
PsychNology Journal, 2004
Volume 2, Number 1, 123 - 139

 123

Methods and Tools for Designing and Developing Usable
Multi-Platform Interactive Applications

Cristina Chesta♠1, Fabio Paternò2, Carmen Santoro2

(1) Motorola Electronics S.p.A. – Global Software Group

Turin, Italy

(2) I.S.T.I. - C.N.R.
Pisa Italy

ABSTRACT

The increasing availability of new types of interaction devices raises the need for new
methods and tools to support the design and development of highly usable context-sensitive
nomadic applications accessible through multiple platforms.
This paper provides an overview and discusses a solution based on the use of multiple
levels of abstractions, which has been studied within the framework of the European project
CAMELEON. Moreover it addresses the problem of evaluating the usability of these tools by
discussing the specific issues, the criteria and methodologies applied as well as some
results obtained in an experimental activity on the subject.

Keywords: nomadic, multi-platform, context-aware, model-based.

Received 23 January 2004; received in revised form 1 April 2004; accepted 6 April 2004.

1. Introduction

With the advent of the wireless Internet and the rapidly expanding market of smart

devices, designing interactive applications supporting multiple platforms has become a

difficult issue. In fact, on the one hand the decreasing cost at which the devices are

now offered has enabled an increasing variety of people to become potential users of

features and services of novel generations of communication technology as never

before.

On the other hand, rarely such a high number of flourishing range of opportunities

offered have become effective, due to the low quality of the user interfaces provided to

the users.

♠ Corresponding Author:
Cristina Chesta
E-mail: Cristina.Chesta@motorola.com

Designing Usable Multi-platform Applications

 124

The main problem is that many assumptions that have been held up to now about

classical stationary desktop systems are being challenged when moving towards

nomadic applications, which are applications that can be accessed through multiple

devices from different locations. Each device is characterized by different interaction

resources, including computational capability, accessible display area, interaction

channels and network bandwidth. Moreover the interaction resources are subject to

variations according to the physical and environmental conditions. For software

developers, this introduces the difficult task of constructing multiple versions of single

applications and endowing these versions with the ability to dynamically respond to

changes in context. Currently, developers often create different versions of

applications for different devices. This requires extra development, and maintenance

costs and complicates the configuration management. A proliferation of versions

reduces the resources available for usability engineering, and requires expensive

maintenance of cross-platform consistency of the user interface.

Consequently, one fundamental issue is how to support software designers and

developers in building such applications: in particular, there is a need for novel

methods and tools able to support development of interactive software systems able to

adapt to different targets while preserving usability.

The evaluation of the tools for nomadic applications development requires specific

criteria and methodologies enabling the assessment of usability and effectiveness from

the double point of view, of the developer using the tool itself and of the final user

dealing with the application implemented by exploiting the tool.

The paper presents some innovative techniques to provide software engineering

support for the development of applications accessible through multiple heterogeneous

platforms, which have been studied within the framework of the European project

CAMELEON.

The paper is organized as follows. We present first a discussion on related work, a

comprehensive vision of the project objectives and the approach adopted.

The next sections are dedicated to the current activities, with special focus to the

ones carried-out at ISTI-CNR and Motorola GSG Italy. We introduce the TERESA tool

for forward engineering design and development of multi-platform applications. Then

we illustrate the case study proposed in order to provide a real application example

and the experimental evaluation performed. Finally we report some preliminary

evaluation results, followed by the concluding remarks.

C. Chesta et al.

 125

2. The Approach
In a recent paper discussing the future of user interface tools Myers, Hudson, and

Pausch (Myers et al., 2000) indicate that the wide platform variability encourages a

return to the study of some techniques for device-independent user interface

specification, so that developers can describe the input and output needs of their

applications, so that vendors can describe the input and output capabilities of their

devices, and so that users can specify their preferences. Then, the system might

choose appropriate interaction techniques taking all of these into account. This is also

called user interface plasticity (Thevenin et al., 1999). Methods for modelling work

context (Beyer & Holtzblatt, 1998) can provide useful information for this type of

approach.

