
METHODS AND TOOLS FOR INFORMATION SYSTEMS DESIGN

S. KRAKOWIAK

IMAG, Universit6 de Grenoble

B.P. 53 38041 GRENOBLE-Cedex

ABSTRACT

The purpose of this survey is to present, in a comprehensive manner, some important

concepts that influenced th~ design of information systems in the last few years.

Emphasis is placed on recent progress in design methods, and on the development

of tools that may be used to apply these methods.

Some aspects of recent computer-implemented systems for assistance to req~airements

analysis and system design are examined. The paper then reviews some advances in

the design of data and control structures. The impact of the abstract data type

concept and its use in system design is analyzed. Recent progress in the control

of parallel process cooperation is finally presented, with reference to distributed

systems.

i. - ARCHITECTURAL PRINCIPLES

A system may be defined, in general terms, as a set of interacting components. In

a man-made (as opposed to natural) system, these components are designed to oper~e

together towards some defined objective or purpose. A component of a system may be

an elementary object, or a system in itself (in which case it is called a sub-

system).

Information processing is a global term for the set of operations (input, output,

transmission, storage, retrieval, transformation,..) that may be applied to da~ m.

The purpose of an information system is to provide a support for a variety of in-

formation processing tasks (technical, clerical or managerial) that are required

by an organization. Such a system is not closed, i.e. it interacts with an envi-

ronment which is made up of physical objects and human users. This environment is

responsible for information exchange with the system, but also for various kinds

of unwanted interference.

In the sense of the IFIP guide to concepts and terms in Data Processing

(Gould 71) : "a representation of facts or ideas in a formalized manner capable

of being communicated or manipulated by some prooess".

194

In the above general characterization of a system, they ke~ords are "interacting"

and "purpose". "Interaction" means that a major part of the designer's activity

must be concerned with the proper definition and management of the relations

between the parts of a system. Decomposition, modularization and interface defi-

nition are one side of this activity; synchronization between parallel processes

is another aspect.

"Purpose" means that a system, or a part of it, has a specific function that

must be clearly defined and stated. Proper specification is a necessity if the

design and development process is to be kept under control.

Computer programming is often referred to as an art rather than a scientific

activity (Knuth 74a). Such reference applies more generally to information systems

design. A number of factors account for this situation :

- User needs and requirements are ill-defined; and when defined, they are

often mutually conflicting.

- Information systems have long lives and interact with a changing and com-

plex environment; therefore, they are subject to constant modification.

- Large information systems are very complex creations, which cannot in

general be completely mastered by a single person's mind.

Therefore, it is quite characteristic that information systems design is often

compared to such activities as architecture or city planning, which ~re design

activities with a long history. Alexander's book, "Notes on the synthesis of form"

(Alexander 64) (which is mainly concerned with citv-nlannin~, although it defines

a very general approach to the design of complex systems)is often quoted in rela-

tion to program and information systems design. Alexander analyses the transition

from "unselfconscious ~' to"selfconscious" design. In the first attitude, design

principles are unstated and transmitted by tradition; in the latter one, the de-

sign process relies on a wealth of explicit methods. Another fruitful source of

inspiration is the methodological approach followed by Poly~ in his book

"How to solve it" (Poly~ 7$) : e.g. the imbedding of a problem in a (well chosen)

more general solvable problem, and the identification and reuse of already avai-

lable results. As humorously pointed by Hamming in his 1968 Turing Lecture

(Hamming 69), we are "standing on each other's feet" rather than on other people's

shoulders.

In the rest of this survey, we shall try to give a review of some methods and

tools that are currently being used to help the information system designer in

his task.

The intellectual aids of the system designer are now well identified and we shall

only recall them briefly :

I95

i) Decomposition of a complex object into more manageable parts is an old

methodological principle. However, sheer decomposition is of no avail if the re-

lations between the parts are too complex or ill-defined. Therefore, decomposi-

tion must be conducted in a systematic fashion and a number of guidelines have

been proposed and illustrated : information hiding (Parnas 71), conceptual abs-

traction (Dijkstra 72), ease of modification and extension~ measures of intermo-

dule coupling (Myers 75) protection of sensitive information, decentralization of

resource allocation decisions.

