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INTRODUCTION. 

In many fields of electrical engineering filters are 
Co 

used perform or equalise amplitude, fase as well as delay 

characteristics. The circuits becoming more and more com

plex with the refined application of electronics nowadays, 

need for microminiaturisation in order to limit the physi

cal size to a reasonable one. 

In the last ten years great progress was made in mi

niaturising resistors and capacitors as well as active 

elements however inductances still kept their same size 

because a certain volume is needed to store the magnetic 

energie connected with the value of the self inductance 

and the current flowing through it. Only magnetic materi

als with a higher permeability would improve the quotient 

inductance-volume and with the state of the art of ferro

magnetic materials at this time no revolutionary progress 

has to be expected. 

On the other hand the tendency is growing in reali

zing complete circuits in monolitical form on one chip 

of semiconductormaterial, filters included, to get better 

stability and reliability at the same time. 

Since classical filter synthesis leads to the use of 

inductances together with capacitors and resistors, it's 

impossible to design integrated filters with this method, 

unless the inductances are simulated in one or other way. 

This simulation can be done by means of gyrators 

wich method has the advantage that one can use known syn

thesis methods and merely replaces the inductors by gyra

tors terminated with capacitors. From synthesis point of 

vieuw there will be no trouble, however a lot of active 

components are needed so that the circuit in general 
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won't be an economical one and the simulation of floating 

inductors demands for an even higher complexity. 

As a second possibility the gyrator, being passive 

however mostly build up with active elements, can be used 

as element in a new synthesis method based on R-C net

works coupled with the gyrator considered as a two-port 

network, trying to make full use of its property's and 

thus in a certain way minimising the number of implicit 

active elements. Also negative impedance convertors and 

vario~s other active elements can be used to realise fil

ter networks on a synthesis basis each having its own ad

vantages, limitations and disadvantages. 

The third method consists in fact in splitting up 

the filter transferfunction in first and second order 

parts, each of wich can be realized by a suitable active 

circuit together with R-C elements. 

Because of the great number of active second order 

filter realisations a wide variety of circuits is possi

ble and one has to use extra design criteria, not always 

being electrtcal ones, to make the best choice. 

The intention of this paper is to describe and com

pare some lumped R-C active filter realisations and syn

thesis methods of the above three groups on a basis of 

sensitivity and stability, wich ap~~ to be usefull 

criteria for practical utilisation of the designed filters. 
. ~ 

As apparent from the forego~ng for shomness sake no 

attempt has been made to investigate the wide class of 

digital and switched filters, although these methods be

come more and more promising in the near future. 



1. Approximation. 

1.1. Electric filters are used to realize prescribed input

output relations for the signal passing through. These 

relations may be given in terms of amplitude or phase 

response of the given signal or otherwise be specified. 

Generally these specifications are given as a tolerance 

field in amplitude and phase frequency characteristics 

while mostly only one of them will be prescribed and 

the other one is concerned to be of no importance. 

The filter to be designed has to meet these specifica

tions i.e. must lead to a response full filling the to

lerance conditions being set. Thus the filter design 

starts with the determination of the transferfunction 

from the prescribed limitations where after this trans

ferfunction must be synthesized. In order to present a 

more closed description of the synthesismethods some 

of these approximations will be treated in the next 

chapters, mainly following ref. (1) in notation and 

deri va tion. 

1.2. The general low-pass filter approximation. 

An important class of filters is formed by the so called 

low-pass filters, wich approximate the modulus of a 

transferfunction in such a way that signals with their 

frequency ranging from zero to the frequency fo will be 

passed without much attenuation while signals with fre

quency exceeding fa will be strongly attenuated. The to

lerance field for this type of filters has the general 

form of fig.1. Here in the frequency axis is devided in 

three main parts, ObVio~sly characterized as: 

part I - passband 

part II - transition band 
,.. 

part III - attenuation band or stopband 

3 
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fig.1 • 

.z 1--

Constructing a transferfunction from a given tolerance 

field is accomplished by derivation of the modulus as 

a pure mathematical approximation of this tolerance 

field with an even function of the radiant frequency. 

Here after the transferfunction itself is obtained 

from the constructed modulus on a basis of network theo

retical prescriptions. 

The above mentioned approximation can proceed as fol

lows. 

Let the modulus to be approximated be the modulus of a 

voltage transferfunction H(p) defined by 

~ ~~t = H(p) and p = jA , where in V~±R and V d~t 

are the amplitudes of the sinusoidal steady-state exi

tation and response. 

The squared modulus of the lowpass filter can be written 

in the general normalised form as 

l 

/ HtP2)/ == 
1 

Here in ffj(.n.) is an even or odd function in.Il called the 

characteristic function and H is a constant. 

Defining the transfer loss ~ as 

0( = - 20 log Ii ,,''':'''J.1 dB 

/1I(J:.t1)/ 
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this leads to 

l J " 
0(. = 10 log [1 + H ~ (.o.~ dB (2 ) 

In this notation the modulus indeed is characterized by 

the choice of the characteristic function. 

1.2.1 Butterworth approximation. 

Taking §(.n.) = ..n." 

leads to the Butterworth or maximally flat approximation 

based on the property that in the point.Jl =0 the first 

2n-1 derivates of the denominator of (1) become zero, 

resul ting in a flat pass of the curve near 11 =0. Further

more the denominator increases monotonically with it lea

ding to a monotonic fall-off for the modulus i~self. 

For the Butterworth type from (2) and (3) this results 

in an assymptotio increase in transfer loss with 6n dB 

per octave for R.n."'» 1 • In fig. 2 'some of these curves 

are drawn normalized for equal.Jl , being the frequency 
• 

where oC is 3 dB down. 
Dt----------==:~~ 

-I() o.r 4 I,., 
fig. 2. Normalized Butterworth low-pass transfer-loss. 

For this type of approximation there will be no difficulty 

in selecting n and H that way, that the resulting loss 

characteristic is lying in the given tolerance field. 

5 



For a rapid falloff in the stopband however a large n 

is needed leading to an excessive number of filter ele

ments as compared with the Chebychev approximation given 

in the following chapter. 

1.2.2 Chebychev approximation. 

By taking 111 (..0.) = Tn (n) 

with Tn (.0.) = cos 1: n arccos...1l.] forll.~ I (see fig.3) 

a 'chebychev approximation is obtained. Tn(.fl-) can also 

be written as 

t;] '" I 0.-.'" 
Tn (.fl.) '= :!: ~ (-I) ( .... -""-1). (Ul) (s~e ,.~, [:lJ) 

2 L- ?nl{"'-l"')' ?rtc.o • • 

The passband ranging from.il = 0 to.1l = 1 shows n /2 equal 

amplitude ripples between a minimum and a maximum value 

determined by the constant H. 

In the transition and stopband (11 > 7 ) A'Tn (.Il.),f increases 

monotonic with J1 again producing an assymptotic increase 

in transferloss of 6n dB per octave. In comparision with 

the Butterworth approximation the value of n can be taken 

smaller for the same tolerance field leading to fewer 

elements in the final realisation. 

Some chebychev characteristics are given in fig. 4. 

Because the extrema of Tn(JL) in the passband all have 

modulus 1 the ripple amplitude is determined by 

a'r= 10 log [1 +H2] dB 
(f.,11 ... 

of 

f 

fig.3 Chebychev function Tn(11) fig.4 Chebychev low-pass 
transfer-loss 
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1.2.3 Elliptic approximation. 

As stated in 1.2.2 introducing a ripple in the pass-band 

leads to fewer elements in the final realization. As a 

consequence this suggests an approximation having also 

ripples in the stop-band, probably will reduce further 

the number of elements as compared with the previous 

chebychev type. 

Specially if the number of stopband ripples is taken to 

be equal to the number of passband ripples a so called 

elliptic approximation is obtained if gj"{A) satisfies 

certain relations expressable in Jacobi ellipticfunc

tions. 

This type of approximation leads to points of infinite 

attenuation in the stopband, together with a fast fall

off in the transitionband. 

Because the relative few number of elements needed to 

approximate a certain attenuation this filtertype is an 

interesting one for application in active filter design 

where, as we'll see later on, the sensitivity plays an 

important role and the more complex a network is, the 

more difficult it will be to realise .. the filter with 

the required accuracy and stability. 

Unfortunately however the calculation of the transfer

function for a given tolerance field is much more diffi

cult for this filtertype as compared with the previous 

ones but the gain in simplicity for the final network 

makes the effort worthwhile. On the other hand it ap

pears to be easy to calculate the transferfunction in 

an algebraic way if the degree of the filter is small 

(up to 4). 

Therefortin the following the algebraic method is ex
'" .,., ",lIthe/"1( 

plained first and latep en the formulas will be given 

for the calculation of the higher order filters. 

7 



ic 
1.3.1 General propertys.of the elliptic transferfunction modulus. 

o 

Consider the given tolerance field of fig. 5. 

Here in a maximum loss of 

Dp dB in the passband 

(n_ < .n1') and a minimum 

loss of Da dB in the stop

band (.n > 11 ... ) are pre

scribed. 

Da---------
Let the curve of fig. 5 

lying in the tolerance 

field have V ripples in 

pass- and stopband. The 

number of transitions be-

r 4, .n. .. 

fig. 5. 

tween the two extrema in the passband is given bij n, so 

• 

The frequencys where the modulus becomes extremal will be 

denoted as in fig. 6. 

Da - - 1-
-I __ _ 

fig. 6. 
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According to (2) 0( = 10 log [1+ H~"r.Alj 

From this follows that the pOints of zero loss correspond 

to points wi th ~(.n.) = 0 as well as the points of infi

ni te loss correspond to ~(n) = 00. On the other hand at 

the points.n. wi th s=1, 2, ... II, 0(. has a local minimum, ns . 
and therefor ~(llns) is local maximum. In the same way one 

concludes that m (n"s> is a local minimum. Denoting the 

maximum absolute value of ~(JV in the passband by L and its 

minimum absolute value in the stopband by K, the charac

teristic function can be drawn as indicated in fig. 7. 