The basic idea of how to cope with the current situation of heterogeneity of currently

available devices and the need for usable User Interfaces (UIs) is that, instead of

having separate applications for each device, which exchange only basic data, there is

some abstract description and an environment able to suggest a design suitable for a

specific device.

This is the main goal of model-based design and development of interactive

applications, which have been considered though not extensively adopted during last

decade. Nomadic applications raise new challenges that can be better addressed

using a model-based approach. There is a need for a unitary view of nomadic

applications, even if their parts require different instantiation for different platforms.

This allows designers to understand and control the dependencies among such

instances. Secondly, new design criteria suitable for mobile devices should be

introduced. The potentialities of these approaches have only begun to be addressed.

In the GUITARE Esprit project (http://giove.cnuce.cnr.it/guitare.html) a user interface

generator was developed: it takes ConcurTaskTrees (CTT) task models (Paternò,

1999) and produces user interfaces for ERP applications according to company

guidelines. However, automatic generation is not a general solution because of many,

varying factors that have to be taken into account within the design process. Semi-

automatic support is more general and flexible: Mobi-D (Puerta, 1997) is an example

of a semi-automatic approach, but it only supports design of traditional graphical

desktop applications.

UIML (Abrams, 1999) is an appliance-independent XML user interface language.

While this language is ostensibly independent of the specific device and medium used

Designing Usable Multi-platform Applications

 126

for the presentation, it does not take into account the research work carried out over

the last decade on model-based approaches for user interfaces: for example, the

language provides no notion of task, it mainly aims to define an abstract structure. The

W3C consortium has recently delivered the first version of a new standard (XForms)

that presents a description of the architecture, concepts, processing model, and

terminology underlying the next generation of Web forms, based on the separation

between the purpose and the presentation of a form. If it shows the importance of

separating conceptual design from concrete presentation, it also highlights the need

for meaningful models to support such approaches.

XIML (Puerta & Eisenstein, 2002) (eXtensible Interface Markup Language,

http://www.ximl.org) is an XML-based language, whose initial development took place

at the research laboratories of RedWhale Software. It is intended to be a universal

user interface specification language, since it provides a way to completely describe a

user interface and represent attributes and relations of the important elements of a

user interface without worrying about how they will be implemented. In other words, it

enables a framework for the definition and interrelation of interaction data items,

thereby providing a standard mechanism for applications and tools to interchange

interaction data and interoperate within integrated user-interface engineering

processes, from design, to operation, to evaluation. Today XIML is probably the most

advanced UI specification language, as it can serve for context sensitivity and many

other objectives. However, it is worth noting that XIML mainly focuses on syntactic,

rather than semantic aspects. In addition, tool support is not publicly available.

Collagen (Rich & Sidner, 1998) uses an explicit embedded task model to support the

creation of task-aware collaborative agents. The agent interprets and guesses the

user’s current intentions, and can determine efficient plans to achieve them. The issue

related to platforms is not considered.

More generally, the issue of applying model-based techniques to the development of

UIs for mobile computers has been addressed at a conceptual and research level

(Calvary et al., 2001), (Einsenstein et al., 2001) but there are still many issues that

need to be solved to identify systematic, general solutions that can be supported by

automatic tools.

The CAMELEON approach aims to support design and development of nomadic

applications providing general solutions that can be tailored to specific cases, whereas

current practice is still to develop ad hoc solutions with few concepts that can be

reused in different contexts.

C. Chesta et al.

 127

The actors in charge of adaptation depend on the phase of the development

process:

- At the design stage, multi-targeting can be performed explicitly by humans

such as system designers and implementers, and/or it can rely on

dedicated tools.

- At run time, the adaptation may be performed by the user and/or the

system. A UI is adaptable when it adapts at the user’s request (typically,

by providing preferences menus). It is adaptive when the user interface

adapts on its own initiative.

A distinction can also be made between methods for forward engineering, allowing

automatic generation of the interface for various targets starting from a common

abstract description of the scenario to address, and methods for reverse engineering,

which automatically transform web pages to pages at a certain level of abstraction,

and these result pages can later on be transferred to other computing platforms.