2) Abstraction is the intellectual operation whereby a representation, or

abstract model, of the behaviour of a complexobject is constructed~ which only

retains some relevant properties and omits irrelevant ones. An abstract model is

nothing but the well-known mathematical concept of an equivalence class. The cons-

truction of an abstract model results from an explicit choice of the equivalence

relation (the selection of the "relevant" properties). An abstract machine

(Dijkstra 72) is one which exhibits a defined pattern of behaviour regarded as ap-

propriate to the solution of a specific problem. A abstract data-type (Liskov 74)

is a mechanism which allows the designer to construct information sets which may

only be manipulated through a specified set of access functions, and whose beha-

viour is defined independently of their implementation. This point will be deve-

lopped in a later section of this paper.

3) Refinement is the process by which abstract objects are eventually imple-

mented. The elementary refinement step is to construct an object in terms of more

primitive objects by the application of a set of composition rules. A "good" set

of composition rules is therefore an essential tool.

Criteria of "goodness" are conceptual simplicity, ease of use and understanding,

provability (in a more or less formal sense), efficient implementation. Some

agreement has been reached on such elementary sets of composition rules : record

structuring for data (Hoare 72), elementary conditional and iterative constructs

for sequential programs, monitor structures for concurrent processes. In spite

of the availability of such tools, the refinement process does not follow an au-

tomatic procedure and relies on the designer's insight and the application of a

systematic method. The use of so-called "structured programming" primitives is by

no means an insurance against the production of incorrect programs, as illustra-

ted for instance, in (Henderson 72, Gerhart 76). The second reference contains an

analysis of a number of errors found in "example" programs published in papers or

texts about structured programming° However, the use of well-desi~led construc-

tions has a positive influence on the process of refinement because it forces the

designer to state his assumptions more explicitly. This in turn should eventually

make the programs more amenable to an informal "proof".

196

4) Since design is not a purely deductive activity, the design process usual-

ly involves iteration. It is well-known that a good way to improve the quality of

a design is, at a certain point, to start everything again from scratch, with

the augmented knowledge and insight gained from the first attempt. Some caution

should however be exercised against the overconfidence and tendency to oversophi~

tication known as the "second system effect" (Brooks 75).

The application of systematic methods to all phases of the life cycle of an infor-

mation system (from initial requirements to maintenance and modification) is

greatly enhanced by the use of appropriate tools. The most widely known are pro-

gramming languages. However, other kinds of tools have been developped in the

recent years and it now appears that programming languages (or more precisely,

their compilers) are only parts of more general systems for assistance to system

development. It is now widely realized that source program texts, and more gene-

rally all sorts of texts such as specifications may be considered as data on

which a number of processing operations may be made. The "standard" processing

on a source program text is its translation into executable code; but other ope-

rations may be considered such as source program transformation, documentation

retrieval, analysis of requirements.

In the following section of this survey, we shall review the evolution of the de-

sign process and of the tools which may assist the designer in his task. Then we

shall give an account of the current trends and perspectives in the design of

data and control structures.

197

2. - FROM SPECIFICATION TO IMPLEMENTATION

During the process of design and development, an information system takes a num-

ber of different forms : initial proposal (at a very high degree of generality),

overall requirements, functional specifications, component specifications are

examples of such forms. The ultimate form is a set of hardware, software and ope-

rating rules which together constitute the operational system.

A number of these forms are essentially descriptions. Several terms are currently

used in relation to these descriptions.

i) Requirements usually refer to an overall description, expressed in the

terms of the user, of what the system is intended to do, and of various external

constraints.

2) Specifications, while having the same general meaning usually have a more

precise and even formal connotation.

3) Documentation is a general term that applies to all the written material

that is used in conjunction with a project description. A more specific meaning

is frequently associated with a detailed description of the final form of a

system. This description is often (if at al~ produced a posteriori.

The designer's dream would be a formal (automated) procedure to obtain the system

from its requirements. Although such a goal seems out of reach, the strive for

the application of rigorous methods to the design process has led to a nu~er of

very significant efforts towards a more systematic treatment of the specificatio~

and documentation.

The main trends of this evolution may be summed up as follows :

i) The specification and documentation process is carried out in a continuous

fashion throughout the design. The main result is that the documentation applies

not only to the final product, but to all the intermediate stages of its evolu-

tion, i.e. to the design process itself. Thus, the main design decisions are made

explicit.

2) There is an attempt to introduce more formality in the specifications. The

main investigation lines are the definition of specification languages and the

use of set-theoretical and algebraic techniques.

3) A consequence of the formalization of the design and specification pro-

cess is that the use of computerized aids becomes possible. Thus, a number of

systems for computer-aided development of software are currently being experi-

mented with.

