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Abstract. Exhumed basement rocks are often dissected by

faults, the latter controlling physical parameters such as rock

strength, porosity, or permeability. Knowledge on the three-

dimensional (3-D) geometry of the fault pattern and its con-

tinuation with depth is therefore of paramount importance for

applied geology projects (e.g. tunnelling, nuclear waste dis-

posal) in crystalline bedrock. The central Aar massif (Cen-

tral Switzerland) serves as a study area where we investi-

gate the 3-D geometry of the Alpine fault pattern by means

of both surface (fieldwork and remote sensing) and under-

ground ground (mapping of the Grimsel Test Site) informa-

tion. The fault zone pattern consists of planar steep major

faults (kilometre scale) interconnected with secondary re-

lay faults (hectometre scale). Starting with surface data, we

present a workflow for structural 3-D modelling of the pri-

mary faults based on a comparison of three extrapolation

approaches based on (a) field data, (b) Delaunay triangula-

tion, and (c) a best-fitting moment of inertia analysis. The

quality of these surface-data-based 3-D models is then tested

with respect to the fit of the predictions with the underground

appearance of faults. All three extrapolation approaches re-

sult in a close fit ( > 10 %) when compared with underground

rock laboratory mapping. Subsequently, we performed a sta-

tistical interpolation based on Bayesian inference in order to

validate and further constrain the uncertainty of the extrapo-

lation approaches. This comparison indicates that fieldwork

at the surface is key for accurately constraining the geome-

try of the fault pattern and enabling a proper extrapolation of

major faults towards depth. Considerable uncertainties, how-

ever, persist with respect to smaller-sized secondary struc-

tures because of their limited spatial extensions and unknown

reoccurrence intervals.

1 Introduction

Geological information is inherently three-dimensional (3-

D) in space but often represented in 2-D (Jones et al., 2009).

With increasingly available computer power, 3-D modelling

or geometrical visualizations have become widespread, as

they can be performed on a desktop computer (e.g. Bistac-

chi et al., 2008; Caumon et al., 2009; Hassen et al., 2016;

Sausse et al., 2010; Stephens et al., 2015). 3-D models widely

serve as a basis for subsequent investigations, such as stress

modelling or fluid flow modelling (e.g. Hassen et al., 2016;

Stephens et al., 2015). Explicit structural modelling can fur-

ther be subdivided into stochastic and deterministic methods.

Deterministic approaches yield a single output for input pa-

rameters, analogous to drawing a map (e.g. Stephens et al.,

2015), whereas as in stochastic approaches parameters are

defined by a probabilistic density function with a component

of randomness (e.g. Cherpeau and Caumon, 2015; González-

Garcia and Jessell, 2016; Jørgensen et al., 2015; Koike et al.,

2015).

When modelling a certain volume of Earth’s intermedi-

ate deep subsurface (tens of metres to kilometres), as is of-

ten done for planning nuclear waste repositories, geothermal

projects, or tunnelling work, 3-D structural modelling com-

monly starts from a known lithological and structural dataset

from the Earth’s surface or underground facilities such as
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tunnels or boreholes. Known information is then extrapolated

towards the unknown. At the time of extrapolation, the valid-

ity cannot be proven unless additional information, such as

geophysical, borehole, or excavation data, is integrated.

Previous studies report that this extrapolation represents a

main uncertainty within 3-D structural modelling of known

structures (e.g. Baumberger, 2015; Bistacchi et al., 2008).

From environments with sparse data, for example, the topol-

ogy of the fault network is known to be highly uncertain or

prone to the existence of unknown faults (e.g. Cherpeau et al.,

2012; Cherpeau and Caumon, 2015; Hollund et al., 2002).

More generally, for kilometre-scale models, uncertainties

in accuracy related to input data (i.e. GPS location, dip–dip

azimuth measurements) are small compared to the uncer-

tainty related to the data interpolation between known loca-

tions or data extrapolation (Bond, 2015).

Uncertainties play an important role when considering

decision-making based on information available from a 3-D

model and have therefore been subject to extensive studies in

the past (e.g. Bistacchi et al., 2008; Bond et al., 2007a; Lind-

say et al., 2012; Tacher et al., 2006; Wellmann et al., 2010,

2014; Wellmann and Regenauer-Lieb, 2012; Yamamoto et

al., 2014). Since models are a function of the data used,

some of the approaches tend to analyse uncertainties in the

input data before modelling (e.g. Bond et al., 2007b; Jones

et al., 2009). Other approaches investigate the error propaga-

tion into the models, inferring the uncertainty after modelling

(Jessell et al., 2010; Lindsay et al., 2012; Viard et al., 2011;

Wellmann et al., 2010). Most of these published studies were

performed within sedimentary environments where parame-

ters such as stratigraphy, layer thickness, layer orientation,

and structural setting are well constrained. Uncertainty esti-

mation and its potential reduction are less well constrained

for the structural modelling of basement rocks (e.g. Svensk

Kärnbränslehantering AB, 2009), which are characterized by

intrusive contacts and a complex arrangement of deformation

structures.

In this study, we focus on deformed basement rocks and

the extrapolation of faults to depth. We follow two main

goals: (i) the application of an extrapolation workflow for

three different techniques for projection of surface structures

to depth considering associated projection uncertainties and

(ii) the design and application of a probabilistic approach to

compare different extrapolation techniques in order to vali-

date the generated models.

