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Abstract

Biophysically detailed neural models are a powerful technique to study neural dynamics
in health and disease with a growing number of established and openly available models.
A major challenge in the use of such models is that parameter inference is an inherently
difficult and unsolved problem. Identifying unique parameter distributions that can
account for observed neural dynamics, and differences across experimental conditions, is
essential to their meaningful use. Recently, simulation based inference (SBI) has been
proposed as an approach to perform Bayesian inference to estimate parameters in
detailed neural models. SBI overcomes the challenge of not having access to a likelihood
function, which has severely limited inference methods in such models, by leveraging
advances in deep learning to perform density estimation. While the substantial
methodological advancements offered by SBI are promising, their use in large scale
biophysically detailed models is challenging and methods for doing so have not been
established, particularly when inferring parameters that can account for time series
waveforms. We provide guidelines and considerations on how SBI can be applied to
estimate time series waveforms in biophysically detailed neural models starting with a
simplified example and extending to specific applications to common MEG/EEG
waveforms using the the large scale neural modeling framework of the Human
Neocortical Neurosolver. Specifically, we describe how to estimate and compare results
from example oscillatory and event related potential simulations. We also describe how
diagnostics can be used to assess the quality and uniqueness of the posterior estimates.
The methods described provide a principled foundation to guide future applications of
SBI in a wide variety of applications that use detailed models to study neural dynamics.

Author summary

A central problem in computational neural modeling is estimating model parameters
that can account for observed activity patterns. While several techniques exist to
perform parameter inference in special classes of abstract neural models, there are
comparatively few approaches for large scale biophysically detailed neural models. In
this work, we describe challenges and solutions in applying a deep learning based
statistical framework to estimate parameters in a biophysically detailed large scale
neural model, and emphasize the particular difficulties in estimating parameters for
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time series data. Our example uses a multi-scale model designed to connect human
MEG/EEG recordings to the underlying cell and circuit level generators. Our approach
allows for crucial insight into how cell-level properties interact to produce measured
neural activity, and provides guidelines for diagnosing the quality of the estimate and
uniqueness of predictions for different MEG/EEG biomarkers.

param 1

p
a
ra

m
 2

param 1

p
a
ra

m
 2

param 1

p
a
ra

m
 2

 ≈ 

4) Train arti�cial neural network that 

can indentify parameter distributions 

constrained by summary statistics

5) Apply ANN to estimate parameter 

distributions for waveforms of interest

What model parameters and possible parameter 

combinations can produce recorded neural activity?

2) Randomly sample from parameter ranges 

to simulate "real-world" neural waveforms

1) Identify relevant model parameters 

and parameter ranges

param 1

p
a
ra

m
 2

Parameters

AMPA strength

NMDA strength

Temperature

Na+ concentration

K+ concentration

PeakPCA Band Power

x

3) Select summary statistics to 

describe the waveform

Parameter Recovery Posterior Predictive

6) Run diagnostics and compare 

parameter distributions

Fig 1. Graphical Abstract. Summary of SBI workflow used to infer model
parameters that can account for recorded neural dynamics. 1) A prior distribution of
assumed relevant model parameters and ranges is constructed. 2) A dataset of
simulated neural activity patterns is generated with parameters sampled from the prior
distribution. 3) User defined summary statistics are chosen to describe waveform
features of interest. 4) A specialized deep learning architecture is trained to learn the
mapping from neural activity constrained by summary statistics to underlying model
parameters. 5) Specific neural activity patterns of interest are fed into the trained
neural network, which subsequently outputs a distribution over the potential underlying
model parameters. 6) Parameter estimates for different waveforms can be compared
through diagnostics like parameter recovery (if the ground truth is known), or posterior
predictive checks.
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Introduction 1

Biophysically detailed neural modeling is a fundamental and established framework to 2

study fast time scale neural dynamics [1, 2]. While challenging to construct, advances in 3

computational resources have enabled the proliferation of detailed models from 4

principled models of single neurons [3] to large scale biophysically detailed neural 5

networks [4] that enable multi-scale interpretation from cell spiking to local field 6

potentials to macroscale magneto- and electroencephalographic (MEG/EEG) 7

signals [4–7]. Numerous detailed models are now openly distributed to encourage their 8

use and expansion [4, 5, 7–13]. A common goal of detailed neural modeling is to infer 9

biophysical parameters in individual cells and/or network connections that can account 10

for observed changes in neural activity over time. Given the large-scale nature of any 11

detailed model, parameter inference is an inherently challenging and unsolved problem. 12

The difficulty of parameter inference is closely tied to the level of biophysical detail in 13

the model, as the number of parameters increases with more realistic models. In 14

practice, parameters can not all be estimated simultaneously, but rather model elements 15

are estimated in a serial fashion (e.g. cell dynamics followed network connectivity) and 16

fixed. Then, a limited set of parameters are chosen as the target for estimation. Even 17

with this limited set, the parameter estimation process is complex. The problem is 18

confounded by the fact that there may be many parameter configurations that produce 19

an equally good representation of the data [14]. Identifying unique biophysically 20

constrained parameter sets that can account for observed neural dynamics, and 21

differences across experimental conditions, is essential to the meaningful use of large 22

scale biophysically detailed models for neuroscience research. For example, if you want 23

to use a biophysically detailed model to infer circuit level mechanisms generating an 24

EEG waveform that is a biomarker of a healthy compared to neuropathological 25

condition, you need a way not only to estimate the parameter distributions that can 26

generate the waveforms but also to assess if the distributions are distinguishable. 27

A powerful approach to estimate parameters in neural models is Bayesian inference. 28

There is an extensive history of research applying Bayesian inference, and specifically the 29

algorithm of variational inference, to estimate parameters in reduced models of neural 30

activity, for example in the Dynamic Causal Modeling (DCM) [15] framework that relies 31

on reduced “neural mass models”. However, while compatible with reduced models that 32

are mathematically tractable, the algorithm of variational inference is not compatible 33

with detailed biophysical models due to their computational complexity, and specifically 34

lack of access to a known likelihood function (see also Discussion). Additionally, mean 35

field variational inference assumes that model parameters are independent, preventing 36

the ability to capture biologically meaningful parameter interactions. In recent years, 37

simulation based inference (SBI) has been proposed as an alternative Bayesian inference 38

framework to estimate parameters in detailed neural models. SBI overcomes the 39

challenge of not having access to a likelihood function by leveraging advances in deep 40

learning to perform density estimation [16–18]. An advantage of SBI is that it only 41

relies on a dataset of simulations from the model being investigated, rather than 42

requiring knowledge of a parameter likelihood function, which is typically not accessible 43

in large-scale biophysically detailed models. From this dataset, a neural density 44

estimator (i.e, artificial neural network specifically made to approximate probability 45

distribution functions) is then trained to learn a mapping of observed neural dynamics 46

(e.g. time series waveforms) to corresponding model parameter distributions. Another 47

advantage is that SBI estimates a full distribution over model parameters that may 48

account for the data and provides information about parameter interactions [14,18]. 49

This information is not possible with optimization techniques that have historically 50

been used in large-scale biophysical models such as COBYLA [5,19] and genetic 51

algorithms [3, 20], which estimate only a single parameter configuration that best fits 52
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the data. Fig 1 outlines the overall SBI workflow to estimate parameters and possible 53

parameter combinations that can reproduce recorded neural activity. 54

While the substantial methodological advancements offered by SBI are promising, 55

and have been applied to estimate parameters in small biophysically detailed neuron 56

models [18,21] and in models with reduced representations of neural dynamics [22,23], 57

there is currently little guidance on how these methods should be used with large-scale 58

biophysical models. Guidance is particularly lacking in the context of performing 59

inference on neural time series data, and in comparing estimates for data from different 60

experimental conditions. In this paper, we provide guidelines on how SBI can be 61

applied to estimate parameters underlying time series waveforms generated by 62

biophysically detailed neural models. We emphasize the importance of the first steps of 63

(i) identifying the parameters and ranges over which the inference process will be 64

performed (i.e. prior distribution), which necessarily depends on user-defined 65

hypotheses, and (ii) of selecting informed summary statistics of the waveform activity. 66

We also describe how diagnostics can be used to assess the uniqueness and quality of the 67

posterior estimates and to assess the overlap of distributions from estimation applied to 68

two different waveforms. These evaluation steps are particularly important to resolve 69

the uniqueness of distributions for two or more waveforms. 70

We begin with a simplified example of a non-linear resistor-capacitor circuit, and 71

then extend the results to an example large-scale biophysically detailed modeling 72

framework that was developed by our group to study the multi-scale neural origin of 73

human MEG/EEG signals, namely the Human Neocortical Neurosolver (HNN) [5]. The 74

foundation of HNN is a biophysically detailed model of a neocortical column, with layer 75

specific synaptic activation representing thalamocortical and cortico-cortical drive 76