~(n) 

t 
IVI 

- - ~ -:-I : , 
- -I 

. A I I 

From the foregoing fol

lows that the function 

Iff [...Il.) has to be an 

even or odd rational 

function of...n... because 

becomes infi-
r¥ ., 11", II .n. .. 

O+-::-'-Ij'------'----T'M~-IL__f!!!II!E~___,~--=-

: .1\,/::, 
ni te in the points.ll • 

"'$ 

In order to determine I • .J'II.", 
_L _ _ _ I 

/jfn) we could chose 

-I( 

.n.w : 1 
I I 

------ ~ -:-A -:-
fig. 7. 

a rational function of 

sufficient degree with 

undetermined coefficients 

in the numerator and de-

nominator polynomials and then derive equations for these co

efficients from forcing all extrema to have amplitude L in 

the passband and amplitude K in the stopband. 

There exists however a more easy way to obtain the same re

sult by the following reasoning: 

If we are able to relate the behaviour of ~(J.L) in the stop

band to its passband behaviour in such a way that the right 

passband behaviour automatically implies a right stopband 

behaviour, we would only have to consider the passband of 

~(J.L) ,thereby halving the approximation problem. 

9 



Let therefoI?the frequency be normalized such that 

..1l. p Jl .. =: t 

and ~(n.) = 
/ 

(3) 

(4) 

Equation (4) relates the value of !/!{.n.) in the band ..12 ~ 1 

to its value for J'l':::.d ~ t in a reciprocal way. This im

plies that an equiripple behaviour for ..(l. <! ~ also gives 

equiripple behaviour for.n.~ 1 

Furthermore for frequencys .1l. os lying in the passband 

o ~.1l. ~ ..flp < 1 we have 

~ (..flos) =: 0 or" 1,1, ...• &I. 

as a consequence of (4) this results in 

I 

!§(Ji;;)'" 00 

I 

and thus (4) implies 

Also a maximum value of ~(..fl)in the passband will lead to 

a minimum value of ~(.n.) in the stopband related by 

7Ir{ ~L= I =_-1- I 
JIt! ..n..". ) = ",; '" u 

~ ,:J'l."s) " (6 ) 

and .1l"s -
/ (7 ) 

As a consequence of (3) also .11 .. = 
.Ap 

I (8) 

relating the bandedge frequencys in a reciprocal way too. 

From (6) follows k:- -i: expressing the stopband ripple of 

;r.n.) in its passband one. 

The above points out that relation (4) indeed connects the 

10 



stopband in a one to one correspondence with the passband 

satisfying all the nescessary conditions. 

Taking p(n). 7l' /.. (.Il) 

.. ,.(.fl.) 

1[ Ida) = 7l ,itt) 
i ,.-{fl.) I Ii f.;f.) 

together with (4) leads to 

This relation can be satisfied if Idll)" Pf:if:.J leading to 

Because 

~(.fJ.) :: 

~(.b..) 

ble choice for 

must 

pr..n.) 
become zero for 11. rJl"s , a reasona

will be 

• n • 
7l: ..n.. -"'~ ... ' 
. , A' 
4 .n:' - .J~tI. 

resulting in 

(9 ) 

is ,n.... also satisfies equation (4) we can transform (9) 

into 

• • 
§l.n..J " 7l: .Jl. - .11 •• 

i -Ile..n.;. _ I for even 

for odd 

.ilFf.n...) l 
§j'fAJ J 

(10) 

From (2) and (6) the value of 1 and H can be calculated 

giving 

1> .. = 

wich leads to l' d.' D" ) ( A' D.. ) I H = (10 _ I /0 - I 

"" + 0., ZIo. 
L ¥= ('10 - 1)/(10 - " ) 

( 11) 

11 



1.3.2 Algebraic derivation of second and fourth degree elliptic 

transferfunction modulus. 

For second degree IJ{A.) equation (10) leads to 

$(.11.) c ..A~ - .fl."," 
JL":f1I1'~ _ / ( 12 ) 

This function is shown in fig. 8. 

It n,., 

-Jl.,& 

I --. JI., 

..n. -

From (12) we get Zt'D) = ft.,'w L. 

There..--for 
..fl., =- fi 

It,," ..n."", = j/n-

Then AI' follows from !F fA,. )1-J1., ~ = -L 

Jll> = r,g; 
} Ji7& 

..n.& • 
, -fip 

giving 

From (14) the selectivityfactor "" defined by 

becomes 

(13) 

(14 ) 

(15) 

12 



For quick reference k can be determined from fig. 9 

for given Dp and Da. 

Da 

50 

40 

30 

20 

10 

Dp 

1235 dB 
11 J I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 o~ 

fig. 9. 

K 

The above formulas lead to the following designproce

dure 

1. Determine from fig.9 if the given Dp and Da will 

lead to a satisfactionary selectivity factor k. 

Otherwise a higher order filter must be designed. 

2. Calculate Land H from eq.(11). 

3. ~t-a) follows as 

TCil):: ...n. ~ - Jl.o1 .{ 

A~o/- / wi th AO/' rF 

/1-I(j.4)/.t is given by (1). 

4. The various characteristic frequencys follow from 

( 1 3) and (14). 

5. Here or afterwards use a frequency transformation 

to obtain the desired values for the frequencys of 

point 4. 

For a fourth degree approximation two terms in (10) 

are needed. 

13 



In order to simplify the calculation ..a .. ", is set equal to 

zero wich appears to be equivalent to a certain frequen

cytransformation operated on the normal fourth degree 

approximation leading to the so called "bar-type" fi 1 ters 

in ref.[t1. At the same time this results in a zero in 

/ H{f.AJj as..n. approachas infinety. 

So /Etn.) becomes 

wi th its graph shown in fig. 10. 

~(./J) 

t 

'I>~ - - - ~ __ "'" 

-\,/ , 

I 

,~ ______ ~ __ ~~~n~~~~.~'~~~~' ______ __ 
.A", 

-~ - - - - - - - - --

• I 

, I 

I 

I 
r-

Fig. 10. 

.JL ... 

To derive 12111 from (16) one proceed as follows • 

(16 ) 

.12", is determined by the quadratic equation 4J1Ay,,) =- i.. 

Because :E!.il) is tangential to the line (6 = i. the 

previous q.ladratic equation has two coincident roots 

and therefor zero discriminant. 

15 (.fl.,,,,)" L wi th .12/1, •• k lead s to 

"~-.Jlo,~r,..")~ .... L = 0 

Forcing the discriminant equal to zero gives 

./ZD, ¥ (I"~) ~ - "i • 0 resul ting in 

and 

A tU = li~:;]~ ~ 

.12 .. , ~ %Z .. " j 
(17 ) 



SO 

40 

30 

20 

10 

0 

The solution of the quadratic equation becomes 

:t: = ...fJ.",~" JIZ 

Therefore 

fiAI = ,;yz-r 

.A.VI = / / tYL' } 
and 

At last ftp follows from 

;t.Jlp)= -L giving 

J21' • = -A» ht.. = -4 ~ 

(18 ) 

(19 ) 

In fig.11 the selectivity factor k is given in depen

dence from Dp and Da. 

Da 
Dp 1 235 

H ~ \. 

0.1 0] 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

fig. 11 • 

Design procedure 

1. Determine from fig.11 if the given Dp 

to satisfactionary selectivityfactor 

higher order filter must be designed. 

2. Calculate L and H from eq. (11). 

3. ;1.J1) follows as 
1§"( J1.) ., .A.. J). a_ ..Il.o, .. 

.L2,I.Il., f _ / wi th 

I /{(jAJj~ is gi ven by (1) 

K 

and Da will lead 

k. Otherwise a 

15 
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o. 
4. The vare1us characteristic frequencys follow from (17), 

( 1 8) and ( 19 ) • 

5. Here or afterwards use a frequency transformation to 

obtain the desired values for the frequencys of point 4. 

1.3.3 Derivation of the transferfunction from a given mOdulus. 

The modulus of a transferfunction is determined by 

/ IltJ"J1.J/ ~= /lIp). H~,PJ I P-dA. 

~ 

This equation immediately shows that /#(/4)/ is an even 

(20) 

.t 
function of.n.. , thus only approximations for /1I(,fJaJ/ wi th 

even functions can be tolerated. 

Defining 1/(.4) = :r;? 'F)V/II(j.nJ/:Ve have from (20) 

1./(.1): II(I').H/-p): (b(p) 
,) (21 ) 

Herein~~)is a real rational and even function of p and 

can be obtained from /HIj.n)/·by substituting ..Q."c -pI. 

As /1I(i.n)/~ ~ 0 thi s implies that (J) C f»">'- 0 for imaginary p. 

Therefor the zeroes and poles of ~(p) on the imaginary axis 

must be of even multiplicity otherwise ~(p) would change 

sign in these points. 

The stability of H~) however requires the imaginary poles 

of (Jl(/,) to have mul tiplici ty 2. 

BecauseAKI') is a real rational function of p , its complex 

poles and zeros arrise in complex conjugate pairs. On ac

count of (21) the complex poles and zeros of ~I')will then 

show quadrantal symetry. 

Real-axis poles and zeros of ~(p) are each other mirror

images w.r.t. the imaginary axis. 

As in the resulting H(,,) the poles must ly in the left 

half plane with single poles on the imaginary-axis to 

insure stability, we can construct AI~) from the above 

(ifp) by assigning a pole-zero pattern to H~) consisting 



of all the poles and zeros of Q(p) in the left half-plane 

and half of its poles and zeros on the imaginary-axis. 

Then automatically H(p).H(-p) has the same poles and zeros 

as Q(p) because H(-p) has the mirror-image pole-zero pat

tern of H(p). 

The in this way constructed H(p) is called "minimum-phase" 

transferfunction. 