We focus specifically on the combination of observations

in outcrops at the surface with observations in an under-

ground facility, allowing for an extrapolation modelling ap-

proach, and propose that it is possible to link these two types

of observations in a probabilistic context by taking into ac-

count uncertainties in measurements and the exact tie be-

tween observed features at the surface and in the under-

ground facility. We investigate a local case study in a rela-

tively simple setting in crystalline rocks. The study area is

characterized by well-exposed crystalline rocks of the Aar

Figure 1. Geological map of the study area (modified after Berger

et al., 2017). The coordinate system of the inset map is given in

WGS84, whereas the coordinates of the local geological map are

given in the Swiss coordinate system (CH1903).

massif in the central Swiss Alps (Fig. 1) and furthermore

greatly benefits from subsurface information from the Grim-

sel Test Site (GTS) underground rock laboratory run by the

Swiss Cooperative for Disposal of Radioactive Waste (Na-

gra).

This combination of good outcrop conditions at the sur-

face and independent high-quality subsurface information al-

lows for an extrapolation modelling approach and subsequent

validation in a relatively simple and well-constrained high-

topography crystalline setting.

2 Geological setting

The study site is located in the Haslital in the Central Alps

(Switzerland; Fig. 1) within the Aar massif, an external crys-

talline massif in the Alps representing exhumed basement

rocks of the former European continental margin and thus

belonging to the palaeogeographic Helvetic domain of the

Alps (e.g. Mercolli and Oberhänsli, 1988; Pfiffner, 2009; von

Raumer et al., 2009).

Three different host rocks of magmatic origin occur in the

study area: (i) Grimsel granodiorite (GrGr), (ii) Central Aare

granite (CAGr), and (iii) meta-basic dykes (e.g. Abrecht,

1994; Keusen et al., 1989; Labhart, 1977; Stalder, 1964).

The GrGr and the CAGr belong to the Haslital group, which

is a Permian calc-alkaline magmatic differentiation suite

(Berger et al., 2017; Schaltegger, 1990; Schaltegger and

Corfu, 1992); the GrGr is the more primitive member. The

two host rocks differ mainly in the relative amount of biotite,

with ca. 11 vol% biotite in the GrGr compared to ca. 5 vol%

biotite in the CAGr (Keusen et al., 1989). Intermingling

structures observed in the field indicate a coeval viscous state
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(Schneeberger et al., 2016). Furthermore, the concordant zir-

con and titanite U–Pb intrusion ages of both rock units are

overlapping within error; the GrGr intrusion has a concor-

dant titanite U–Pb intrusion age of 299±2 Ma and the CAGr

has an age of 299 ± 2 Ma (Schaltegger and Corfu, 1992).

The granitoids intruded during late to post-Variscan exten-

sional tectonics into a polymetamorphic pre-Variscan base-

ment (Abrecht, 1994; Berger et al., 2017; Labhart, 1977; von

Raumer et al., 2009; Schaltegger, 1990, 1994).

Meta-basic dykes, formerly called lamprophyres (Ober-

hänsli, 1986), intrude into the granitoid bedrock without al-

tering the granitoid, indicating only slightly younger intru-

sion ages of former basic dykes with respect to the calc-

alkaline granitoids.

The aforementioned rock types are subsequently over-

printed by metamorphism and deformation related to Alpine

orogeny. Peak metamorphic conditions reached 450 ± 30 ◦C

and 6 ± 1 kbar (Challandes et al., 2008) at 22–20 Ma (Chal-

landes et al., 2008; Rolland et al., 2009).

Several authors have described the deformation related to

Alpine orogeny in the vicinity of the study area (e.g. Baum-

berger, 2015; Challandes et al., 2008; Choukroune and

Gapais, 1983; Goncalves et al., 2012; Keusen et al., 1989;

Marquer et al., 1985; Rolland et al., 2009; Steck, 1968;

Wehrens et al., 2016, 2017). Ductile deformation is ex-

pressed by a pervasive foliation and localized high-strain

zones (shear zones). The exact geometry of the 3-D shear

zone network, which occurs at a variety of scales ranging

from several kilometres down to millimetres, is complex

(Choukroune and Gapais, 1983). It is, however, possible to

extract a pattern of kilometre-long major shear zones inter-

connected by hectometre-long subordinate bridging struc-

tures. The major shear zones tend to be quasi-planar (Baum-

berger, 2015; Wehrens et al., 2017) and we therefore as-

sume a considerably simplified shear zone pattern with quasi-

planar to planar geometries of the major shear zones grouped

according to their strike orientation (Fig. 2).

The kinematic framework of Alpine deformation is con-

troversial. Several kinematic models have been proposed for

the shear zone network genesis in the study area, includ-

ing single-phase (Choukroune and Gapais, 1983) and multi-

stage evolution models (Herwegh et al., 2017; Rolland et al.,

2009; Steck, 1968; Wehrens et al., 2016, 2017). This study

aims to reconstruct the present day 3-D geometry. Although

the kinematic evolution is beyond the scope of this study,

the generated models have been validated for kinematic in-

consistency with respect to the known tectonic framework

(e.g. models with unrealistic dip values have been removed;

dip < 60◦ or north verging). The different orientations of the

structures are therefore used without kinematic implications.

The major orientation of structures within the area are NE–

SW (group A), E–W (group B), and NW–SE (group C) trend-

ing (Schneeberger et al., 2016; Wehrens et al., 2017).

The pervasive foliation and the highly localized shear

zones form mechanical anisotropies, which favour subse-

N

Group A fault

Group B fault

Group C fault

Figure 2. Schematic bloc diagram showing geometrical relation-

ships between faults of different orientation groups (modified after

Wehrens et al., 2017).

quent brittle localization (Belgrano et al., 2016; Kralik et al.,

1992). Deformation in the brittle regime is expressed by frac-

turing and cataclasis, often resulting in fault gouges (Bense

et al., 2014; Wehrens et al., 2016). The spatial distribution

of fractures and their reactivation in the form of fault gouge

development is heterogeneous (Bossart and Mazurek, 1991;

Mazurek, 2000).

Although the shear zones experienced a severe ductile de-

formation history, most of them were reactivated in a brittle

manner during the exhumation history (Wehrens et al., 2017).