(Fig 2). HNN has been applied to study the cell and circuit origin of commonly 77

measured MEG/EEG signals, including low frequency oscillations (e.g. Beta Events [24] 78

and event related potentials (ERPs) [25, 26]), along with differences across experimental 79

conditions [25–29]. We demonstrate applications of SBI to estimate parameter 80

distributions that can account for variation in example hypothetical Beta Event and in 81

ERP waveforms with selected parameter priors (see Step 1 in Fig 1) based on our 82

previous studies [24–26]. We show that due to the model complexity some parameters 83

can be inferred uniquely while others are indeterminate. The methods described provide 84

a principled foundation to guide future applications of SBI in a wide variety of 85

applications that use detailed models to study neural dynamics. 86

Materials and methods 87

Below we provide a summary of the primary techniques used in this work. Specific 88

aspects are emphasized to provide better context on the significance/motivation of 89

analyses performed. We invite readers to refer to the citations for a more thorough 90

treatment of each subject. In particular, the software publication detailing HNN [5], 91

and a study demonstrating the use of SBI on classical neural models [18]. We also detail 92

an RC circuit example, which is a building block of HNN-type models, and which offers 93

a SBI setup with time series inputs and the presence of indeterminacies. 94

Resistor-capacitor circuit simulations 95

Resistor-capacitor (RC) circuit simulations were performed using the odeint ordinary 96

differential equation (ODE) solver of the SciPy Python package. A more thorough 97

description of how RC circuit simulations were performed can be found in the results 98

section RC circuit: a simple example to describe indeterminacies that can occur with 99

time series inference. 100
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Human Neocortical Neurosolver 101

Biophysical modeling of cortical activity underlying MEG/EEG signals was performed 102

using the Human Neocortical Neurosolver (HNN) [5]. The standard HNN model used in 103

this study and described in [26] is composed of 100 pyramidal neurons and 33 inhibitory 104

neurons in both layers 2/3 and 5 for a total of 266 neurons and represents a localized 105

small patch of neocortex (Fig 2). To accurately reproduce macroscale electrical signals, 106

HNN utilizes multi-compartment pyramidal neuron models [30], and synchronous 107

intracellular current flow of aligned layer 2 and 5 pyramidal neuron dendrites is assumed 108

to be the generator of the primary electrical current sources underlying recorded 109

extracranial MEG/EEG signals, due to their length and parallel alignment [31]. 110

Inhibitory basket cells are modeled as single compartment point neurons given their 111

negligible impact in producing the recorded electrical currents, but are none-the-less 112

crucial to the local network dynamics (see [5] for further bakground). Pyramidal cells 113

in the model connect to other cells with both AMPA and NMDA synapses, while basket 114

cells produce GABAa and GABAb synaptic connections. 115

Fig 2. HNN model schematic. A: Local network connections of the HNN model
include: 1) excitatory AMPA and NMDA synpatic connections (black circles)
originating from pyramidal neurons (blue), and 2) inhibitory GABAa and GABAb
synaptic connections (black lines) originating from inhibitory interneurons (yellow). B:
Proximal exogenous input connection pattern. C: Distal exogenous input connection
pattern, see text for further description. D: 3D rendering of full neocortical column
model. Figure adapted from Neymotin et al. 2016 [5].

In addition to the local circuitry, HNN models extrinsic inputs to the column via 116

layer specific synaptic excitatory drives generated by predefined patterns of action 117

potentials presumed to come from exogenous brain areas (i.e., thalamus and other 118

cortical regions). In general these are referred to as proximal and distal drives, reflecting 119

the effective location of the synapses on the pyramidal neuron proximal and distal 120

dendrites. The proximal drive reflects so called feedforward inputs from lemniscal 121

thalamus, and the distal drive reflecting inputs from either non-lemniscal 122

thalamus [32, 33], or “feedback” connections from other cortical regions. These proximal 123

and distal drives induce excitatory post-synaptic currents that drive current flow up and 124

down the aligned pyramidal cell dendrites (see red and green arrows in Fig 2) that can 125

generate positive and negative deflections in the primary electric current dipole of 126

source localized MEG/EEG signals. Intracellular current flow due to these extrinsic 127

inputs, as well as induced local spiking dynamics, combine to produce the recorded 128

MEG/EEG signal. 129

Posterior Diagnostics 130

When working with a posterior approximation Φ, it is useful to characterize its behavior 131

in different regions of the parameter space. For a given parameter configuration θ0 and 132

simulated output x0 ∼ p(x | θ0), we quantify how concentrated Φ(θ | x0) is around θ0. 133
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We refer to this quantity as the parameter recovery error (PRE) and define it as the 134

Wasserstein distance between the k-th marginal of Φ(θ | x0), and a Dirac delta centered 135

at θ0[k]. This can be empirically estimated as per 136

PREk(Φ, θ0) =
1

N

N∑
i=1

(
θi[k]− θ0[k]

)2

(1)

where we generate N samples {θ1, . . . , θN} ∼ Φ(θ | x0) from our posterior 137

approximation conditioned at x0 ∼ p(x | θ0), which is an observation from the simulator 138

at ground truth θ0. Note that θ0 is composed of k distinct values for each individual 139

parameter, therefore there are k distinct PRE values. Additionally, each parameter 140

θ0[k] is mapped from its range defined in the prior distribution, to the range (0,1). 141

Therefore, the maximum PRE is 1.0, indicating the worst possible recovery, whereas a 142

PRE of 0.0 indicates perfect recovery. 143

The previous diagnostic quantified how well Φ represents the relationship between x0 144

and θ0 in terms of the parameter space. Alternatively, we can assess the relationship in 145

the observation space. Specifically, given samples from our approximate posterior 146

θi ∼ Φ(θ | x0), we generate simulations xi ∼ p(x | θi), and assess how close xi is to the 147

conditioning observation x0. This is known as a posterior predictive check (PPC) [34,35] 148

and is quantified as the root mean squared error between x0 and the xi as per 149

PPC(xi, x0) =

√√√√ 1

N

N∑
i=1

∥xi − x0∥2 . (2)

Lastly, in many applications it is useful to characterize how well two distributions 150

can be distinguished from one another. To this end we introduce the distribution 151

overlap coefficient (OVL) [36]. Given our approximate posterior Φ, we define OVL as: 152

OVLk(Φ, x0, x1) =

∫
min

(
Φ(θ[k] | x0),Φ(θ[k] | x1)

)
dθ (3)

where x0 and x1 are two different observations whose posterior distributions we seek to 153

compare on the marginal distribution for the k-th parameter. To calculate the OVLk 154

numerically we used an evenly spaced grid of 50d for a prior distribution over d ∈ N+ 155

parameters. 156

Results 157

Approach to applying SBI in biophysically detailed models that 158

simulate time series data 159

Recently SBI has been established as an approach to estimate parameters in detailed 160

biophysical models [18] that simulate time series data. This approach overcomes the 161

challenges of applying Bayesian inference in highly detailed non-linear models, namely 162

estimation of complex posterior distributions that exhibit parameter interactions, by 163

leveraging recent advances in likelihood-free inference and deep learning [17]. We begin 164

by reviewing the SBI process and providing the mathematical description of each of the 165

steps outlined in Fig 1. 166

The primary goal of SBI in the context of our manuscript is to estimate parameters 167

and possible parameter distributions that can account for an observed neural dynamic 168

(e.g. time series waveform). In mathematical terms, this goal is stated as follows. Given 169
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an observation x and model with parameters θ, SBI seeks to create an approximation 170

Φ(θ | x) of a posterior parameter distribution p(θ | x) such that 171

Φ(θ | x) ≈ p(θ | x) ∝ p(x | θ) p(θ) . (4)

Bayes’ rule specifies a closed form for the desired posterior distribution p(θ | x) as 172

being proportional to the likelihood p(x | θ) multiplied with the prior p(θ) [37]. 173

Unfortunately, in detailed biophysical models the likelihood function p(x | θ), which 174

encodes the relationship between model parameters θ and outputs x, is often 175

analytically intractable but can be approximated from a large number of simulations. 176

The novelty of SBI is that it circumvents likelihood evaluations altogether, and instead 177

approximates the posterior distribution directly from a simulated dataset of model 178

outputs xi ∼ p(x | θi) with parameter values sampled from a user defined prior 179

distribution θi ∼ p(θ). There are numerous approaches in the literature to achieve this 180

goal, each with their own unique considerations, benefits, and challenges [38]. In this 181

study, we use a deep learning architecture known as a conditional neural density 182

estimator (Φ), which is a function that takes an observation x as input, and returns a 183

probability density function defined over the parameter space. More specifically, the 184

conditional neural density estimator utilizes normalizing flows following standard 185

practices described in [17, 18]. The detailed steps in applying SBI (Fig 1) are as follows. 186