1.3.4 Numerical example of a fourth-degree approximation. 

Suppose one has to design a low-pass filter for use in 

telephone-links having the following specifications: 

Passband edge-frequency 3400 cis 

Stopband edge-frequency 4500 cis 

Passband ripple 3 dB 

Stopband ripple 30 dB 

The design starts by calculating the prescribed selecti

vity factor k giving 

-,,, -!!:.e ,. .tlr. '''''0 ~ .,. '1~ 
A... A'~. 41$'1'0 

Following the five steps of chapter 1.3.2 results in: 

sub.l. From fig.11 it can be seen that the given losses 

will lead to a selectivity-factor k=0.81 wich is 

certainly better than the required k=0.75. (One 

may alter Dp or Da to get closer to k=0.75 for 

example by taking Dp= 2 dB and Da= 30 dB giving 

k=0.78). 

sub.£. 

sub . .,l. 

From (11) follows L=0.1776 and H=5.6153. 

(17) gives Jl", =0.846063 and.n. =1.181945 ..., 
This leads to 

18 (A) = Jl ~ .12'- ... "fllf" ~ 
Jl .... tPfI({I'- I 

Then (1) gives • 
I (o.>,.zA.~-I) 

/#(IN/ ~ I'" N'T{A) " .I/o ~JA.d_ 4f~. "'~.Jl <I". /~.Ifi'.Jl" - /. ¥.1A~ "./ 

17 



sub.±.. From (18) and (19) fo 110IVS 

fl.,. =0.90 

.12 ... =1 .11 

..n.", =0.65 

.Alii =1.54 

sub.2.. The passband edge-frequency of sub.4 being.J2,. =0.90 

has to be transformed to the desired one given by 

t.J" = .t1l·3400= 21363 rad/sec. 

Thereforea frequency transformation must be made by 

su bsti tu ting 

0.90 0 0 421 l'n /HI;""I/~ .n.. = 21 363 w = . 000 (,J ~ 

Its however more easy to make this transformation 

after the whole transferfunction is realised by 

changing the final elementvalues with a proper 

factor. In this way the calculation proceeds with 

coefficients and elements being of comparable value 

thereby reducing the chance on making errors in 

the computations. 

For calculating H(p) we find from (21) 

(0. 72p2+1 )2 

Q(p)= 8 6 4 2 
31.53p +45.14p +16.67p +1.43p +1 

The poles of Q(p) follow as the zeros of the above deno

minator giving 

P1,2,3,4 = + (0.06092 + j 0.86747) 

P5,6,7,8 = + (0.36631 + j 0.31825) 

The zeros of Q(p) are found as 

P1,2 = + j 1.1819 

P3,4 = + j 1.1819 

From the above we find the poles of H(p) as 

P1,2 = -0.06092 + j 0.86747 

P3,4 = -0.36631 + j 0.31825 

18 
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and its zeros as 

P1,2 = ±. j 1.1819. 

Then H(p) becomes 

H ( p) = O. 17 807 
(p2+0.12184P+O.75622) (p2+0.73262p+0.23547) 

dB 
o 

The resulting apprximation is given in fig. 12. 

Or-----------------------__ 
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2.1 Network sensitivity. 

Any transferfunction of a network is as function of the 

network elements sensitive to element variations. The 

network structure capable to realize a certain transfer

function having the least sensitivity compared with other 

structures is thus the favourable one for use in the syn

thesis, because unavoidable tolerances in the element va

lues will then have the smallest influence on the reali

sed transferfunction. 

It is then reasonable to use the sensitivity as a basic 

criterium in the network design, especially in active 

filter applications wich can be very sensitive, in order 

to assure that the transferfunction can be realised with 

sufficient accuracy. For the comparisfD~ of the various 

possible structures its thereforenessecary to have a 

measure for the sensitivity. Depending on the type of 

transferfunction and its application, various definiti

ons are used, the most current of them given below. 

W(p,r) W(p r) 
S defined as S ' = 

r r 
1. Parameter sensitivity 

r QW(p,r) 
W(p,r) ~ r 

Here in W(p,r) can be a transferfunction, transferloss, 

quality factor etc., with parameter r. 

2. Pole- or zero-sensitivity sq. If q= fFCI')+3"./l{l') is a 
r 

pole or zero of some transferfunction,S i is defined as 
... ,. ~r .,. "A-

S,. = -; ;;~/E j7 " 

The following derivation may simplify the application 

of the loss-sensitivity. 

As rt. = -10 log /I-I(;"t.>y~ we have 
.r". ~ a r-I0.,J..,/I,'QIoJ>!' J ,.,. .....:;1 __ 

I' 11(, tJ ,. • -J;;; jj( / N(jI.)/' 

·,N"....-· J - Ii. • ¥ . .It' H91"H~,oJ 
= ~ s . . - - S 

~.-I"II' r " I' / .. ,41 
(22) 

From the definition we can derive 

20 
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s W(p).V(p) = s W(p) + s V{p) 
r r r 

\'Ii th (22) this results in 
III ~[r N~' f r HE-III]! . .r r '" - t( J,. J,. jI_JtJ 

leading to 

.f " . th ,. .... tJi,. 
~ Wl. J - we - .,,, finally have Approximating 

A til' • - tt'. ~" He [s ':<; ... '/ ~,. 
(23 ) 

A ~,. • -

2.2.1 Sensitivity functions for second-order low-pass LoR-filters. 

In active synthesis a frequently used method consists in 

deviding a transfer function in second order parts wich 

parts are then realized with suitable active circuits and 

cascaded by inserting isolation amplifiers if nessecary. 

The overall sensitivity of the resulting network then de

pends on the partial sensitivity of these second order 

sections. It is therefore convenient to compare the active 

second order filter sensitivities with those of a passive 

one realising the same transferfunction, because we have 

a lot of practical experience with this filtertype and 

need a reference anyway. 

Let the passive equivalent be given as in fig. 13. 

l 

+ 
E c 

1-.,. I~. 

A straight-forward calculation sholVs the voltage trans

ferfunction to be 

V2 
H(p)= E = (24 ) 



From (2;') 

P1 2 , 

the 

= -

following poles results: 

1 . 1 1 2 . f i 
2RC ± J 1C - (2RC) J.f 

':li th 
1 ~ 1 

(J" = -2RC '-'0 = 1C and Q = R rcA. "7 this becomes 

= (J"::t i4Jof 1- (~)~ wi th Q ;> ~ 

This leads to the following pole-sensitivities: 

S'" ''/ 1-1' ... - .(..1 .1..) 
c ~ -I-J·.l 1_ ,/.,,,& ~ -I -J '" - 'f • 

,. 
S ~ • 

./ 

~.) 
.. 

~ -Jft' -J 
1- '1".· 

_/ ~. of 
~ -/ ~ i· ff,~. ; +','-1 

r " • It • 

(25) 

More over the Q-factor sensitivity as well as the resonant

frequency sensitivity follow as 

s c
t

" ~ 

s· s ""= 
.... 

-1t .-~ .,,'" S = (26 ) • l C 

s· .. = 1 
S OJ. 

It "0 

Calculating the loss sensitivity one finds 

II{jIolJ c ,)1-1(,)/ 
&oJ.,t. c 

S • -. 7C p.Jt.J 
=: 

,-",'L.e ~.;i""~ '" 
H{pJ 

Normalising the frequency (J to the resonant frequency "'0 
by substituting ..Il.'~ we find: 

Then 

and 

S H():nJ. A" 

C I-A" ., j :E::. 

(23) 

A"'c= 

<l1 

results in 

At: --12. f (I-A.') 
-~[s ~)I -= 

ft-.nt) .... ~ c 

-Jl. ~(I_.ft') .,. .J1'l4;t. 

V-A")' .. ..12&/". 

AC. 
.11"'-" .. 7'. 

22 



The maximum values of these loss-variations for large 
Q-factor become 

.6 Ofc ". .. , ~ :t ~. ~ lIIe/,,," 
~ 

..0 ~ ..... ... .t ~. ",L 
:t 7: Nc/,_ .. 

.Q ~ ....... <\: -,.. • 
...... 

N~I"" ;i' 

The above variations are shown together with the norma

lised transferlo$s ~ in fig .. 14 for Q = 5 and element 

variation 1%. 