Currently the forward engineering approach seems to be more promising, even if

combining the two approaches by automatically reconstructing a task model from a

web page and then automatically converting it for others platforms would open great

opportunities from the application point of view.

A set of methods and tools supporting a number of transformations useful when

designing multi-platform applications have been proposed by the CAMELEON

consortium (Berti et al., 2003). At ISTI the TERESA tool has been developed, currently

supporting transformations from task models to desktop, phone user interfaces and

vocal interfaces (XHTML, XHTML Mobile Profile, and VoiceXML). Another tool called

Web Revenge and supporting automatic reconstruction of task models from HTML

code has been developed as well. A different approach to reverse engineering of web

sites has been investigated at University of Louvain where the VAQUITA and

RUTABAGA tools have been implemented supporting reconstruction of presentation

models from HTML code. Unlike the previous tools, ArtStudio, developed at University

of Grenoble, allows development of Java interfaces for multi-platform applications.

Research activities are also ongoing about run-time mechanisms and infrastructure

(Coutaz et al., 2003).

The set of tools demonstrate how the concepts and methods developed can be

incorporated in real tools that can support the work of designers and developers in

many types of software companies.

Designing Usable Multi-platform Applications

 128

As far as the integration between the CAMELEON tools is concerned, effort has been

put within the consortium particularly on the communication between two tools:

VAQUITA and TERESA. Since the first one mainly covers an abstraction step while

the second one covers reification, an example of interest for the consortium was

judged to analyse the result of a two-step process in which e.g. the output of reverse-

engineering a web page in VAQUITA (first step: abstraction) becomes the input for

TERESA tool to the aim of performing in turn a reification step on it and possibly re-

design the user interface for another computing platform.

Such an integration has been achieved through the introduction of a common XML-

based language, CameleonXML (Limbourg et al., 2004), used to describe abstract

user interface and developed by the consortium having in mind the general goal of

modelling and represent the different requirements about the design of multi-platform

user interfaces that have been raised up to now by discussions within the project.

In order to validate the CAMELEON approach and to elicit requirements for the tools

design, the industrial partners provided examples of application to real case studies. In

particular Motorola GSG Italy proposed an e-Desk service allowing people to access

from any place with different devices office productivity applications, including an e-

Agenda offering calendar, appointment schedule and automatic reminder (Chesta &

Fliri, 2003).

The multi-context interface of both e-Desk service and e-Agenda application has been

realized through the support of TERESA tool, serving as basis for the experimental

evaluation (Chesta et al, 2003).

3. The TERESA Tool

TERESA is a transformation-based environment supporting a number of

transformations useful for designers to build and analyse their design at different

abstraction levels and consequently generate the concrete user interface for a specific

type of platform (Paternò, 1999), (Paternò & Santoro, 2003), (Mori et al., 2003).

The abstraction levels considered (see Figure 1 at the end of this section) are:

- High level task modelling: the output of this phase consists of the description of

the logical activities that need to be performed in order to reach the users’ goals.

This description initially considers an integrated task model where all the

activities that have to be supported have been specified. Next, the task model is

refined and structured so as to identify the activities that have been supported for

C. Chesta et al.

 129

each platform considered. For example, a nomadic task model could analyse the

activities supported by a system for reserving a hotel room through a cell phone

and a desktop system: such specifications might share portions of the task model

(the activities are performed in the same way), while being different for other

tasks (for example some details about the room might be neglected with the cell

phone platform);

- Abstract user interface (AUI): in this phase the focus shifts to the interaction

objects supporting task performance. After having obtained the task model for a

specific platform, an abstract user interface is derived from it. It is defined in

terms of presentations (the set of user interface elements perceivable at the

same time), and each presentation is composed of a number of interactors

(Paternò & Leonardi, 1994), which are abstract interaction objects identified in

terms of their main semantics effects. For instance, going on with the hotel

reservation example, at this level we will just consider that for selecting a specific

hotel, we do need some widget supporting a single selection task: the

implementation details of such an object are irrelevant at this moment, and for

this reason we identify it as an abstract interaction object supporting a selection.