Subsequently, we therefore use the term fault as a summary

term for high T ductile shear zones, low T ductile shear

zones, and their reactivation by brittle shearing leading to

cohesive (protocataclasite, cataclasite) or non-cohesive (fault

gouge) fault rocks.

Present day seismic activity (Pfiffner and Deichmann,

2014) indicates ongoing recent tectonic activity in the deep

subsurface of the Aar massif.

Glaciation and glacial retreat contributed to the latest his-

tory of the area (Wirsig et al., 2016). Basal erosion and

the latest young (17.7 ka, Wirsig et al., 2016) retreat ages

produced excellent outcrop conditions, as most outcrops

are glacially polished and above the treeline, exposing bare

bedrock.

Owing to deglaciation, exfoliation jointing occurred

(Ziegler et al., 2013). Given the restricted near-surface occur-

rence of these exfoliation joints and their small dimensions,

we exclude these deformation features from further consid-

eration in this study.
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Extrapolation techniques

Lineament map
General orientation of faults

Strike variability along fault
Topography effect

Planarity of the faults

Lineament length = approximation
for the extrapolation depth of the faults

Digital elevation model

Computing fault traces

Defining major / minor faults

Carrying out fieldwork 

Basis for 3-D modelling

Assigning field observations 
to specific fault

Ribbon tool

Delaunay triangulation

Fieldwork database

Calculating the intersection lines of extrapolation surface planes with underground facility

Measuring the degree of fit

Underground mapping

No crossings within orientation group

Reference state

Varying the connections between surface point and underground point

Structural map

Modelling 3-D structures

Best-estimate model

Maximum a posteriori model

Conceptual work

Figure 3. Employed modelling workflow to generate a 3-D structural model of the area based on a surface lineament map. As a major step,

the workflow also considers the uncertainty related to the connection between mapped faults at the surface and underground.

3 Methods

3.1 Extrapolation workflow

In order to represent the 3-D geometry of faults, we devel-

oped a workflow based on a combination of remote sensing

and fieldwork (Fig. 3).

As a first step, we generated a lineament map using re-

mote sensing data. We use the term lineament as defined by

Gabrielsen and Braathen (2014) and O’Leary et al. (1976): a

lineament is a mappable linear or curvilinear feature identi-

fied by remote sensing, possibly representing the intersection

between a planar to subplanar structural anisotropy and the

Earth’s surface. Lineament mapping followed the method-

ology presented by Baumberger (2015). Aerial photographs

(swisstopo) and a digital elevation model (DEM; swisstopo)

with resolutions of 0.5 and 2 m, respectively, served as a ba-

sis.

Using the DEM, hillshade images (i.e. greyscale relief im-

ages) with distinct illumination angles (0–360◦ illumination

azimuth with 45◦ steps constant at a 30◦ altitude angle) were

calculated, resulting in eight hillshade images and illuminat-

ing different parts of the investigation area. On a pixel-based

map, the possible strike angle of a line depends on the num-

ber of pixels of the raster matrix in which the line is enclosed

(Heilbronner and Barrett, 2014). Our approach requires an

angular resolution < 10◦, and thus a minimum length of 10

pixels for a specific lineament was necessary to fulfil this

criterion. Hence, shorter lineaments (< 5 m) were discarded.

Lineaments were manually digitized and are composed of a

minimum of two endpoints and potentially several points in

between.

The strike of lineaments was defined as the angle measured

clockwise from north. Two different approaches to analyse

the strike of lineaments were compared: (i) single strike val-

ues from endpoint to endpoint and (ii) strike values for in-

Solid Earth, 8, 987–1002, 2017 www.solid-earth.net/8/987/2017/
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dividual segments between a lineament’s nodes. In both ap-

proaches, a weight is added to the strike proportional to the

length of the lineament.

In addition to the aforementioned remote sensing ap-

proach, conventional structural surface mapping over an area

of 13 km2 was performed. Spatially restricted outcrop obser-

vations at the surface were extrapolated along strike using the

lineament map; thus combining fieldwork and remote sens-

ing allowed us to obtain a structural surface map. Ductile

deformation was mapped by differentiating pervasive back-

ground strain and localized high-strain zones (shear zones).

At the surface, mapping of brittle deformation focused on

the occurrence of fault gouges. In addition, mapping in the

GTS underground facility was performed similarly to surface

mapping on a decametre scale and in more detail regarding

brittle structures (Schneeberger et al., 2016).

Structural modelling was performed using Move™ soft-

ware (Midland Valley) on two distinct scales: a local scale

(decametre) for the GTS and a regional scale (kilometre)

for the entire study area. Underground 3-D structural mod-

elling was performed on the basis of underground mapping

and drill core data, which resulted in fault traces and ori-

entations. This information provided the basis for the 3-D

reconstruction of fault planes. Regional 3-D structural mod-

elling was performed following published workflows using

the surface fault map as a basis (e.g. Baumberger, 2015; Bis-

tacchi et al., 2008; Kaufmann and Martin, 2009; Zanchi et al.,

2009). Surface faults were extrapolated to depth by assigning

a dip value to individual surface traces, where a trace is the

intersection between the Earth’s surface and a fault. Three

different extrapolation approaches were applied: (i) extrapo-

lation along measured dip and dip azimuth (fieldwork-based

approach). Data from outcrops were considered within an or-

thogonal distance of < 20 m to inferred fault traces and a

strike differing less than 20◦ compared to the fault’s mean

strike as defined by remote sensing. The fault’s mean strike

was calculated via linear regression through all points defin-

ing its trace. (ii) Delaunay triangulation is a meshing algo-

rithm that produces a triangulation for several points such

that for a given point cloud, no point of the point cloud is in-

side the circumcircle of any triangle connecting three points

of the point cloud (Delaunay, 1934). It results in a 3-D sur-

face interpolating the selected points. Based on this surface,

the entire fault trace can be extrapolated. Noise can arise be-

cause of rugosities of the fault planes, uncertainties in tracing

the fault intersection at the surface, and too-low vertical vari-

ations in topography. In the case of near planar faults, the

noise is reduced in the case of high variations in altitude be-

tween valleys and mountain peaks and by preferring projec-

tions of long fault traces over those of short fault segments.