Ii. 
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23 



24 

2.2.2 Sensitivity calculation for an active second-order low-pass 

filter 

+ 

Consider the active fi 1 ter in fig. 15 where in the opera-

tional amplifiers are supposed to be ideal. 
11 I 

~~~~--r-------~.~ This results in the same 

R1 R Dotential for the points , 
+ 

v 

c 

A,B and C. 

The potential-devider 

R R . V Vo V 
3- 3 g~ves c~~ 2 

V 
Therefore VB = £ and 

v.. - v. ~C, I, 

' .. = ~j :I ~." 
'I'C, ., 

This current i2 flows 

into the resistor R2 re

sulting in a voltage drop over R2 given by 

/' (", .t& • /I .. 
Because VA = VB the same 

parallel combination R-C 

it follows as 

voltage-drop must fall over the .. 
~ence the current flowing through 

1+pRC 
i1 = R • V. 

On the other hand VA is given by 

VA = E - R1 i1 = ~ 

Suost::.tuLing i1 in this formula and solving for ~ gives 

V 2 
E = 

p2R
1
R

2
C

1
C+P R1~2C1 + 1 (27 ) 

If we take R1R
2

C1= L we find formula (27) except for a 

constant factor to be exactly equal to formula (24) wich 

resulted from the passive filter in fig. 13. 

Therefore we can conclude immediately that the sensitivi

ties for the active filter given here are the same as those 

of the passive one dealt with in the previous chapter if 

we make the following correspondence: 



is always stable for every positive value of the elements. 

The root-locus is therefore confined to the left half-plane. 

Furthermore (27) and (28) indicate that this active filter 

only differs from the passive one in the sensitivity w.r.t. 

the equivalent L being three-fold instead of a simple one. 

The influence due to the non-ideality of the amplifiers 

such as finite gain etc., is kept out of considerations be-
ol 

cause this influence is small if the amplifier ban~ith 

is taken to be large enough i.e. exceeding the frequencies 

of interest for the filter. 

A sure advantage over the nassive filter however is that 

25 

any impedance !:lay be connected to the outnut terminals 

without the transferfunction being changed. For this reason 

this filtertype is very well anplicable in cascade-synthesis. 

2.2.3 Sensitivities for the Fjtllbrant-filter. 

The Fj1ilbrant-filter [3] or Sallen and Key filter in 

fig. 16 is another active filter capable to realize se

cond-order transferfunctions however with much larger sen

sitivities than the fore~going one, in such a way that this 

filter can only be used when low to moderate Q-factors are 

dealt with. 

From fig. 16 we easily calculate 

H(p) 



+ 

o 

+ 

v 

o 

fig. 16. 

A close look on the above 

transfer function shows that 

in the case that A becomes 

large the coefficient of P 

may become negative, r~sul

ting in ri~ht half-plune 

poles and thus H(p) becomes 

unstable as can be seen from 

the root-locus of fig. 17 

with arrowdirection corres

ponding to increasing A. 

From H(n) the 
~ 

sensitivities are computed as 

S" :: 

4 0(" ".( Q .... 411 
If N~l'r,. 

} (29 ) 

If the values of (29) are compared with those of the 

passive filter we find them to be much greater. Especially 

s~ becomes large for moderate Q-factor because in this 

case I[R1 C
l ::: Q leading to S

A
Q

l::S AQ2. 
V j'2 C2 

On the basis of the fore

going comparision we have 

shown that active filters 

realising the same trans-

R .. .,. ferfunction can have dif-
-*~~~~~--~4--+--

A-co ferent sensi tivi ties, nos-

sibly being equal to or 

better than the passive 

26 

one s as well as being f !i~",,.,,IIJ 
worse.fenly low sensiti-

vities vdll guarantee good 

fig. 17. 
agreement between the wan-

ted and really obtained 

transferfunctions. Hence one should prefer the slight more 

complicated network of fig. 1$ above the Fjalbrant-filter 

when moderate or high Q-factors are needed. 



However large pole-sensitivity does not always imply large 

filterloss sensitivity as can be seen from equations (25). 

If we take Q<= -$-, we find S ~'" -l-j... indicating that the 

pole-sensitivity becomes very large due to the large rela

tive change in the imaginary part. The filterloss for small 

Q-factors is however mainly determined by the real part of 

the poles and is therefore much less sensitive to element 

variations as one would expect from the large value of S ~. 

On the other hand small pole-sensitivity is not always 

coupled with small loss-sensitivity but in most cases the 

lower the sensitivities are, the better the filter will be 

as to the influence of parameter changes. 

If the filter poles are determined by a difference of two 

polynomials each with positive coefficients, the resulting 

polynomial shows large coefficient sensitivity for the 

smallest coefficients because these coefficients are ob

tained by substracting almost equal large numbers from 

each other. Therefore one must avoid synthesis methods 

leeding to coefficients wich are determined by a difference 

of products of the element values. 

However if every polynomial coefficient consists only of 

the sum of products of the element values, the filter still 

can be very sensitive to element variations. For example 

the polynomial p3+p2+1 ,Olp+l is a Hurwitz polynomial while 

p3+p
2

+0 ,99p+l has zeros in the right half plane and thus 

leads to instability if this polynomial would determine 

the poles of a transferfunction. Hence a slight change of 

one coefficient due to a change in one of its composing 

products may result in instability even if this coefficient 

is build up with positive sums of these products. 

On account of the foregoing one may conclude that the sensi

tivity plays an important role in the design of stable and 

insensitive networks but large or small sensitivities on 

their own are not absulute criteria for the behaviour of 

the designed filter. 



3.1 Active filters obtained by substitution methods. 

The synthesis of active filters will solely involve known 

nethods if they can be deriVed from the r>assive filters 

in some direct way. In this case one uses nassive synthe

sis methods to construct active filters by changing the 

nassive filter so as to eliminate the ar>pearing inductan

ces. 

The mainly used methods hereto are replacement of the in

ductors by gyrators and capacitors as explained in the 

following sec tion and imnedance transformation as wi 11 be 

given in section 3.3. 

3.2.1 Gyrator-capacitor substitution. 

Consider the circuit of fig. 18 where in the gyrator is 

defined by the following non-reciprocal two-port admit

tance-matrix 

(30 ) 

Connecting an admittance Y. to the post 2_2
f 

gives an 

input admittance 

Y-.. = '1/,," 'f/, yu = ~:.. 
,. ''''YJ .r. 2 

Especially for YL= PC we get Yin= gc = p~2c' being the 

admittance of an inductor with inductance L = R
2

C Henry. 

Therefore this configuration can be used to replace in

ductors in a passive LCR filter. As an examnle a third

order Butterworth low-nass filter is then realised as 

depicted in fig. 19. 
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1 
2 

1 1 1 

c 

l'O--L ___ .J"7' 
2' ~ 

nrlr--r-......, G .1 

1 ,....-02 

1 1 1 
2 

1'0--..1 .... --02' 

fig. 18. fig. 19. 

On sensitivity point of vieuw this network only differs 

from the original LCR-filter in the sensitivity due to 

elements in the capacitor-gyrator circuit. 
O"clt ... ,." _ 

As was indicated by Hi i dan L'IJ this leads to low-sensi-

tivity of the resulting network as compared with other 

active circuits with the general tendency as to shift the 

poles further away from the imaginary axis. Hence the net

work is always stable. 

3.2.2 Gyrator circuits. 

For the gyrator to have good quality, i.e. approaching 

(30) as much as possible, one uses electronic circuits 

to construct it. The main point of interest lies in the 

diagonal elements of (30) wich must become as close to 

zero as possible however remain positive. To demonstrate 

this point consider the non-ideal gyrator admittance-

matrix r G, G.] 
[~1 = r(;' t:~ 

Connecting a capacitance pC2 between the output terminals 

gives an input admittance 

G G 
Yin = G1 + 2 3 

G
4

+pC
2 

The equivalent circuit for this admittance is given in 

fig.20. 
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•• C 
i. =_~ 

Go 6, 

It can be seen directly that 

this circuit approaches the 

ideal inductance the better if 

G1 and Ga approach zero. They 

must however remain positive 

otherwi se the admi ttance becomes 

unstable as poles or zeros may 

arrise in the right half-plane. 

f " 20 We also see that G2 not neces-
~e· . 

sary has to be equal to G
3

. 

Furtheron placing a capacitor C1 across the input termi

nals results in a resonant circuit. The maximum obtainable 

f G2G3 i G 
Q-factor can be computed as Qma = t l+G G . U Q1 = tl is 

x 1 4 C2 G4 
satisfied. 

These results are the same as using an ideal gyrator and 

non-ideal capacitors with parallel conductance G1 and 

The relation °1 = G1 then implies equal Q-factor for 
C2 G2 

the capacitors and hence Qmax = t Qc. As for the frequently 

used polyester-capacitors with 7'= 0.0004 we have 

Qc = 7~ ~ 2500 and find the maximum obtainable Q-factor 

to be Qmax ~ 1250. This Q-factor will be reduced further 

because the gyrator will be non-ideal but is still much 

greater than the Q-factors obtainable with passive induc

tors. 

The gyrator circuit given in fig. 21 is an example of a 
"rc .. 

circuit \~ in compensation with a negative resistor is 

used to force the diagonal elements of the admittance-ma

trix to zero and is as a consequence from the foregoing 

only suitable for realising low Q-factor inductancies, by 

assuring Y11 and Y22 to be positive (i.e. by conscious 

undercompensation). 
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1 

l' 

2 A better circuit can be obtained 

