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Abstract

Each year, the Pharmacogenetics Research Network (PGRN) holds an analysis workshop for the

members of the PGRN to share new methodologies, study design approaches and to discuss real data

applications. This event is closed to members of the PGRN, but the methods presented are relevant

to others conducting pharmacogenomics research. This special report describes many of the novel

approaches discussed at the workshop and provides a resource for investigators in the field

performing pharmacogenomics data analysis. While the focus is pharmacogenomics, the methods

discussed are far ranging and have relevance to all types of genetic association studies: identifying

noncoding variants and tag-SNPs, haplotype analysis, multivariate techniques, quantitative trait

analysis, gene–gene and gene–environment interactions, and genome-wide association studies. The

goal is to introduce readers to the topics discussed at the workshop and provide a direction for future

development of analysis tools and methods for analysis of pharmacogenomic data.

Keywords

gene–environment interactions; gene–gene interactions; genetic determinants; haplotype analysis;

pharmacogenomics; QTL analysis; tag SNPs; whole-genome association

Pharmacogenomics is the study of the relationship between individual genetic variation and

drug response. One of the major goals of the field is the use of an individual’s genomic

information in conjunction with other demographic and environmental covariates to

personalize a previously generic treatment regimen. Realizing this ambition requires nothing

less than the ability to derive a genotype-to-phenotype map for a trait of interest. In the specific

case of pharmacogenomics this trait is often a drug dosage, efficacy, toxicity, or a variable

indicating response/nonresponse or adverse-event/no adverse-event, and the genotype is

frequently a vector of SNP measurements, but progress in the area is intimately tied to progress

in the more general search for the genetic determinants of complex traits.

Pharmacogenomics, similar to other areas of human genetics, has adopted a new strategy for

the identification of genetic variation associated with clinical end points: primarily that of

genome-wide association studies (GWAS). Recent developments in the large-scale

determination of human variation [1] at first promised to make this problem comparatively

trivial: simply assay all genomic variants, individually correlate them with the phenotype of

interest, and return the loci of maximal effect along with a phenotype prediction function.

However, this GWAS approach has proven more difficult than initially envisioned [2]. Perhaps

the most unambiguously successful GWAS result to date was the discovery of the T1277C

polymorphism in the CFH gene in macular degeneration, found simultaneously through

GWAS [3] and targeted positional candidate approaches [4,5] due to its atypically large effect

size. For example, Haines et al. reported that the odds ratio of T1277C homozygotes was 5.57

(95% confidence interval: 2.52–12.27) for carriers of two C alleles with neovascular age-
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related macular degeneration (AMD) [4]. A similarly large effect was found for an allele

associated with exfoliation glaucoma [6].

In general, though, the successful large-scale GWAS for diseases like coronary heart disease

[7–10], breast cancer [11–13], Type II diabetes [10,14–19], and obesity [15,20–22] have

discovered SNPs that are reproducibly associated with the trait but have moderate odds ratios

in the range of 1.1–2.0. A recent review of 43 such disease associated alleles found that 42 out

of 43 had odds ratios below 2, with 35 of these 43 below 1.5 [2]. In general, these small effect

sizes mean that variation at these loci is often not diagnostically useful [23] as it accounts for

only a small fraction of the variance in outcome. Yet even a small but reproducible effect would

be preferable to the outcome of many similar efforts for traits like IQ [24] and Parkinson’s

disease [25–30], which have been plagued by problems with discoverability and reproducibility

despite good study designs with highly heritable phenotypes. GWAS in several pharmaco

genetic phenotypes are currently underway, thus a thorough review of the success rates is not

available. We speculate that the effect sizes will be comparable in size; however, the success

rate may be even lower due to the fact that many pharmaco genetic studies have significantly

smaller sample sizes than GWAS in common disease phenotypes.