(iii) The ribbon tool is a Move™ internal interpolation algo-

rithm based on a three-points approach in which three points

form a triangle and the orientation is averaged over a de-

fined number of triangles (Midland Valley). The maximum

dip orientation of each average triangle is represented as a

Angle misfit

Distance misfit
Mapped trace of fault

Projected trace of 
surface fault

30 m

N

GTS 

Figure 4. Schematic drawing of hypothetical example for validation

of 3-D models based on angular and distance misfit (map view). The

contours of the GTS are shown in grey with a mapped fault trace

and a fault trace resulting from projection of the fault plane from

the surface.

stick at the location of the starting point. The combination of

all sticks along a trace results in a plane for the given trace.

More details on the method used by the ribbon tool are given

in Fernandez (2005) and Baumberger (2015).

For each approach, the surface fault trace was extrap-

olated to depth using the obtained specific orientation.

Subsequently, the intersection line between the extrapo-

lated plane and a horizontal plane at GTS elevation (ap-

prox. 1730 m a.s.l.) was calculated. Then, the resulting inter-

section lines were compared with the underground structural

map in order to find the “best-fitting” underground structure

to the obtained intersection line. The degree of fit between

the intersection line at the surface and the trace of the under-

ground structure was estimated using the orthogonal distance

(distance misfit) starting from the intersection with the main

gallery and the angular difference (angle misfit) between the

two linear features (Fig. 4). Only structures within the same

orientation group (groups A, B, C) were compared.

Furthermore, the degree of fit was compared between the

different extrapolation approaches and thus for every surface

fault. Considering all approaches, a best-fitting underground

fault was assigned based on the aforementioned criteria. This

assignment served as basis for the following structural mod-

elling step in which every surface fault was linearly interpo-

lated with the assigned best-fitting underground fault, yield-

ing a “best-estimate” model.

3.2 Bayesian inference

For a better description of the system taking into consider-

ation the inherent uncertainty in the extrapolation methods

www.solid-earth.net/8/987/2017/ Solid Earth, 8, 987–1002, 2017
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above, we performed a Bayesian inference on the basis of a

GTS parallel cross section. Bayes’ theorem,

p(θ |y) =
p(θ)p(y|θ)

p(y)
,

provides a formal way to update probability distributions

for model parameters θ when new data y are obtained. The

final goal is to obtain the posterior distribution p(θ |y) of

the parameters θ given the observations y. This distribution

is proportional to the distribution of prior parameters p(θ)

and likelihood functions p(y|θ), which determine how likely

these parameters are given specific observations y. The term

p(y) is a normalization constant commonly referred to as

evidence or marginal likelihood (see for example MacKay,

2003, for more details).

In this study scenario, we assign a parameter to each sur-

face fault at the tunnel level. We represented the uncertainty

about the exact value with a Gaussian distribution and a con-

stant standard deviation of 40 m in the horizontal axis (Fig. 5)

based on the dip uncertainty of 10◦ based on the dip vari-

ation in multiple orientation measurements along a single

fault (Fig. 5). As a mean value, we assign the best-estimate

model from the previous interpolation. Interpolated planes

were grouped according to their orientation into three sepa-

rate groups (identified by A, B, C in the following; Fig. 2).

Within each orientation group, we expect faults to be

mostly parallel with limited intersections based on field ob-

servations. To capture this idea, we assigned a penalty fac-

tor that reduces the log-likelihood of a parameter set for

an increasing number of intersections (by 0.05 per intersec-

tion, to be precise). The number of intersections per iteration

was calculated using the Bentley–Ottmann algorithm (Sup-

plement; Balaban, 1995; Bentley and Ottmann, 1979).

The described Bayesian inference cannot be performed di-

rectly due to the complexity of multiple parameters in sev-

eral groups and the non-linearities due to the fault intersec-

tions. We therefore apply a computational sampling method

based on an adaptive Metropolis MCMC approach (Haario

et al., 2001) implemented in the probabilistic programming

package PyMC 2 (Patil et al., 2010) and previously success-

fully used in a geological context (de la Varga and Wellmann,

2016).

Final posteriors were discretized to match the locations of

measured faults in the underground tunnel by a simple near-

est location classifier (Fig. 5). Therefore, the final result of

the inference is a discretized distribution of each of the pa-

rameters. In order to compare the 3-D models obtained by

the three extrapolations approaches, we then use the maxi-

mum a posteriori value, i.e. the highest probability value of

the posterior distributions.

N S

N S

N S

Surface points

Underground points

(a)

(b)

(c)

Search window = 80 m

Search window = 80 m

Reference connection

Picked connection

Reference connection

Hypothetical picked connections for one model

Crossing

Figure 5. Schematic cross section illustrating the statistical mod-

elling methodology for one example. (a) Reference state is defined

by aforementioned workflow. A search window of 80 m is assigned

to the reference underground point. (b) The code picks a possible

underground point within the 80 m search window based on a nor-

mal Gaussian distribution and calculates the connection. (c) For ev-

ery surface point one underground point is picked and connected

by a projection line (hypothetical fault plane). By connecting each

surface point with one underground point, a connection pattern is

formed. Ten thousand runs were performed, each connecting differ-

ent surface and underground points. The 10 000 connection patterns

are compared with each other and evaluated by a penalty criterion.

