with biochemical reaction. This model is very generic

and increasingly flexible. It provides a standard for pathway information to

be available in machine readable format, therefore easy to use for pathway

analysis and to exchange between pathway databases (see http://www.

biopax.org/release/biopax-level3-documentation.pdf for details).

3. MATHEMATICAL MODELS

For topology-based pathway analysis methods, the mathematical

model describes how the graph and the experiment data are pro-

cessed to compute a score for each pathway. The score quantifies

the significance of changes in a (sub)pathway between the two

phenotypes. This score may be a statistical significance or other

non-statistical method-specific metric. The diversity of current

topological based pathway analysis methods reflects the variety of

mathematical models available for graphs. The output is typically

a list of ranked (sub)pathways.

3.1. GRAPH MODELS

Two major graph models are used to represent biological net-

works and pathways. The first model, hereon referred to as

“single-type,” allows only one type of node, the biological compo-

nent (i.e., a gene or protein), with edges representing molecular

interactions occurring between the nodes (e.g., Figure 5A). In

contrast, the second graph model, hereon referred to as “multi-

type,” allows multiple type of nodes, such as components and

interactions (e.g., Figure 5C). Multi-type graph models are more

complex than single-type, but they capture more pathway char-

acteristics. For example, single-type models are limited when

trying to describe “all” and “any” relations between multiple

components that are involved in the same interaction. Bipartite

graphs, which contain two types of nodes and allow connection

only between nodes of different types, are a particular case of

multi-type graph models.

In most databases, pathways use the single-type graph model

and the signaling and metabolic pathways from databases such

KEGG and BioCarta are good examples. In signaling pathways,

nodes are genes and edges describe various molecular interac-

tions, which include activation/transcription/positive regulation,

repression/blockage/negative regulation, (de)phosphorylation,

binding/association. Metabolic pathways can be represented as

either chemical networks or protein networks. In the chem-

ical network representation, nodes are metabolites and edges

are enzymes and/or substrates that catalyze the chemical reac-

tions. In the protein network, the representation is reversed;

nodes are enzymes and edges are metabolites. Among the sur-

veyed methods which work with metabolic pathways only MetPA

uses biochemical networks from KEGG. ScorePAGE and TAPPA

use protein networks. Nevertheless, the most popular represen-

tation of metabolic pathways in public databases is the chemi-

cal network. In KEGG and BioCarta, the majority of edges in

both metabolic and signaling pathways are directed, but binding

between compounds is represented by undirected edges.

Protein-protein interaction (PPI) networks, constructed from

interaction databases, use a single-type graph model. The nodes

represent proteins and the edges depict their association/binding.

Sometimes the edges are undirected, while some other times, the

edges are directed to describe which protein was used as the bait

and which one acted as the prey.

Reactome and NCI-PID are databases that use a bipartite

graph model to represent pathways. Genes, metabolites, or molec-

ular complexes are represented as component nodes, while inter-

action nodes define the chemical reactions or molecular processes

that occur between the input and output component nodes. The

edges, which connect a component node to an interaction node,

specify the component’s type of contribution to the reaction.

These can be positive or negative regulation, among others.
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Table 1 | Comparison of topology-based pathway analysis methods based on different criteria related to the input.

Method name Experiment input Interaction network database name Year References

ScorePAGE All genes expression KEGG metabolic 2004 Rahnenführer et al., 2004

MetaCore* DE genes list Literature-based genome-scale interaction network;

proprietary canonical pathway, genome-scale

network

2004 N/A

Pathway-Express DE genes with values,

All genes expression**

KEGG signaling 2005 Khatri et al., 2005,

Drǎghici et al., 2007,

Khatri et al., 2007,

Voichiţa et al., 2012

TAPPA All genes expression KEGG metabolic 2007 Gao and Wang, 2007

PathOlogist All genes expression KEGG 2007 Efroni et al., 2007

Pathway-Guide* DE genes with fold change

(FC) values, DE genes list,

All genes with values, DE

genes with FCs and p-values

KEGG signaling, REACTOME, NCI, BioCarta 2009 N/A

SPIA DE genes with values KEGG signaling 2009 Tarca et al., 2009

NetGSA All genes expression KEGG signaling 2009 Shojaie and Michailidis, 2009,

Shojaie and Michailidis, 2010

PWEA All genes expression YeastNet 2010 Hung et al., 2010

TopoGSA DE genes list Genome-scale PPI network, KEGG 2010 Glaab et al., 2010

PARADIGM All genes expression, copy

number, proteins level

Constructed PPI networks from MIPS, DIP, BIND,

HPRD, IntAct, and BioGRID

2010 Vaske et al., 2010

TopologyGSA All genes expression NCI-PID 2010 Massa et al., 2010

DEGraph All genes expression KEGG 2010 Jacob et al., 2010

MetPA DE metabolites with values KEGG metabolic 2010 Xia and Wishart, 2010

BPA All genes expression -

with cut-off

NCI-PID 2011 Isci et al., 2011

GANPA DE genes with values,

All genes expression

Genome-scale PPI network, KEGG, REACTOME,

NCI-PID, HumanCyc

2011 Fang et al., 2011

BAPA-IGGFD All genes expression -

with cut-off

Literature-based gene-gene interaction database,

KEGG, WikiPathways, REACTOME, MSigDB,

GO BP, PANTHER;

constructed gene association network from PPIs;

co-annotation in GO Biological Process (BP); and

co-expression in microarray data

2012 Zhao et al., 2012

CePa DE genes list / All genes

expression

NCI-PID 2012 Gu et al., 2012

THINK-Back-DS DE genes with values,

All genes expression

KEGG, PANTHER, BioCarta, REACTOME,

GenMAPP

2012 Farfán et al., 2012

TBScore DE genes with values KEGG signaling 2012 Ibrahim et al., 2012

ACST All genes expression KEGG signaling 2012 Mieczkowski et al., 2012

(Continued)
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Table 1 | Continued

Method name Experiment input Interaction network database name Year References

EnrichNet DE genes list Genome-scale PPI network, KEGG, BioCarta,

WikiPathways, REACTOME, NCI-PID, InterPro,

GO with STRING 9.0

2012 Glaab et al., 2012

*commercial methods; **released in 2013 as part of ROntoTools.

(http://www.bioconductor.org/packages/release/bioc/html/ROntoTools.html)

N/A, No publication available. Experiment input describes the type of experiment data input required by the method. The meaning of each term is as follows: “DE

genes with values/DE metabolites with values” represents the list of differentially expressed (DE) genes or metabolites with their fold-change value or t-statistics.

Sometimes this list is accompanied by the list of total genes monitored in the experiment; “DE genes list” represents a list of selected genes, usually DE genes

(this is just a list of IDs, without associated fold-changes). “All genes expression” represents the list of all genes in all samples together with their expression

values. Some methods require all genes, but then perform the analysis using a flag for the DE genes - these are marked as “with cut-off.” Some methods use

one type of input in a gene weighting stage while using another type of input to assess the pathway significance. Interaction network type and database name

is the input knowledge source for the analysis method and the databases proposed by the software. Some of the methods can use any pathway, but provide

parsed data for the pathway databases listed here. “Pathway” refers to any kind of signaling or metabolic pathway or gene regulatory network. “Genome scale

interaction network” refers to interaction networks constructed from protein interactions or co-annotation from GO databases, literature, or co-expression inferred

from existing microarray experiments. “Constructed network” means that the analysis method uses pathways created by its authors rather than pathways from a

reference database. Year denotes the year of the first published paper describing the method. References denotes the first published paper describing the method.

