Wright State University
CORE Scholar

Computer Science and Engineering Faculty

Publications Computer Science & Engineering

1-2005

Methods for Approximate Reasoning

Perry Groot

Pascal Hitzler
pascal.hitzler@wright.edu

lan Horrocks
Boris Motik

Jeff Z. Pan

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

6‘ Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation

Groot, P, Hitzler, P, Horrocks, I., Motik, B., Pan, J. Z., Stuckenschmidt, H., Turi, D., & Wache, H. (2005).
Methods for Approximate Reasoning. .

https://corescholar.libraries.wright.edu/cse/238

This Report is brought to you for free and open access by Wright State University’s CORE Scholar. It has been
accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of
CORE Scholar. For more information, please contact library-corescholar@wright.edu.


https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Authors

Perry Groot, Pascal Hitzler, lan Horrocks, Boris Motik, Jeff Z. Pan, Heiner Stuckenschmidt, Daniele Turi,
and Holger Wache

This report is available at CORE Scholar: https://corescholar.libraries.wright.edu/cse/238


https://corescholar.libraries.wright.edu/cse/238

——
I

knowledgeweb

realizing the semantic web

D2.1.2 Methods for Approximate

Reasoning

Perry Groot (Vrije Universiteit Amsterdam)
Pascal Hitzler (Universitat Karlsruhe)
lan Horrocks (University of Manchester)

Boris Motik (FZI Karlsruhe)

Jeff Z. Pan (University of Manchester)
Heiner Stuckenschmidt (Vrije Universiteit Amsterdam)
Daniele Turi (University of Manchester)
Holger Wache (Vrije Universiteit Amsterdam)

Abstract.

EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB

Deliverable D2.1.2 (WP2.1)

This deliverable shows examples about approximating simimderence engines in a Semantic
Web environment. Approaches of language weakening, kmipeleompilation, and approxi-
mated deduction are presented. The last one is evaluate@dtigal applications with mixed

results.
Keyword list: state-of-the-art, scalability, approxinaeat, modularisation, distribution, symbolic
reasoning
Document Identifier | KWEB/2004/D2.1.2/v1.2
Project KWEB EU-1ST-2004-507482
Version v1.2
Date January 38, 2005
State draft
Distribution public

Copyright(© 2005 The contributors




Knowledge Web Consortium

This document is part of a research project funded by the I®§rBmme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel
35512 Cessoné&vigne
France. PO Box 91226
Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polytechnique Redérale de Lausanne (EPFL)

Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitat Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I'Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person:&ldme Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person; Wolfgang NejdI
E-mail address: nejdi@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta

E-mail address: e.motta@open.ac.uk




Universidad Politecnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asuniin Gomez Ferez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Sheffield (USFD)

Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fur Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitt Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be




Work package participants

The following partners have taken an active part in the wedding to the elaboration of this
document, even if they might not have directly contribu@evtiting parts of this document:

Centre for Research and Technology Hellas
Ecole Polytechniquedtérale de Lausanne
Free University of Bozen-Bolzano

Institut National de Recherche en Informatique et en Autajoat
Learning Lab Lower Saxony

Universidad Policnica de Madrid

University of Karlsruhe

University of Manchester

University of Sheffield

University of Trento

Vrije Universiteit Amsterdam

Vrije Universiteit Brussel




Changes

| Version| Date | Author | Changes
0.0 06.10.04| Holger Wache creation
0.1 02.11.04| Pascal Hitzler input chapter 3
0.2 10.11.04| Holger Wache input chapter 2
0.4 13.11.04| Jeff Pan input chapter 4
0.5 20.12.04| Pascal Hitzler revised chapter 3
0.6 21.12.04| Holger Wache Introduction and revised chapter 2
1.0 22.12.04| Holger Wache Abstract and Executive Summary
1.1 10.01.05| Holger Wache Implementing comments from WP lead
1.2 30.01.05| Holger Wache Implementing comments from Quality a
sors

er




Executive Summary

In general approximating Semantic Web inferences can beathby language weaken-
ing, knowledge compilation, and approximate deductions @eliverable discusses three
approaches of approximating which all fall into this singtgherent framework and are
representative examples for the three classes.

An example for language weakening is InstanceStore whidj alfows instances
without any relations to other instances. But the instanesshbe asserted to concepts
which have relations to other concepts. The ability of repn¢ing relations is shifted
from the instances to the concepts. This restriction seenhe treasonable in practical
applications and allows to fall back on database technoldggh is known for efficient
and scalable inferences.