Steps 1-2: Define prior and generate training data. SBI begins with the user 187

choosing the parameters of interest to be estimated, and the range and statistical 188

distribution of values (e.g. uniform distribution) those parameters can take. This 189

constitutes the prior distribution p(θ) over model parameters θ to be inferred. The 190

importance of a well-constructed prior cannot be understated, as it encodes the 191

assumptions and hypotheses of the inference problem considered, and strongly impacts 192

any resulting predictions. Creating a good prior distribution requires domain expertise 193

to choose meaningful parameters, and a biologically realistic range of values. That is 194

not to say that the predictions are predetermined by the prior, as uncertainty can be 195

encoded using flat/uninformative priors where the probability mass is evenly spread 196

over the desired parameter range. Nevertheless this aspect is highly important for 197

detailed neural models where the inferred parameters represent a small subset of the 198

total set of parameters. 199

With the prior constructed, a simulated dataset of observations x1:N is generated by 200

simulating a large number of N time series using model parameters θ1:N drawn from 201

the prior parameter distribution. 202

Steps 3-4: Training neural network based on chosen summary statistics to 203

describe the time series waveform. With the simulated dataset, a specialized deep 204

learning architecture known as a conditional neural density estimator Φ is trained to 205

approximate the posterior distribution p(θ|x) that can account for chosen summary 206

statistics for any observation x. The output is a distribution of parameters which can 207

generate simulations close to the summary statistics of the conditioning observation x0. 208

The neural density estimator Φ can be trained directly from the entire time series x, or 209

from summary statistics s = S(x) which constitute a lower dimensional vector of values. 210

The choice of s should aim to obtain Φ(θ | s) ≈ p(θ | s) ≈ p(θ | x), meaning that the 211

posterior estimates are well enough approximated from s alone. A more in depth 212

description of the choice and role of summary statistics is given after describing Steps 213

5-6. 214

Steps 5-6: Estimate and compare parameter distributions for distinct 215

waveforms. With a trained neural density estimator, users can finally feed in new 216

waveforms and assess the predicted parameter distributions underlying their generation. 217

Diagnostics that assess the quality of the distribution can then be performed (see 218

Materials and methods for details on the calculation of each diagnostic). If the ground 219
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truth parameters underlying the waveform of interest are known, users can calculate the 220

dispersion of the posterior around this ground truth using parameter recovery error 221

(PRE). If the ground truth is unknown, users can use posterior predictive checks (PPC) 222

to assess if the parameter distribution consistently produces waveforms close to the 223

conditioning observation. Finally, uniqueness of posterior estimates for two different 224

waveforms can be assessed by directly comparing the overlap coefficient of the 225

distributions (OVL). 226

The important role of summary statistics in parameter inference: Using 227

the inference framework described above, in this study we emphasize the role of 228

summary statistics and how their selection directly impacts predicted parameter 229

distributions. Inference on models with full time series outputs is challenging because 230

the observations are high dimensional. This challenge comes in the form of 231

interpretability and model mispecification due the simulator not capturing finer 232

characteristics of the real data generating process [39]. 233

Summary statistics can either be hand-crafted, leveraging domain expertise and 234

hypotheses regarding the data, or they can be automatically extracted. A summary 235

statistic s = S(x) is sufficient if all the relevant information for mapping the full 236

observation to its underlying parameters is retained. More specifically, sufficiency is 237

satisfied if p(θ | s) = p(θ | x) [23, 38]. In practice, truly sufficient summary statistics are 238

rare, but they can still provide a close approximation to inferences achieved when using 239

the full observations x. A major advantage of hand-crafted features is that they can be 240

readily interpretable, and come associated with hypotheses on their physiologic 241

significance depending on previous research. Alternatively, full time series informed 242

approaches like principal component analysis (PCA) may do a better job at retaining 243

more complex relationships between observations and parameters. We note that as an 244

alternative to PCA, automatic extraction of summary statistics through embedding 245

networks are becoming increasingly common [17,23,40,41]. However, a systematic 246

analysis of the numerous architectures employed in this domain is outside the scope of 247

this study. 248

Given the current ambiguity around summary statistic selection, principled 249

approaches to compare alternate approximations of the posterior distribution are 250

essential. To this end, we have constructed educational examples which allow for an 251

intuitive understanding of the role of different summary statistics. Additionally, we 252

introduce diagnostic analyses that can be used to quantitatively compare desirable 253

properties of posterior approximations produced using different summary statistics, such 254

as PPC, PRE, and OVL. These analyses are detailed in the examples below. 255

RC circuit: a simple example to describe indeterminacies that 256

can occur with time series inference 257

One of the most challenging aspects of likelihood free inference is that the models 258

studied typically do not permit access to a ground truth posterior distribution, over 259

which we can validate our inferences. To highlight this challenge and better understand 260

how decisions in the SBI pipeline impact the resulting approximate posterior, we will 261

first apply the SBI pipeline on a model where the ground truth posterior is known; 262

namely an RC circuit model. 263

The equation for the RC circuit simulations is as follows: 264

C
dV

dt
(t) =

E − V (t)

R
+ Ie(t) (5)

where V (t) is the voltage response of an RC circuit to a current injection Ie(t). In our 265

example we use a capacitance C = 6F, resistance R = 1Ω, and constant voltage source 266

E = 0V [1]. 267
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Fig 3. RC Circuit Simulations. A: Simulated voltage and current dipole waveforms
are shown for two exemplar parameter configurations with latency between positive I+
and negative I− square current injections, ∆t = 0 (blue), and ∆t ̸= 0 (orange). An
example of the original ”Raw” waveform (top), as well as the PCA transformed
waveform (bottom) with the first 30 components (PCA30) are shown to demonstrate
that this summary statistic retains almost identical information. B: Posterior
distributions showing the inferred values that can generate the blue and orange
waveforms from panel A (PCA30 used to generate distributions) demonstrate that when
the latency ∆t between the inputs is zero, their amplitudes are indeterminate as visible
with a positive correlation between the parameters I+ and I−. C: Schematic of how RC
circuit is driven by positive I+ and negative I− square current injections, where the
amplitude and latency ∆t between pulses serve as parameters. This simulation parallels
HNN simulations below (Fig 5) in which a single excitatory proximal/distal input with
variable synaptic conductances and latencies produce positive/negative deflections in
the current dipole.

The example RC circuit simulations described here were parameterized in a way that 268

will enable comparison to similar simulations in the biophyscially detailed simulations 269

described below for HNN (Fig 3C). More specifically, we drive the RC circuit with two 270

square wave pulse injections, with positive and negative amplitudes lasting 20 ms each. 271

Two parameters (I+ and I−) controlled the amplitude of positive and negative square 272

pulse current injections, such that the sum Ie = I+ + I− determined the final injected 273

current for each time step. A third parameter, latency ∆t, controlled the time delay 274

between the two pulses. Specifically, ∆t shifts the negative current pulse in time, while 275

the positive current pulse remains fixed. These inputs play a similar role as excitatory 276

proximal and distal inputs in HNN (Fig 2). Table 1 details the prior distribution over 277

the parameters used to generate training examples for SBI. 278

The relationship between current injection amplitude and the RC circuit voltage 279

response strongly depends on if ∆t is zero or non-zero. When ∆t is zero, the total 280

injected current sums to a single square pulse since the negative and positive pulses 281

perfectly overlap. Fig 3A(top, blue) shows an example of this where a -0.2mA square 282

pulse current injection is delivered at 80ms producing a voltage response with an 283

exponential rise and decay with one peak. Since any combination of I+ and I− which 284

sum to -0.2mA will produce an identical voltage, there will be an indeterminacy when 285
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attempting to infer these parameters from the voltage response. In contrast, Fig 3A(top, 286

orange) shows an example with a non-zero latency ∆t ̸= 0. Specifically, the first current 287

injection with I+ = 0.3mA is delivered at 80ms, and the second current injection with 288

I− = 0.5mA at 117.5ms, therefore ∆t = 37.5ms. The voltage response exhibits two 289

unique peaks due to the offset between the square pulses. Since there is only one 290

combination of I+ and I− that can produce this waveform, their values can be inferred 291

exactly from the waveform. In other words, the amplitude parameters underlying the 292

voltage response can be inferred exactly only when ∆t ̸= 0. Note that since we are 293

approximating the posterior distribution, even values close to ∆t ≈ 0 will still produce 294

an indeterminacy. 295

To visualize and interpret posterior distributions produced by SBI, we must first 296

draw a sufficient number of random samples from the distribution. Since posterior 297

distributions are often multidimensional, it is useful to plot the samples using a 298

“pair-plot” (Fig 3B). The diagonal of the pair-plot is used to visualize the univariate 299

(also known as marginal) distribution of each parameter, here using a kernel density 300

estimate of n = 1000 posterior samples. The squares below the diagonal on the other 301

hand visualize the bivariate distribution for pairs of parameters by plotting the samples 302

explicitly on a scatter plot. This example highlights that even with simple simulators, 303

indeterminacies can easily arise neccesitating the use of flexible posterior approximators 304

(like masked autoregressive flows) compared to mean field variational inference which 305

cannot handle parameter interactions. 306

Note that PCA with 30 components (PCA30) was used as the summary statistic in 307

this example (Fig 3A(bottom)) rather than the full time series to avoid the potential 308

computational issues of conditioning posteriors on high dimensional data, while still 309

retaining the majority of the waveform variance (explained variance=0.883). Fig 3A 310