Several reasons for the inconsistent replication of GWAS are apparent, both experimental and

statistical. It is important to note that many of these issues are only apparent in hindsight due

to the efforts of the pioneering studies in this area. First, most studies to date have been

conducted with either Affymetrix (CA, USA) or Illumina (CA, USA) SNP chips. Because

some of the original SNP chips were designed for haplotype mapping rather than direct

genomic association [31], the bulk of these SNPs were in nongenic regions of unknown

function. As such, these chips privileged exploration over explain-ability. These issues are

compounded by the fact that high chip costs limit sample size and the fact that SNPs – being

single base alterations – are generally likely to be of small effect, unlike larger DNA lesions

like copy-number variations.

From a statistical perspective, this combination of small sample sizes, small effect sizes and

500,000 or more explanatory variables presents significant challenges. Indeed, there is as yet

no unified paradigm for the analysis of GWAS data.

One of the most common approaches for the analysis of GWAS case–control data is to use

simple statistical tests (e.g., χ2, Armitage trend, logistic regression) to examine the association

between a marker and the case–control status, which essentially tests the differences in marker

allele or genotype frequencies between case and control groups. One major criticism of such

an initial analytical approach is the large number of expected false-positive results. Using a

nominal p = 0.05 on the 500,000 SNPs will result in 25,000 false-positive results (even p =

0.001 will result in 500 false-positives).

Much is written about the problem of how to correct for the vast number of single locus tests

being performed, but consensus has not yet emerged [32,33]. A Bonferroni correction is clearly

too conservative for several reasons, including the fact that it assumes the independence of

each test even though many of the SNPs are in linkage disequilibrium and thus correlated with

each other. Alternative methods, including controlling the false-discovery rate, have been

proposed, but none have gained general acceptance and much research is still ongoing [34–

37]. As shown by Zaykin et al. [38] using multiple-testing correction or false-discovery rate

techniques will not affect the overall ranks of test statistics and true associations may not be

in the top percentage of test statistics, a phenomenon that has been observed in several recent

GWAS [10,16–18]. In general, only the strongest associations can be detected using these

traditional approaches with many more genes still to be found [39]. Ultimately, data integration,
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replication datasets, or new analytical approaches must be used to filter these results down to

a manageable number of the most likely genes.

It is this last point – the development of new techniques in genetic epidemiology with specific

focus upon pharmacogenomic applications – that is the focus of this report. We discuss the

methods and applications presented at a recent meeting of the Pharmacogenomics Research

Network (PGRN) Analysis Working Group. The areas covered in this two day workshop can

be broken down into four large topics: best practices and software for GWAS data management

and analysis, single locus approaches for association, interaction and pathway based

approaches for association, and preliminary reports of two recent GWAS of aspirin and statin

response.

Genome-wide association studies: data management & analysis

Presentations given by Jonathan Haines (Vanderbilt University, TN, USA) and Marylyn

Ritchie (Vanderbilt University, TN, USA), discussed useful heuristics, new software, and

analyses of GWAS data. Jonathan Haines discussed methods for quality control in GWAS. He

began by noting that as of late 2006, the number of reviews and theoretical papers on GWAS

greatly exceeded the number of published, completed GWAS. This observation is not an

indictment per se; a similar phenomenon occurred with expression microarrays in the late

1990s before the field coalesced. He then discussed numerous approaches to check for

genotyping errors, sample mix-ups, and cryptic stratification, along with a program (whole-

genome association study pipeline, or WASP) being developed by his laboratory to automate

the calculation of these measures as well as generate various diagnostic plots. Table 1 explains

many of the important quality control issues to consider.

Marylyn Ritchie discussed the problems associated with GWAS data analysis in the context

of her group’s new software packages for GWAS analysis. She began by noting that with a

GWAS involving 500,000 SNPs and a binary response, a naive calculation of 500,000 χ2
analyses with a 0.05 type I error rate would result in 25,000 false-positive results. She

entertained several possibilities for improving upon this naive approach; focusing first upon

her laborotory’s implementation of a sequential replication filter (SERF) based approach. The

concept here is to directly address the problem of GWA – namely, a failure to replicate – by

focusing upon the number of times a functional locus replicates across a simulated study. The

idea behind SERF is to determine this replication probability as a function of three parameters

(initial group size, p-value threshold, and replication p-value threshold) which are otherwise

arbitrarily specified in a stage-wise design. Ritchie then placed SERF in the broader context

of SNP filters, which permit selection of SNPs via both within-study statistics (e.g., replication

probability or χ2 association) and prior knowledge (e.g., pathway membership or expression

levels). Her group has implemented many such filters in Platform for the Analysis, Translation,

and Organization of large scale data (PLATO), a software package for GWAS that is being

prepared for release.