These ideas have been actually with us for a long time. For instance, an overall

scheme for system design by continuous refinement and partial simulation was

198

proposed in (Zurcher 68); a systematic approach to program specification and

construction was also investigated by the same time, However, it is not until the

recent years that these ideas were applied to the actual design of sizable

programs.

We shall review the recent evolution along three main directions : systematic

program construction, computer aids to system design and development, and formal

approaches to specifications.

2.1. Methods for systematic program construction

Since the pioneering work of~ijkstra 72)~ a large amount of literature has been

published on the subject of systematic program construction. We shall not attempt

to review this work~ but we shall make the following remark : systematic program-

ming (the original expression "structured programming" has somehow degenerated

into a buzzword) refers to a methodological approach, to a new attitude towards

the act of program design~ rather than to the strict application of some recipe.

As a consequence, it may be very difficult (as experience has shown)~ to promote

the use of systematic methods if adequate tools are not available.

This is especially true in a production (as opposed to academic) environment,

where external constraints may impose the use of ill-suited languages. With

regard to this remark, we shall restrict this review to a very limited aspect :

the use of some sort of formalized methodology to assist in the development of

programs. The methods that we shall examine are designed to be used manually

(without computer assistance) and they often rely on a graphical language. All of

these methods are based on some form of decomposition and stepwlse refinement.

As a consequence, various forms of tree-structured diagrams are basic ingredients

of the methods.

SADT (Ross 77), developed by Softech, HIPO and Composite Design (Myers 75)

developed by IBM, involve decomposition of a system into units (parts, modules,.).

The relations and interfaces between these parts are formally described. Design

criteria such as minimal coupling may be applied. The diagrams a~e used for docu-

mentation, for review of the design before implementation, and as a guide to im-

plementation.

A more formal approach is proposed in (Warnier 72) and (Jackson 75). Both methods

are mainly designed for the construction of data prccessing applications (as op-

posed to operating systems or real-time software). The main idea of (Jackson 75)

is to set up a mapping between the structure of a file, or set of files, and the

structure of the program that operates on these data. File structures are cons-

tructed from elementary components by the operations of concatenation, selection

and iteration; this structure is reflected in the programs. Refinement may be

applied, if necessary, to both program and data structures. A simple graphical

language is used to document the design process.

Finally, a still more formal method has been developed in (Abrial 74, 77). The

initial requirements are expressed in a specification language based on sets and

relations (a similar approach is followed in SETL (Schwartz 72)). Specifications

written in this language are then transformed by hand, using a set of semantics-

preserving transformations, into programs written in another language, which

assumes more specific implementation choices. This process is iterated until a

working program is obtained. The validity of the design process relies on the

correctness of the program transformation mechanisms. This method has been succes-

sfully experimented in an industrial environment and appears as very promising.

2.2. Computer aids to systems desig n and production

Most computer aids to system design and production may be roughly classified under

two headings. In the first class, emphasis is on the early steps of design, spe-

cification and evaluation. In the second class, actual programs are manipulated

and executable code is produced. Both types of systems have evaluation, testing

and documentation editing facilities. Current research is under way to construct

systems that would encompass all phases of the design and production process.

A general model for a computer-based system for assistance to system design is

given on Figure 1.

Requirements--~ Analyzer ~Simulation/

Evaluation data~ Simulator~Evaluation results

Modifications----~ Editor ~Documentation

Figure i.

All information relevant to the design is progressively entered into a data base

which records every step of the development process. The data base is used for

the production of documentation on the project and for evaluation of the design.

This type of system is exemplified by the PSL/PSA system (Teichroew 77) developed

as a part of the ISDOS project at the University of Michigan. PSL (the "Problem

Statement Language") allows the designer to describe a system design as a set of

"objects" connected through "relationships". Specific types of objects and rela-

tionships are available for the description of a variety of aspects of informa~bn

systems (input-output, hierarchical grouping, data structures, performance,...).

200

During the project, the result of every step in specification and development is

described as a PSL program. Descriptions written in PSL are processed by a Pro-

blem Statement Analyzer (PSA) which analyzes the information provided and enters

it into the data base. PSA also contains some evaluation features which may help

the analyst to evaluate the impact of potential improvements. The system is re-

portedly used in a variety of industrial environments.

Similar systems are CADES (CADES 73), DACC (Boehm 75)2 and TOPD (Henderson 73).

Although such systems offer no substitute to the design itself, they help the

designer by forcing him to formally express the requirements, by providing

checklists for relevant questions, by producing readable documentation in a

standard form and by evaluating the effect of design decisions.