(bottom) plots the inverse transformed PCA30 waveform to highlight that the summary 311

statistic retains almost identical information. 312

The results in Fig 3B show that the expected posterior distribution described above 313

can be recovered with SBI. As shown in Fig 3B(a-e), when conditioned on the voltage 314

response with ∆t = 0, any distribution involving I+ or I− (blue) will exhibit an 315

indeterminacy (i.e., multiple recovered values along one dimension). The high 316

correlation between I+ and I− of 0.998 (p ≈ 0) demonstrates that the indeterminacy is 317

characterized by a strong linear interaction between these parameters. Specifically, the 318

line in Fig 3B(b, blue) corresponds to all values in which the amplitudes sum to a 319

constant value of V = −0.2, and the resulting voltage waveform is identical. In contrast, 320

the voltage response with ∆t ̸= 0 (orange) produces a posterior distribution 321

concentrated on a single point around the ground truth parameters (Fig 3B(b, orange), 322

correlation between I+ and I−: 0.375; p < 1e-33). 323

Diagnostics enable comparison of posterior estimates using 324

different summary statistics 325

In the previous example, we utilized PCA30 as a summary statistic to learn a low 326

dimensional representation of the voltage time series. PCA is a common choice for 327

dimensionality reduction, and has been used in historical MEG/EEG inference work 328

with only the first 3-4 principal components [15, 42]. However, it is not guaranteed that 329

PCA, which aims to only capture variance, will retain the features that best allow SBI 330

to map waveforms to simulation parameters. An alternative approach is to leverage 331

domain-expertise to construct hand-crafted summary statistics specific to the model 332

and inference problem. Unfortunately, it cannot be known a priori which summary 333

statistic will allow SBI to perform best, necessitating quantitative diagnostics that allow 334

a systematic comparison. Here, we introduce two simple hand-crafted summary 335
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Fig 4. Diagnostics to compare summary statistics on RC circuit model. A:
Summary statistics applied to the simulated time series included: PCA30 (i), PCA4 (ii),
Peak (amplitude and timing of max/min, iii), and BandPower (four bands between
dotted lines, iv). PCA plots (i-ii) show the associated inverse transformed signal. Two
exemplar simulations with pulse latencies ∆t = 0 (blue) and ∆t ̸= 0 (orange) are shown.
B: Conditioning the approximate posterior distribution on the ∆t = 0 time series
produces indeterminacies for all summary statistics, such that the ground truth (red
dotted lines) current injection amplitudes (I+ and I−) cannot be uniquely recovered.
PCA30, PCA4, and Peak features exhibit a linear interaction between parameters for the
∆t = 0 time series, whereas the ground truth is recovered for the ∆t ̸= 0 (orange) time
series. BandPower produces non-linear interactions for both time series. C: Local
parameter recovery error (PRE) heatmaps are shown. Brighter colors indicate higher
dispersion of the posterior around the ground truth parameters defined by each square.
Errors tend to be concentrated around ∆t = 0 for PCA30, PCA4, and Peak features. D:
Local posterior predictive check (PPC) heatmaps are shown. Brighter colors indicate
regions where simulations generated from posterior samples are further from the
conditioning time series. For both diagnostics, it is clear that PCA30 produces the PRE
and PPC across the parameter grid. The ground truths of the exemplar simulations of
panels A/B are indicated by blue/orange squares.

statistics, as well as the posterior diagnostics PRE and PPC, with the intention to build 336

an intuitive understanding of how emphasizing different summary statistics can impact 337

the final estimates produced by SBI. 338

The first hand-crafted summary statistic we defined is a four dimensional vector 339

including the amplitude and timing of the maximum and minimum peaks (Peak) of the 340

simulated voltage response (Fig 4A(iii)). It can be readily seen that these features 341

reflect the underlying simulation parameters. Upon visual inspection of the voltage 342

response with ∆t ̸= 0 (orange), the height of the maximum and minimum peak directly 343

correspond to the parameters I+ and I−, and the distance between these peaks 344

correspond to the latency parameter ∆t. We’ll show below that Peak features permits 345

inference that is close to that achieved with PCA30 Fig 4A(i) and also PCA4 Fig 4A(ii). 346

The second hand-crafted summary statistic we defined was a four dimensional vector 347
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including the band power (BandPower) of common frequency ranges used to study 348

neural oscillations (Fig 4A(iv)). Specifically, we considered the beta (13-30Hz), 349

low-gamma (30-50Hz), and high-gamma (50-80Hz) ranges, as well as the aggregate 350

band power of the alpha and lower frequency ranges (0-13Hz). As we’ll show below, 351

this feature was intentionally selected as a cautionary example of a summary statistic 352

that is ill-suited for the inference problem, but has a basis in previous neuroscience and 353

Bayesian inference literature [43]. 354

Next, we describe two diagnostics that allow comparison of desirable properties of 355

the posterior distribution for different summary statistics, namely PRE and PPC (see 356

Fig 1 Step 6 and Materials and methods). In the results below, we calculated PRE 357

values over a grid, with 10 points for every parameter dimension, spanning the range of 358

the prior distribution (Fig 4C). 359

Taking inspiration from [44], we visualize the PRE as heatmaps over the parameter 360

grid (Fig 4C-D). One of the advantages of inspecting local posterior diagnostics (“local” 361

as in specific to the pair (x0, θ0)) is the ability to identify patterns. Fig 4C plots the 362

PRE for the I+ parameter, with respect to different ground truth values of I+ itself, 363

and the ∆t parameter. Blue and orange squares mark the ground truth values used to 364

generate the waveforms in Fig 4A. We observe that the summary statistics PCA30, PCA4, 365

and Peak all exhibit a pattern where ∆t values near zero produce a larger PRE 366

compared to the rest of the parameter grid (Fig 4C(i-iii)). This is due to the 367

indeterminacy in I+ as seen in the blue posterior samples of Fig 4B(i-iii). It is apparent, 368

however, that PCA30 values produce the lowest PRE values, even near a ∆t of zero. In 369

contrast, the BandPower summary statistic produces a posterior distribution with 370

complex indeterminacies for both observations. This results in high PRE values across 371

the entire parameter grid (Fig 4C(iv)), indicating that this summary statistic is not 372

effective at recovering the ground truth parameters. 373

Defining gPRE as the global average value over this grid, the gPRE values for the 374

parameter I+ were low for PCA30 (0.01 ± 0.02), PCA4 (0.03 ± 0.04), and Peak (0.04 ± 375

0.04) features. In contrast, the larger gPRE for Band Power features (0.23 ± 0.14) 376

demonstrates that the ground truth for I+ is recovered much less accurately. The gPRE 377

for I− followed a similar pattern, whereas the parameter ∆t was generally well 378

recovered for all ground truths (see Data and code availability for results of diagnostics 379

for all parameters and conditions). 380

The PPC is a method to describe how well samples from the posterior match the 381

conditioning observation [34,35]. Given a well-estimated posterior distribution p(θ | x) 382

and a conditioning observation x0 ∼ p(x | θ0), one would expect simulations 383

xi ∼ p(x0 | θi) to be close to the original conditioning observation. Unlike the PRE 384

heatmaps, the PPC plots shown in Fig 4D does not exhibit obvious patterns with 385

respect to the underlying parameter grid, and instead the summary statistics are well 386

characterized by the global average PPC (gPPC). Similar to the PRE analysis, the 387

gPPC values were relatively low for PCA30 (0.008 ± 0.004mV), PCA4 (0.012 ± 388

0.006mV), and Peak (0.027 ± 0.015mV) summary statistics, whereas BandPower (0.133 389

± 0.053mV) was substantially larger. 390

These diagnostics demonstrate PCA30 performs the best for this inference problem. 391

Additionally, the local PRE analysis revealed differences between summary statistics 392

that were not apparent with the global diagnostics. It is important to note that neither 393

of these diagnostics quantify the closeness of the approximation Φ to the true posterior. 394

For instance, if there is an interaction between parameters of the model causing a 395

parameter indeterminacy, then the PRE will always be non-zero, since the posterior 396

distribution will be spread in the parameter space. This is the case for the posterior of 397

the RC circuit with ∆t = 0 in Fig 3B. Similarly, if model simulations are stochastic, 398

then a given set of parameters may map to multiple equally valid outputs, producing a 399
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non-zero PPC. Nevertheless, both diagnostics provide useful information to compare 400

desirable properties of the posterior approximation. 401

Subthreshold HNN simulations mimicking the RC circuit shows 402

that inference with summary statistics that account for the full 403

time series waveform perform best 404

Building from the RC circuit, we now describe a nearly identical inference problem in 405

our large-scale biophysically detailed model constructed to study the neural mechanisms 406

of human MEG/EEG, HNN (Fig 5). As described further in Materials and methods, 407