Single locus approaches

Three presentations given by Xiangjun Gu (University of Texas, TX, USA), Brooke Fridley

(Mayo Clinic, MN, USA), and Eric Jorgenson (UCSF, CA, USA) focused upon methods for

analyzing the functional effects of single loci; discussing SNP, haplotype, and even intron

variation. Also, Jessica Lasky–Su (Channing Laboratory, MA, USA) presented an approach

for screening and replication using the same dataset with an emphasis on single locus statistics.

Xiangjun Gu began by discussing results of a simulation study, in which embedding just three

causal SNPs in a 115K SNP dataset consisting of 400 individuals raised the number of SNPs

with p-values less than 0.05 from approximately 5700 to more than 20,000. The three

uncorrelated causal SNPs contribute an average of 10.2, 5.2 and 5.6% total trait variation
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separately in 100 replicates. These effects are relatively strong in GWAS with a sample size

of thousands of individuals, but they are not all that strong in this simulation study with only

400 individuals because the power when using a Bonferroni approach is 92, 21 and 21%,

respectively. Though the specific numbers are highly sensitive to the specification of the

genotype-to-phenotype mapping, the general point was that correlations between causal SNPs

and other variants can increase the number of false positives in a study. This phenomenon

becomes more obvious when causal SNPs have stronger effects and they are correlated with

many other SNPs. To deal with this, he proposed a greedy stepwise forward multiple regression

model. In each step, the algorithm chooses the SNP that explains the most variance in the trait

and discards SNPs which are strongly uncorrelated with the trait (e.g., p-values < 0.05). He

then computes the residual variance given this explanatory SNP and repeats the process until

no further explanatory SNPs are detected. Results were shown for simulated data with synthetic

models, and it will be interesting to see the results of this approach in real datasets.

Brooke Fridley presented a study in which a vector of repeated patient measurements was

regressed upon haplotype variation in a candidate gene. Specifically, her group measured blood

levels of epinephrine and norepinephrine at eight time points in 75 patients before, during and

after a workout. In addition, these patients were genotyped at 12 SNPs spanning a particular

locus with four common haplotypes. She specified a repeated measures haplotype model in

which haplotype k had an effect upon the metabolite level of patient i at time j, as well as two

more traditional models in which means and slopes of the metabolite time series were regressed

upon haplotype variation. No highly significant results were found, but the general concept of

compiling a rich vector of patient measurements is certainly advisable.

Eric Jorgenson’s presentation dealt with the hunt for pharmacogenomically-relevant variation

in introns within membrane-transporter genes. Past work on exonic variation had shown that

nonsynonymous sites had lower variation and that variants with decreased function had lower

allelic frequencies. His group’s work extended this analysis to consider intronic variation

within 50 bp of the intron–exon boundary; such sequence is known to encompass functionally

relevant positions (e.g., splice sites) and is thus a natural candidate for in-depth analysis. Firstly,

he used a Hidden Markov Model-based approach to define splice sites and branch points within

the intronic sequence, and showed via a receiver operating characteristic (ROC) plot that

predicted branch points matched prior knowledge. Then he calculated population genetic

statistics for each position and noted that these varied between splice sites and branch points

across two different datasets. Due to Encyclopedia of DNA Elements (ENCODE) [40] and

related efforts, this kind of analysis is just taking off and the analysis of functional variation

in intronic regions promises to be a very exciting area in GWAS for years to come.