The majority of analysis methods surveyed here use a single-

type graph model. Some apply the analysis on a directed or

un-directed single-type network built using the input pathway,

while others transform the pathways into graphs with specific

characteristics. An example of the later is TopologyGSA, which

transforms the directed input pathway into an undirected decom-

posable graph, that has the advantage of being easily broken down

into separate modules (Lauritzen, 1996). In this method, decom-

posable graphs are used to find “important” submodules - those

which drive the changes across the whole pathway. For each path-

way, TopologyGSA creates an undirected moral graph4 from the

underlying directed acyclic graph (DAG) by connecting the par-

ents of each child and removing the edge direction. The moral

graph is then used to test the hypothesis that the underlying net-

work is changed significantly between the two phenotypes. If the

the research hypothesis is rejected, a decomposable/triangulated

graph is generated from the moral graph by adding new edges.

This graph is broken into the maximal possible submodules and

the hypothesis is re-tested on each of them.

BPA is another method that implements pathway graph pre-

processing. This method uses Bayesian networks to represent

biological pathways. In Bayesian networks, random variables are

assigned to each node of a DAG network and the edges represent

the conditional dependencies between nodes. Before assigning the

random variables, the pathway graph is checked for cycles. If the

graph is not a DAG, Spirtes’ method (Spirtes, 1995) is used to

remove the cycles while the (in)dependency rules in the initial

pathway graph are preserved.

Another example is BAPA-IGGFD, which is a method that

simplifies pathway graphs by removing any edge representing

4The moral graph of a DAG is the undirected graph created by adding an

(undirected) edge between all parents of the same node (sometimes called

marrying), and then replacing all directed edges by undirected edges. The

name stems from the fact that, in a moral graph, two nodes that have a

common child are required to be married by sharing an edge.

interactions other than activation and inhibition. In addition,

the pathways are pruned keeping only elements from three cat-

egories: signal receptors (including ligands) are at the beginning,

transcription factors are usually at the end, and their direct regu-

lators are in the middle. This pre-processing is motivated by noise

reduction in the final scoring of genes that have a less important

functional role in the pathway or belong to multiple pathways

where they play different roles. (Zhao et al., 2012) includes only

an intuitive high-level description of this process is presented,

without a detailed algorithm.

CePa uses a different method to modify the input pathways

before the analysis. The NCI knowledge base is used as a source

of NCI-Nature, BioCarta, Reactome, and KEGG pathways, which

are provided in PID or short NCI-PID format. The pathway data

is organized in the form of multi-type graphs, which are used to

generate directed single-type graphs, where each node can rep-

resent one or multiple genes. A node in the generated graph

is considered to be DE if any of its gene components is DE.

Unfortunately, the details of how the original pathways are parsed

to generate the new networks are not provided by the authors of

CePa.

PathOlogist and PARADIGM are the two surveyed meth-

ods that use multi-type graph models. PathOlogist uses a

bipartite graph model with component and interaction nodes.

PARADIGM, conceptually motivated by the central dogma of

molecular biology, takes a pathway graph as input and converts

it into a more detailed graph, where each component node is

replaced by several more specific nodes: biological entity nodes,

interaction nodes, and nodes containing observed experiment

data. The observed experiment nodes could in principle contain

gene expression and copy number information. Biological entity

nodes are DNA, mRNA, protein, and active protein. The inter-

action nodes are transcription, translation, or protein activation,

among others. Biological entity and interaction node values are

derived from these data and specify the probability of the node

being active. These are the hidden states of the model.
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3.2. SCORING METHODS

The goal of the scoring method is to compute a score for each

pathway based on the graph model, resulting in a ranked list of

pathways or sub-pathways. There are a variety of approaches to

quantify the changes in a pathway. Some of the analysis meth-

ods use a hierarchically aggregated scoring algorithm, where on

the first level, a score is calculated and assigned to each node

or pair of nodes (component and/or interaction). On the sec-

ond level, these scores are aggregated to compute the score of the

pathway. On the last level, the statistical significance of the path-

way score is assessed using univariate hypothesis testing. Another

approach, used by BPA, BAPA-IGGFD, NetGSA, TopologyGSA,

and DEGraph, assigns a random variable to each node and a mul-

tivariate probability distribution is calculated for each pathway.

The output score can be calculated in two ways. One way is to use

multivariate hypothesis testing to assess the statistical significance

of changes in the pathway distribution between the two pheno-

types. The other way is to estimate the distribution parameters

based on the Bayesian network model and use this distribution

to compute a probabilistic score to measure the changes. In this

section, we provide details regarding the scoring algorithms of the

surveyed methods. See Figure 6 for scoring algorithms categories.

3.2.1. Hierarchically Aggregated Scoring Algorithms

These analysis approaches are detailed in Figure 7. In this fig-

ure, the analysis is divided into three levels: node-level scoring,

pathway-level scoring and significance assessment. All methods

compute node level scores. One or both remaining levels may be

skipped by certain approaches. PARADIGM is the only one that

provides as direct output the node scores, rather than the path-

way scores. These scores can be input into a gene set or pathway

analysis algorithm, or a simple averaging function can be used to

score the pathways and rank them, as in Vaske et al. (2010). The

rest of the methods go on to the second level where the scores

of the pathways are calculated. Some methods stop at the second

level, outputting the whole list of ranked pathways without evalu-

ating their statistical significance, which is done by the remaining

methods on the next level.

Node Level Scoring. Here we categorize and describe the sur-

veyed methods based on their node level scoring model. Most

of the surveyed analysis methods incorporate pathway topol-

ogy information in the node scores. There are methods such

as TAPPA and ACST that incorporate this information in the

pathway scores. In TAPPA, the score of each node is the square

root of the normalized log gene expressions (node value). ACST

calculates the node level score using a sign statistic. The sign

reflects the direction of the gene expression change between

the phenotypes under study. This statistic can be a represented

by a t-value or the log fold change of the gene expression.

The statistic is standardized using a local mean and standard

deviation.

The rest of the analysis algorithms use a variety of approaches

to incorporate topology in the node level scores. We categorize

them into methods that use graph measures (centrality), similar-

ity measures, and probabilistic graphical models. TBScore is an

exception that can not fall into either of these groups. TBScore

weights the pathway DE genes based on their log fold change and

FIGURE 6 | Comparison of the mathematical models of the surveyed

pathway analysis methods. “Aggregate scoring” and “Weighted gene set”

panels show methods that perform node-level scoring followed by

pathway-level scoring performed either as an aggregation of the node scores

or as a weighted gene set analysis, using the node scores as weights. The

methods are divided according to their node-level scoring methods: graph

measure techniques, similarity measurement techniques, probabilistic

models, or using normalized node values based on node value and/or

pathway structure. The “Multivariate scoring” methods use multivariate

scoring models without node-level scoring. They use node values to directly

compute a pathway score using Bayesian networks or applying multivariate

hypothesis tests.
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FIGURE 7 | Diagram of pathway analysis scoring approach for hierarchically aggregated scoring algorithms. The box with the dashed border indicates

that the user can choose these options, but are not offered by the method implementation.

the number of distinct DE genes directly downstream of them,

using a depth-first search algorithm.

MetaCore, Pathway-Guide, Pathway-Express, SPIA, TopoGSA,

CePa, EnrichNet, MetPA, THINK-BACK-DS, and GANPA use

centrality measures or a variation of these measures to score

nodes in a given pathway. Centrality measures describe the impor-

tance of a node relative to all other nodes in a network. There

are several centrality measures that can be applied to networks

of genes and their interactions and these are degree centrality,

closeness, betweenness, and eigenvector centrality. Degree cen-

trality accounts for the number of directed edges that enter and

leave each node. Closeness sums the shortest distance from each

node to all other nodes in the network. Node betweenness adds a

layer of complexity to closeness; it measures the importance of a

node according to the number of shortest paths that pass through

it. Eigenvector centrality uses the network adjacency matrix of a

graph to determine a dominant eigenvector; each element of this

vector is a score for the corresponding node. Thus, each score

is influenced by the scores of neighboring nodes. In the case of

directed graphs, a node that has many downstream genes has

more influence and receives a higher score.