HNN is a neocortical column model with multiple layers and biophysically detailed local 408

cell types. The local network receives exogenous excitatory synaptic input through layer 409

specific pathways that effectively synapse on the proximal and distal dendrites of the 410

pyramidal neurons, representing “feedforward” and “feedback” input from thalamus and 411

higher order cortical areas. These inputs are simulated with external “spikes” that 412

activate layer specific excitatory synapses (see Fig 2B-C, and reduced schematic in 413

Fig 5C). This synaptic activity induces current flow within the pyramidal neuron 414

dendrites, which is summed across the population to simulate a net current dipole that 415

is directly comparable to that measured with MEG/EEG. Several previous studies have 416

shown that patterns of activation of the local network through these pathways can 417

generate commonly measured MEG/EEG current dipole signals such as event related 418

potentials and low frequency brain rhythms, e.g., see [5]. 419

D

P

A B C

PCA30

Raw

∆t = 0

∆t ≠ 0

a

b c

ed f

Fig 5. HNN simulations that mimic RC circuit. HNN simulations that reflect
the nearly identical parameter configuration as the RC circuit in Fig 3. A: Simulated
current dipole waveforms are shown for two exemplar parameter configurations with
∆t = 0 (blue) and ∆t ̸= 0 (orange). The original “Raw” simulated waveform (top) is
plotted in comparison with the PCA inverse transformed waveform with 30 components
(PCA30, bottom). B: Posterior distributions showing the inferred values that can
generate the waveforms from panel A demonstrate that when the latency between the
inputs is zero (blue), their amplitudes are indeterminate as visible with a positive
correlation between the parameters P and D. C: Schematic of HNN simulations in
which a single excitatory proximal/distal input with variable synaptic conductances and
latencies produce positive (red)/negative (green) deflections in the current dipole.
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To set up an inference problem that is comparable to our RC circuit example, we 420

begin by considering patterns of drive to the network that create subthreshold current 421

flow in the pyramidal neurons, effectively “disconnecting” the network, because local 422

synaptic interactions depend on local cell firing. Simulations with spiking dynamics will 423

be demonstrated in the following section. For simplicity, we first describe the 424

subthreshold current flow in the L5 pyramidal cells only (Fig 5C). Specifically, we ran 425

HNN simulations with single exogenous spikes that activate excitatory synapses on the 426

proximal and distal dendrites of L5 pyramidal cells. Synaptic excitation of distal 427

synapses generates current flow down the dendrites (e.g. see green arrow Fig 5C), and 428

excitation of proximal dendrites generates current flow up the dendrites (e.g. see red 429

arrow Fig 5C). A delay between these the time of the two driving spikes can create a 430

net current dipole signal that is analogous to that observed in the RC circuit for a 431

non-zero time delay between the applied currents (see Fig 5A, orange). Further, when 432

the delay between the spikes is zero (see Fig 5A, blue) an indeterminacy in parameter 433

estimation can occur, as described below. 434

With this set up, we applied SBI to infer parameters that mimic those of the RC 435

circuit example, using PCA30 as the chosen summary statistic to constrain the inference 436

problem. Namely, the strength of proximal and distal excitatory inputs, referred to as P 437

and D, parameterized as the maximal conductance at their respective synapses and the 438

latency ∆t between the two inputs . We kept the proximal input time fixed, and let the 439

distal input time vary with ∆t. The prior distribution over P and D was set to ensure 440

that all simulations remained subthreshold (see Table 1 for prior distribution ranges). 441

Similar to the RC circuit example, simulations with ∆t = 0 produce a current dipole 442

with a reduced amplitude (Fig 5A(blue)), whereas ∆t ̸= 0 produces a clear positive and 443

negative peak (orange). As shown in Fig 5B(a-e, blue), when conditioned with ∆t = 0, 444

any posterior distribution involving P and D will exhibit an indeterminacy. Intuitively, 445

this indicates that the proximal and distal inputs can compensate within a small range 446

to produce similar current dipole waveforms. Unlike the RC circuit, this interaction 447

does not span the full range of input strengths, and instead is more tightly concentrated 448

around the ground truth (Fig 5B(a,c,f) stars). 449

Once again, we show that the choice of summary statistics impact the learned 450

posterior distribution approximation, and that diagnostics can be used to evaluate the 451

quality of the parameter estimation (Fig 6A-B). When ∆t ̸= 0, both PCA30 and 452

PCA4 produced a posterior that is localized around the ground truth (Fig 6B(i-ii), 453

orange). When ∆t = 0, the posterior was still concentrated but with a slight 454

indeterminacy (Fig 6B(i-ii, blue)) that was less prominent than the analogous simulation 455

in the RC circuit (Fig 4B(i-ii, blue)). The Peak summary statistic produced a posterior 456

that is well clustered around the ground truth for ∆t ̸= 0 (Fig 6B(iii, orange)), but for 457

∆t = 0 exhibited a much more striking indeterminacy (Fig 6B(iii, blue)). In contrast, 458

BandPower was insufficient for ground truth recovery for both the ∆t ̸= 0 and ∆t = 0 as 459

was the case for the RC circuit simulations (Fig 6B(iv)). Interestingly, the 460

indeterminacy for the ∆t = 0 waveform with BandPower features (Fig 6B(iv)) is distinct 461

from the RC circuit (Fig 4B(iv)) and exhibits a clear linear interaction. 462

We quantified desirable properties of the posterior estimates, with the local PRE 463

and PPC analysis described above. At ∆t ≈ 0, PRE values were large when using 464

BandPower features (Fig 6C(iv)), relatively smaller for PCA4 and Peak (Fig 6C(ii-iii)), 465

and almost completely disappears for PCA30 (Fig 6C(i)). The PPC values for the 466

BandPower show that inference using this summary statistic produced results that were 467

highly dissimilar to the conditioning observations (Fig 6D(iv)), while PCA30, PCA4, and 468

Peak exhibit a much lower PPC values (Fig 6D(i-iii)). Local PRE and PPC analysis 469

largely agrees with the summary statistic performance captured by the RC circuit PPC 470

heatmaps (Fig 4C-D). 471
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Fig 6. SBI diagnostics of summary statistics in HNN. The analysis shown in
Fig 4 is repeated on a simplified HNN simulations for comparison. A: Summary
statistics included PCA30 (i), PCA4 (ii), Peak (iii), and BandPower (iv). Two exemplar
simulations with input latencies ∆t = 0 (blue) and ∆t ̸= 0 (orange) are shown. B: We
show the approximate posterior when conditioned on both the exemplar waveforms.
The ∆t = 0 time series produces a positive correlation between P and D for all
summary statistics. C: Local parameter recovery error (PRE) is shown. Unlike the RC
circuit, PCA30 and PCA4 permit better ground truth recovery even when ∆t is near zero.
In contrast, Peak features have poor parameter recovery similar to the RC example D:
Local posterior predictive checks (PPC) are shown. PCA30 and PCA4 produce the values
across the parameter grid.

Global PRE and PPC values confirm a similar ranking with PCA30 performing best 472

(P - gPRE: 0.005; gPPC: 8.675e-6 nAm) and BandPower exhibiting higher values for 473

both diagnostics (P - gPRE: 0.098; gPPC: 4.250e-5 nAm) (see Data and code 474

availability for results of diagnostics for all parameters and conditions). 475

In summary, intelligently chosen summary statistics like Peak features can perform 476

well, but leveraging information from the entire time series using PCA30 produced 477

consistently lower PRE and PPC values. The highly effective parameter recovery across 478

the entire parameter grid for PCA30 suggests that SBI permits a near unique mapping 479

from dipole waveform to parameters when the summary statistic accounts for the full 480

time series waveform and the parameters are kept in a subthreshold regime. In the next 481

example, we show that this is not true in general. Even when using information from 482

the full dipole waveform with PCA, inference in HNN simulations that include 483

stochasticity can produce substantial parameter indeterminacies. 484
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SBI expands previously proposed mechanisms of subthreshold 485

Beta Event simulations in HNN and shows stochastic simulation 486

can lead to indeterminancies 487

Previous studies have applied the HNN modeling framework to propose novel 488

mechanisms for the cellular and circuit level generation of transient low frequency 489

oscillation in the 15-29Hz beta-frequency band, referred to as Beta Events or beta 490

bursts [24,28,45]. Many studies have shown that Beta Events occur throughout the 491

brain (e.g. see [46]) and that they often have a stereotypical waveform shape that 492

resembles an inverted Ricker wavelet lasting ∼150 ms [24,45,47], see Fig 7A. Changes in 493

transient beta activity have been associated with sensory processing and motor 494

action [45,48,49], and the Beta Event waveform shape has been specifically associated 495

with motor pathology in Parkinson’s disease and with the aging process [47,50]. HNN 496

provides potential mechanistic explanations for how changes in waveform shape may 497

emerge. The HNN derived novel Beta Event mechanism put forth by Sherman et al. 498