from this one if the negative 

resistor is replaced by a feed-

back loop as depicted in fig.22. 

This results in an admittance-

2' matrix 

f 0 
6, 1 

b1 -= fig. 21 • ,~slG&. t;,,,,,,~ 

-6-
~ Nsf" H7ii, 

If furtheron S/G2 » 1 this becomes 

(~1 :: l-:. G, 1 
r"t:J&.1 

The latter shows that Y22 is always positive and can be 

made small enough by taking S sufficiently large and at 

the same time G2 may be put to zero. 

Because of the finite input imnedance of T1 and T2 the 

value of Y11 will not be exactly zero but can be made 

small enough. 

1 o---T-------------------~--------------~ 

r---~--_o2' 2o---~ 

, 
1 O---~----------------4_ __________________ ~ 

fig. 22. 

• 

A suitable practical circuit can be obtained from fig. 22 

by rearranging its nullator-norato~ equivalent so as to .. 
produce a circuit with operational amplifiers instead of 

the given transistors. With the nullator-norator equiva

lence [~] of the ideal transistor and operational ampli

fier given in fig. 23 this step is indicated in fig. 24. 
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2 

l' 

From the last scheme in this fig. we obtain the practical 

circuit of fig. 25 as was first given by Riordan (61 . 
B 

c 

fig. 23. 

1 

2 
0-
2' 

l' 

fig. 24. 

1 

2 2' 
o-+----. 

fig. 25. 
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There remains however the important disadvantage for these 

circuits not being able to realise "floating" inductors 

with one gyrator because of the galvanic coupling between 

in- and output-port. 

Some alternative gyrator circuits are based on the two 

current source equivalent depicted in fig. 26 as follows 

from the decomposition of (30) in 

10--..... ...---02 

1'o---'------L---o2' 

",fig. 26. fig. 27 • 
.. I 

Mr Creemers of the TechnologicV Uni versi ty Eindhoven has 

designed and actually constructed a circulator circuit 

with voltage controlled current sources given in fig. 27. 

Connecting a capacitor between the nodes 2 and 3 will 

give a floating inductance between node 1 and 2. However 

this circuit can become instable too if the admittances 

G1 , G
2 

and G
3 

are different 

At last the circuit of fig. 

be used as a circulator and 

tage as the one in fig. 27, 

from each other. 

28 as given bij Keen [1] can 
(/.Is

suffers from the sameYadvan-

however the large gain of the 

amplifiers used in this structure assures its behaviour 

almost completely to be determined by the value of the 

resistors, wich can be made sufficiently accurate to 

guarantee stable operation for Q-factors up to 500. 
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fig. 28. 

All.resistors 

~ value R • .... " ... 

33 

3.3 Active synthesis using frequency dependent negative resistors[o 

Consider the transmissionmatrix of an LCR two-Dort with 

Darameters A, B, C and D. The voltage transferfunction of 

this two-nDrt given by A is an irrmitance ratio and does 

not change when the admi ttancies in the network are scaled 

wi th a certain factor. Thi s p.)in t opens the possi bi 11 ty to 

remove inductances by scaling all admittancies in the LCR 

tv/o port with a factor p. 
1 

In that case we find the general admittance Y=G+pC+ nL to 

be changed to y1 = pG +p2C + t . This implies that a con

ductance G will be transformed to a capacitance pG and an 

inductance p1 will be transformed to a conductance t . 
However a capacitance pC will lead to an admittance p2c 
being a frequency dependent negative resistor (FDNR) for 

p = j'-l. Hence we need an active circuit to realise the 

?DlIR and Ul,e these elements together with resistors and 

capacitors for realising the transformed network. 

Such an active FDlJR is given in fig. 29 together with its 

reDresenting symbol. Inherent to the configuration of 

thi s }'D!1R only grounded FDNR I S can be realised. Hence this 

substitution-method will only work properly if the origi

nal network does not ce1ltain floating capacitors. 

As the mid-series type LCR filter fullfills this require

ment one tries to realise the passive filter in this form 

and afterwards derives the active circuit by the foregoing 

transformation. 



1 ~--.-----I"'" 

fig. 29, 
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As an example consider fig. 30, where 

this transformation is shown in detail. 

A disadvantage of this realisation lies 

in the output voltage going to zero as 

w~ 0 • This is due to the finite in

put impedance of the operational ampli~ 

fiers in the FDNR. However if the orig

nal network is designed as to have only 

inductors in the generator-branch this 

will result in resistors in series with , 

the generator in the transformed net

work thus leading to the right low fre

quency response. 

--

fig. 30. 

As th~ FDNR is basically a positive immitance convertor 

(PIC) the resulting networks have an overall sensitivity 

comparable with other PIC-methods, wich are claimed to 

be low. 

As a fact the FDNR is realised by means of a PIC as de

picted in fig. 31. Here in the generalised PIC is a two

port defined by the relations 

V1=V2 
(29) 

I 1=H(p)I 2 

A realisation for the PIC is shown in fig. 32 with 



.. 
V

1 

11 
k~:1 

12 11 

Z1 

.. .. Z2 
G V

2 V
1 

o o 

fig.31. fig.32. 

1 1 
Taking Z1 (p)= pC

1 
' Z3(P)-PC

2 
' Z2(P)=R1 and Z4(P)=R2 gives: 

H(p)= k p2 with k = C
1

C
2

R1R
2 

From (29) follows 11 = H(p) 12 hence connecting an ad-
VI V2 

mittance Y to the secondport results in an input admittance 

Y'n= H(p).y. Returning to fig. 31 we find Y. =kp2y =kp
2

G 
~ ~n " 

being a FDNR and the resulting schematic diagram becomes 

that of fig. 29. 

With these PIC's we can also simulate inductors directly 

as can be seen from fig. 38, leading to an input-im

pedance Z=~ corresponding to an inductor "1" = ~. 
In fact only one capacitor is used in this PIC and if we 

would redraw the schematic diagram in fig. 33 in such a 

way that the nodes where to the capaCitor is connected 

would form the second port instead of 2_2
1

, the resulting 

circuit would appear to be the gyrator given in fig.2~ 

Therefore replacing inductors by gyrator-capacitor cir

cuits is equivalent to replacement by PIC's 

1 1'''" 2 
A floating inductor is in this case 

realised as shown in fig. 34 requiring 

G the PIC's t~ .. have .",,.,.,nt ¥,...~ ~". ,. .. ."., 
exactly reciprocal 

in order to avoid ]I 
... 

1 b lee 

35 
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• 3 

I "_,, ,,_ul'l'Ircl 6.lravl'"". "'/~jo /l.t. 
l' 2' 

~f""~tll'''; ''''-/1,,,1. 
fig.33 • . 



-

fig. 34-. 

no--rvv"~-....,o 

L " ..c.'! 

O~------------Q 

In fig. 35 an example of this substitution method is 

depicted. 

J 

fig. 35. 

The block with PICs performs a transformation as indicated 

by the following. 

Consider a resistive network Inth impedance-matrix Z con

nected to a block of PICs as given in fig. 35. 

For the resistive network holds V= ZI with ~=(1.Jand I =!: .. ;') 

The PI C s gi ve : 1.11,') ('!) "'" 
V'=Vand 1'- ~pI with V'= fI~' and 1'= /.., 

Therefore 4 t .. /I ~ II,. 7.:r .. ,,1..; %:r ~ 

resulting in an impedance matrix for the nodes 1',2', •.. ,n' 

given by Z'=kpZ. 
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fig. 35. 

Hence the network between these nodes is an inductive net

work with the same topological structure as the resistive 

network in wich every inductance Li has a value determined 
,. lJIt'e 

by Li=kRi with Ri being the corresponding Resist~ value 

in network N. 

As these PICs have basically a gyrator structure and per

form the same substitution, this method will result in the 

same low sensitivities as for the gyrator-capacitor substi

tution and in advantage over them they have the possibility 

to replace more inductors with less PICs on account of the 

above derivations. Furthermore for constructing floating 

inductors with gyrators, one needs a type with one common 

input- output node and untill now no such circuit is known 

with a simplicity comparable with the above PIC-circuit. 

Hence we may conclude that the PIC-substitution is most 

favourable, leading to active networks with sensitivities 

comparable with those of the passive networks from wich 

they are derived, while only known passive synthesis me

thods are involved to design the active filter. 
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4. Active filters on synthesis basis. 

The active filters considered in this section have the 

property that the impedance matrix of the embedded net

works can be derived from the original transferfunction 

by means of a general method in such a way that these 

former networks become realizable RC networks. 

The structures given in chapter 4.1, 4.2 and 4.4 can 

realize every stable rational transferfunction, where 

as the gyrator-RC structure in chapter 4.3 is limited 

to certain filter classes. 

4.1 Negative Impedance Converter (NICl Synthesis. 

One of the first available active filter structures 

given by Linvill uses a NIC in conjuction with two RC 

networks for realising transferfunctions. The basic 

configuration is depicted in fig. 36, in wich the cur

rent-inversion NIC is shown between the dotted lines. 

,...-----------, 
I , 

I I 
I 

I 

lot 
I I 

t; Na 
'Rt R., 

. Nb I 
I I 

I I 
I I 

I I 
I , 

L _____________ J 

fig. 36. 

With k we find the chain-matrix of the NIC as 
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Wi th this 

structure 

chain-matri~,the transferfunction of ths above 

is given by 

b a 

Z21· Z21 (30) 
b a 

Z11- k Z22 

The realization of a given transferfunction proceeds as 

follows. 

Let H(p) be written as 

H(p) = ~t~~ 

with N(p) and D(p) polynomials in p. As a first step 

devide the numerator and denominator of H(p) by an arbi

trary polynomial Q(p) with its zeros on the negative real 