In MetaCore, a measure similar to node betweenness is used

to score genes. There is no peer-reviewed paper publicly available

describing the details of the MetaCore pathway analysis method.

We used the study by Dezső et al. (2009) to uncover some of

these details. In the method by Dezső et al., the DE gene list is

overlapped with a global genome scale network containing all the

interactions in the MetaCore knowledge base. A network, which is

called condition specific shortest-path network (CSSPN), is built

based on this overlap. In addition to DE genes, all genes which

are on shortest paths that connect them in the global network are

included in the CSSPN. For each pair of genes (gi, gj), where gi is

in the CSSPN and gj is in the set of DE genes, two parameters Nij

and Kij are computed. Nij is the number of times gi is part of the

shortest-paths in the global network between gj and every other

gene in the CSSPN. Kij is the number of times gi is part of the

shortest-paths in the global network between gj and every other

gene in the set of DE genes. It is assumed that the probability to
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observe these numbers just by chance, given the two sets of genes,

the global network which is of size N and the DE genes which is of

size K, follows a hypergeometric distribution. Based on this distri-

bution, K p-values are computed for each gene in the CSSPN and

the minimum of these p-values is selected as the gene score. Using

a predefined threshold on the false discovery rate (FDR) correc-

tion of the node scores, a subset of the CSSPN genes is selected.

Further processing, in the pathway level scoring, is applied to this

list of selected genes.

Pathway-Guide, Pathway-Express, and SPIA use a perturba-

tion factor, which takes into consideration the magnitude of all

gene expression changes, the type of each gene, the direction

and type of all gene interactions, as well as the efficiency with

which the perturbation of each gene propagates to the down-

stream genes. The impact analysis models the flow of the signals

in the pathways. In essence, the impact factor falls into the eigen-

vector centrality category of node scoring approaches. Although

all three methods use the same impact analysis approach, there

are slight differences between them. Pathway-Guide scores the

pathways based on the impact factor as briefly described above

In SPIA, the amount of differential expression is subtracted from

the perturbation score of each node to focus on the amount of

perturbation accumulated at any given node in order to separate

the influence of experiment data and topology. Pathway-Guide

is also able to exploit the p-values associated with each gene,

as well as identify coherent perturbation cascades that repre-

sent putative mechanisms that explain all measured changes. All

three methods combine the perturbation evidence with a classi-

cal enrichment (e.g., hypergeometric), or functional class scoring

(e.g., GSEA) to calculate a global p-value. This corresponds to the

joint probability of a pathway having the measured amount of

perturbation, as well as the observed number of DE genes just by

chance. TBscore has an interestingly similar approach in captur-

ing the pathway perturbation, with the difference that DE genes

with more connected downstream DE genes are considered more

significant.

TopoGSA extracts a network from databases of protein inter-

actions given a list of genes/proteins of interest. All four types

of centrality measures and a fifth measure, called a “clustering

coefficient” (Watts and Strogatz, 1998) are used to score the

nodes in this network. Then, each predefined pathway from a

selected dataset is also scored using the same five measures, inde-

pendently of the extracted network. Comparing the summarized

node scores for each pathway with node scores from the extracted

network allows the pathways to be ranked.

In CePa, node weights are computed using five centrality-

based measures, and there is an extra case where all the node

weights are assumed to be equal. The five measures are: in-degree,

out-degree, betweenness, in-reach (length of longest shortest path

that starts from the node), and out-reach (length of longest short-

est path that ends at the node). CePa offers two options to assess

the significance of pathways. One is based on the hypergeometric

analysis using only node weights. The second is based on enrich-

ment analysis and in addition to node weights, node scores are

needed. Node scores are computed using a t-statistic. Pathway

graphs in CePa can contain nodes representing one or multiple

genes. In the case of single-gene nodes, the score is calculated

based on the expression value of the corresponding gene. In the

case of multi-gene nodes, the node score is the largest principal

component of the expression values of the genes in the node.

EnrichNet uses a score similar to centrality closeness measures.

This method calculates two distance vectors. The first vector

contains distances between a list of input genes and a prede-

fined pathway/gene set. The second vector contains the distance

between the same input gene list and a background global set con-

taining all pathways. A node score is computed as the distance

between the node and all DE genes using a random walk with

restart algorithm (Yin et al., 2010) through a genome scale molec-

ular interaction network. The interaction network is represented

by its weighted adjacency matrix, where weights are interaction

strengths provided by the input knowledge base.

MetPA allows the user to select either the node betweenness

or the out-node degree centrality measure for the node score.

GANPA (Fang et al., 2011) uses the node degree measure as a

weight or score for the gene. THINK-Back-DS uses a measure

similar to closeness called density score to emphasize the DE genes

which are in tight clusters.

ScorePAGE and PWEA use similarity measures in their node

level scoring. Similarity measures estimate the coexpression,

behavioral similarity, or co-regulation of pairs of components.

Their values can be correlation coefficients, covariances, or dot

products of the gene expression profile across time or sample.

In these methods, the pathways with clusters of highly correlated

genes are considered more significant. At the node level, a score

is assigned to each pair of nodes in the network which is the

ratio of one similarity measure over the shortest path distance

between these nodes. Thus, the topology information is captured

in the node score by incorporating the shortest path distance of

the pair. In ScorePAGE, the correlation coefficient, covariance, or

dot product is calculated for all gene pairs across their samples.

PWEA uses the correlation coefficient to score node pairs. In this

method, a score, called “Topological Influence Factor,” or TIF, is

assigned to each gene by exponentially averaging the score of all

pairs that include the gene. As a consequence, a node involved in

tight clusters of highly correlated genes has a higher score.

PARADIGM and PathOlogist incorporate the topology in the

node level scoring using a probabilistic graphical model. In this

model, nodes are random variables, and edges define the con-

ditional dependency of the nodes they link. PARADIGM takes

observed experiment data and calculates scores for all component

nodes, in both observed and hidden states, from the detailed net-

work created by the method based on the input pathway. For each

node score, a positive or negative value denotes how likely it is

for the node to be active or inactive, respectively. The scores are

calculated to maximize the occurrence probability of the observed

values. A p-value is associated with each score of each sample such

that each node can be tagged as significantly active, significantly

inactive, or not-significant. For each network, a matrix of p-values

is output, in which columns are samples, and rows are component

nodes.

PathOlogist is also based on a probabilistic graphical model.

This method estimates the parameters of one or two distributions

related to the up and/or down regulation of each gene using its

expression values across all samples. These distributions are used
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to assign a probability score to each gene in each sample, denot-

ing how likely it is for the gene to be highly expressed. The method

assigns two different scores to interaction nodes: (i) the “activity

score,” which is the probability that the parents of an interaction

node (which are component nodes) are highly expressed, and (ii)

the “consistency score,” which is the probability that the interac-

tion node is active and its children are expressed or inactive with

unexpressed children.

Pathway Scoring Level. In the following, we describe how node

scores are used to compute pathway scores. Many of the sur-

veyed methods aggregate node level statistics to pathway level

statistics using linear functions such as averaging or summa-

tion. The methods that use linear aggregation in this level of the

analysis are: TopoGSA, MetaCore, MetPA, ScorePAGE, TBScore,

ACST, PathOlogist, Pathway-Guide, Pathway-Express, and SPIA.