[24] showed that Beta Events can arise from the dendritic integration of coincident 499

bursts of subthreshold proximal and distal dendritic excitatory synaptic inputs to 500

cortical pyramidal neurons [24, 28], such that the distal drive is effectively stronger and 501

lasts one beta period (∼50ms); a prediction that was supported by invasive laminar 502

recordings in mice and monkeys [24] and high-resolution MEG in humans [45]. More 503

specifically, HNN reproduced Beta Events with the observed stereotypical shape when 504

stochastic trains of action potentials were simulated to drive the proximal and distal 505

dendrites of the pyramidal neurons, nearly simultaneously. Bursts of input whose mean 506

timing and standard deviation where chosen from Gaussian distributions activated 507

excitatory synapses in a proximal and distal connection pattern, as shown in Fig 7A. 508

The inverted Ricker waveform shape depended on the standard deviation of the 509

proximal burst being broader than the distal burst, with the proximal burst occurring 510

over ∼150ms and the distal burst occurring over ∼50ms, and the mean time of each 511

burst being the same, i.e. reminiscent of ∆t = 0 above. The proximal drive pushes 512

current flow up the pyramidal neuron dendrites, while the distal drive pushes it back 513

down (see Fig 7A). 514

Previous work also showed that the amplitude of the prominent middle trough 515

depended on the variance of the distal drive, such that a parametric lowering of the 516

variance pushed more current flow down the dendrites generating an increased 517

amplitude and sharper peak [24]. This prior study did not perform an automated 518

parameter inference, but rather the results were based on hand tuning and parameter 519

sweeps. Extending these prior results, the SBI methods can be applied to HNN to infer 520

distributions of proximal and distal drive variance that can account for different 521

waveform shapes, and the same diagnostics used above can be used to assess the quality 522

of the estimates. Note that the waveforms analyzed below are simulated Beta Events 523

using parameters from previous HNN studies, and not real recorded data. 524

We defined a prior distribution over proximal and distal input variance (Pσ2 , Dσ2) 525

using the same parameters for Beta Event generation as in [24], see Table 1. All other 526

parameters, including the number of spikes, mean input time, and synaptic 527

conductances were all held fixed as in [24]. The choice emphasizes the need for an a 528

priori hypothesis based on domain expertise to constrain the prior distribution to a 529

tractable subset of all the possible model parameters. We used PCA30 as the summary 530

statistic motivated from the results above. We ran the HNN-SBI workflow to obtain a 531

posterior distribution approximation that allows us to infer Pσ2 and Dσ2 for a given 532

waveform (Fig 7C). Example waveforms consisting of large (blue) and small (orange) 533

amplitude Beta Events, generated with different values of Dσ2 , are shown in Fig 7B 534

together with the proximal (red, bottom) and distal (green, top) spike histograms that 535
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Fig 7. HNN-SBI recovers circuit mechanism of Beta Event amplitude
described in previous studies. A: Schematic of Beta Event simulations in HNN.
Beta events are generated by a simultaneous burst of subthreshold proximal (red) and
distal (green) excitatory inputs to L5 pyramidal neurons. B: Exemplar simulations of
large (top, blue) and small (bottom, orange) amplitude Beta Events are shown.
Simulations corresponding to a posterior predictive check (PPC) are also shown in black,
whose parameters were sampled from the posterior of each respective waveform. Spike
histograms of proximal and distal inputs are included above and below the waveform.
C: Posterior distributions conditioned on large (blue) and small (orange) amplitude
Beta Events demonstrate that lower distal variance produces a larger amplitude Beta
Event. Overlap coefficients (OVL) quantifying the separability of the marginal posterior
distributions conditioned on each waveform are shown on the diagonal for the
corresponding parameters. D: PRE heatmap of Dσ2 shows accurate parameter recovery
when the ground truth parameters of Dσ2 is small (dark colors at top of heatmap).

generated each waveform. The corresponding estimated posteriors for these examples 536

are shown in Fig 7C. The posterior density over the large amplitude Beta Events 537

occupies low values for Dσ2 in the range of 0-5ms2, while the small amplitude Beta 538

Event produces a posterior density with higher distal variance in the range of 5-10ms2. 539

For both small and large amplitude Beta Events, there is a clear indeterminacy in 540

Pσ2 . Unlike Dσ2 , the distribution of Pσ2 is widely spread over the range of the prior 541

distribution, indicating that Pσ2 cannot be accurately recovered from the waveform. To 542

quantify the separability of these distributions, we can employ the distribution overlap 543

coefficient (OVL) which varies on a scale of [0,1] such that 1 indicates complete overlap, 544

and 0 indicates no overlap. Unsurprisingly, the Pσ2 distributions for the large and small 545

Beta Events produce an OVL of 0.799 due to the clearly visible high degree of overlap, 546
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whereas when comparing the Dσ2 distributions they exhibit almost no overlap with an 547

OVL of 2e-10. 548

We should note that unlike the simulations from the previous sections, where all 549

parameters were deterministic, the exogenous input times considered here are stochastic. 550

As a result, there is not a 1:1 mapping from parameters to simulation output. To 551

highlight this, Fig 7B shows simulations with parameters drawn from their respective 552

posterior distributions (black traces). This visually represents the PPC diagnostic, 553

where simulations from each posterior are close to the conditioning observation, but not 554

a perfect match. In this setting, the stochasticity in the simulations make it so that 555

measures such as PPC’s are not guaranteed to be zero even with a perfect 556

approximation of the ground truth posterior distribution. We additionally observe a 557

pattern in the local PRE heatmap of Dσ2 , indicating that this parameter is accurately 558

recovered from simulations generated with a small Dσ2 (Fig 7D, dark colors at top of 559

heatmap). 560

In summary, the Beta Event example demonstrates how SBI can be used to estimate 561

parameter distributions for given time series waveforms, and to compare potential 562

mechanisms underlying different waveforms. For the hypothetical example comparison 563

shown, the variance of the distal drive could be uniquely inferred while the variance of 564

proximal drive could not. Further, parameter estimates are more accurately recovered 565

for simulations with small distal variance. 566

SBI reveals parameter interdependencies for suprathreshold 567

Event Related Potential simulations in HNN 568

In the Beta Event example above, the effective strength of the proximal and distal input 569

were maintained in a range where the activity of the cells remained subthreshold, which 570

naturally limits the dynamic range of the simulation. Next, we consider a more complex 571

example, in which the cells are driven to a suprathreshold spiking regime and show that 572

this additional complexity can lead to parameter estimation indeterminacy that 573

indicates a compensatory interaction between parameters. Importantly, such parameter 574

interactions would not be revealed with other estimation methods such as mean field 575

variational inference given their assumption of Gaussian and independent parameter 576

distributions (i.e. the Laplace approximation). 577

The example considered describes simulations of a sensory evoked response or event 578

related potential (ERP). HNN has been applied to study source localized ERPs in 579

primary somatosensory cortex from tactile stimuli (e.g. [25,26]) and in primary 580

auditory cortex from auditory stimuli (e.g. [27]). In both cases, ERPs were simulated 581

with a sequence of exogenous input that represented an evoked volley of drive to the 582

local circuit that occurs after a sensory stimulus. The drive sequence consisted of a 583

proximal drive representing the initial feedforward input from the thalamus, followed by 584

a distal drive representing feedback input from higher order cortex, followed by a second 585

proximal drive representing a loop of re-emergent thalamocortical drive (see schematic 586

red and green arrows in Fig 8A. These drives were strong enough to generate spiking 587

interactions in the local network and induced current flow up and down the pyramidal 588

neuron dendrites to generate a current dipole ERP waveform analogous to those 589

experimentally recorded (Fig 8A). Note, here we are not examining recorded data, but 590

only example simulations. The specific timing of this exogenous drive sequence for 591

example simulations is shown with arrows in Fig 8B. The parameters regulating the 592

timing and the strength these drives were fixed to the same values for the different 593

conditions considered. 594

HNN has also been applied to infer neural mechanisms underlying differences in 595

ERP waveform shapes recorded across different experimental conditions. For example, 596
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in [25], HNN was applied to infer the circuit mechanisms underlying differences in ERP 597

waveforms emerging from perceptual threshold tactile stimulation (namely brief finger 598

taps that were detected 50% of the time) that were reported as detected (felt) or 599

not-detected (not felt). In that study, earlier and larger amplitude ERP peaks on 600

detected trials could be reproduced with decreases in the timing and increases in the 601

strength of the exogenous inputs. Here, we are not trying to reproduce any empirical 602

findings but rather apply SBI to examine the influence of changes in local network 603

connectivity on the ERP waveform as a proof of concept example that examines a small 604

subset of parameters distinct from our prior investigation. Our results lay the 605

foundation for future application using empirical data. 606

We start by simulating example ERPs with different peak amplitudes as show in in 607

Fig 8B as follows. ERPs were generated using a sequence of exogenous 608

proximal-distal-proximal inputs (Fig 8A and as described above). The parameters 609

representing the timing and strength of the sequence of exogenous proximal and distal 610

input to the local circuit were chosen to be those distributed with the HNN software 611

representing an example tactile evoked response simulation and fixed to those values 612