axis and degree Q(p) equal to the maximum of the degree 

of N(p) or D(p). 

Hence 

We now equate (30) and (31) resulting in 

Z2~·Z2~ = ~(p) / Q(p) 

Z1~-kZ2~ = D(p) / Q(p) 

(32a) 

(32b) 

Here after D(p)/Q(p) is split up in rational fractions 

giving 

Let the ~ be numbered in such a way that the first r 
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values of k)" are positive and the other N-r values are 

negative. Taking now ki = -kli _r for i) r, we can write (33) as 

D(p) fJ .10 ,. ~1 J [f" .I" ]- ~ - -I. ~ 
Q1PT = r- of" P 'ft "".~ -..... .., />"'r. •• - r:q.~) Q.(,) 



From (34) we see that D1(P) and D2(P) are realizable RC 
. Q1(P) Q2(P) 

impedances because all k/" and l~ are positive. 

Therefore we can equate (34) and (32b) giving 

Z11 
b D1(P) 

= Q1{P) 
(35 ) 

Z22 
a D2(P) 

= Q2 (p) 

Furthermore (32a) can be written 

K(p) N1 (p) 
QTpT = Q1{P) • 

leading to 

N1 (p) 

Q
1 

(p) 

Z21 a = N2 (p) 
Q2{P) 

(36) 

as 
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Equations (35) and (36) lead to realizable RC networks, 

however as ideal transformers must be excluded the Fialkow

Gerst conditions state that the coefficients of the polyno

mials N1 (p) and N2 (P) must be positive and smaller than or 

equal to the corresponding coefficients of D1 (p) resp. D2 (P). 

This can be arranged by multiplying the numerator and denomi

nator of H(p) with the same proper polynomial and scaling 

with a certain factor bsfore the synthesis procedure is 

carried out. 

As an example consider the following transferiunction to 

be reali zed: 

V2 p N(11l 
H(p)= r ,. ,. mpr 

o p2+ P + 1 

Choosing Q(p) ,. p(p+1) we find 

D(P
p

) • 1 1;:' 1 _ £±1. _ 1 
~ + p p+1 - p p+1 



1 
= p+1 

Furthermore ~~pj can be split up in 

N(p) _ P _ l2. 1 
QTPT - p(p+1) - p • p+1 

Hence we may identify Z21
b= ~ = 1 

1 
p+1 

(i.e. k=1) 

This leads to the realization as given in fig. 37. 

The current source with parallel resistor can be changed 

ina voltage source with series resistor, giving a circuit 

with voltage transferfunction H(p). 

,.---------, 

t 

, 

, , 
l' , 

, 
L. _________ J 

NIC 

fig. 37. 

,.._ .. _----. 
I 1 I 

All resistors in 

Ohms, capacitors 

in ~rads. 

4.1.1 Sensitivity considerations for the Linvill synthesis. 

From (30) we find the poles 
b a 

determined by Z11 - k Z22 

D1 (p). D2 (p) 

Q
1 

(p) - k Q2(P) = 0 

of the transfer function to be 

= O. With (35) this becomes 

Therefore the poles follow from 
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Defining the polynomials A(p) = D1 (p) Q2(P) 

and 

we find (37) to become 

~ ,. 

p 

= z:. 1l..,1' "" 
"' .. 

p 

= =z:. 4...,,-
", .. 
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A(p)- k B(p) = 2: (16..,_.11 ... ),"= ~ ," ... , .. :: O. 
"":;0 -~. 

(38) 

From (38) the coefficient sensitivity can be calculated as 
..... 

S.J.. ,.. ./.4 - . c .. 

Especially when a certain small en is obtained by substrac

ting large values for An and k bn , the resulting sensiti

vity s~n can become very large. If the poles of the trans

ferfunction to be realized are situated close to the j W -

axis, a small change of one of the coefficients of the de

nominator polynomial may result in right half plane poles 

and therefore the NIC synthesis may lead to a circuit ba

lancing on the edge of instability. 

There is however a degree of freedom in the choice of the 

polynomial Q(p) and one may expect that this polynomial 'can 

be taken in such a way that the pole sensitivity with res

pect to k can be minimised. 

Indeed, for even degree D(p), Horowitz [tl1 has given the 

conditions for the polynomial Q(p) as to minimise the pole

sensitivity for variation in the NIC k factor. 

The denominator polynomial of H(p) must be split up into 
A?t "4 -, 

7Jtj>J. 7T '1",IIIJ.t - :a., IT (t,.",,)' _;t,t 3.:> (J'; ai, "0 ~ 0 
i. a/ ,:., 

The polynomial Q(p) then becomes 
... ,4 't:i -, 

<V~). I' 7! ~jf'"') 7f ~"'M . 
,I:, '61 



This procedure appears to be quite general as it can be 

applied in any case in wich the difference of two polyno

mials is involved where in one polynomial can vary with a 

constant factor. 

Calahan [101 has given a method to obtain Q(p) in another 

way in wich no such inhomogeneous system of equations is 

involved as with the Horowitz method. 
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In spite of this optimation procedure the Linvill synthesis 

is only applicable for low degree and low Q factor trans

ferfunctions. 

It has however given the first start for active filtersyn

thesis and gives insight in the problems that can be en

countered in these synthesis technics. 

4.2 Synthesis method of Yaganisawa. 

The structure given by Yaganisawa is depicted in fig. 38, 

and is also applicable to realize '. 'I'· rational trans

ferfunctionswith R-C elements and one current inversion NIC. 

-
I~ 

'2 

E 

t 

Y1 

~ t CINIC I 
:1'6 

+ 

fig. 38. 

The transferfunction of this circuit can be calculated as 

H(p) 

Following the same procsdure as in chapter 4.1 we find 

~~Ej ~fEj (Y1-k Y2 ) 

H(p) = 1m" D~El-N~El +§ffi 
= (Y3-k Y4}+(Y1-k Y2 ) 

Q p Q(p 



From the above formula we equate 

(40 ) 

In the partial fractions expansion of the left hand side 

of (40) we collect the fractions with positive residues 

to form Y1 and Y
3 

while the others from Y2 and Y4 • 

For Y1 etc. to be RC admittancies the degree of Q(p) nas 

to be one less than the maximum degree of N(p) or D(p) and 

again must have its zeros on the negative real axis. Then 

all admittances can be realized in a Foster parallel RC 

form and the synthesis is completed. 
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The sensitivity considerations are generally the same as 

those of the previous chapter as was shown by J.Schwant [H) 
As an example of this synthesis method consider again the 

realisation of H(p) = P ( ) 2 wi th Q p = p+1. 
p +p+1 

We find D(p2-N~p2 
Q(p = 

p2+1 _ ~ 
p+1 - p+1 - p+1 = Y3 -k Y4 

00 Q p = p;1 = 

Taking k=1 gives 

Y1 = p;1 
Y

3
= p+1 

Y2 = 0 Y4= p!Y 

The final filter is given in fig. 39. 

1 1 

o-Ul.I1r---j 

:l 
! 

E 
2 

1 1 CINIC 

k=1 2 

fig. 39. 

) 



Recently, Ruprecht [I:] has given a synthesis method similar 

to the Yaganisawa method in wich the finite gain of the 

operational amplifiers as well as the generator output im

pedance is taken into account. 

4.3 Synthesis with the gyrator as a two port (1/1. 

a two port element 
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In this method the gyrator is used as 

loaded on both ports with Re networks as indicated in fig.40. 

+ 
E 

t 
Na 

r-- r--

) ( Nb 

fig. 40. 

The transferfunction can be calculated as 

v~ 

E 

t 
+ 

Here in Rg is the gyrator resistance of the use~(~,rator. 

In order to realize the transferfunction H(p)= ~ with 

complex poles, it must be split up as follows: 

1. Express D(p) as "/0 
"If, ~ ~ ~ 

7)(,,) '" If fJ>~tf") r~. 7l (1,,1,) 
~. /-, ~ % 

2. Determine Q(p)= /P.ll. 7lf;Hc;) 1[ (p~J,') 
1&' i~, 

3. H(p) follows as 

H(p)= ~~~l/ ~~~l wi th N(p) 

this H(p) and 

'" N1 (p) .N2 (p)· 

(41) results in 

~ jf{p(',') 
e·.' 

4i 
I. Tl.fi-"",) ,., 

(42) 



Calahan [IJ J has shown that ths re sul ting Z 11 b 

be realizable RC immitances if the following 

fied. 

a 
and Y22 will 

lemma is satis-

Lemma: Let the complex poles of H(p) be given by 

;{C7C r P''') 
P = /Pi e 10/;11. ,,<: f" , 1 

i1 ,2 
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Then y22
a 

and Z11 b given in (42) are realizable 

RC immitances if 
.... & >t 
~ ~,'! r . 
1=' 

This lemma puts a severe restriction on the realisation of 

higher-order transferfunctions, however any second and third 

order transferfunction is realizable as always ~1 ~ ir for 

stability reasons. Hence this implies that any higher order 

filter can always be realized with this method by cascading 

and isolating second or third order sections. 

For biquadratic and bicubic low-pass transferfunctions a 

more direct method can be followed as will be demonstrated 

below for the bicubic case. 

I I 

Let H(p)= = -

From (41) follows F(p) = 

As will be proven later on we can choose f1' so as to produce 

positive residues in (43). 

Splitting up k2 as k2 = k2
a 

+ k2b we derive from (43) 



a 
Rg Y22 = 

The partial fraction form in (44) indeed 

realizability for Z11 b and y 22
a 
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(44) 

guarantees the 

Furthermore 

as depicted 

b 
if Z11 and 

in fig. 41, 

Y22
a 

are realized 

the resulting y
21

a 
in the Cauer form 

b 
and Z21 will 

become 
b 

Z21 = , 

Hence the transferfunction H(p) is realized except for a 

constant factor • 

. , , , , , , , 
I 
.------0--;-----''------'--+--0 

fig. 41. 

In order to prove that k~ , k1 etc. can be made positive 

we express them in ~ andofwthe coefficients of F(p) leading 

to 

k3 
.-!-

k1 
r~r) 

= Nrr = IJrrA. 

ho-I .!! 
k2 = - k ... = H tr4- II 

Requiring all k to be positive then results in 

Ff-rr) >0 } ho-I >0 (45) 

Consider next the value ~ being 

rt'-I) 



As the Hurwitz condition for F(p) implies ~ < L we have 

Ft-f.) > 0 

I .J. 
From the above relation follows that for ~ '>;; and /f'- '" 

sufficiently small always ffor) > t!J can be realized. In this 

case both relations in (45) are satisfied and therefore all 

residues k are positive. 

This synthesis method will be demonstrated with the follo

wing example. 

1 
Let H(p) = 

1 1 
We find M = 2 and therefore try 

J 

u= I > 11 

This results in j=f-rj./, hence (45) is satisfied. 

Equation (43) gives with A=1 

Ffp) "!"'IP·~I.I>~J ? I .. ..L _ _ -:-. r co h~ ____ .,. 

p(p;l) />(1'''"') r p~' ,. 

Taking Rg = 1 this results with (44) in 
, ~ 

'Z,," :: p 

A~...t- .. /. 
r /O~, 

The Cauer form for 