The rest of the methods either use a nonlinear function to aggre-

gate the node scores to pathway scores, like TAPPA, PARADIGM,

and EnrichNet, or apply a gene set analysis method on the node

scores, like GANPA, CePa, THINK-Back-DS, and PWEA.

In MetaCore, important genes are selected in the gene level

scoring based on the list of DE genes and the network topology.

At the pathway level, this method assumes that the number of

selected genes that fall on a pathway is the pathway score and

follows the hypergeometric distribution.

In TAPPA, the pathway score for each sample is a weighted sum

of the product of all node pair scores in the pathway. The weight

coefficient is 0 when there is no edge between a pair. For any con-

nected node pair the weight is a sign function, which represents

joint up- or down-regulation of the pair.

In ACST, pathway scores are calculated based on the position

of node (gene) clusters for which the interaction types match the

up- or down-regulation of genes. This uses the same concept of

coherent signals used by Pathway-Guide. An edge (interaction)

between 2 components in a pathway is called consistent if either

(i) the pair has an inhibition interaction, and the directions of

differential expression of the components is opposite, or (ii) the

pair has an activation interaction, and the direction of differential

expression of the components is the same. All other interaction

types are ignored. Maximal consistent graphs are defined as max-

imal sub-networks of the pathway in which all interactions are

consistent. The score of each maximal consistent sub-graph is the

summation of all node scores. The pathway score is the sum of

the scores of all its maximal consistent sub-graphs. Node scores

are t-statistics normalized by the distance from the sub-graph to

the leaves of the pathway graph. The authors argue that the con-

sistent sub-graphs close to the leaves of the pathway have a greater

impact on the score of pathway rather than the clusters from the

beginning of the pathway. This is somewhat different from the

approach that Pathway-Guide, Pathway-Express, and SPIA follow.

Although in these methods there is no explicit weighting based

on the up- or down-stream position of a gene in a pathway, just

because the perturbation of one gene is propagated following the

signals described by the pathway, the perturbation of a gene some-

what near the entry point in a pathway will have more impact

than the same amount of perturbation for a gene somewhere

downstream on the pathway. Only time and additional testing

will tell which of the two approaches manages to capture better

the biological phenomena.

In EnrichNet, pathway scores measure the difference of the

node score distribution for a pathway and a background net-

work/gene set which consists of all pathways. At the node level,

the distance of all DE genes to the pathway is measured and

summarized as a distance distribution. The method assumes that

the most relevant pathway is the one with the greatest difference

between the pathway node score distribution and the background

score distribution. The difference between the two distributions

is measured by the weighted averaging of the difference between

the two discretized and normalized distributions. The averaging

method down-weights the higher distance nodes and emphasizes

the lower distance ones.

Methods such as Pathway-Guide, Pathway-Express, SPIA, and

MetPA use two types of analysis to score the pathways. For each

pathway, these methods calculate both a topology based score and

a p-value from a gene set enrichment analysis measure, such as

Fisher’s exact test, hypergeometric, or GlobalAncova. Pathway-

Guide, Pathway-Express, and SPIA use the joint probability of

observing the pathway perturbation, as well as the gene enrich-

ment on a given pathway (Drǎghici et al., 2007). This model

effectively combines the topology-based pathway score with the

one based on enrichment to provide a single global pathway

score. MetPA (Xia and Wishart, 2010) also looks at both enrich-

ment and topology, but does not assess the significance of the

topology-based pathway scores and does not combine the two

scores, and thus lacks a unique significance ranking. The most

impacted pathways in MetPA are those with higher scores in both

measures. It is not clear how to treat a trade-off between the two

types of significance.

The pathway scoring techniques described so far in this sec-

tion incorporate in-house analysis methods. A different direction

is to design scoring techniques that incorporate existing gene

set analysis methods, such as GSEA (Subramanian et al., 2005),

GSA (Efron and Tibshirani, 2007), or LRPath (Sartor et al., 2009).

Pathway-level scores can be calculated using node scores which

represent the topology characteristic of the pathway as weight

adjustments to a gene set analysis method. PWEA, GANPA,

THINK-Back-DS, and CePa use this approach and we refer to

them as weighted gene set analysis methods. GSEA calculates the

correlation coefficient of phenotype with gene expression (CC),

GSA and LRPath use the t-test statistic in the computation of

the node score. To compute the pathway score, PWEA adjusts

the CC exponent of 0 or 1 in GSEA to CCTIF+1, where TIF is

the node weight described above. The node weights calculated by

GANPA, THINK-Back-DS, and CePa are used to adjust CC or the

t-statistic by multiplication, node weight × CC or node weight ×

t − statistic. In CePa there is another option to use a hypergeo-

metric analysis to calculate pathway scores. In this method, the

node weights of DE nodes are summed up to the pathway level.

Some methods such as Pathway-Guide, Pathway-Express,

SPIA, and ROntoTools offer the flexibility to integrate in the

analysis any type of enrichment technique. Thus, the p-values

provided by techniques such as GSEA, GSA, or PADOG (Tarca

et al., 2012) can be used instead of the p-values provided by

simpler models such as hypergeometric.
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Pathway Significance Assessment. Pathway scores are intended to

provide information regarding the amount of change incurred by

the pathway between two phenotypes. However, the amount of

change is not meaningful by itself since any amount of change

can take place just by chance (i.e., the amount of change is only

the effect size). An assessment of the significance of the measured

changes is thus required, and should be done by analysis methods

in the pathway significance assessment level.

Methods such as TopoGSA, MetPA, and EnrichNet, will out-

put scores without any significance assessment, leaving it up to the

user to interpret the results. This is problematic because the user

does not have any instrument to help distinguish between changes

due to noise or random causes, and meaningful changes, unlikely

to occur just by chance and therefore, possibly related to the phe-

notype. The rest of the analysis methods perform a hypothesis

testing for each pathway. The null hypothesis is that the value of

the observed statistic is due to random noise or chance alone.

The research hypothesis is that the observed values are substan-

tial enough that they are potentially related to the phenotype. A

p-value for calculated score is then computed and a user-defined

threshold on the p-value is used to decide whether the the null

hypothesis can be rejected or not for each pathway. Finally, a

correction for multiple comparisons should be performed.

Typically, pathway analysis methods compute one score per

pathway. However, methods such as PathOlogist and TAPPA

compute the pathway score considering each sample separately.

Therefore, for each pathway there is a population of scores that

can be analyzed. This population combined with different sam-

ple features can provide various feature-specific analyses. There

are two cases to be considered based on the qualitative or quan-

titative nature of the sample feature values. In the first case the

sample feature is qualitative with binary values. For example,

when samples are tagged corresponding to the two phenotypes,

the significance assessment is done by testing whether the score

distributions are the same in the two groups using two-sample

rank-sum tests, such as the Mann–Whitney U-test. If the number

of samples is high enough, the score distributions can be assumed

to be normal. The null hypothesis here is that the two nor-

mal distributions have equal means and variances, the research

hypothesis is that they are different. In the second case the sample

feature is quantitative with continuous values. Two ways to iden-

tify significant pathways are implemented in this case. One way is

to partition pathway scores into a known number of clusters, for

example two, using k-means clustering. Cumulative distributions

are calculated for each of the two classes. A logrank test (Mantel,

1966), which is a non-parametric statistical test, can be performed

to evaluate whether the behavior of the variable is same in the two

groups. Significant pathways are those that can be used to divide

samples into groups with different characteristics. Another way to

identify significant pathways in the case of continuous sample fea-

ture values is to find pathways whose scores are linearly correlated

with the values of the feature. The null hypothesis in this case is

that the correlation is zero, and a t-test is used.