Jessica Lasky–Su proposed a strategy developed for case–control studies that implements both

screening and testing of SNP-trait associations using the same dataset. The screening step is

constructed so that it is statistically independent of the association tests that are computed in

the testing step. Therefore, the most promising SNPs identified by the screening step can be

tested for association in the testing step without the need to adjust the significance level for the

analysis conducted in the screening step. In simulation studies for 100K SNP scans, they

observed significant differences in power between the proposed testing strategy and the

standard Bonferroni correction. The practical relevance of the approach was illustrated by

applications to a GWAS (100K), in which SNPs reaching genome-wide significance were

identified that would not have been detected by standard adjustments for multiple testing. This

methodology will be interesting to prospectively validate by conducting a GWAS with positive

controls, to determine whether it is in fact possible to augment power by separating the

screening and association steps.
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Gene–gene & gene–environment interaction approaches

Four presentations given by Jinbo Chen (University of Pennsylvania, PA, USA), Aldi Kraja

(Washington University, MO, USA), Shiwei Duan (University of Chicago, IL, USA), and Lang

Li (Indiana University, IN, USA) discussed methods for multivariate analyses of gene–gene

and gene–environment interactions in the context of candidate gene studies. Jinbo Chen

presented a new class of semiparametric regression models for exploring gene–gene and gene–

environment effects [41]. These partially linear tree-based regression models aim to combine

the best aspects of linear models for dealing with additive main effects and tree-based models

for investigating higher order gene–gene interactions. Chen applied the partially linear tree-

based regression model to assess the association between biliary stone risk and 53 SNPs in the

inflammation pathway in a population-based case–control study. The analysis yielded an

interesting parsimonious summary of the joint effect of all SNPs. The method may be useful

for candidate gene studies with many subjects and a limited number of explanatory variables.

Aldi Kraja introduced a new application of index selection, an established multivariate

statistical technique developed in plant and animal breeding research designed to find

phenotypes of sets of genes that operate together. He applied it to the problem of discovering

the genetic basis of cytotoxicity response in cancer therapy and compared the results to those

produced by traditional methods. In a preliminary analysis, he found 68 significant SNPs in

genic regions and noted that the overall correlation between the index selection and the

observed viability of Centre d’ Etude du Polymorphisme Humain (CEPH) cell lines was 0.814.

A follow-up analysis is planned to quantify the predicted individual response to chemotherapy.

Shiwei Duan integrated genotype, gene expression and daunorubicin sensitivity data on 176

HapMap cell lines to identify genetic variants that contributed to chemotherapeutic agent-

induced cytotoxicity. Approximately, 200 total SNPs were found to be associated with

daunorubicin-induced cytotoxicity in the HapMap populations, with about 30 of these SNPs

identifed as expression qualitative trait locus (eQTLs). Moreover, a large proportion (∼35.7–

53.3%) of the mRNA level of the transcripts regulated by the eQTLs were significantly

associated with daunorubicin-induced cytotoxicity (uncorrected p < 0.05). These results are

important and interesting as they show strong concordance between three different assay types.

Moreover, they demonstrate that bringing more data of different kinds to bear is likely to yield

higher dividends than tweaking the formulas for correlation.

Lang Li proposed a mixture model approach that concurrently detects main and interaction

effects of genetic variables through a likelihood ratio test, and performs phenotype cluster

analysis based on genetic variable combinations. Its performance was demonstrated with four

examples: ESR2 effects on hot flashes in a tamoxifen trial; ABCB1/ABCG2 interaction effects

on patient survival in a docetaxel trial; CYP2D6 polymophism effects on tamoxifen metabolite;

and CYP2B6 polymorphism effects on protein expression. Their method was promising in that

it can perform genotype clustering and hypothesis testing simultaneously when investigating

genotype/phenotype associations in pharmacogenetic studies. Importantly, though model

based, they show that the approach is robust with respect to distribution misspecifcation [42].