(see Table 1). We then defined a prior distribution over parameters that define a small 613

subset of the local network excitatory and inhibitory connectivity Fig 2A. These 614

parameters included the maximum conductance (ḡ) of layers 2 and 5 excitatory AMPA 615

(EL2 / EL5) and inhibitory GABAa (IL2 / IL5) connections to the L5 pyramidal cell. 616

Specifically, EL2 and IL2 pertains to synapses on the distal dendrites, EL5 on proximal 617

dendrites, and IL5 on the soma. Note that there exist more local network connections 618

than those varied here as shown in Fig 2A and this chosen prior distribution was not 619

based on any hypothesis or prior knowledge of the impact of local parameters on the 620

ERP, but rather as a tractable example. 621

Two example ERPs produced by networks with different local connectivity are 622

shown in Fig 8B. The ground truth parameters that created these waveforms are shown 623

with stars in Fig 8D. Despite being activated by an identical exogenous input sequence, 624

it is apparent that the local network connectivity differences lead to dramatically 625

distinct current dipole ERP waveforms and corresponding spiking activities. In Fig 8C 626

the spiking activity associated with each waveform is largely distinguished by the 627

activity of L5 pyramidal neurons (red dots), with more firing in Condition 2 (orange 628

waveform). For Condition 1 (blue), the first proximal input leads to the beginning of a 629

sustained negative deflection in the current dipole, which persists during the subsequent 630

distal input due to prolonged activation of the L5 basket cells which inhibit the L5 631

pyramidal neuron soma to pull current flow down the dendrites. Once this inhibition 632

ends, the L5 pyramidal neuron is able to spike, pushing current flow back up the 633

dendrites and the subsequent volley of proximal drive continues to push current flow up 634

and down the pyramidal neuron dendrites due to a similar spiking dynamic. This is in 635

contrast to Condition 2 (orange) in which L5 pyramidal neuron spiking starts almost 636

immediately after the first proximal input and persists, pushing current flow up the 637

dendrites to create a sustained positive deflection in the current dipole that persists 638

through the entire simulation. 639

Fig 8D shows the results of applying the HNN-SBI framework with the 640

PCA30 summary statistic to estimate the ground truth parameters that generated the 641

ERP waveforms described above. It is apparent that the posterior distributions 642

conditioned on each waveform place high probability mass around the corresponding 643

ground truth parameters (Fig 8D, stars on diagonal), but also exhibit strong 644

indeterminacies. For example, for each condition, there is a clear interaction between 645

EL2 and IL2, such that as one parameter increases the other also increases, suggesting 646

that these two parameters can compensate one another in a limited range to maintain a 647

constant waveform. We can also observe that between the two conditions there are 648
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Fig 8. Inferring local connectivity parameters from ERP waveforms. A:
Schematic of ERP simulations in HNN. Evoked activity is driven by a fixed sequence of
proximal-distal-proximal exogenous inputs. SBI is used to infer the maximal
conductance strength (ḡ) of local excitatory/inhibitory connections to the
proximal/distal dendrites of L5 pyramidal neurons for example waveforms. B: Exemplar
simulated ERPs (blue and orange solid lines) with differing local connectivity strengths
chosen from a defined prior distribution (described in the text) are shown, along with
the fixed timing of the sequence of exogenous inputs for each simulation (red and green
arrows). C: Spike raster plots of cell specific firing for the two ERP simulation
conditions from panel B. D: Posterior distributions over local connectivity parameters
alongside ground truth parameters (stars on diagonal) for conditioning observations. A
strong interaction between excitatory/inhibitory distal inputs (EL2 and IL2) is visible in
the lower square. Overlap coefficients (OVL) quantifying the separability of the
marginal posterior distributions conditioned on each waveform are shown on the
diagonal for the corresponding parameters. E: Local parameter recovery error (PRE)
for distal inhibition IL2 indicates errors are higher for observations generated with
strong excitatory EL2 and weak inhibitory IL2 distal connections.

apparent difference in L5 pyramidal neuron spiking, as well as the sustained negativity 649

(blue) and positivity (orange) observed in the current dipole due to the complex 650

dynamics that each parameter configuration creates. 651

To quantify the separability of these distributions, we calculated the OVL coefficient 652

for the marginal distributions of all parameters (Fig 8D diagonal). Estimated parameter 653

distributions of the synapses on the layer 5 distal dendrites, EL2 and IL2, exhibit a 654

small amount of overlap across conditions with OVL values of 0.190 and 0.011 655

respectively. The parameter distribution of the synapses on layer 5 somas however were 656
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much more distinguishable for the two conditions, exhibiting OVL values of 2.28e-5 for 657

EL5, and 1.59e-13 for IL5. We additionally performed diagnostic analysis of the local 658

PRE to see how recovery of IL2 changes as a function of IL2 itself, and EL2. Fig 8E 659

exhibits a clear pattern indicating that the recovery of IL2 is worse when the network 660

exhibits low IL2 and large EL2. 661

In summary, the ERP example provides another demonstration of how SBI can be 662

used to estimate parameter distributions for given time series waveforms and to 663

compare potential mechanisms underlying different waveforms. For the hypothetical 664

example comparison shown, EL5 and IL5 were uniquely inferred with distributions for 665

the waveforms compared exhibiting very little overlap. Distributions for EL2 and IL2 666

were also separable, albeit with slightly more overlap, and a marked interaction between 667

these two parameters. 668

Discussion 669

Inference in detailed biophysical models like HNN is far from a solved problem. 670

Nevertheless, the recent developments in likelihood-free inference techniques have 671

enabled predictions of parameter distributions with a level of detail and complexity that 672

was simply not feasible until now. In this study, we detailed step-by-step methods to 673

employ SBI in detailed models of neural time series data and to assess the quality and 674

uniqueness of the estimated parameter distributions. We began with a simplified 675

RC-circuit example which exemplified the possibility of parameter interactions and 676

highlighted limitations with chosen summary statistics that do not consider the full 677

time series waveform. We then demonstrated how distributions of biophysical 678

parameters that can account for a given time series waveform can be inferred using an 679

integrated HNN-SBI workflow applied to two common MEG/EEG signal motifs (Beta 680

Events and ERPs) and how to assess overlap of the distributions from two different 681

waveforms. This work does not aim to be an exhaustive guide to inference in HNN, nor 682

to focus on specific neuroscientific questions, but instead to provide useful examples and 683

methods to highlight critical decisions in the inference pipeline. There are several major 684

takeaways from our study. First, highly non-linear biophysically detailed neural models 685

like HNN are not suitable for Bayesian estimation methods that require access to a 686

likelihood function (e.g. variational inference) or that approximate posterior 687

distributions with independent Gaussians (a.k.a Laplace approximation). Rather they 688

necessitate a method that can estimate complex posterior distributions and parameter 689

interactions from a simulated dataset (e.g. SBI with masked autoregressive flows). 690

Second, an important initial step in the SBI process is to identify a limited set of 691

parameters and a range of values for those parameters that are assumed to be able to 692

generate the waveform of interest and variation around it (i.e. the prior distribution). 693

Due to the large-scale nature of biophysically detailed network models, it is not possible 694

to perform SBI on all parameters at once. The choice of the prior distribution 695

represents a hypothesis about parameters that are assumed to contribute to variation in 696

the waveform. This hypothesis can be informed by domain knowledge of the question of 697

interest. In the HNN examples shown, the hypothesized parameters of interest for 698

estimation were the strength of the proximal and distal excitatory synaptic drive for the 699

Beta event simulation, and local excitatory and inhibitory connectivity for the ERP 700

simulation; these parameters were chosen only for didactic purposes. All other 701

parameters were fixed based on previous studies. Third, posterior diagnostics like PRE 702

and PPC, are valuable tools to guide decisions in the inference pipeline, e.g. optimal 703

summary statistic selection, and OVL can be used to assess the uniqueness of estimated 704

distribution for two different waveforms. Fourth, when estimating parameters that 705

account for time series waveforms, summary statistics informed by the full time series 706
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such as PCA are the most effective at retaining essential information for mapping 707

recorded signals to underlying parameters. While hand-crafted summary statistics, such 708

as peak latency or amplitude, can permit an accurate mapping for certain waveform 709

features, their selection may be insufficient to identify unique parameters distributions. 710

Comparison with inference in MEG/EEG neural modeling 711

frameworks that rely on dynamic causal modeling 712

To our knowledge, while there are several modeling frameworks for simulating 713

MEG/EEG signals, the other frameworks that use likelihood-based Bayesian inference 714

to estimate parameters fall in the category of Dynamic Causal Modeling (DCM) [15,51]. 715

It is important to emphasize that while the HNN-SBI framework conceptually overlaps 716

with DCM, they are two fundamentally distinct techniques which address different 717

questions. At its base, DCM combines variational inference, a computationally efficient 718