Another class of computer aids may be represented by the general scheme of

Figure 2.

Source programs ~ Translator I .~ Executable programs

Editing commands ----~ linking I

Interconneotlon nts~ E~O~tor i ~ Documentation

language stateme S" l_

Figure 2.

These systems may be described as "software factories". The main capabilities that

they provide are as follows :

- creation, editing and modification of source programs

- program library management

- compilation and linking of programs

- debugging, testing and simulation

- documentation production

It should be noted that the production machine, on which these development tools

are implemented, may well be distinct from the target machine for which software

is produced.

Two important components of a software development system are the librarian in

charge of the program data base, and the language processor(s). Such an environ-

ment is well suited to the development of modular programs. The overall archi-

tecture of a system in terms of elementary components may be expressed in a

module interconnection language, while individual modules are developed using a

201

language processor that supports the concept of a module.

A number of production systems designed along these lines are currently being

used or experimented with. The "workbench machines" described in (!vie 77) are

used as a network, connected to target machines by high-speed lines, and include

development facilities for several target machines. Several recently developed

systems are based on PASCAL or extended versions of this language (Donzeau-Gouge

75, Geschke 77, Krakowiak 76).

A natural extension would be a general system design and production facility that

would integrate the capabilities described in figures i and 2, i.e. would encom-

pass all stages of development from specifications to code production. This is

actually a stated objective of some of the above mentioned systems (Boehm 75,

Lucena 76, Teichroew 77). The essential steps of specifications wrY:ring and of

building programs from specifications remains however the designer's task, but

useful assistance may be provided (e.g. in the way of automatic consistency

checks). Progress in this domain depends on advances in problem specification~ a

subject that will be reviewed in the next section.

2.3. Advances in specification techniques

The most widely used specification methods presently rely on natural language.

Concern for software reliability has recently fostered the development of more

formal methods. The purpose of such work is to allow the writing of specifications

that could be amenable to formal verification and from which an implementation

could be easily derived either by hand or by a formal procedure.

The first step is to define a unit for specification. Methods for decomposition

and hierarchical structuring described for program design clearly extend to spe-

cifications. Therefore, most of the work on specifications has concentrated on

specification techniques that apply to the basic building blocks that support

simple abstractions (see section 3 of this paper), i.e. essentially multiple

entry modules (Guttag 76~ Liskov 75).

Specification methods fall into two classes : operational and definitional. In

the operational approach, the specified operation is described in terms of some

already defined "machine" (or set of operations). In the definitional approach,

an operation is described by its effect, as a set of pre-and post-conditions for'

the state of the object upon which the operation is applied.

Current specification methods usually combine both types of definitions. An ope-

rational specification is often used as a guide for implementation, whereas a

definitional specification is more readily usable as a guide for testing and

verification.

202

Both methods are presently being investigated. The already mentioned work of

(Abrial 74, 77) uses an operational specification, and the emphasis is on the

stepwise transformation of this programmed specification into an implementation.

On the other hand (Guttag 76) uses algebraic techniques for the specification of

abstract data types and the emphasis is on completeness and consistency verifi-

cation.

It seems that we are still a long way from using formal specification techniques

in large scale projects. Meanwhile, the introduction of even primitive techniques

to make specifications more formal will certainly provide an incentive towards a

more systematic practice. Formal specifications per se cannot regarded as a

panacea; after all, formality of the mathematical notation does not prevent

mathematicians to occasionnaly write erroneous proofs! Instructive discussions of

the relations between mathematical thinking and programming methodology may be

found in (Dijkstra 76, Gerhart 76, Mills 75, Schwartz 72).

Finally, we should not leave the subject of specification without a world about

the specification of the user interface, i.e. the language by which an informat~n

system and its human users achieve communication. This includes the design of the

command language (including control and data description) by which the system is

operated~ as well as the design of the output language in which results are given.

Little formal consideration seems to be given to these subjects, with the result

that the above mentioned "languages" often hardly deserve this name at all.

Notorious examples are the command languages used to instruct operating systems :

the obscurity and lack of logical structure of most of these "languages" are wel~

known facts.

The interested reader should refer to part 4 of (Naur 74) which is devoted to a

thorough survey of the design principles that apply to data interchange between

man and computer. This is a difficult field of study where contributions are

needed from ergonomists and psychologists. Advances in the technology of graphical

information displays should open new directions for progress in this field.