Function & pathway based approaches

As noted above, multiple testing problems and small sample sizes are already major issues in

GWAS when considering univariate associations between variants and traits. These problems

are vastly exacerbated in multivariate analysis. Consider for example a case–control study with

500 subjects of each class and 500,000 SNPs. Naive consideration of all pairs of SNPs would

result in 125 billion hypotheses to test. Moreover, the sparsity of data would increase, as the

contingency tables would move from six cells (two trait values × three genotypes) with on
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average 1000/6 counts per cell to a far sparser table with 18 cells (two traits × three genotypes

× three genotypes) and 1000/18 counts per cell. Therefore, it is clear that this kind of exhaustive

approach will not work, and that some kind of prior knowledge must be brought to bear. In

particular, it is now increasingly apparent that genetic variation must be situated in a pathway

context [43,44] to be properly understood. Two talks at the workshop were particularly focused

in this regard, by Andrei Rodin (University of Texas, TX, USA) and David Conti (USC, CA,

USA). In addition, Cheng Cheng (St. Jude Children’s Research Hospital, TN, USA) also

reviewed the literature on combining SNP and microarray data. Andrei Rodin presented work

on reverse engineering pathways from pharmacogenomic association datasets. He first applied

a Bayesian belief network (BN) approach to predict plasma lipid levels from APOE variation

in three populations of 702, 854 and 286 patients, respectively, where variation was assessed

in approximately 20 APOE SNPs in each population. He continued by applying the BN

technique to a genome-wide association dataset containing 104K genome-spanning SNPs from

the Genetic Epidemiology of Responses to Antihypertensives (GERA) study of blood pressure

response to a thiazide diuretic. The presentation concluded with the discussion of general and

technical aspects of his groups’ BN software implementation. These included:

• Alternative discretization methods

• Hybrid probability models, incorporating both discrete and continuous variables

• Increasing scalability via pairwise SNP pretesting

• Balancing overfitting and underfitting

• Incorporating prior (expert) knowledge

The latter is especially important, as it allows one to incorporate already known pathway

information into the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR)

and GERA analyses, thereby controlling for overfitting.

David Conti gave a two-part talk on computational identification of tag SNPs and subsequent

application to the analysis of genetic variation upon nicotine addiction. In the first part of his

talk, he discussed a new program (SNAGGER) for computationally efficient selection of tag-

SNPs. SNAGGER is advantageous in that it requires only pairwise linkage disequilibrium

measurements rather than full haplotype inference and allows the user to incorporate SNPs

with a priori importance. In the second half of his presentation, he discussed the analysis of

an association study of nicotine addiction in which prior information was used to determine

which genetic predictors would be retained, via Bayes model averaging using stochastic

variable selection [45,46]. His approach was similar to that used in functional genomics [47,

48] for encoding information on gene function (e.g., from gene ontology [GO] or phenotypic

quality ontology [PATO]) in such a way as to limit the number of terms used in each model

fit.

GWAS design

In addition to the PGRN reports on methodology, two talks were given with preliminary results

of recent GWAS, by Haiqing Shen (University of Maryland, MD, USA) and Dai Wang

(Cedars–Sinai Medical Center, CA, USA). First, Haiqing Shen presented preliminary results

from a GWAS of aspirin response in the Amish Heredity and Phenotype Intervention (HAPI)

Heart Study. It has been known for sometime that aspirin’s anti-aggregatory effect on platelet

function may benefit patients with cardiovascular disease by inoculating against

thromboembolic event, but wide individual variations in the response to aspirin treatment have

complicated the therapeutic use of this drug. In the HAPI study, 886 Amish subjects were

characterized with respect to cardio vascular disease and atherosclerosis and subject to four

different short-term interventions targeted at different cardiovascular outcomes. One of these
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interventions was aspirin therapy with monitoring of subsequent change in platelet function.

Shen et al. found aspirin response to be significantly heritable, reporting a heritability of 25%.

Preliminary results of a GWAS indicated a few putatively associated SNPs, though final

confirmation must wait until the completion of the study.