This penalty criterion addresses the number of crossings and rate

solutions with a lowest and highest number of fault plane crossings,

yielding a probability for connecting a specific surface point to a

certain underground point.
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Figure 6. (a) Lineament map of the study area with underground rock laboratory. Topography contours are based on swissALTI3D (re-

produced by permission from swisstopo; BA17063). (b)–(d) Length-weighted rose diagrams showing the endpoint-to-endpoint strike of all

lineaments (b), lineaments longer than 400 m (c), and lineaments shorter than 400 m (d). (e) Length-weighted rose diagram showing the

orientation of each segment of all lineaments.

4 Results

4.1 Lineament map

In total, 5277 lineaments with a spatially heterogeneous dis-

tribution and lengths ranging from 5 to 1941 m were mapped

(Fig. 6a). Lineaments are generally more concentrated along

topographic highs and lows. Within certain areas (areas i

and ii in Fig. 6a), the lineament’s strike tends to be parallel

to the dip azimuth of the slopes, yielding uniform orienta-

tions. In contrast, in domains with relatively low topographic

variations, a variety of strike orientations become discernible

(area iii in Fig. 6a).

Looking at the bulk data, lineaments show a major NE–

SW and a minor NW–SE trend (Fig. 6b). Long lineaments (>

400 m) are mainly oriented NE–SW (Fig. 6c), whereas short

lineaments show a considerable variation in strike (Fig. 6d).

The two methods for estimating lineament orientations, end-

point to endpoint (Fig. 6b) and individual segments (Fig. 6e),

yield similar results.

4.2 Field observations and data

Data obtained from fieldwork combined with a compilation

of several published maps (Baumberger, 2015; Keusen et

al., 1989; Vouillomaz, 2009; Wehrens et al., 2017; Wicki,

2011) yielded a surface fault map (Fig. 7, see also Schnee-

berger et al., 2016). Based on their orientation, we discrimi-

nated different groups of faults (Fig. 7): group A are mainly

steep SE-dipping faults. Their average orientation (dip az-

imuth to dip) is 149/74. Group A faults mostly show steeply

plunging stretching lineations resulting from ductile shear-

ing. Group A can be correlated with faults formed during

the Handegg phase (22–17 Ma) as defined by Wehrens et

al. (2017), while group B and group C would correspond to

faults formed during the Oberaar phase (14–12 Ma; Wehrens

et al., 2017). Group B are mainly steep S-dipping (mean

orientation: 178/72) faults. Lastly, group C are SW-dipping

faults coeval with group B with an average orientation of

196/72. Group C faults are subparallel to meta-basic dykes

and often co-occur spatially with the latter. Groups B and C

mostly show oblique to horizontal stretching lineations. For

multiple orientation measurements along individual faults,

the standard deviation of the mean dip azimuth was be-

low 15◦ and the mean dip below 10◦. Generally, the GrGr-

dominated southern area shows an increased number of faults

(Figs. 7 and 8). Detailed underground mapping resulted in

a lithological (Fig. 8a) and a structural map of the GTS

(Fig. 8b).

Meta-basic dykes occur as three distinct swarms, two lo-

cated within the CAGr domain (Fig. 8a). The northern two

swarms strike NW–SE, whereas the southern swarm strikes

E–W; however, it is less clearly marked. Numerous dykes

are overprinted by an Alpine foliation, which is sometimes

oblique to the dyke boundary. Furthermore, dykes are often

overprinted by localized ductile and brittle deformation ex-

pressed by shear zones and fault gouges.

Faults occur along three NE–SW trending swarms, two E–

W trending swarms, and two NW–SE trending swarms, lead-

ing to a heterogeneous strain distribution along the under-

ground facility (Fig. 8b).

The NE–SW trending swarms correspond to group A

faults with an average spacing of ca. 16 m. In total, 31

group A faults were mapped underground. They can be fur-

ther subdivided into 17 moderately to steeply dipping faults

(between 45 and 75◦) and 14 sub-vertically dipping ones

(> 80◦).

www.solid-earth.net/8/987/2017/ Solid Earth, 8, 987–1002, 2017



994 R. Schneeberger et al.: 3-D structural modelling in crystalline rocks

Lake Grimsel

Lake 
Rätrichsboden

< 10 cm fault core
10–  100 cm fault core
> 100 cm fault core

Group A fault

Legend

Group B fault
Group C fault

Underground facility (GTS)

J03

J12

J07
J06 J05

J04

J08
J09J10

J11

J13
J14

J15

J20J21
J17

J16

J18
J19

n = 146

500 m

67
0

160

161

66
8

66
7

66
9

N

Fig. 11a

Figure 7. Surface fault map with faults grouped by strike orien-

tation (group A, B, C). Hillshade image underlying the map is

based on swissALTI3D (reproduced by permission from swisstopo;

BA17063). Fault exposure lines are dashed over uncertain areas and

labelled in cases for which a connection to GTS exists. Lower hemi-

sphere equal area projection with plane poles grouped according to

strike. The map is based on the Swiss coordinate system.

The E–W trending swarms correspond to faults with orien-

tations that are similar to group B. In total, 12 of these E–W

striking faults were mapped.

The NW–SE trending fault swarms are localized mainly

along dykes (Fig. 8) and represent group C structures. In to-

tal, 25 NW–SE striking faults occur within the GTS.

Faults in the CAGr (northern part) seem to preferen-

tially localize along pre-existing anisotropies, i.e. high-

temperature brittle fractures (biotite coating) or meta-basic

dykes, and thus form discrete faults (centimetre sized) with

marked contacts to the host rock. In contrast, faults in the

GrGr-dominated southern part form strain gradients over

larger distances (metres). This observation is in agreement

with the findings of Wehrens et al. (2017).