For methods that calculate one score per pathway, the distri-

bution of this score under the null hypothesis can be constructed

and compared to the observed. However, there are often too few

samples to calculate this distribution, so it is assumed that the

distribution is known. For example, in MetaCore and many other

techniques, when the pathway score is the number of DE nodes

that fall on the pathway, the distribution is assumed to be hyper-

geometric. However, the hypergeometric distribution assumes

that the variables (genes in this case) are independent, which is

incorrect, as witnessed by the fact that the pathway graph struc-

ture itself is designed to reflect the specific ways in which the genes

influence each other. Another approach to identify the distribu-

tion is to use statistical techniques such as the bootstrap method

(Efron, 1979). Bootstrapping can be done either at the sample

level, by permuting the sample labels, or at gene set level, by

permuting the the values assigned to the genes in the set.

To create the score distribution under the null hypothesis,

Pathway-Guide, Pathway-Express, and SPIA methods use boot-

strapping at the gene set level. For these methods, samples are

drawn from the distribution of all DE genes and assigned to a gene

set which is different from the DE gene set but with equal num-

ber. The pathway score is computed assuming the new gene set

as a decoy DE gene set. This procedure is repeated for a number

of iterations. The scores resulting from these iterations estimate

the distribution, which is then used to compute a p-value, and a

pathway score is obtained by combining the gene set enrichment

evidence with the topology-based p-value and applying Fisher’s

exact test. The final score is the FDR-adjusted p-value.

TBScore, the hypergeometric extension of CePa, and ACST

calculate p-values using bootstrapping at the sample level by

permuting the labels of the samples of the two phenotypes.

In TBScore and CePa, an iterative procedure is then used to

estimate the pathway score distribution under the null hypoth-

esis. Correction for multiple comparison, again FDR, is used

to compute the final pathway p-values. In ACST, after p-values

are computed, a statistical technique called “resampling-based

point estimator” is used to estimate the FDRs associated with the

predefined threshold.

Weighted gene set methods surveyed here, PWEA, GANPA,

the enrichment analysis extension implemented by CePa, and

THINK-Back-DS, focus on providing a biologically meaningful

topology-based adjustment to existing gene set analysis methods.

Therefore the statistical assessment of pathway significance is pro-

vided by the already developed methods among which the most

popular is GSEA (see Figure 7).

3.2.2. Multivariate scoring algorithms

Multivariate scoring analysis methods mostly use multivariate

probability distributions to score pathways and can be grouped

in two categories. Methods in the first category use multivari-

ate hypothesis testing, while methods in the second category are

based on Bayesian network (see Figure 8).

NetGSA, TopologyGSA, and DEGraph are methods based on

multivariate hypothesis testing. These analysis methods assume

the vectors of gene expression values in each (sub)pathway are

random vectors with multivariate normal distributions. The net-

work topology information is stored in the covariance matrix of

the corresponding distribution. For a network, if the two distri-

butions of the gene expression vectors corresponding to the two

phenotypes are significantly different, the network is assumed to

be significantly impacted when comparing the two phenotypes.
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FIGURE 8 | Diagram of pathway analysis scoring approaches for multivariate scoring algorithms.

The significance assessment is done by a multivariate hypothesis

test. The definition of the null hypothesis for the statistical tests

and the techniques to calculate the parameters of the distributions

are the main differences between these three analysis methods.

In NetGSA, it is assumed that the expression level of the genes

(nodes in the network) obtained from experiments are correlated

because of the interactions between them. In other words, the

edges (interactions) of a graph (pathway) imply correlations. In

order to compute the distribution parameters, the method defines

a set of latent variables, which are the uncorrelated gene expres-

sions. The input correlated gene expression vector can be written

in the form of the product of the vector of latent variables and

the influence matrix. This matrix consists of the weights assigned

to each edge measuring the strength of the interaction between

two genes. The influence matrix and other parameters for the

two phenotypes are computed based on linear mixed model the-

ory (McLean et al., 1991). The proposed hypothesis test, in this

method, is to check whether a linear combination of the mean of

the latent variables, called contrast vector, for the two cases are

equal. The proposed contrast vector is computed based on the

influence matrix and it is proved that the result includes the effects

of all nodes inside a chosen network and excludes any outside

effects, such as the correlation.

In TopologyGSA, the directed graph is converted into a moral

undirected graph, detailed in Section 3.1. The covariance matrices

for each of the two phenotypes are estimated using the Iterative

Proportional Scaling (IPS) algorithm (Lauritzen, 1996) on the

sample covariance for all pairs of genes. The two matrices are

defined such that their inverses have zero elements correspond-

ing to the missing edges. A set of two hypothesis tests are applied

to compute the statistical significance of the impact on a given

graph. The first test checks whether the concentration matrices,

i.e., the inverses of the covariance matrices, in the two cases are

equal. If this hypothesis is rejected, the graph is broken into the

maximal possible submodules, and the hypothesis is retested on

each. Based on the equality of concentration matrices, different

statistical techniques are used in the second hypothesis test. The

second test checks the significance of the influence of the graphs

based on the equality of the means of the distributions.

DEGraph finds significant (sub)pathways by using a modi-

fied multivariate Hotelling T2-test hypothesis. The modification

incorporates the topology of the network. The difference, referred

to as shift, between the mean vectors of gene expression distri-

butions corresponding to the two phenotypes is smoothed. A

shift vector is defined to be smooth if the shift values of every

two connected nodes are similar. The process of smoothing is

done by removing the high frequency shift values according to

the topology of the network. This is achieved by filtering the

shift by preserving only the first few components of the graph-

Fourier basis of the shift vector. The graph-Fourier in DEGraph
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is applied by spectral analysis of the graph Laplacian (Chung,

1997), which resembles the Fourier decomposition of a func-

tion. The smoothed shift vector is used in the Hotelling T2-test

to assess the statistical significance of a network. DEGraph also

provides an algorithm that allows the exhaustive testing of all the

sub-networks of the original network using a branch and bound

algorithm.

BPA and BAPA-IGGFD are two methods based on Bayesian

networks. In a Bayesian network, which is a special case of prob-

abilistic graphical models, a random variable is assigned to each

node of a directed acyclic (DAG) graph. The edges in the graph

represent the conditional probabilities between nodes, so that the

children are independent from each other and the rest of the

graph when conditioned on the parents. In BPA, the value of the

Bayesian random variable assigned to each node captures the state

of a gene (DE or not). In contrast, in BAPA-IGGFD each random

variable assigned to an edge is the probability that up or down

regulation of the genes at both ends of an interaction are con-

cordant with the type of interaction which can be activation or

inhibition. In both BPA and BAPA-IGGFD, each random variable

is assumed to follow a binomial distribution whose probability of

success follows a beta distribution. However, these two methods

use different approaches in representing the multivariate distri-

bution of the corresponding random vector. BPA assumes that the

random vector has a multinomial distribution, which is the gen-

eralization of the binomial distribution. In this case, the vector of

the success probability follows the Dirichlet distribution, which

is the multivariate extension of the beta distribution. Conversely,

BAPA-IGGFD assumes the random variables are independent,

therefore the multivariate distributions are calculated by multi-

plying the distributions of the random variables in the vector.

It is worth mentioning that the assumption of independence in

BAPA-IGGFD is contradicted by evidence, specifically in the case

of edges that share nodes.

In BPA a discretized fold change profile is calculated for each

gene. This represents the list of fold changes between every

ordered pair of gene expression samples. The pair elements

come from each of the groups corresponding to the two phe-

notypes. These fold changes are discretized such that genes with

values higher than 2 or lower than 0.5 are considered differen-

tially expressed and the others are considered to have negligible

changes. This profile is used as the observed data for the Bayesian

network model. In BPA, given a set of parameters (success prob-

abilities), the likelihood of observing a specific profile on the

Bayesian network is assumed to have a multinomial distribu-

tion. Using the Bayes rule, the probability of observing the given

profile without any assumption on the parameters is calculated.