An XML-based language has been specified in order to describe the organisation

of the various interactors within the presentations. The structure of the

presentation is defined in terms of elementary interactors characterised in terms

of the task they support, and their composition operators. Such operators are

classified according to the communication goals to achieve: a) Grouping:

indicates a set of interface elements logically connected to each other; b)

Relation: highlights a one-to-many relation among some elements, one element

has some effects on a set of elements; c) Ordering: some kind of ordering

among a set of elements can be highlighted; d) Hierarchy: different levels of

importance can be defined among a set of elements.

- Concrete user interface (CUI): at this point each abstract interactor is replaced

with a concrete interaction object depending on the type of platform and media

available and with a number of attributes that define more concretely its

appearance and behaviour. For example, the abstract interaction object we

mentioned in the previous phase (an interactor supporting the selection of a

specific hotel) could be rendered through a scrollable list-box on a desktop

Designing Usable Multi-platform Applications

 130

platform and through a pull-down menu on a cell phone platform. It is worth

pointing out that, at this level, there is still no mention about the specific language

used for implementing such concrete objects.

- User interface generation: this phase is completely platform-dependent and has

to consider the specific properties of the target device. The interactors are

mapped into interaction techniques supported by the particular device

configuration considered (operating system, toolkit, etc.), and also the operators

defined in the language for abstract user interface are implemented with

appropriate presentation techniques. At this level we should specify e.g. if the

pull-down menu on the cell phone platform will be rendered through WML, or

through XHTML Mobile Profile, etc..

A number of main requirements have driven the design and development of

TERESA:

- Mixed initiative: we want a tool able to support different level of automation

ranging from completely automatic solutions to highly interactive solutions where

designers can tailor or even radically change the solutions proposed by the tool.

- Model-based: the variety of platforms increasingly available can be better

handled through some abstractions that allow designers to have a logical view of

the activities to support, then the call for effective models able to capture the

relevant information that should be considered.

- XML-based languages have been proposed for every type of domain. In the field

of interactive systems there have been a few proposals that partially capture the

key aspects to be addressed.

- Top-down: this approach is an example of forward engineering. Various

abstraction levels are considered, and we support cases when designers have to

start from scratch. So, they first have to create more logical descriptions and then

move on to more concrete representations until the final system.

C. Chesta et al.

 131

- Different entry-points: our approach aims to be comprehensive and to support

the entire task/platform taxonomy. However, there can be cases where only a

part of it needs to be supported.

- Web-oriented: the Web is everywhere; therefore, for generality purposes, we

decided that Web applications should be our first target. However, the approach

can be easily extended to other environments (such as Java applications,

Microsoft environments, etc.) because only the last transformation needs to be

modified for this purpose.

The TERESA tool offers a number of transformations between different levels of

abstractions and provides designers with an easy-to-use integrated environment for

generating both XHTML and VoiceXML user interfaces (Berti & Paternò, 2003). With

the TERESA tool, at each abstraction level the designer is in the position of modifying

the representations while the tool keeps maintaining forward and backward the

relationships with the other levels thanks to a number of automatic features that have

been implemented (e.g. the possibility of links between abstract interaction objects and

the corresponding tasks in the task model so that designers can immediately identify

their relations). This result is a great advantage for designers in maintaining a unique

overall picture of the system, with an increased consistence among the user interfaces

generated for the different devices and consequent improved usability for end-users.

Designing Usable Multi-platform Applications

 132

Fig.1: The Main Abstraction Levels of TERESA

4. Experimental Evaluation

The experimental evaluation has been conducted in parallel to the tool development

in order to provide a formative rather than a summative evaluation.

Starting with the ISO 9241-11 standard definition (ISO9241-11, 1991) and

Shneiderman’s (Schneidermann, 1998) and Nielsen’s (Nielsen, 1994) metrics, but

considering the double perspective of the tool itself versus the product realized through

the tool, we identified four aspects to be evaluated and eight related requirements as

listed in Table 1.