4.3 3-D structural modelling

The GTS model size is 600 × 250 × 100 m, whereas the re-

gional model size was 4×3 km with a projection depth reach-

Legend

< 10 cm fault
10–  100 cm fault
> 100 cm fault

30 mN

Central Aare granite (CAGr)
Grimsel granodiorite (GrGr)

Group A fault

Group B fault
Group C fault
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Fig. 11b

Figure 8. (a) Petrographic underground map. (b) Structural map-

ping (1 : 1000) of the underground rock laboratory (GTS) with faults

grouped according to their strike. Indicated labels correspond to sur-

face fault labelling and represent the maximum a posteriori interpo-

lation.

ing the underground facility for all faults. The projection

depth was defined arbitrarily but no larger than half of the

fault trace’s length. All 3-D models are provided in the Sup-

plement.

4.3.1 GTS model

The combination of the above-presented underground map

with measured surface orientation data resulted in a 3-D ge-

ometric visualization of meta-basic dykes and faults mapped

underground. Swarms of meta-basic dykes tend to join to-

wards less numerous dykes with depth. Based on geomet-
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rical considerations, we infer the occurrence of three ma-

jor dykes from which all others either fan out or form relay

structures between the major dykes. Based on the field obser-

vation that the major faults and relay structures dip steeply

sub-vertically towards the south, we discriminated 8 major

group A faults and 23 relay structures. Major group A faults

occur within each NE–SW trending swarm discriminated on

the map view. Group B deformation structures can be further

subdivided into six major and seven relay faults. Group C de-

formation structures can be subdivided into 6 major and 32

relay deformation structures, some of which are very short

(14 m).

4.3.2 Regional model

The surface fault map (Fig. 7) served as a basis for the gener-

ation of the three different kilometre-scale 3-D models (see

above). All three modelling approaches yielded the 3-D ge-

ometrical visualization of the surface fault pattern. They all

share the same fault traces at the model surface. As men-

tioned above, projection specific dip values were used for

each of the models. However, not all surface faults were ex-

trapolated with each approach. Of the 21 possible surface

faults, 10 were extrapolated with the fieldwork-based ap-

proach, 11 using the Delaunay triangulation, and 13 with

the ribbon tool method. Missing projections can be due to

a lack of outcrop description or the absence of sufficient to-

pographic relief for remote-sensing-based approaches.

By combining all three approaches, at least 1 (but up to

3) degrees of fit with underground faults were calculated for

each surface fault. Based on the different degrees of fit, a

best-fitting underground structure was assigned to each sur-

face fault. By linearly interpolating the two traces, we ob-

tained a model which we called best-estimate model. In total,

11 group A faults reach the GTS. From the total 11, 7 have a

dip < 80◦, which would correspond to the major structures

defined in the above-presented GTS-scale model, whereas

the 4 steeper faults correspond to relay structures. Moreover,

two group B and eight group C faults connect the surface

with the GTS. The combination of all faults yields an av-

erage spacing of 25.4 m, and faults appear to converge with

depth.

4.3.3 Bayesian inference

For each model that is obtained when each surface point (in-

tersection between surface fault and 2-D section along the

GTS) is interpolated with a specific underground point, the

number of intersections was calculated and the likelihood of

the model compiled based on the number of intersections.

In total 10 000 models were calculated and for each a prob-

ability for a certain interpolation of a specific surface point

with an underground point was obtained (Fig. 9). For cer-

tain surface points, a clear maximum a posteriori value was
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Figure 9. Probability distributions of five selected examples: panels

(a) to (d) show the highest probabilities achieved, whereas panel

(e) shows an example without clear maximum probability. On top,

the positions of the underground deformations zones are indicated

and grouped according to their strike. Additionally, the maximum a

posteriori interpolation is highlighted with an arrow.
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Figure 10. Cross section showing maximum a posteriori connec-

tions between surface and underground faults. Faults are grouped

and coloured according to their strike. Underground faults are rep-

resented by short ticks; the less transparent ones have a connection

to the surface.

found (Fig. 9a–d); however, for other surface points no un-

derground point could be assigned unambiguously (Fig. 9e).

Based on the maximum a posteriori value, a 3-D structural

model was obtained by linearly interpolating each surface

point to the underground point with the maximum a poste-

riori value. We call this model the “maximum a posteriori”

model (Fig. 10). Note that the maximum a posteriori model

only adds information to the initial model through considera-

tion of a likelihood, i.e. the assumption that crossing faults at

a large scale are unlikely. Note that the smaller-scaled relay

structures are not considered in this approach.

This maximum a posteriori interpolation model served as

a basis for comparing different employed extrapolation ap-

proaches. The comparison did not yield a clear “best” ex-

trapolation approach; however, it seems that fieldwork-based

approach results in the most accurate extrapolation.

5 Discussion

5.1 Lineament map

A comparison of the remote-sensing-based lineament map

and field data showed that in intact granitic rocks, purely

ductile shear zones without later brittle overprinting are not

detected by remote sensing. Brittle deformation generating

fractures, cataclasites, or even fault gouges responsible for

mechanical weakening is necessary to form morphologically

detectable structures (Fig. 11a; Baumberger, 2015). More-

over, the orientations of the slopes play an important role, as

faults striking in the down-dip directions of slopes are prone

to the most effective erosion processes driven by gravity. Dif-

ferent orientations observed on the lineament map (Fig. 6a,

areas i and ii) for the eastern and western flank of the Hasli

valley are interpreted to result from such preferential erosion.

In contrast, the surface area (iii) in Fig. 6a is nearly horizon-

(b)(a)

S N S N

Granite

Meta-basic dyke

SZ
FG

20 cm

Figure 11. (a) Mountainside with incisions and exfoliation joints.

(b) Detailed picture of underground outcrop showing outcrop con-

ditions and key structural features: a ductile shear zone (SZ) and a

fault gouge (FG).

tal, thus reflecting a homogeneously eroded pattern of inter-

section for lineaments. The dependence on erosion for the

formation of morphological incisions leads to the observed

heterogeneous lineament density distribution as ridges and

valleys show higher lineament densities.