Dai Wang reported preliminary results of the first stage of the Pharmacogenomics and Risk of

Cardiovascular Disease (PARC) multistage study of the pharmacogenomics of statins. In the

first stage of this design, 317K SNPs were assayed in 305 Caucasians treated with simvastatin

and 675 Caucasians treated with pravastatin, with the goal of selecting 12,000 SNPs to do

follow-up genotyping in 350 simvastatin and 650 pravastatin patients. They considered both

the approach of using all subjects simultaneously to compute p-values as well as the possibility

of independently computing p-values for each SNP in the simvastatin and pravastatin patients

and then using Fisher’s method to combine the p-values. As with the Shen presentation, the

results were preliminary as genotyping had not yet been completed.

Expert commentary

Quality control procedures are essential prior to a thorough data analysis.

The future of GWAS in general and particularly in pharmacogenomics must focus more closely

upon the systematic use of prior biological knowledge to boost power and bound possible

epistatic effects. Otherwise, the combination of small effect sizes and massively multiple

testing results in an intractable statistical problem.

One of the ways to incorporate prior knowledge is to use information from a pathway database

in a Bayesian framework. This is preferable to the current practice in which pathways are

primarily used in an a posteriori fashion to rationalize the top-ranked SNPs or genes as

biologically significant.

It is likely that some combination of main effects, gene–gene and gene–environment

interactions will be important for complex phenotypes, including drug response outcomes, and

when robust methods are employed for multivariate or interaction analysis, interesting models

can be identified.

It is important to gather as much data as possible before beginning the statistical analysis. This

increment in data collection should not simply be limited to sample size or SNP count.

Comprehensive measurement of as many relevant patient variables as possible is critical.

Moreover, if possible, positive controls should be included by measuring ubiquitous traits of

known or partially known genetic etiology such as lactose tolerance or eye color. In general,

standard practice should be to include as many such positive controls as possible, many of

which can be cheaply assayed.

Future perspective

Genome-wide association where only SNPs are considered is just the beginning of a

comprehensive analysis in pharmacogenomics. From a statistical perspective, we need to

include many more biological covariates in our prediction functions. Specifically, we need to

design studies that simultaneously measure many different kinds of biological data [48], which

change at different time scales. SNP and copy-number variation chip measurements are

currently popular because genome content is mostly constant across lifespan (modulo

transpositions, insertions and deletions). However, as costs continue to plummet, it will become

economically feasible to include multiple measurements of expression levels, metabolomic

profiles, and possibly other variables like methylation states. In particular, the manifest
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relevance of correlating metabolomic variation in particular with pharmacogenomic response

variables should be apparent. Rather than methods that focus upon analytical manipulations

within a given study, a statistically rigorous means of combining rich predictor data with known

prior information is likely to be the key to deriving a robust genotype-to-phenotype mapping

function for an arbitrary trait – and thus the key to pharmacogenomics.

Executive summary

• Pharmacogenomics as a field is increasingly dominated by genome-wide

association studies, but technical challenges abound.

• Data management in genome-wide association itself is a nontrivial burden, and it

is useful for practitioners to avail themselves of packages for quality control.

• Even given intact data, naive approaches to analyzing large scale genome-wide

association data on a SNP-by-SNP basis encounter problems with multiple testing

and high false-positive rates.

• Of these approaches, it is likely that a Bayesian approach that incorporates prior

knowledge on genetic association is likely to be the most successful.
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Table 1

Important quality control considerations.

Variable Comments

Genotyping efficiency Low efficiency often correlates with error. Some low efficiency SNPs
or samples may still be good.

Genotyping quality Worse quality score (GenCall) correlates strongly with error rate.

Gender Check expectations for X marker heterozygosity and
Y marker-positive results. Can estimate error rate.

Mendelian inheritance errors For trio/family data, can identify problem samples and families. Can
estimate error rate.

Sample mix-ups Check for sample duplication, contamination, switches by comparing
genotypes across all samples.

Population stratification Check for population substructure using the genome-wide data.

Linkage disequilibrium Use the redundant data (correlated SNPs) to test for genotyping error.

Hardy–Weinberg equilibrium Violation across all sample groups may indicate error, but can also be
a good test of association.

Copy-number variants Can create apparent genotyping error. Can check statistically from
genotypes or from raw image intensities.

Platform specific problems Affymetrix 500K has difficulty detecting rare allele homozygotes.
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