The parameters of the distributions are learned from the input

data (Neapolitan, 2004). The network topology is incorporated in

the distribution parameters and computation method by assum-

ing that knowing the values of the parents’ random variables,

the children random variables are independent of the rest of the

graph. A hypothesis testing is performed using the null hypoth-

esis that the probability of seeing the observed data is the result

of chance. Specifically, a set of observed data is generated in the

bootstrapping analysis and its probability is compared with the

the original observed data. The null distribution is approximated

through randomization via bootstrapping. This randomization

targets the structure of the Baeysian network (i.e., the relation

between its nodes), which is more relevant than a simple boot-

strapping in this case. Sampling with replacement is used when

generating random data. An upper-tailed test is performed, with

the p-value estimated by the percentage of random scores higher

than the observed one. The process of generating the randomized

samples is done by bootstrapping. A new fold change profile is

generated by sampling with replacement from the original fold

change profile.
In BAPA-IGGFD, based on the value of the fold change,

discretized values of 0 or 1, corresponding to up- or down-

regulation, are assigned to each node of the Bayesian network.

For each predefined pathway, a vector of probabilities is com-

puted as follows: (1) θ̄i for any parent-less gene gi is the

probability of gi being up-regulated, (2) θi|j for any gene gi

which has an activator parent gj is the probability that both

genes are coherent in being up-regulated or down-regulated,

and (3) φi|j for any gene gi which has an inhibitor parent

gj is the probability that the state of up or down regula-

tion of the genes are opposite. The vector can be summarized

as θ = ({θ̄i|∀gi is parent-less}, {θi|j|∀gi has an activator parent},

{φi|j|∀gj has an inhibitor parent}) which is called the parameter

vector of the pathway. Each of these parameters are assumed

to be independent from each other and follow the beta distri-

bution both prior observing the microarray data and after its

observation. The multivariate joint distributions of the parameter

vector prior and posterior of the data observation are compared

using symmetric Kullback-Leibler (SKL) divergence (Kullback

and Leibler, 1951). The pathways for which the prior and pos-

terior distributions are dis-similar are assumed to be impacted

more significantly between the two phenotypes. Because of the

independence assumption, the distribution of the parameter vec-

tor is calculated by multiplying the beta distribution of each of

the parameters. The variables of the distributions are calculated

using PrimeDB database, or in other words, using the number

of journal citations for an interaction type. More details regard-

ing PrimeDB are available in section 2.2. We refer to beta(α, β) as

the beta distribution with parameters α and β. For the prior dis-

tribution, it is assumed that θ̄i ∼ beta(1, 1), θi|j ∼ beta(ai|j, bi|j),

and φi|j ∼ beta(bi|j, ai|j), where ai|j and bi|j are the number of

journals citing the activation or inhibition between gi and gj,

respectively. For the posterior distribution, it is assumed that θ̄i ∼

beta(n̄i, n − n̄i), θi|j ∼ beta(ai|j + ni|j, bi|j + n − ni|j), and φi|j ∼

beta(bi|j + ni|j, ai|j + n − ni|j), where n is the total number of

microarray experiments, ni is the number of experiments in

which gi is up-regulated, and ni|j is the number of experiments

in which the pairs gi and gj are concordant in up or down reg-

ulation. An extension to this method is proposed in which the

variables of beta distributions are not calculated by the input as

fixed numbers but are assumed to follow exponential distribu-

tions. In this case, the parameters of the exponential distributions

are estimated from PrimeDB and the input data. It is claimed

that this additional probability layer will lead to more robust

results. For genes that have more than one parent the major-

ity rule is used to calculate the distribution. The output of this

method is the list of pathways scored by the SKL divergence.
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The lower the score is the more impacted the pathway is

assumed to be.

4. OUTPUT

Although the goal of the pathway analysis should be a ranked

list of pathways as a unified output, not all tools reviewed here

provide this. Some methods, such as MetPA provide a list of path-

ways with 2 p-values for each pathway, leaving the user to face

the task of deciding which p-value to trust or how to deal with

trade-offs between the two values. Among the methods that rank

predefined pathways from public knowledge bases, some meth-

ods, such as TopologyGSA, DEgraph, NetGSA, and ACST, find

“important” sub-pathways and rank the mixed list of pathways

and sub-pathways. In PARADIGM, for each detailed network

created by the method based on the input pathway, a matrix

of p-values is provided as the output. In this matrix, columns

are samples and rows are component nodes of the network.

Each element of this matrix indicates how likely it is for the

node to be in any of the three states comparing the two phe-

notypes: (1) significantly active, (2) significantly inactive, or (3)

have an insignificant change. These scores can be used as sub-

stitutes for log fold changes and, as proposed in Vaske et al.

(2010), can be input into a non-topology-based gene set analy-

sis algorithm to rank the pathways. Other options to use these

scores are either to apply a simple averaging or counting func-

tion on the scores of the significant genes to score the pathway,

or they can be used to cluster the genes into groups with similar

behavior. These clusters of genes can be used to further ana-

lyze different features assigned to samples to find group-specific

features.

Pathway-Guide offers capability to identify so called “coher-

ent chains of perturbation propagation,” which are to be

interpreted as putative mechanisms that are compatible with

(and therefore could explain) all measured changes throughout

the entire biological system investigated. Even though unique

among all other tools and potentially very useful, this capa-

bility is completely independent from the pathway ranking

provided based on the perturbation and enrichment types of

evidence. Therefore, it is possible for pathways that are sig-

nificant not to contain such coherent signaling cascades, and

conversely, pathways that may contain such cascades may not be

significant.

In many input data sets, the samples are labeled based on dif-

ferent parameters. The parameters can have qualitative discrete

values such as, tumor and normal tissue, or quantitative continu-

ous values such as, survival time of the cell or drug concentration

used to treat the tissue. For analysis methods that provide a

pathway score for each sample, such as TAPPA and PathOlogist,

the pathway activities can be interpreted based on the sample

labels. NetGSA (Shojaie and Michailidis, 2010) offers more label-

ing options in addition to phenotype-based binary labels. The

method provides simultaneous tests of multiple hypotheses based

on these labels or temporal pathway score correlation to assess

the significance of pathways. The rest of the pathway analysis

methods compare the pathways using a single qualitative binary

label corresponding to the two phenotypes. Methods such as

TopoGSA, MetPA, and the hypergeometric extension of CePa

calculate one score for each pair of input samples comparing the

two phenotypes, while others provide one score for the whole

input data set.

Some of the methods provide a graphical display of their

results. This is primarily done for the analysis methods which

have the ability to provide more than one score for each pathway.

For example, analysis methods like TopoGSA have an additional

option to compare the properties of the input dataset to pre-

defined datasets corresponding to known functional processes

from public databases in a comparative plot. As a result, a

summary of network topological properties is displayed for all

gene/protein sets in 2D and 3D plots. This functionality allows

the user to visually identify an input similar to the original

one, based on the plots or based on a tabular ranking using a

numerical score to quantify the similarity across all topological

properties. Similarly, analysis methods such as Pathway-Guide,

Pathway-Express, SPIA, and MetPA which provide two scores

(topology based and gene set enrichment) can use a 2D plot

to illustrate the distribution of both scores for the analyzed

pathways.