Endpoint-to-endpoint strike and the strikes of individual

segments of lineaments are very similar (Fig. 6b and e),

indicating only small variation in the strike of the linea-

ments themselves. Therefore, underlying structures should

be quasilinear to linear in 2-D and planar in 3-D. We also

observe that the longest lineaments are NE–SW striking and

that the variability shown in Fig. 6e is mostly due to vary-

ing strike orientations of very short lineaments (< 20 m). In

addition to the NE-SW striking maximum, few long linea-

ments strike NW–SE. Both major orientations are similar to

those reported from field observations (Figs. 7 and 8) and

correlate with previous studies (Rolland et al., 2009; Steck,

1968; Wehrens et al., 2017), indicating that lineament maps

are suitable to obtain the general trend of steep faults in well-

exposed crystalline terrain. Much care is needed, however,

when further interpreting lineament maps, as the geologic

meaning of the lineament is ambiguous and lineament maps

are strongly operator dependent (e.g. Scheiber et al., 2015).

5.2 Field observations and data

Differences between the surface map and the underground

map are relatively small. The spacing of faults at the surface

is lower, but general orientations are comparable (Figs. 7 and

8) and the two mappings are thus discussed jointly.

Faults commonly show little variation in orientation along

strike as evidenced by consistent orientations of the dip and

dip azimuth of multiple outcrop descriptions along the same

fault. In conjunction with the small variability in strike for

lineaments, this is clear evidence for the planarity of large-

scale faults. At the surface, the 2-D length of faults is be-

tween 229 and 5591 m (mean 2199±1603 m). Therefore, ex-

trapolation of surface faults to depths similar to the depths of

the underground faults, which have an overburden between

420 and 520 m, is well in the projection depth range assum-

ing a circular shape for the plane as a minimum estimation

for their lateral extent.
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Localization processes seem to differ between the two host

rocks (CAGr and GrGr; Wehrens et al., 2017). The higher

amount of biotite in the GrGr could influence the rock’s

rheology towards more ductile behaviour. In contrast, the

relatively higher amount of quartz and K-feldspars renders

the CAGr more brittle than GrGr at similar pressure P and

temperature T conditions and thus enforces brittle fractur-

ing and possible subsequent ductile shear zone widening, as

observed in other crystalline rocks (Guermani and Pennac-

chioni, 1998; Mancktelow and Pennacchioni, 2005; Wehrens

et al., 2016, 2017). Hence any mechanical anisotropy, such as

along pre-existing structures in the form of magmatic shear

zones, meta-basic dykes, or aplitic dykes, served in the CAGr

as sites for strain localization when suitably oriented with re-

spect to the stress field.

5.3 3-D structural modelling

Our 3-D structural models were generated as a contribution

to a project monitoring several parameters, such as micro-

seismicity and in situ stress conditions, on the kilometre scale

(large-scale monitoring; Nagra). Therefore, 3-D structural

models were required mostly for visualization purposes. A

deterministic explicit modelling workflow was required, as

often is used in applied projects. It is, however, clear that for

model updating, an implicit modelling approach would re-

sult in faster data handling. The deterministic approach was

chosen because we attempted to obtain a geometrically sat-

isfying product within the simplest geological setting pos-

sible. Furthermore, we were interested in the actual geom-

etry of the faults dissecting granitoid rock bodies. Lastly,

the uncommonly well-constrained setting of our study site

(high-resolution underground data) was used to test and po-

tentially validate extrapolation techniques for common appli-

cation. Therefore, the underground data were only integrated

as validation and not as a constraint during interpolation.

5.3.1 Three different approaches to obtain

extrapolation 3-D structural models

(kilometre-scale models)

Uncertainty related to the assignment of specific dip val-

ues to lineament traces (Baumberger, 2015; Bistacchi et al.,

2008) led to the comparison of three different approaches.

Validation attempts by comparison with underground map-

ping are purely geometrical and were based on two criteria,

namely angle and distance misfit (Fig. 4). All three extrap-

olation approaches yielded similar results and no significant

differences were observed. Moreover, in order to allow for a

thorough comparison between the different extrapolation ap-

proaches solely based on the angle and distance misfit, the

underground faults would need to be homogeneously dis-

tributed, which is not the case (Fig. 8).

The validation procedure could be refined using fault core

thickness. However, fault thickness varies substantially along
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Figure 12. Histogram showing the number of faults grouped per

strike at the Earth’s surface and underground (GTS).

strike (e.g. Torabi and Berg, 2011) and thus is not a clear

distinction criterion.

In addition to the average dip, the maximum and minimum

dips could be used, which would yield a projection cone sim-

ilar to the uncertainty visualization suggested by Baumberger

(2015). Applying this approach to a restricted area, such as

the underground rock laboratory investigated in this study, re-

sulted in total coverage and no possible distinction between

different faults. However, for a final representation of the un-

certainty related to the dip value on a regional scale (kilome-

tre scale), the approach of visualizing projection cones would

suit.

5.3.2 GTS (decametre-scale model) compared with

kilometre-scale “best-estimate” model

As a result of differences in outcrop conditions, the number

of observed faults is significantly higher in the underground

laboratory compared to the surface (Fig. 12). Underground,

nearly 100 % of polished outcrop is accessible along the tun-

nel walls (Fig. 11b), whereas at the surface faults are often

covered with vegetation, even in relatively vegetation-poor

domains.

Furthermore, we observe convergence of surface faults

with depth in our best-estimate model, which could be a

modelling artefact. The N–S extent of surface area is larger

compared to the GTS area, leaving a northern and a southern

surface part underneath for which no underground data ex-

ist (Fig. 10). Hence faults in these domains are forced by the

model set-up to be connected to the underground, leading to

artificial fault orientations in these two cases (N and S rims

of Fig. 13a). For that reason, only faults in the central part of

the best-estimate model will be further considered.