203

3. - THE DESIGN OF CONTROL AND DATA STRUCTURES

An elementary information processing task may be described as the operation of

a procedure on some data. The execution of such a task is called a process. Concur-

rently executing (O r logically independent) tasks are described by a system of

concurrent processes, which may interact through shared resources or informations.

Procedures, data and processes are thus the main components of any information

system. Much effort has been devoted to devise abstract (i.e. implementation

independent) models for these three classes of objects, and to develop structu-

ring tools based on such models. In the following sections, we shall try to give

an account of the present state and future trends of this evolution.

8.i. Data structures

The use of abstraction for the design of data structures is more recent than for

programs. The underlying idea is that a data structure is more adequately defined

(for a user of this structure) in terms of the allowed access operations than in

terms of its implementation. The data abstraction operation consists in the defi-

nition of a model of behaviour (an abstract data type) according to which a class

of objects may be generated. The properties of such an object (an instance of the

type) are defined by the specifications of the abstract type. These properties do

not depend on the implementation of the object. Some important properties follow :

i) The user of an object needs only to know the specifications of its

abstract type and should make no assumption on its internal structure.

2) An object may be implemented in a number of ways. From a user's standpoiT~

all these implementations are equivalent (except perhaps as regards efficiency)

as long as they conform to the object's data type specifications.

3) The user of an object may not access~ retrieve or modify any part of this

object except through the specified access procedures.

A number of schemes have been proposed to implement Jle idea of data abstractions. This

variety is reflected in the number of different terms that were recently intro-

duced : abstract type (Liskov 74), abstract machine (Dijkstra 72), capsule

(Horning 76) denote general abstraction mechanisms, while class (Dahl 72),

cluster (Liskov 74), form (Wulf 76) refer to specific implementations of such

mechanisms, and module is used in both (and other) contexts (e.g. Parnas 72,

Wirth 77).

The general pattern that appears to be common to these proposals is that an

object generated by an abstract data type may be described as follows :

- the object is represented by a set of information ("state variables'V),

together with a set of access procedures; the user interface is defined by these

204

access procedures,

- the state of the object is defined at any "time as the value of the state

variables,

- the state receives an initial value when the object is created;

- the access procedures are the only way of access to the data part of the

object; in most proposals, this restriction is enforced at compile time;

- the effect of the access procedures may be specified in terms of an initial

and final state. As a consequence, the state of the object, at any time, only

depends on the sequence of operations that were executed since its creation.

On the other hand, some other issues are still controversial such as :

- separate compilation of abstract types;

- mechanisms for the construction of parameterized or generic abstract types;

- efficient implementation;

- mechanisms for parameter passing.

A number of experiments with the implementation and use of abstract types are cur-

rently under way. Experience with actual use of languages including this concept

is still limited (Geschke 77) and seems to be restricted to the production of

systems programs (see however (Hammer 76) for a discussion of the use of abstract

types in data base design). Some tentative conclusions may be drawn from the

first results :

i) The use of new data structuring mechanisms does not automatically result

in better (more reliable, understandable, efficient) programs. A good tool sup-

plements the designer's skill but offers no substitute for it~

2) A strict compile-time type checking system must tolerate some exceptions

(for logical or efficiency reasons). Such exceptions should be made as explicit

as possible to make the user aware of the potential dangers.

As noted in (Geschke 77), early experience with this new data structuring

concepts can be compared to experience with the use of "structured" control cons-

tructs. Such constructs help their user to acquire a good style of program design

which may afterwards be put into practice with languages that do not support them.

As a consequences we would recommend early acquaintance w~th these mechanisms in

computer science education.

3.2. Control structures for sequential programs

One of the main results of the recent advances in systematic programming

(Dijkstra 72), (Knuth 74 b), (Mills 75), (Wirth 76) is that an adequate tool for

the construction of sequential programs is the set of three elementary constructs:

sequence, selection (if-then-else), and iteration (while-do), possibly supplemen-

ted by case and repeat-until, together with the basic abstraction device provided

205

by procedures. Even for widely used languages that do not include these constructs

(such as FORTRAN or COBOL), adherence to a programming discipline may be enforced

by the use of a preprocessor or by a set of standard rules of transcription.

The benefits of the systematic use of a small number of simple and well defined

constructs are presently recognized and largely illustrated by a number of pu-

blished examples (e.g. in the references quoted at the beginning of this section).