From the perspective of the output, the result pathway analysis

methods is typically a ranked list of pathways. However, there are

tools that only provide nodes scores and further use this scores as

input for an existing gene set analysis method. Visual display of

the results is a welcomed addition provided by Pathway-Express,

Pathway-Guide, SPIA, TopoGSA and MetPA.

5. IMPLEMENTATION

The mathematical model presented in Section 3 for each analy-

sis approach is independent of its implementation as a software

package. Although the main strength of an approach lies in its

algorithm, its implementation can have an important role in

reaching the full potential of that approach, as well as in gain-

ing acceptance among the users. Practicality, user-friendliness,

output format, and type of interface are all to be considered.

Depending on the desired availability and intended audience, a

software package may be implemented as standalone or web-

based.

Web-based tools run the analyses on a remote server providing

computational power and a graphical interface. On the user side,

experiment datasets are uploaded, and on the server side, the tool

performs the analysis. The results are displayed by the browser

in the format provided by the tool. The output of most pathway

analysis methods is a ranked list of pathways or sub-pathways.

MetPA, THINK-Back-DS and, EnrichNet are among the methods

that have web-based implementations. The major advantage of

web-based tools is that they are user-friendly and do not require

a separate local installation procedure.

Standalone tools need to be installed on local machines which

often requires administrative skills. Advantages include instant

availability that does not require internet access. Most standalone

tools depend on full or partial copies of public pathway databases,

stored locally, and need to be updated periodically. Methods like

Pathway-Guide, ScorePAGE, SPIA, TAPPA, PathOlogist, NetGSA,

TopologyGSA, PWEA, ACST, BPA, and GANPA are in this cate-

gory. Moreover, there are some methods available both as web-

based and standalone, including Pathway-Express, MetaCore,
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TopoGSA, CePa, and PARADIGM.5 Another major advantage of

standalone tools are the security and privacy of the experiment

data.

The programming language and style used for implementation

plays an important role in the acceptance of a method. Software

tools that are neatly implemented, packaged, and available online

are more appealing compared to those that do not have ready-

to-use implementations. Many of the methods surveyed here

are implemented in the R programming language and are avail-

able as software packages either from bioconductor.org, cran.r-

project.org, or the author’s website. Their popularity among

biologists and bioinformaticians is due to the fact that many

bioinformatics dedicated packages are available in R. Pathway-

Express (as part of ROntoTools), SPIA, TopoGSA, TopologyGSA,

GANPA, DEGraph, NetGSA, ACST, CePa, and ScorePAGE are

among those methods. Pathway-Guide, Pathway-Express, TAPPA,

and THINK-Back-DS have an implementation in Java, which

provides a GUI with self explanatory functionality for users with

less software development experience. This allows users to cus-

tomize the graphical display of the results, using functionalities

such as zoom or rotation. CePa has a web-based implementation

in Perl in addition to its R standalone package. The MATLAB pro-

gramming language is used for implementation of methods like

PathOlogist, BPA, and NetGSA in order to calculate more com-

plex equations. Other programming languages like C and C++

are also used to implement pathway analysis methods such as

PARADIGM and PWEA, which theoretically provide better speed

and allow for efficient coding. A summary of the mathematical

models and implementation details for the surveyed methods is

presented in Table 2.

From the accessibility perspective, web-based tools have the

advantage of being available from any location as long as there

is an internet connection and a browser available. Also, the

update is almost seamless to the client. This makes the user’s task

easy and enables collaboration. Users all over the world can use

the same method without the burden of installing it or keep-

ing it up-to-date. The downside, once the internet connection

fails, the tool is unavailable. However, there are methods that

provide both web-based and standalone implementations and

these are: MetaCore, Pathway-Express, PARADIGM, CePa and

THINK-Back-DS.

6. CONCLUSIONS

Pathway analysis is a core strategy of many basic research, clinical

research, and translational medicine programs. Emerging appli-

cations range from targeting and modeling disease networks to

screening chemical or ligand libraries, to identification/validation

of drug target interactions for improved efficacy and safety (Arrell

and Terzic, 2010). The integration of molecular interaction infor-

mation into pathway analysis represents a major advance in the

development of mathematical techniques aimed at the evalua-

tion of systems perturbations in biological entities. Out of the

22 topological pathway analysis methods presented here, 15 were

5The web-based implementation is only available as part of TCGA while the

standalone is available only as C++ source code that needs to be compiled and

deployed locally.

published in the last 3 years, evidence that there is great interest

and desire for progress in this area.

The important milestones in pathway analysis reflected by this

survey are: the first pathway analysis method for metabolic net-

works (Rahnenführer et al., 2004), the first method for signaling

pathway and the first method able to take into consideration

the pathway topology (Khatri et al., 2005; Drǎghici et al., 2007),

the first application of topology-based multivariate hypothesis

tests (Shojaie and Michailidis, 2009), and the first analysis able

using multi-type graphs from heterogeneous sources (Vaske et al.,

2010). In this paper, analysis methods were compared according

to types of input, scoring algorithms, results, and user accessibil-

ity. Each of these aspects presents its own particular challenges.

The validation of pathway analysis results is an important

challenge researchers face when trying to develop such meth-

ods. While biologists are needed to verify the pathway analysis

results, they depend on pathway analysis methods to support

their hypotheses. Most efficient progress will occur with a high

level of communication and collaboration between experiment

biologists, annotators, pathway designers, bioinformaticians, and

computer scientists. As pathway knowledge becomes more com-

plete, the challenge of leveraging this information to extract

biological insight from high throughput data will be redefined.

Until then, advances will be incremental. Gold standard experi-

ment data sets, designed to affect specific pathways in predefined

ways, will be necessary to be able to assess the efficiency of new

methods.

Another challenge we mentioned in this survey is that the

same biological pathways are represented differently from one

pathway database to another. In particular, we pointed out the

complications arising from inconsistent conversions for repre-

senting interactions among the different pathway databases, and

the current efforts to address the problem through the creation of

unified formats. However, none of the tools is compatible with

all database formats, requiring either modification of pathway

input or alteration of the underlying algorithm in order to accom-

modate the differences. As an example, a study by Vaske and

others (Vaske et al., 2010) attempts to compare SPIA (Tarca et al.,

2013) with their tool PARADIGM, by re-implementing SPIA in

C, and forcing its compatibility with NCI-PID pathways. Grave

implementation errors are present in the C version of SPIA, inval-

idating the comparison. A solution to overcome this challenge

could be the development of a unified globally accepted pathway

format. Another possible solution is to build conversion software

tools that can translate between pathway formats. Some attempts

exist to use BIO-PAX as the lingua franca for this domain.

Biological networks are divided in various categories con-

taining complementary information. Signaling and signal trans-

duction are captured by signaling pathways, while biochemical

interactions are presented in metabolic pathways. In addition,

the protein interaction knowledge bases contain different types

of interaction information, complementary to the others. The

majority of pathway databases are manually curated and change

slowly, but they are evolving toward greater content and accu-

racy, with new prototype formats being proposed. There is no

analysis method that takes advantage of the information stored

in all of these different sources. Few of the methods surveyed
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Table 2 | Comparison of topology-based pathway analysis methods using criteria related to the mathematical model and implementation.