Bayesian inference algorithm, with neural mass models, as well as an observation model 719

which translates simulated activity to experimental measures (e.g., MEG/EEG). Neural 720

mass models refer to a specific class of neural models where a single variable represents 721

the aggregate activity of large neural populations (e.g. population spike rates). The 722

inferred parameters in the DCM framework most often represent the coupling strength 723

between distinct neural masses (e.g. population nodes). By making simplifying 724

anatomical and physiologic assumptions, neural mass models in the DCM framework 725

can be employed in a large variety of inference problems due to their computational 726

efficiency. However, their ability to make precise biophysical predictions on cellular and 727

local circuit level processes is limited as the parameters are an abstraction representing 728

population level activity [51]. For example, DCM employs the mean-field assumption, 729

meaning that biologically important compensatory interactions such as 730

excitatory/inhibitory (E/I) balance cannot be directly characterized in terms of 731

synaptic conductance. Further, this means that DCM is not capable of representing the 732

parameter indeterminacies with interactions that we showed can occur in the HNN-SBI 733

framework. There are, however, advantages of DCM over the HNN-SBI framework that 734

access to a known likelihood function and other simplifying assumptions allow. For 735

example, one critical question that the HNN-SBI framework is currently not suited to 736

address is inference with multiple spatially separated cortical sources. While 737

theoretically possible, the high computational demands of HNN-SBI severely limit the 738

ability to explore multi-area interactions, and highlight the importance of using neural 739

mass models and DCM in the analysis of whole-brain neuroimaging data. Recent work 740

has shown that neural mass models can also be integrated with the SBI-framework for 741

whole-brain studies [22], highlighting the adaptability of the SBI methodology to a wide 742

variety of neural models. 743

Comparison to other biophysically detailed neural modeling 744

studies and estimation techniques 745

The simulation process outlined here extends prior work using SBI to estimate 746

parameters in detailed neural models. Prior work applying SBI to neural models has 747

included a single compartment Hodgkin-Huxley model, and the stomatogastric ganglion 748

model [18], both of which include an extensive parameter set, but contain significantly 749

less detail and are smaller scale models than HNN. Additionally, non-amortized 750

inference was performed in these models using sequential neural posterior estimation, 751

allowing a much larger parameter set to be inferred, but only for a specific single 752

observation. In contrast, we omit the use of sequential methods to perform inference on 753

multiple observations using the same trained neural density estimator, but at the 754
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expense of the number of parameters that can be inferred simultaneously. The SBI 755

workflow applied here used the neural density estimation technique known as masked 756

autoregressive flows. There are currently a large number of neural density estimation 757

techniques beyond this choice, each offering distinct advantages such as sample 758

efficiency, expressivity, and likelihood evaluation [16]. While this field is rapidly 759

evolving, recent concerns have been raised about the limits of such tools in the domain 760

of Bayesian inference for scientific discovery [39,52]. Unfortunately, there currently exist 761

very few techniques for the validation of posterior distributions learned through neural 762

density estimation beyond PPC and PRE diagnostics shown here. One promising work 763

is simulation-based calibration [22,53], which plays a similar role as PPC’s by 764

measuring properties the posterior approximation should satisfy if it is close to the 765

ground truth. It is important to note, however, that this technique assesses the quality 766

of the posterior approximation for the marginals of each parameter separately. More 767

research in the domain of multidimensional calibration in the context of likelihood-free 768

inference will be crucial to better represent complex parameter interactions like local 769

E/I balance, as shown in Fig 8. Nearly all parameter estimation techniques in 770

high-dimensional biophysically detailed neural modeling will be computationally 771

expensive. Indeed, SBI with HNN has a high computational load (for each example 772

shown here, 100,000 simulations were run on a computing cluster in parallel over 512 773

CPU cores). While the upfront computational costs are high, there are advantages to 774

SBI over other estimation techniques, for example COBYLA estimation, which has also 775

been applied in HNN [5]. The main distinguishing factor is that SBI makes use of every 776

simulation to build an accurate approximation of the posterior distribution for many 777

waveforms. In contrast, COBYLA uses simulations to iteratively search for an 778

optimized parameter set for a single waveform. Once trained, the neural density 779

estimator in the SBI framework can be applied again on new time series waveforms 780

(that fall within the prior distribution) without retraining. As shown in the results, the 781

posterior distribution is an object with several utilities. We emphasize the mapping 782

between observations and ground truth parameters in this paper, but there are 783

alternative uses such as parameter optimization via non-amortized inference [17], as well 784

as building a more basic understanding of the model itself. Further, significant research 785

efforts currently underway have the potential to improve the computational cost of 786

parameter estimation in biophysical neuron models enhancing the accessibility. 787

Other important future directions 788

In this study, we showed that PCA is the appropriate choice when compared to simple 789

hand-crafted summary statistics when performing SBI on time series waveforms. 790

However, PCA is constrained to preserve high-variance features, when in fact 791

low-variance features may also be critical for identifying certain parameters. An 792

important line of future work is the improvement of methods to learn summary statistics 793

from neurophysiological signals that can help identify features of the signal that are 794

essential for accurate parameter estimation. A promising development in this domain is 795

the use of embedding networks that are trained to estimate summary statistics 796

simultaneously with the neural density estimator used to approximate the posterior 797

distribution that can account for those summary statistics [17,23,40,41]. Currently, it is 798

unclear if existing methods to train these embedding networks coupled to neural density 799

estimators are sufficient and require further analysis. Our HNN-SBI examples focused 800

on making inferences by constraining only to one output of the model; namely simulated 801

current dipole waveforms. However, due to the multi-scale nature of the HNN model 802

there are many other model outputs that could help constrain the inference problem, 803

such as cell spiking profiles, and/or local field potential signals. A major advantage of 804

the Bayesian framework is the ability to flexibly integrate multiple features into the 805
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parameter estimation. If additional multiscale data is known, properties of this data can 806

provide further summary statistics over which the inference problem can be constrained. 807

Conclusion 808

Using detailed neural models in a Bayesian framework is the product of significant 809

developments in machine learning, biophysical modeling, and high-performance 810

computing that have evolved largely independently. Our results demonstrate that 811

large-scale biophysically detailed models, like HNN, are now amenable to Bayesian 812

methods via the SBI framework, an approach that has not been feasible in the past. 813

However, this novel combination produces new conceptual and technical challenges that 814

must be addressed to effectively use these techniques. While in this work we provide 815

guidelines for addressing such challenges, more research in the domains of neural 816

modeling and likelihood-free inference are needed. It is apparent that the combination 817

of HNN with SBI is a step forward for making mechanistic inferences underlying 818

MEG/EEG biomarkers, with the potential to provide novel circuit-level predictions on 819

disease and neural function. Our results lay the foundation for similar integration of 820

SBI into the growing number of biophysically detailed neural modeling frameworks to 821

advance neuroscience discovery. 822

Supporting information 823

Prior distribution setup and sampling 824

Prior samples θi ∈ Rd were generated by using the PyTorch Uniform distribution on the 825

interval [0,1). The values in each dimension were then linearly mapped to the range of 826

their corresponding parameter values. For parameters specifying the maximum 827

conductance ḡ (nanosiemens, nS ) of synaptic connections in HNN, the values were 828

additionally exponentiated in base 10 after being mapped to the appropriate range. 829

Table 1. Simulation parameters and SBI training

RC Circuit Range Transform
Amplitude 1 (mA) (0, 1) linear
Amplitude 2 (mA) (0, 1) linear
Latency (ms) (-75, 75) linear
HNN “RC” Range Transform
Distal Exc (nS) (1e-4, 1e-3) exponential
Proximal Exc (nS) (1e-4, 1e-3) exponential
Latency (ms) (-75, 75) linear
ERPs Range Transform
Distal Exc (nS) (1e-5, 1) exponential
Proximal Exc (nS) (1e-5, 1) exponential
Distal Inh (nS) (1e-5, 1) exponential
Proximal Inh (nS) (1e-5, 1) exponential
Beta Events Range Transform
Distal Var (ms2) (0, 20) linear
Proximal Var (ms2) (0, 40) linear

The prior support and transform function for the parameters of examples shown in the
text.
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Simulation and SBI training 830

Prior samples and simulations were all generated and stored in the form of NumPy 831

binary arrays before neural density estimator training. The SBI Python package was 832

used for all neural density estimator training and posterior evaluation. A masked 833

autoregressive flow architecture was utilized for approximation of the posterior 834

distribution. Posteriors for all examples were trained using a dataset of 100,000 samples 835

from the prior distribution. Gaussian white noise was added to training observations 836

xi [54]. The variance of the Gaussian noise added to observations was 0.01 for RC 837

circuit simulations, and 1e-5 for HNN simulations. 838

All analysis was performed on the Expanse supercomputing cluster managed by 839

XSEDE and the Neuroscience Gateway. HNN simulations were generated using the 840

Dask distributed scheduler configured for the SLURM workload manager. 841

Diagnostic heatmaps were constructed by defining a grid over the support of the 842

prior with a range of [0.05, 0.95]d, with a resolution of 10 samples in each dimension d. 843
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