Two experiments have been designed in order to cover different aspects according

to the criteria framework formerly exposed. Both of them refer to the common

application scenario related to Business to Employee environment.

C. Chesta et al.

 133

Aspect Requirement
Intuitiveness Tool Interface Learnability
Completeness Tool Functionalities Developer satisfaction
User Satisfaction Final Product Obtained by

employing the Tool Maintainability and
Portability
Development Efficiency Approach Cost/Effectiveness Integrability

Table 1: Evaluation criteria

Five subjects, selected within Motorola GSG Italy staff, were involved in the

evaluation. All of them, within a range of different background and specialization, have

technical knowledge and experience in software design and development, and are

experienced computer users. They have been asked to participate in a 30 minutes

preparation session and to dedicate 10 minutes reading the TERESA help prior to start

the exercises.

The first experiment focused on tool usability and functional coverage, with the

objective to highlight potential weaknesses and to provide design recommendations

useful while implementing subsequent versions of the TERESA tool.

The experiment consisted in starting with a given task model created with CTTE

1.5.7 and obtaining the concrete user interface for both desktop and mobile phone

using the version 1.1 of TERESA tool. The exercise goal was to realize a simple

version of an e-desk application allowing three main actions: the registration to the

service by inserting a username and a password, the selection of a location

(workplace, home, travel or vacation), and the selection of an application from a menu.

The applications offered are different in the desktop and in the mobile versions of the

service.

The actions to be performed, such as Generate Enabled Task Sets, Generate

Abstract User Interface, etc. were predefined in order to require the access to every

tool menu. For each step evaluators were asked to record any difficulties they may

have encountered in achieving the goal and their suggestions to improve the user

interface. In addition, they were invited to provide comments about: approach,

functionalities and result produced, reporting advantages/disadvantages with respect

to traditional methods and providing indications on additional functionalities they would

like to introduce.

Designing Usable Multi-platform Applications

 134

The first evaluation resulted in an amount of data about the aspects considered. The

analysis has been conducted in two steps. Firstly the raw comments have been

abstracted to recurrent issues aggregated with a functional criterion, counting the

occurrences of each issue; this step has been conducted iteratively, in order to

progressively obtain a clean taxonomy. In the second step the taxonomy has been

presented to the evaluators, who were requested to express for each issue a

relevance assessment (high, medium, or low) a sort of quantitative measurement of

the ‘severity’ of the problem; from such new data a relevance index has been

synthesized for each item.

Table 2 reports as an example the analysis of the results related to the Final UI

generation functionality. Seven main aspects requiring attention were identified.

Issue Occurrences Relevance
Final UI generation 5/5
Messages language 1/5 low
Inserted data not reported 3/5 high
Destination folder 2/5 high
Windows unresizable and
overlapping

3/5 medium

Not intuitive fields and controls 3/5 high
Not intuitive presentations
structure and content

1/5 high

Relation operator for mobile UI 2/5 high
No browse button for URL 1/5 medium
Window consistence 1/5 low
Confirmation panel 2/5 high

Table 2: Example of analysis results

The results of analysis have been reported to the development group, which

integrated them in the new version of TERESA used for the second experiment.

The next version of TERESA was substantially improved with respect to the first

prototype taking into account the results of the experiment. For example the effect of

the heuristics used for combining two or more PTS has been made more predictable,

the AUI generation window has been redesigned in order to be intuitive and usable,

the Final User Interface Generation has been improved by the introduction of a

preview windows, the task corresponding to an object can be automatically identified,

and some model editing options have been introduced.

A second experiment has then been conducted in order to collect more information

about developer satisfaction and cost/effectiveness of the approach.

C. Chesta et al.

 135

The subjects involved in the second experiment were the same people that

performed the first experiment, so they could better appreciate the modifications

introduced in the tool and provide specific feedback.