Method name Graph model Scoring method Availability License Language Available from

ScorePAGE Single-type, undirected Hierarchical, similarity Standalone N/A R on demand

MetaCore* Single-type, directed Hierarchical, graph measures Web-based,

Standalone

Thomson

Reuters

Java Reuters, 2013

Pathway-Express Single-type, directed Hierarchical, graph measures Web-based,

Standalone

free** Java,R Drăghici et al., 2013

TAPPA Single-type, undirected Hierarchical, NNV Standalone N/A Java N/A

PathOlogist Multi-type, directed Hierarchical, probability Standalone CC-BY MATLAB Greenblum et al., 2013

Pathway-Guide* Single-type, directed Hierarchical, graph measures Standalone Advaita

Corporation,

2013

Java Advaita Corporation,

2013

SPIA Single-type, directed Hierarchical, graph measures Standalone GPL (>=2) R Tarca et al., 2013

NetGSA Single-type, directed Mutivariate, hypothesis test Standalone GPL-2 R Shojaie, 2013

PWEA Single-type, undirected Hierarchical, similarity Standalone free** C++ Hung, 2013

TopoGSA Single-type, undirected Hierarchical, graph measures Web-based free** PHP, R Glaab et al., 2013

PARADIGM Multi-type, directed Hierarchical, probability Web-based,

Standalone

free**

(standalone)

UCSC-CGB

(web-based)

C Vaske and Benz, 2013b,

Vaske and Benz, 2013a

TopologyGSA Single-type, moral

undirected

Mutivariate, hypothesis test Standalone AGPL-3 R Massa and Sales, 2013

DEGraph Single-type, undirected Mutivariate, hypothesis test Standalone GPL-3 R Jacob et al., 2013

MetPA Single-type, directed Hierarchical, graph measures Web-based free** PHP, R Xia, 2013

BPA Single-type, DAG Mutivariate, Bayesian

network

Standalone free** MATLAB Isci, 2013

GANPA Single-type, undirected Hierarchical, graph measures Standalone GPL-2 R Fang et al., 2013

BAPA-IGGFD Single-type, DAG Mutivariate, Bayesian

network

Standalone N/A R N/A

CePa Single-type, directed Hierarchical, graph measures Web-based,

Standalone

GPL (>= 2) R Gu, 2013b,

Gu, 2013a

THINK-Back-DS Single-type, directed Hierarchical, graph measures Web-based,

Standalone

free** Java Farfán et al., 2013b,

Farfán et al., 2013a

TBScore Single-type, directed Hierarchical, normalized

node value (NNV)

N/A N/A N/A N/A

ACST Single-type, directed Hierarchical, NNV Standalone CC-BY R Mieczkowski et al., 2013

EnrichNet Single-type, undirected Hierarchical, graph measures Web-based free** PHP Glaab, 2013

*commercial methods; **free for academic and non-commercial use; UCSC-CGB – the University of California Santa Cruz Cancer Genome Browser;

N/A No publicly available implementation, Graph model indicates whether the graph which is remodeled to be suitable for the scoring method is single-type or

multi-type and whether it is directed or undirected. DAG stands for directed acyclic graph. The moral graph is described in Section 3.1. Scoring method encloses the

mathematical model used in the analysis to score nodes and graphs. A detailed description is presented in Section 3.2. Implementation indicates the existence of a

standalone or web-based implementation of the method. License represents the license under which the software is available. GPL - GNU General Public License,

AGPL - GNU Affero General Public License, CC-BY - Creative Commons license. Language represents the programming language used for the implementation.

Available from points to the paper or url associated with the given tool.
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here use either signaling or metabolic pathways in addition to

PPI networks. Promising developments include the integration

of multiple component types and interaction types, each with

specific properties. Although the information is less reliable, non-

curated high-throughput protein interaction data is also proving

useful, as protein interaction data can be used to support or filter

results.

High-throughput technologies, developed for biological

experiments, are improving in accuracy. However, they are still

prone to error and the resulting data includes a significant

amount of noise. In addition, these technologies produce vari-

ous types of data among which are genome variations, mRNA

level, metabolite concentration, or protein abundance. Each of

these data types provides meaningful yet incomplete information

regarding specific biological phenomena. The next challenge is to

be able to integrate such diverse types of data.

Another challenge is the oversimplification that characterizes

many of the models provided by pathway databases. In principle,

each type of tissue might have different mechanisms so generic,

organism-level pathways present a somewhat simplistic descrip-

tion of the phenomena. Furthermore, signaling and metabolic

processes can also be different from one condition to another,

or even from one patient to another. Understanding the specific

pathways that are impacted in a given phenotype or sub-group of

patients should be another goal for the next generation of pathway

analysis tools.

Interpreting biological experimental data is also challenging

due to inaccurate assumptions. For instance, most current path-

way models show cascades of signals or biochemical processes

next to one another, in time-agnostic diagrams. In reality, these

phenomena happen over time, and often at different time scales.

Furthermore, many data sets offer only a snapshot in time, at a

particular moment. Almost by definition, such a frozen snapshot

cannot properly capture and show the effect of successive events

that take place over time.

The graphical scoring methods presented in this paper are

representative of the techniques available for future methods.

We expect to see greater use of different types of data, in addi-

tion to greater use of data mining and machine learning which

will lead to more sophisticated topology-based pathway analysis

methods.

It is important to (re-)state that the goal of this paper was to

survey the main topology-based techniques and methods avail-

able to identify the most significant pathways in a comparison

between phenotypes. In other words, the goal was to identify,

categorize and review these methods without attempting to assess

their performance. A critical assessment and ranking will be the

subject of a later publication. A natural tendency would be to

try to use the various criteria used here to compare various

methods and thus establish even a partial ordering. For instance,

if method X uses only one type of input (e.g., pathways from

KEGG) while method Y uses two types of input (e.g., pathways

from KEGG as well as PPI data), one might be tempted to con-

clude that method Y is somewhat more powerful than method X.

Similarly, some methods use a subset of DE genes while others

use the entire set of measured values. Again, it may be tempting

to informally conclude that the later methods are more pow-

erful since, they take more data into consideration or because

they eliminate the need for a selection of DE genes. It is our

opinion that such inferences and partial orderings are not advis-

able and should not be attempted based on the information

presented in this paper. A proper assessment of these methods

should be focused on their ability to identify the pathways that

are truly impacted in the given phenotypes, and not based on

superficial characteristics or number of features of one type or

another.
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C. (2013) Pathway-Express Software.

Available online at: http://vortex.cs.

wayne.edu/projects.htm.
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Voichiţa, C, Donato, M., and Drǎghici,
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Voichi̧ta and Drăghici. This is an open-

access article distributed under the terms

of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permit-

ted, provided the original author(s) or

licensor are credited and that the origi-

nal publication in this journal is cited, in

accordance with accepted academic prac-

tice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Frontiers in Physiology | Computational Physiology and Medicine October 2013 | Volume 4 | Article 278 | 22

http://www.genego.com/metacore.php
http://www.genego.com/metacore.php
http://www.biostat.washington.edu/~ashojaie/software/netGSA_1.0.tar.gz
http://www.biostat.washington.edu/~ashojaie/software/netGSA_1.0.tar.gz
http://www.biostat.washington.edu/~ashojaie/software/netGSA_1.0.tar.gz
http://bioconductor.org/packages/release/bioc/html/SPIA.html
http://bioconductor.org/packages/release/bioc/html/SPIA.html
http://sbenz.github.com/Paradigm
http://sbenz.github.com/Paradigm
https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/
https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/
https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/
http://metpa.metabolomics.ca
http://metpa.metabolomics.ca
http://dx.doi.org/10.3389/fphys.2013.00278
http://dx.doi.org/10.3389/fphys.2013.00278
http://dx.doi.org/10.3389/fphys.2013.00278
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

	Methods and approaches in the topology-based analysis of biological pathways
	Introduction
	Input Data
	Experiment Data
	Pathway Data

	Mathematical Models
	Graph Models
	Scoring Methods
	Hierarchically Aggregated Scoring Algorithms
	Node Level Scoring
	Pathway Scoring Level
	Pathway Significance Assessment

	Multivariate scoring algorithms


	Output
	Implementation
	Conclusions
	Acknowledgments
	References