For approximated deduction only a few approaches are &laiar the inferences in
the context of Semantic Web. A promising approach is prapdgeCadoli and Schaerf
who also apply their method for description logic reasonitrga simplified view their
method replaces th&-quantifier in concept expressions withresp. L. Their replace-
ment leads to simplified concept expressions with hopefaliyer reasoning. However,
an evaluation of their method in practical scenarios of tam&tic Web shows mixed
results. First, the proposed method is not applicable fmrdblogies but only for ontolo-
gies with a reasonable amount®fuantifier in their concept definitions. Second, only
few successful applications of the approximation methodlma observed. Both points
indicate that the wrong constructor is replaced. Third fénesuccessful approximations
come with high amounts of unnecessary reasoning which thmdenefit of approxi-
mated reasoning. It seems that the last point is the consequ# the replacement with
T or L which “over-simplifies” the concept expressions to mealasgstatements. Sum-
marising, in practical situations the proposed method setenapproximate the wrong
constructor and seems to replace the constructor with teagvterm. However, more
adapted approximation methods which prevent the “ovepliitation” have the poten-
tial for better results.

OWL ontologies which are based on description logics (ihe species OWL-DL and
OWL Lite) can also be translated to disjunctive Datalog paogs. During the transla-
tion the implicit knowledge can be derived and directly atlttethe translated knowledge
base. Furthermore the inference engine for disjunctivalbgtprograms can be replaced
by an approximated SLD-Resolution which ignores the digjons in the heads of the
clauses. This reasoning is not sound but complete. The apipris representative for a
combination of several approximation methods, i.e., kieolge compilation and approx-
imate deduction.
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Chapter 1

Introduction and Motivation

by PERRY GROOT, HEINER STUCKENSCHMIDT & HOLGER WACHE

A strength of the current proposals for the foundationaglages of the Semantic
Web is that they are all based on formal logic. This makesssjie to formally reason
about information and derive implicit knowledge. Howe\érs reliance on logics is not
only a strength but also a weakness. Traditionally, logE &lavays aimed at modelling
idealized forms of reasoning under idealized circumstan€dearly, this is not what is
required under the practical circumstances of the Semé§veiz. Instead, the following
are all needed:

e reasoning under time-pressure
e reasoning with other limited resources besides time

e reasoning that is not ‘perfect’ but instead ‘good enoughtisen tasks under given
circumstances

It is tempting to conclude that symbolic, formal logic fads all these counts, and
to abandon that paradigm. Our aim is to keep the advantagesnoedl logic in terms of
definitional rigour and reasoning possibilities, but at $hene time address the needs of
the Semantic Web.

Research in the past few years has developed methods withdke properties while
staying within the framework of symbolic, formal logic. Hewer, many of those pre-
viously developed methods have never been been considetbe icontext of the Se-
mantic Web. Some of them have only been considered for sonyesiraple underlying
description languages [Schaerf and Cadoli, 1995]. As thguages proposed for mod-
elling ontologies in the Semantic Web are becoming more aoré komplex, itis an open
guestion whether those approximation methods are able ¢b thme practical demands of
the Semantic Web. In this deliverable, we look at approxiomamnethods for Description
Logics (DLs), which are closely related to some of the cutygoroposed Semantic Web
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1. INTRODUCTION AND MOTIVATION

languages, e.g., OWL. To be more precise, during the whoiestdable we consider only
OWL DL and in some way OWL Lite but not OWL Full.

1.1 Approximation Approaches

d Approximate

A typical architecture for a KR system base Deduction

on DLs can be sketched as in Figure 1 v TBOX N
[Baaderet al,, 2003b], which contains three coms Regerieten
ponents that can be approximated to obtain a sim-—4

op . N ABox 1]
plified system that is more robust and more scal-

. Language
able. These components are: (1) the underlying deweakening

scription language, (2) the knowledge base, and (3)
the reasoner. The knowledge base itself compri]s_x?

Knowledge
Compilation

~

KB

S _ :
two components (TBox and ABox), which can alsogure 1.1 Archltecturg C.Jf a KR.
stem based on Description Logic

: S
be approximated as a whole or separately. Sopie . : :
o . ogether with possible approxima-
general approximation techniques that can be ap-
. ion approaches.
plied to one or more of these components are the

following:

Language Weakening: The idea of language weakening is based on the well-
known trade-off between the expressiveness and the remsa@omplexity of a log-
ical language. By weakening the logical language in which eoh is encoded,
we are able to trade the completeness of reasoning agaimdinra. For example,
[Borgida and Etherington, 1989] shows how hierarchical Kedge bases can be used
to reason approximately with disjunctive information. Toegic that underlies OWL Full

for example is known to be intractable, reasoners can useglalglweaker logic (e.qg.
OWL Lite) that still allows to compute some consequences.s Tdea can be further
extended by starting with a very simple language and itmgativer logics of increasing
strength supplementing previously derived facts.

Knowledge Compilation: In order to avoid complexity at run-time, knowledge compi-
lation aims at pre-processing the ontology off-line sudht tn-line reasoning becomes
faster. For example, this can be achieved by explicatingdndknowledge. Derived facts
are added to the original theory as axioms, avoiding the teeddduce them again. In the
case of ontological reasoning, implicit subsumption andanipership relations are good
candidates for compilation. For example, implicit substiorprelations in an OWL on-
tology could be identified using a DL reasoner, the resultmgye complete hierarchy
could be encoded e.g. in RDF schema and used by systems that Have the ability
to perform complex reasoning. This example can be congiderée a transformation
of the DL language. When one transforms an ontology into adgpsessive DL lan-
guage [Baadeet al., 2000, Brandet al.,, 2002], this often results in an approximation of
the original ontology.