However, an important feature that appears in the programs of many large scale

information systems is not easily captured by these constructs. The operation of

such systems may be described as a "normal case" algorithm together with a number

of "exceptions". Exceptions may include hardware failure, erroneous data, or any

condition specified by the designer. The exception-handling mechanisms often

account for a large fraction of the total size, cost and con~lexity of the system.

The problem of exception handling has been the subject of intense research since

its practical importance was realized. A number of methods have been proposed,

but it does not seem that a single solution to the problem has achieved pre-

eminence. A complete review of recent work, together with some new proposals,

may be found in (Levin 77).

Exceptions may be regarded as "special cases" and handled in the same way as

"normal cases" e.g. by means of return values that indicate abnormal return from

a procedure call. This way of doing, however~ is detrimental to a good under-

standability of the programs. An acceptable exception handling mechanism should

be adapted to any abstraction-defining constructs used in the program : if an

object is defined by an abstraction mechanism that encapsulates its internal

structure, any exceptional conditions arising when the object is used should be

expressed in terms of the abstraction by which it is defined. In other words,

for example, an exceptional condition detected when a programmer-defined data

structure is misused should not be expressed in terms of memory addresses, as is

too often experienced! An exceptional condition should be propagated through the

abstraction levels until enough information is available to allow its processing.

An adequate expression language for the definition of exception detection and

handling should allow to clearly separate what is considered a normal case and

what is considered an exception; it should also provide means for binding the

detection of an exception to its processing.

While the main issues in the design of exception handling mechanisms are now

being understood (at least for sequential programs), especially in the context of

abstraction- defining constructs, we are clearly lacking experience with the

actual use of such mechanisms. Some of the recent proposals are currently being

implemented under experimental conditions and user experience is eagerly awaited.

206

3.3. Para!lel Processes

Parallel processes provide a means for structuring systems in which a number of

loosely coupled activities cooperate towards a common task. A great variety of

methods have been devised to achieve interprocess cooperation. Semaphores provide

a general tool which has been widely used in the design of operating systems, and

which has been included as an elementary synchronizing operation in the hardware

of a number of computers. However~ some considerations have recently led to the

development of more elaborate tools :

i) The trend towards the use of high-level languages for the design and im-

plementation of systems programs : high-level synchronizing constructs were needed

especially for inclusion in the data abstraction mechanism provided by these

languages.

2) The growing concern for mechanisms amenable to precise specification and

correctness proofs.

3) The advent of distributed systems~ in which processes do not share a

common s to re .

3 .3 .1 . ~ $ ~ I ~ Z ~ } _ ~ 2 ~ _ ~ £ 2 ~

Monitors (Hoare 74) were in t roduced to implement data s t ruc tu res which may be

shared by several processes, and used through a set of access procedures. The

synchronizing mechanism built into the monitor ensures mutual exclusion for the

execution of access procedures, and allows to enforce a scheduling discipline

among processes by means of a set of queues associated with activation conditions.

Monitors have been included in several programming languages (e.g. Concurrent

Pascal (Brinch Hansen 77), Modula (Wirth 77)). Efficient implementations of

monitors have been devised and some experience has been collected, which seems to

demonstrate the usefulness of this construct. However, when programming with moni-

tors, one must explicitly describe the scheduling operations in terms of waiting

and activation primitives. In many cases, one would wish a more global and impli-

cit expression of synchronizing conditions in terms of procedure executions, con-

sidered as elementary units of process activity. This has led to the development

of more formal constructs.

Path expressions (Habermann 75) and various forms of event counters (e.g. Robert

77) were introduced in an attempt to express synchronizing conditions in a module

in terms of procedure executions. These synchronizing conditions are described by

regular expressions (path expressions) or by algebraic relations between the

values of event counters. The formality of these expressions makes these mecha-

nisms amenable to proofs. Experience with their actual use is still very limited.

The main difficulty with their use seems to arise when synchronizing conditions

207

in a module are execution-dependent, i.e. if they are expressed in terms of the

value of internal variables of the module or of procedure parameters.

3.3.2. ~ _ ~ £ ~ r ~ £ ~ _ ~ _ ~ ~ _ ~

A great deal of interest has arisen for distributed computing in the recent

years. Three main reasons account for this interest :

i) The availability of low-cost computing power allows one to devise highly

parallel computing systems constructed form a large number of interconnected

processors.

2) The development of computer networks makes resource sharing possible

netween geographically distant centers.

3) Increasing concern for reliability leads to the distribution of work

between interconnected computers e.g. in industrial process management.