The experiment consisted in developing a prototype version of an e-Agenda

application running on both desktop and mobile phone and including the following

functionalities: visualization of the appointments of a single day; visualization of the

details of each appointment; possibility of inserting/modifying/deleting an appointment.

This had to be realized in two ways:

- At first using traditional techniques such as a template for the design

phase and Microsoft Front Page or Netscape Composer for the

implementation phase.

- Then using tool-supported techniques: CTTE 1.5.7 for task tree realization

and version 1.5 of TERESA tool (updated taking into account the results

of the first experiment) for XHTML and XHTML Mobile Profile pages

generation.

Every evaluator had been asked to perform the same task using the two approaches,

in the order specified above.

The evaluators have been required to collect quantitative metrics related to

development efficiency, such as the total effort needed to complete the exercise

expressed as creation or rework time and categorized by process phase, as well as

the number of errors introduced. Moreover, they have been required to express their

judgment on specific TERESA characteristics such as support offered to identify the

most suitable interaction techniques, support offered to compose interactors in the

interface, and others aspects related to developer satisfaction and product

maintainability/portability by a rating from 1 (poor) to 5 (very good). In case of negative

evaluation they were invited to provide an explanation note and suggestions for

improvement.

The results of the second experiment show how developers’ productivity is affected

by the use of the tool. Data about time performance have been collected in each

phase of the experiment and summarized through average values.

Designing Usable Multi-platform Applications

 136

Results graphically illustrated in Figure 2, show similar total times for the traditional

and TERESA approaches, with different distributions over the development phases

and between first version and rework time.

The tool-supported methodology offers a very good support to fast prototyping,

producing a first version of the interface in a significantly shorter time.

This difference is significant and interesting, considering that developers are often

required to implement in a short time different interface prototypes to present and

discuss with their customers, and then to refine later the selected version.

On the other side rework time results increased. In particular the design phase

results negatively affected while the development phase is positively impacted by the

use of the semi-automatic environment.

This is mainly due to the greater familiarity of the subjects with traditional techniques

than with model-based techniques and notations. Future refinements to TERESA and

a continuous use of the tool in the software production process are then expected to

consistently reduce rework time needed and to confirm the advantages of the

proposed tool supported methodology.

Fig. 2: Comparative results on time performance.

0:00

1:12

2:24

3:36

4:48

6:00

7:12

time (hours) First
version

time

Rework
time

Total time First
version

time

Rework
time

Total time

Traditional approach Teresa approach

XHTML development
HTML development
Design

C. Chesta et al.

 137

Even more interesting than the time performance itself have been the comments of

the evaluators, who remarked an increased design overall quality and appreciated the

benefits of a formal process supporting the individuation of the most suitable

interaction techniques. For example, the subjects reported satisfaction about how the

tool supported the realization of a coherent page layout and identification of links

between pages; they noticed and appreciated the improved structure of the

presentations and more consistent look of the pages resulting from the model-based

approach, as well as the reduced risk to forget the formal specifications; they pointed

out an increased consistence between desktop and mobile version.

5. Conclusions and Acknowledgements

In this paper a model-based approach for designing and developing multi-platform

applications has been presented and discussed through an experimental evaluation.

In summary, TERESA emerged from the evaluation as an appealing and promising

solution for designing and developing UIs on multiple and heterogeneous devices.

At the same time the evaluation methodology and criteria we introduced appears to

be general and applicable to different systems.

Further activities will include additional experiments focusing on the final product and

involving end users.

The TERESA tool is publicly available at http://giove.cnuce.cnr.it/teresa.html.

This work has been supported by the IST V Framework CAMELEON (Context Aware

Modelling for Enabling and Leveraging Effective interaction) project. More information

is available at http://giove.cnuce.cnr.it/cameleon.html.

We also would like to thank the colleagues Cristina Barbero, Simone Martini, Bianca

Russillo and Massimiliano Fliri for participating to the experimental evaluation and for

the useful discussions.

6. References

Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S. & Shuster, J. (1999) UIML:

An Appliance-Independent XML User Interface Language. Proceedings of the 8th

WWW conference, Toronto, Canada.