filter is depicted 

a 
Y22 is 
in fig. 

given in fig. 42 and the final 

43. 

% Rg=l 

4 1 1 l~ 4 1 .. a 
~2 -

fig. 42. fig. 43. 

4.3.1 Sensitivities for the RC gyrator.two-port synthesis. 

As in this synthesis procedure the poles are determined by 

a sum of polynomials rather than a difference, the sensiti

vities are smaller than those of the NIC type realisations 

and comparable with those of passive filters. 
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The procedure of chapter 4.3, as proved by Calahan, gives 

the lowest possible sensitivity with respect to variations 

in gyrator resistance for every possible decomposition. 

Furthermore the circuit is always stable for any element 

value in contrast with the NIC structure. 

4.4 Synthesis with PICs by the Antoniou method. 

Recently Antoniou[/~1 has given a synthesis method able to 

realize every rational transferfunction with PICs and in

verting amplifiers. The main advantage of this synthesis 

method lies in the simpl'city of the realization and cal

culation of the element values. 

In realising a voltage transferfunction H(p), Antoniou 

proceeds as follows: 

.. 
Let H(p)= 

A • ., .,,tJ ~ .. - .,.. ",. p 

~.",I'~ ... ~"",J>-

Consider furthermore the voltage transferfunction of a 

parallel connection of two networks Na and Nb ' given by 
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(46 ) 

V _ ,., (_ ,~,C) ~ ~- 11,4) 

E = -;;: = r"A"j ~ (!,u 4 ) • (47) 

Then (47) implies that H(p) in (46) can be formally realized 

by the parallel connection of Na and Nb with 

} (48a) 

and 

The network Na corresponding to (48a) is realized as depicted 

in fig. 44 in wich a switch is positioned to the node labeled 

"_" if the a i corresponding to the connected element is nega

tive or to the node labeled "+" if the concerned a i is posi

tive. 



The network Nb with Y- parameters given in (48b) is rea

lized by a network Nc in cascade with a PIC with current 

transfer ratio 1: k1P2 as depicted in fig. 45. 

/; 

The PIC gives 
V .. = /I .. I 

I 1 

2A. I.'I'~ r. ' 

fig. 44. 

• 2 1:k,p I2 

I~c I D I 
+ 

fig. 45. 

(49) 

(50) 

From (49) and (50) we find for the network Nb 
'I,. ~uC' P,,, ,,?14 C' ~ 

.T". "'I'~ 'Y"e /I, , "'/I~"" c ~ 

resulting in 

'Y"" -k'I''' 'Y.
,e 

,. ... J= .J,,.C , .. c 

) 
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Together with (48b) this gives 

- rAI<": 
Aa II, 4.... -.-,t. 

} ::r. ~ r. p'" ---- .. Z; ,b 

1 ... t = 4& -4. .,. 6.... --.t (51 ) 
X ~;r,,*~--" :;i;, ,b 

Being arrived at this stage we can repeat the whole proce

dure starting with equations (51), at each step reducing 

the degree of H(p) with two untill all coefficients are 

realized. 

Because of the nature of the above synthesis all denomi

nator coefficients are realized as a sum of maximally two 

element values. This implies low coefficient sensitivity 

as to the composing element values and zero coefficient 

sensitivity for all non composing elements. However the 

same remarks apply as given in section 3 concerning the 

possibility that slight changes in the element values may 

cause instability if high-Q poles are realized. 

4.4.1 Special cases for the Antoniou method. 
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If second or fourth order low-pass filters are to be de

signed with all transmission zeros at p=~ , the Antoniou 

procedure can be modified as to result in a circuit with 

less capacitors. In this case the denominator polynomial 

can be split up as follows: 

For degree 4 4.I"H'I'J~C'l't" 4#/,~Q.~fol ",/,C/,"Ilf,) 0~" /,(/,"IfAJ]ja", 

For degree 2 fl.' ..... '/'" c2.t" ~/ ... 1'(,b .. .r,)J flQ 

This leads to the realisation as depicted in fig. 46. 

4th order low-pass 2nd order low-pass 

fig. 46. 



Furthermore every second order transfer function may be 

realized with one PIC with current transfer ratio 1: kp 

as given in fig. 47, from wich the transferfunction can 

be derived as 

+ 
Erv 

a, 

4.1'~ "'(4,1' .. "'. 
'. p'" A, I' .. 6~ 

1..-•• 

fig. 47. 

A negative value for a 1 can be handled in the same way as 

with the original Antoniou procedure. 
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As proved by the au thor [ISJ the Q factor rea11 zed with thi s 

circuit is in first approximation independent of the band

width of the operational amplifiers in the used PIC circuit 

of fig 32 ,and 11mi ted to Q Z II; in wich Ao is the DC 

open-loop amplifier gain. Therefore this method enables 

very high Q factors to be realized,insensitive to tempera

ture variations as these mainly cause changes in the ampli

fier bandwidth. 

As the circuit of fig. 47 is also stable for all element 

values it is very suitable for synthesis by cascading second 

order sections. 

Another interesting feature for this configuration is the 

possibility to realize second order transferfunctions with 

zero Q factor sensitivity with respect to changes in the 

current transfer ratio of the PIC. 

Consider for example the circuit of fig. 48 with transfer

function 



The Q (52) as factor follows from 

!.Ie .t~ c, ' 
~. ---:----

~ ~ of' .t. c& 
(53) 

Equation (53) result in a sensitivity S ~ given by 

sl· f 
0 ... 4 --' }~) 

(If.t c. ~ .. ~) 
10, 

and H(p) = 

,: kP 
~,---, r--.---~ 

fig. 48. 
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5. Cascade synthesis with second order sections. 

In this section a survey will be given over ~ various 

active second order transferfunction realisations wich 

are frequently used in cascade synthesis. Some of these 

structures can only realise low-pass or high-pass filters, 

where as other ones are only suitable for low Q-factor 

transferfunctions. However these circuits use less compo

nents as compared with the more general types and may 

therefore be prefered in some cases. 

5.1 Second and third order low-pass Fj~lbrant filters. 

A. Second order design equations. 

Let the transferfunction be given by 

H(p)= 

Then the realisation is given in fig. 49 in wich the 

element values are to be determined as follows 

1. Choose a value k being the capacitance ratio of C1 
and C2 • 

2. Calculate a, b and c from 

3. 

a = 

c = 

With the 

R1 = 

R2 = 

"" -~ 
.... 
X 

values 

1 

blc 

in pnt. 2 the elements become 

C1 = a 

C
2 

= c 

The gain A is determined by 

//= .t 0.,.74) _;' /,N,{4-

The above realisation results in minimum coefficient 

sensitivity as to variations in amplifier gain given by 

I' .t hi Ir- ., 
S I· Trl" 'tI.J - 7 • 
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From this formula it" can be seen that k must be taken 

as large as possible, while small;9 (i.e. high Q fac

tor) results in high values for S: 
Therefore this circuit is only applicable in low Q fac

tor transferfunctions. 
c, 

Ax 

+ ". 
E QI 
O~-----------------L-- ________ ~o 

fig. 49. 

High-pass filters can be realized by the frequency 

transformation ,. .... '; • This results in the following 

impedance transformation: 

Impedance 

Impedance / -,be 

--+ Impedance 

Impedance 

equations 

1 

B. Third order design 

Let H(p) = 3 12 
Kp +Lp +Mp+1 

= FtPT 

/ -"tiC 

The realization is given in fig. 50 in wich the element 

values are determined as follows: 

k 
1. Choose a; with "" < c1i <;;r in wich - VO is the real 

pole of H(p). The other two poles are supposed to be 

complex. Choose o:r. in such a way that cr.. ')-01; and 

r~-/rr,) O&(-hr..., / ;> 0 • 

2. Express 

ting in 

3. The element values then follow as 

fractions resul

-to. 
- -/?"r.e 
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..1:1 ?/C" ... /e,) 
( 

R1= ..4 .. (./c • ., ~,) C1= 
11"1 .Ie, 

I 
../cd> R2= .Jr. ,".4, C2= 

I 
-1:", - -" .. R3= 

~.k .. --'.e. 
C3= -.,-.. 

The above procedure can be proved to result in positive 

element values. In order to achieve minimum coefficient 

sensitivity the values of tfj and trot must be taken as 

small as possible. 

For high-pass filters the same considerations hold as in 

sub A. Again as a consequence of the relative large sen

sitivities this filtertype is only suitable for low Q-fac

tor realizations. 

[L-~--I /x 

o_IL-Ci 

__ 1--1....-('&_--00 
fig. 50. 

5.2 Active realizations of second order notch filters with 

a modified Twin-T network. 

In these structures a Twin-T filter is used to produce 

transmission zeros on the J~ -axis. Depending on the 

behaviour of H(p) at t>,., () and I> = 00 two different 

structures must be used for the realization, as given 

in fig. 51. 

Together with a frequency transformation the given net

works can realize any second degree notch filter. However 

in order to produce the transmission zeros sufficiently 

accurate, the element values of the Twin-T must be care

fully realized i.e. with tolerances 0.1%. 
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H(p)= 

fig. 51. 

With these circuits Q factors up to 10 can be achieved 

for element tolerance of about 1%. 

5.3 Active filters employing negative feedback. 

Consider the circuit given in fig. 52. 

t 

E 

fig. 52. 

3 

• 
V 

Supposing the voltage transferfunction of Na and Nb in 

the configuration of fig. 53 to be given by Ha and Hb 

resp. we find the transferfunction of the circuit in 

fig. 52 to become 
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1 

I~ • 
E 3 

fig. 53. 

The poles of R(p) are therefore determined by the zeros 

of Rb • 

As a bridged-T network is able to realize complex zeros 

we can use this type of network for realizing Rb • Then Na 

has to be a suitable network with the same poles as for 

Nb • 

The eynthesis proceeds as follows. 

Let R(p) be given by R(p)= k~IEj in wich k is a suitable 

factor to be determined later on. 

Devide numerator and denominator of R(p) by a second 

degree polynomial Q(p) with its zeros on the negative 