In spite of an intense activity, it does not seem that the ambitious goals set up

several years ago have really been attained. A number of fundamental problems in

distributed computing are still awaiting a solution. We shall try to analyse

what appear to be the main issues in this fields.

We shall first set up a model of a distributed system as a set of entities con-

nected by communication lines. We shall consider each of these entities as a self-

contained module. Each of these modules is associated with a set of cooperating

processes which share this module; communication between processes on different

modules is achieved by asynchronous messages (this is the only possibility in

the absence of a common store).

Besides the absence of a common store, ~ distributed system is characterized by

the absence of a common clock. More precisely, the time scale which applies to

message transmission is not negligible with respect to the local time scale in an

individual process. Moreover, the transmission lines may usually not be regarded

as reliable and message loss is not an exceptional event.

Some of the main problems in such a structure may be summed up as follows :

- how to achieve state consistency between data in different modules (this

amounts to solve the mutual exclusion problem between two distant

processes);

- how to ensure a sufficient overall reliability to the system in spite of

the unreliable communication mechanism;

- how to express a computation distributed among several distinct modules

(this may not be done by intermodule procedure calls because of the message

mechanism, and new linguistic constructs are needed);

208

- how to survive a failure in one of the communicating modules.

0nly partial solutions have been proposed so far to all of these problems. The

model ofa set ofmodules connected by asynchronous message lines seems to be the

paradigm for a variety of situations : cooperating processes in the kernel of an

operating system, multiproeessor systems, actor models in Artificial Intelligence,

distributed data bases~ loosely connected processors in industrial control ap-

plications. We think that a systematic investigation of this model (as initiated

e.g. in (Feldman 77)) should contribute to give a sound framework to the design

of distributed applications.

4. CONCLUSION

In this survey, we have tried to discuss a number of views pertaining to informa-

tion systems design. Our conclusion will be very brief : design essentially

remains a human activity, and no magic sophisticated device will ever replace

thorough analysis, careful expression of requirements, clear separation of cor-

rectness and efficiency concerns, and strive for conceptual simplicity. The main

achie~ementcf the recent years' effort is that we are in the process of founding

the designer's skill on an explicitly transferrable body of knowledge. In addi-

tion, we are learning to make a good use of computers to assist the designer as

well as the implementor of information systems. In this respect, the importance

of well-designed tools should not be underestimated~ because the use of well

chosen tools forces us to ask the "right questions", and because the applicabi-

lity of a design method is greatly enhanced if the method is supported by a set of

appropriate tools.

REFERENCES

ABRIAL J.R. : Data semantics, Proc. IEIP Working Conf. on Data Base Man~:gement
Systems (Klimbie and Koffeman, eds.)~ North-Holland (1974).

ABRIAL J.R. : M%thode et langage de sp6eification. (Unpublished notes, 1977).

ALEXANDER C. : Notes on the synthesis of form, Harvard University Press, 1964.

BOEHM B.W., McCLEAN R.K., URFRIG D.B. : Some experience with automated aids to

the design of large-scale software, Proc. Intern. Conf. on

Reliable Software, SIGPLAN Notices 10,6 (juin 1975).

BRINCH HANSEN P. : The architecture of concurrent programs, Prentice Hall (1977).

BROOKS F.P. : The mythical man-month, Addison-Wesley, 1975.

CADES : Computer-Aided Design and Evaluation System (a series of articles in

Computer Weekly, (July 1973).

DAHL O.J. : Hierarchical program structures, in Structured Programming (Dahl,

Dijkstra, Hoare), APIC Studies in Automatic Programming n°8,

Academic Press (1979).

DIJKSTR_A E.W. : Notes on Structured Programming, in Structured Progra~ning
(Dahl, Dijkstra, Hoare)~ APIC Studies in Automatic Programming,

n°8~ Academic Press (1972).

209

DIJKSTRA E.W. : A discipline of program~r~ng, Prentice Hall (1976)o

DONZEAU-GOUGE V., HUET G., LANG B., LEVY J.J. : A structure-oriented program

editor : a first step towards computer-assisted programming,

Proc. ICS Conf., Antihes (May 1975).

FELDMAN J.A. : A programming methodology for distributed computing (among other

things), TR-9, Dept. of Computer Science, UniV. of Rochester 1977.

GEt, ART S.L. and YELOWITZ L. : Observations of fallibility in applications of

modern programming methodologies, IEEE Trans. Software Engineering,
SE-2, 3 (Sept. 1976).