5.3.3 “Maximum a posteriori” model

A comparison of numerous models obtained from Bayesian

inference was performed by calculating the number of inter-

sections. The fewer the intersections, the more probable the
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Figure 13. Comparison of maximum a posteriori interpolation with

three extrapolation approaches used to assign dip to fault exposure

line. Figure subdivided into (a) group A (NE–SW), (b) group B (E–

W), and group C (NW–SE). Group B and group C are displayed

jointly as group B, which contains only two faults.

model was considered. Assuming no intersections within a

large-scale fault set is simplistic, but from field observations

it seems plausible (Fig. 7) as a first approach for faults be-

longing to a specific orientation group (group A, B, C). The

maximum a posteriori model is based on a N–S cross section

along the GTS, and this orientation implies that faults would

only cross if their dip varies strongly. Such a strong variation

in the dip value is improbable based on measured dip values

(Fig. 7). Therefore, this assumption seems feasible.

This simplistic representation of nature enabled us to ob-

tain a probability for all possible interpolations between a

specific surface point and all underground points of the cor-

responding orientation group. As previously mentioned, the

margins of the interpolation space show boundary artefacts,

and thus the following surface points at the model margin

were not further considered: J03, J06, J20, and J21 (Fig. 8).

As expected, probability densities are skewed towards the

area of lesser fault density (Fig. 9). At this point it is impor-

tant to remember that probability density is given as area, and

therefore we cannot directly compare the discretized posteri-

ors since they are a function of the distance between nearby

faults.

We compared the initial three extrapolation techniques

based on the maximum a posteriori model (Fig. 13). When

comparing group A faults, fieldwork-based extrapolation

closely fit the maximum a posteriori interpolation, which in-

dicates either that the fieldwork-based model yields the best

results or validates the Bayesian inference approach depend-

ing on whether the reference state is the statistical inter-

polation or the measured field data. Generally, dips of the

maximum a posteriori models are slightly steeper than mea-

sured dips during fieldwork (Fig. 14a). However, the dip

differences between the fieldwork-based extrapolation 3-D

structural model and the maximum a posteriori interpola-

tion model are small (Fig. 14b). Also, the dip differences

between the ribbon-tool-based 3-D structural model and the

maximum a posteriori interpolation model are small, but dips

obtained via the ribbon tool are systematically steeper, which

does not correspond to the measured dips (Fig. 14a). The ex-

trapolation 3-D structural model obtained via Delaunay tri-

angulation is less close to the maximum a posteriori interpo-

lation model and obtained dips vary substantially.

The comparison for the group B and C faults is less clear.

Fieldwork-based and ribbon tool extrapolations are close to

the maximum a posteriori model (Fig. 13). Therefore, we

conclude that fieldwork is still necessary for 3-D structural

modelling in crystalline environments and that the ribbon

tool (Move™) offers numerous options to tune the obtained

plane; however, this tuning requires a profound conceptual

background model.

5.3.4 Possible model refinements

Presented surface models include only major faults (Fig. 15).

However, for further applications, such as groundwater flow

modelling or slip tendency analysis, not only major faults are

of interest but also their relay structures. Based on the orien-

tation information gained from the regional kilometre-scale

models and on the intersection pattern observed during linea-

ment mapping, it is possible to infer a near surface 3-D model

not only with the major fault but also the relay structure. Fur-

thermore, the increased level of detail in the GTS model (de-

cametre scale) forms a similar model in the underground. The

unknown space between the two models would require prob-

abilistic modelling with several key parameters, for example

fault spacing, fault orientations, apertures, or cross-cutting

relationships.

6 Conclusions

The exceptional opportunity for a surface and underground

data comparison over 3-D structural modelling approaches

led us to the following conclusions:

Lineament maps enable the identification of major faults

but are highly sensitive to preferential erosion.
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Figure 14. (a) Box plot showing dip value for different extrapolation approaches and for maximum a posteriori (MAP) interpolation. (b) Box
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Figure 15. Representation in 3-D of the maximum a posteriori model of fault geometry with three different angles of view. N is indicated by

the black triangle. The black tunnel is 717 m long.

Structural surface mapping allowed for a discrimination of

three orientation groups of faults.

Comparison based on geometrical criteria (distance and

angle misfit) of the three approaches to extrapolate to depth

surface traces yielded comparable results for all extrapola-

tion approaches.

Interpolation of surface data with underground data based

on a Bayesian inference problem showed that the fieldwork-

based approach is the most accurate extrapolation technique.

However, this could also validate the interpolation approach.

We conclude, similarly to Zanchi et al. (2009), that for 3-

D structural modelling a high-topography area within crys-

talline bedrock, classical fieldwork as an information source

and as a basis for a conceptual background model on which

interpolations or extrapolations performed within 3-D struc-

tural modelling can be examined for validity. In terms of gen-

eral fault networks, our approach can be applied to (i) perva-

sive regional fault or fracture patterns. Currently it will fail

in the case of (ii) discrete large-scale faults (e.g. strike-slip

faults) consisting of one fault core and an associated damage

zone. In such cases, more elaborate probabilistic models have

to be generated in future, including 3-D variations in terms of

spacing and orientation of secondary faults and splay faults.

(i) Even with limited or missing underground information,

our approach can be used to predict a surface-based 2-D

model including a probability evaluation (e.g. variable dip

angles) with depth. If available, this evaluation can be tested

with individual depth points such as drill core information.

Additionally, an expansion towards 3-D would require prob-

ability attributes for dip azimuths.

Data availability. The research data can be freely accessed. The 3-

D models can be found in the supplementary material. All structural

measurements are also enclosed within the models.
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