real axis and all coefficients larger than or equal to 

the corresponding coefficients of D(p). 

This results in 

/)(p) -Q(P} 
(55) 

Equating numerator and denominator of (54) and (55) gives 

HI. .. 
DCp} - (56a) 0(,.) 

DCp} _..4 IVCp) 

H. = ( 56b) ~(P) 
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In (56a) we can make a suitable choice for Q(p) so as 

to produce a simple network for Hb such as the earlier 

mentioned bridged-T network. Here after we can take k 

in (56b) small enough to result in a realizable RC net

work. 

At last the transferfunctions in (56a) and (56b) are 

realized with RC-networks, wich networks are then inter

connected according to fig. 52. 

As an example consider the realization of 

kp 
H(p)= -"2r--

p +p+1 

Taking Q(p) = p2+4p+1 and k=i we find 

Hb= 
)22+)2+1 

p2+4P+1 

and H :: )22 +EL2 +1 
a 

l+4P+1 

The realizations of Ha and Hb are given in fig. 54. 

0 
~ 

.J T
Vf 

~ .I 
0 0 0 

AI. fig. 54. 

The final network is depicted in 

fig. 55. 

'VV' 
~" 

fig. 

t 

~' ~ 
1

9 

Alb 

55. 

I 

~ 

o 

J 
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As the poles of the transferfunction are given by the 

zeros of Hb the sensitivities to element variations are 

small. Furthermore the polynomial Q(p) can be chosen in 

such a way as to minimise the pole sensitivity, however 

this possibility is not further investigated. 

5.4 Second order filters with PICs. 

As a last example of second order filters we mentione 

the circuit given in chapter 4.4.1 with one PIC having 

a current transfer ratio of 1:kp. As stated there this 

filter type has a lot of advantages over other realiza

tions for instance its simplicity, stability and the 

possibility to realize high Q-factors. Together with 

the minor influence of the operational amplifier band

width and the available sensitivity compensation for 

variations in the PIC current transfer ratio, this 

circuit will probably be the most suitable for second 

degree transferfunction realization. 
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APPENDIX 

General formulas for the elliptic approximation. 

Before deriving these formulas we consider again the 

Chebychev approximation that can be written in another 

way as 
iP (;u.)= Ctn (m4<.)} ",. I) l) ..... 

Jl. = c.r.I __ (1 ) 

61 

From these formulas one can see that the range (J ~ Jl. ~ / 

corresponds to ~ ~ '" ~ 0 ,overlooking the periodicity 

in U • 

In the given range for It. the function It-u.) will pass 

through ~ quarter periods varying between +1 and -1. 

Hence ~(A) will have equiripple behaviour in the pass

band 06.Jl. ~ / due to the periodicity of cos ( .. u) • 

In transition and stopband however we have ft» / leading 

to complex U . As cos (~«) is not periodic for complex 

values of its argument, the function ~~) won't be perio

dic either and therefore cannot have an equiripple stop

band behaviour. Because we are interested in equiripple 

in the passband as well as in the stopband, we will have 

to construct a transformation comparable with (1) having 

double periodic properties wich are known as elliptic 

functions. 

These functions are defined by means of elliptic integrals 

as indicated below. 

Let E(x,k) be the value of the incomplete elliptic inte

gral of the first kind with argument x and modul~ k given 

by 

(2 ) 



Furthermore the complete elliptic integral of the first 

kind denoted by K(k) is defined by 

If no confusion can arrise K(k) is shortly written as K. 

The complementary complete elliptic integral of the first 

kind is defined by 
"1 ~ 

k': £ f '?, "') • /;;:;===#=::==7."':'" 
" fi-tv (/-.J:'~i·) (4) 

wi th -Ie ' .. JlI-.J:~':'" being called the complementary modulus. 

From (2) we can formally express the value of x in the 

value of M. E (", I.) by wri ting 

In this way (5) and the relation 

are defining inverse relations. 

Its therefore custummaxy to denote from (4) 

.u. J?o-'(~,4) 

Comparing (6) and (7) we have 

~ cd 
'U. s:n-' ('X) 4) r E tfo, 4) ~ / • 

d fQ-t<j (I-"'~t~) 

(6 ) 

(8) 

The function 4->0(,",1.) defined by (5) and (8) is called 

the Jacobi elliptic sine function. 

This function can be proved to be double-periodic with 

periods -u. =4l( and u. =2jj(' where l( and l{' are given by (3) 

and (4) resulting in 

Ao-I (<<"flJr) -Ie). 4-J.t. bt,-,) J 
..;.., ("'~~ilr~4J= __ ("'J.f) (9) 



Furthermore we have from (3) 

/-( = C /", Ie) =- ,..-' (", ~ ) 

and therefore #& (k, 1..) ,. 1 (10) 

From (8) we also find 

4>-0-'((},~):. 0 leading to _tP,.Ie} = 0 (11) 

If ~ is augmented by a half period 2~ or jk' we have 

A'>\ r'&f.';.t Ir, Ie) = - '"'" (-ti, ') 

4'>-& (M.--jJr;IcJ- 1 (12) 
..k ht t"" k) 

Taking k=O in (8) we get 
>r 

'f- / rP __ ~;";'(:I<) '" ~-Ibc) 
",.- fIC,O)· ,= --

" JI,--t~ 

resulting in hot.""),, ~ I,.) (13) 

Relation (13) clearly shows the periodicity of -#I. 11t:) 4) 

for the special case k=O. 

The other Jacobi elliptic functions are defined by 

c-n (-u, Ie.).. j!1- ;:-..'tU, ,;, 

d,n. ("'I J.) =- 1I,-..k·"...·(U,-,) 

and in general if p, q, r are any three of the letters 

s, c, d, n 

7>'1. [-u, ')= ,tJl"tu,4) 

'l-r(u,.Ie) provided that when two letters 

are the same the corresponding function is equal to 1. 

/ 
""-s ('", ') ". .Ie 

PI1/"" ) 
Thus 

From (9), ( 11) and (12) we find 

A>f. (r.,( Jr,.Ie) = 0 -frt..r = :t ", I,.t, .•.. 
I 

and 4>1 (;/Ir'.;s . .L,jIr: I.) .. -ffl f;/Ir;.I:) ~ .l F>t.(o,") 

leading to the pole zero pattern of A>f. (-Uric) as given in 

fig. 1. 
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fig. 1. 
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pole-zero pattern 

of -ml"",4) 

In this figure the shaded part is repeated periodically 

through the U - plane. 

Derivation of the characteristic function. 

In the elliptic approximation we use in comparison with (1) 

As ..-ha(u • ..I.J in (14) is double-periodic in U. , we may 

expect that it will be possible to choose ($(.n.) in such 

a way that both pass-.and stopband will have equiripple 

behaviour. In order to find this relation we will examine 

closer equation (14). 

This equation transforms the posi ti ve real.J1. -axis in the 

edges of a rectangle in theu -plane by the following way. 

The range O~Jl..$Q leads with (14) to o~ hr.(~.-4:).,;/> 

or 0, -u ~ k 

Hence o'..I2$Q is mapped on O&M.(, J( in the'l<.-plane. 

The range r.1c ~..12 ~~ lead s to / ~ Po. (4<,.I.:) ~ i ( 15 ) 

From (12) we have 
. I / 

-- ('tr~J ~,~)" ..4 1'Mff/j-4) 

Taking 'Ir. I( give s --;..{ft,4J = p., (Ir) 4:) ,,? , hence 



This leads together with 

Therefore ric 4..Jl ~ if 
the It -plane. 

The range ,z ~ A. ~ cD 

/ 
.;[ ~ A-.. Co<,~) ~ oD 

Again from (12) we have 

I 

(15) to 

leads to 

-4 A>. try; -i.) 

in 

(16 ) 

(17 ) 

From this follows JI1 h> (,.-, -'J. ~ ,.., (4""i"'~ ~ j = -1 , relating 

the variables ..Jl" a ,.."(,,,,1.) and .1l&' 14 ,..,(,y~jlr: -4.) by 

A, A. ... = / (18) 

We already saw that 0 6 /I/' ~ k leads to 0 ~ ..12, .$ tr.i! with 

.fl., lying in the passband. Thellfrom (18) follows that.1l .. -= 
=1'1e i'>r (/Y~jlr; 1.) = ..12: varies as required by 

(16) from a to of> for the same interval of"".-, leading 

to frequencies lying in the stopband. Hence frequencies 

.fi., and.1l~ mapped on the '" -plane verti cal above each 

other on the lines 7_("')=0 and X",,( .. ) = kl will be 

related by (18). 

On account of the above derivations, the upper left-half 

p-plane is mapped on the shaded part of the It -plane as 

shown in fig. 2 and is periodically repeated there. 

/( 

fig. 2. 



Next we take 

~(,y)~ L -+n (N", /.~) 
(19 ) 

The pole-zero pattern of ar{~) is the same as in fig. 1 

if the 'U -plane is changed in the /'Ir -plane and k is 

changed in L2; the periods thus become 'Ik •• ~Jr{ ,t.~) , see 

(3), and .l/Ir.'" ~.i/r(PI-"" '} 

As a consequence of (19) along 7',.,(41)" 0 the function 

66 

j§{4I) will vary between +L and -L and along 7',..,I'1/)=k.' §f",) 

varies between + ~ and 00 • Furtheron if we relate U in 

(14) and? in (19) so that the distance between -U"" 

and '1-L= k equals m- times the length ..... L of a quarter 

period in the V'-plane,while at the same time """"jlr' 

cOincides with 4/3 j k.' , we can superimpose the corres-

ponding periodic parallelograms of.fL. and II 

For even -n however the point 'U~ I( would coincide with 

~" s· .2.4-. (r.:;) hence making I" (-v)" 0 in this paint. 

As the passband edge frequency JlPG rJc. is mapped to the 

point ~. k this would imply that at this point 5£..f1...) 

would become zero where as the right value has to be ± L. 

This trouble can be overcome if the whole -V- -plane is 

shifted over a distance ~ in the direction of - "~{-u) , 

before superimposing both planes. 

The resulting pole-zero pattern j. s shown in fig. 3 for 

n=3 and n=4. 
7-(_) r ... I..,) 

fig. 3. 

..;.zulf" "..a. 
+ />..4 " " 

o A.ur ~ 11 

xjH&"u 



From fig. 3 we see that 

/V. [ ,.. .,.'"' ,. I!' 1'",) ] ~ 

4'1-'" e( ... ).!" /rt. '" 
o In '70 

in order to produce the desired 

real "'--AT - axi sis concerned. 

As can be seen 

or I'JI is kL + d Ire ' 

Therefore from 

from fig. 3 also 

for n odd resp. 

(20 ) follows 

/r' 
"l -

k 

} (20 ) 

patterns as far as the 

'k' f,t~;J must lead to 4/" i lr,. , 

even. 

giving 

(21) 

Relation (21) is an important one in the design-procedure 

because it relates the three basic design parameters L, k 

and n in such a way that any two of them prescribe the 

third. 

The desired zeros of jr{J.L) now follow from (19) by 

resulting in 

Then (20) gives 

Finally (14) results in 

J'los· ~ rn [ : [JU- (O{"';], .J. ] 

s= } (22) 

With (22) we can construct the characteristic function as 

with 

and fiDS given by (22). 
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