GESCHKE C.M., MORRIS J.H., SATTERTHWAITE E.H. : Early experience with Mesa,

Comm. ACM, 20, 8 (Aug. 1977).

GOULD I.H. : (Ed.) IFIP Guide to concepts and terms in data processing, North-

Holland, 1971.

GUTTAG J. : Abstract data types and the development of data structures, Proc.

SIGPLAN/SIGMOD Conf. on Data~ SIGPLAN Notices 8,2 (march 1976).

(To appear in Comm. ACM).

HABERMANN A.N. : Path expressions Dept. of Computer Science, Carnegie Mellon
University (1975).

HAMMER M. : Data abstractions for data bases, Proc. SIGPLAN/SIGMOD Conf. on Data

SIGPLAN Notice{, 8,2 (March 1976).

HAMMING R.W. : One man's view of computer science, Journal A.C.M.~ 16,1 (Jan.1969).

HENDERSON P., SNOWDON R. : An experiment in structured programming, BIT 12,1
(1972).

HENDERSON P., SNOWDON R. : A tool for structured program development; Proc IFIP
Congress 1974, vol 2, North-Holland (1974).

HORNING J.J. : Some desirable properties of data abstraction facilities,

Proc. SIGPLAN/SIGMOD Conf. on Data, SIGPLAN Notices 8~2 (march 1976).

HOARE C.A.R. : Notes on data structuring, in Struct~edProgramming (Dahl,

Dijkstra, Hoare), APIC Studies in Data Processing n°8 Academic
Press (1972).

HOARE C.A.R. : Monitors : an operating systems structuring concept, Comm. AOM,
17, i0 (1974).

IVIE E.L. : The programmer's workbench - a machine for software development,

Comm. ACM 20,10 (oct. 1977).

JACKSON M.A. : Principles of program design, APIC Studies in Data Processing

n°12, Academic Press (1975).

KNUTH D.E. : Computer Programming as an art, Comm. ACM 17,12 (Dec. 1974 a).

KNUTH D.E. : Structured programming with goto statements, Comp. Surveys,
6,4 (Dec. 1974 b).

KRAKOWIAK S., LUCAS M., MONTUELLE J., MOSSIERE J. : A modular approach to the

structured design of operating systems, Proc. MRI Symp. on Computer
Software Engineering, Polytechnic Institute of New-York (1976).

LISKOV B.H., ZILLES S.N. : Programming with abstract data types, Proc. SIGPLAN

Symp. on Very High Level Languages, SIGPLAN Notices, 9,5 (1974).

LISKOV B.H., ZILLES S.N. : Specification techniques for data abstractions,

IEEE Trans. Software Engineering, SE-I (March 1975).

LUCENA C.J., COWAIN D.D. : Toward a system's environment for computer assisted

programming~ Inf. Proc. Letters, 5,2 (June 1976).

210

MILLS H.D. : How to write correct programs and know it, Prec. Int. Conf. on

reliable software, SIGPLAN Notices i0,6 (June 1975).

MYERS G.J. : Reliable soft~)are through composite design, Petrocelli/Charter (197~.

NAUR P. : Concise s~vey of computer methods, Studentlitteratur, Lund (1974).

PARNAS D.L. : Information distribution aspects of design methodology. Prec. IF~P
Congress (1971).

PARNAS D.L. : On the criteria to be used in decomposing a system into modules,

Comm. ACM, 15,12 (Dec. 1972).

POLYA G. : How to solve it, Princeton University Press (1971).

ROBERT P., VERJUS J.P. : Towards autonomous descriptions of synchronization

modules, Prec. IFIP Congress, (1977).

ROSS D.T., SCHOMAN K.E. Jr : Structured analysis for requirements definition,

IEEE Trans. Software Engineering, SE-3~ i (Jan. 1977).

SCHNEIDER B.R. Jr : 1~avels in computerland, or incompatibilities and interfaces,

Addison-Wesley (1974).

TEICHROEW D., HERSHEY E.A., III, PSL/PSA : A computer-aided technique for struc-

tured documentation and analysis of information processing systems,

IEEE Trans. Software En~neering, SE-3,1 (Jan. 1977).

WIRTH N. : Algorithms + data structures = Programs, Prentice Hall (1976).

WIRTH N. : Module, a language for modular multipregramming, SoftWare Practice

and experience 7,1 (1977).

ZURCHER F.W., RANDELL B. : Iterative multi-level modelling : a methodology for

computer system design, Prec. IFIP Congress (1968).