Designing Usable Multi-platform Applications

 138

Berti, S., Mori, G., Paganelli, L., Paternò, F., Santoro, C., Calvary, G., Coutaz, J.,

Thevenin, D., Vanderdonckt, J. & Bouillon, L., (2003) Tools for Model-Based

Design of Multi-Context Applications. Deliverable D2.1, CAMELEON project.

Berti, S. & Paternò, F., (2003) Model-based Design of Speech Interfaces. Proceedings

of DSV-IS 2003, Funchal, Madeira, Springer Verlag.

Beyer, H. & Holtzblatt, K. (1998) Contextual Design: Defining Customer Centred

Systems. Morgan Kaufmann, San Francisco.

Calvary, G., Coutaz, J. & Thevenin, D. (2001) A Unifying Reference Framework for the

Development of Plastic User Interfaces. Proceedings of EHCI 2001, Toronto,

Canada, Springer Verlag.

Chesta, C. & Fliri, M., (2003) Early e-Desk Prototype Description. Deliverable D3.3,

CAMELEON project.

Chesta, C., Fliri, M., Martini, S., Russillo, B., Barbero, C. & Raymond, S., (2003) First

Evaluation of Tools and Methods. Deliverable D3.4, CAMELEON project.

Coutaz, J., Balme, L., Barralon, N., Calvary, G., Demeure, A., Lachenal, C., Rey, G.,

Bandelloni, R. & Paternò, F., (2003) Initial Version of the CAMELEON Run Time

Infrastructure for User Interface Adaptation. Deliverable D2.2, CAMELEON

project.

Einsenstein, J., Vanderdonckt, J. & Puerta, A. (2001) Applying Model-Based

Techniques to the Development of UIs for Mobile Computers. Proceedings of

IUI'01, Santa Fe, New Mexico, ACM Press.

ISO9241-11 (1991) Ergonomic requirement for office works with VDT’s – guidance on

usability. Technical report, International Standard Organisation.

Limbourg, Q., Bouillon, L., Vanderdonckt, J., Michotte, B., Santoro, C. & Paternò, F.,

(2004) CameleonXML V1.0 Description Document. Deliverable 1.3, CAMELEON

project.

Mori, G., Paternò, F. & Santoro, C. (2003) Tool Support for Designing Nomadic

Applications. Proceedings of IUI’03, Miami, Florida.

Myers, B., Hudson, S. & Pausch, R. (2000) Past, Present, Future of User Interface

Tools. Transactions on Computer-Human Interaction, ACM Press, 7(1), 3-28.

Nielsen, J. (1994) Usability Engineering. Morgan Kaufmann, San Francisco.

Paternò, F. & Leonardi, A., (1994) A Semantics-based Approach to the Design and

Implementation of Interaction Objects. Computer Graphics Forum, Blackwell

Publisher, 13(3), 195-204.

C. Chesta et al.

 139

Paternò F., (1999) Model-based design and evaluation of interactive applications.

Springer Verlag, ISBN 1-85233-155-0.

Paternò, F. & Santoro, C., (2003) A Unified Method for Designing Interactive Systems

Adaptable to Mobile and Stationary Platforms. Interacting with Computers,

Elsevier, 15(3), 347-364.

Puerta, A.R. (1997) A Model-Based Interface Development Environment. IEEE

Software, 14(4), 40-47.

Puerta, A.R. & Eisenstein, J. (2002) XIML: A Common Representation for Interaction

Data. Proceedings of IUI’02, San Francisco, California, 214-215.

Rich, C. & Sidner, C. (1998) COLLAGEN: A collaboration manager for software

interface agents. User Modelling and User-Adapted Interaction, 8(3/4), 315-350.

Schneiderman, S. (1998) Designing the User Interface: Strategies for Effective

Human-Computer Interaction. Addison Wesley, Reading, MA.

Thevenin, D. & Coutaz, J. (1999) Plasticity of User Interfaces: Framework and

Research Agenda. Proceedings of Interact‘99, Edinburgh, Scotland, 110-117.