2 January 3%, 2005 KWEB/2004/D2.1.2/v1.2



D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-8R74

Approximate Deduction: Instead of modifying the logical language, approx-
imations can also be achieved by weakening the notion ofc&gconsequence

[Schaerf and Cadoli, 1995, McAllester, 1990]. The approxe@daconsequences are
usually characterized as sound but incomplete, or competeunsound. Only

[Schaerf and Cadoli, 1995] have made some effort in the confélLs.

Note that there is not always a clear classification of onéatkto the three categories
defined above.

In the following chapters we discuss some approximationhodt in more detail.
Chapter 2 gives an example of approximate deduction. A ctem@ed already pro-
posed approximation method — the S-1- and S-3-approximdtyoCadoli and Schaerf
[Schaerf and Cadoli, 1995] — is investigated in practicall@pgons. The approach in
Chapter 3 is based on language weakening. The expressivantesABox is reduced
in order to fall back on database technology. A combinatibeeveral approximation
methods is illustrated in Chapter 4. First the knowledge msempiled into disjunctive
Datalog programs explicating the implicit knowledge dihgc Then the standard reso-
lution principle is replaced by an approximated varianterBfiore this approach can be
seen as a combination of language weakening and approxdedtetion.

KWEB/2004/D2.1.2/v1.2 January 302005 3



Chapter 2

S-1- and S-3-Approximation

by PERRY GROOT, HEINER STUCKENSCHMIDT & HOLGER WACHE

The elements of a DL are concept expressions and determthiig satisfiabil-
ity is the most basic task. The most of the other reasoningces (e.g., subsump-
tion, classification, instance retrieval) can be restatetims of satisfiability checking
[Baaderet al,, 2003b]. With approximation in DLs, we mean determining shésfiabil-
ity of a concept expression through some other means thaputorg the satisfiability of
the concept expression itself. This use of approximatidierdi with other work on ap-
proximating DLs [Baadeet al, 2000, Brandet al, 2002] in which a concept expression
is translated to another concept expression, defined inanddgpically less expressive
DL.

In our approach (originally proposed by Cadoli and Schaerf in
[Schaerf and Cadoli, 1995]), in a DL only other, somehow tesdl3 concept expressions
can be used that are in some way ‘simpler’ when determinieg satisfiability. For
example, a concept expression can be related to anotheemoexpression through its
subsumption relation, and a concept expression can be nmapgkesby either forgetting
some of its sub concepts or by replacing some of its sub cémeéth simpler concepts.
In particular, there are two ways that a concept expresSi@an be approximated by a
related simpler concept expression Either the concept expressiéhis approximated
by a weaker concept expression(i.e., less specificf’ C D) or by a stronger concept
expressionD (i.e., more specificD C ). WhenC C D, unsatisfiability ofD implies
unsatisfiability ofC. WhenD C (C, satisfiability of D implies satisfiability ofC'. Note
that this is similar to set theory. For two seétsD, whenC' C D holds, emptiness
of D implies emptyness of’, and whenD C C' holds, non-emptiness dP implies
non-emptyness af'.

In [Schaerf and Cadoli, 1995] Cadoli and Schaerf propose asgraimanipulation of
concept expressions that simplifies the task of checkinig sagisfiability. The method
generates two sequences of approximations, one sequent@niog weaker concepts
and one sequence containing stronger concepts. The seguehapproximations are
obtained by substituting a substridgin a concept expressiari by a simpler concept.

4
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More precisely, for every substring) they define the depth ofD to be
“the number of universal quantifiers occurring @ and havingD in its scope”
[Schaerf and Cadoli, 1995]. The scopevdt.¢ is ¢ which can be any concept term con-
taining D. Using the definition of depth a sequence of weaker appraridneoncepts
can be defined, denoted l6y', by replacing every existentially quantified sub conéept
of depth greater or equal thaiby T. Analogously, a sequence of stronger approximated
concepts can be defined, denoteddy, by replacing every existentially quantified sub
concept of depth greater or equal thaby . Please note that before replacement the
concept expression is transformed into the negated noimwnal ¥hich allows negation
only for concept names. These definitions lead to the folhgwesult:

Theorem 1 For each, if C} is unsatisfiable the@ is unsatisfiable for alf > 4, hence
C'is unsatisfiable. For eachif C;' is satisfiable thed' is satisfiable for alj > 7, hence
C'is satisfiable.

These definitions are illustrated by the following concegiression taken from the
Wine ontology

Merl ot =Wne N <1madeFromGrapé& M ImadeFromGrapéMeriotGrape},

which states that a Merlot wine is a wine that is made from thexl® grape and no
other grape. This concept expression contain¥{guantifiers. Therefore the depth of
the only existentially quantified sub conceptmadeFromGrapéMeriotGrape}’ is O.
Substituting eitherm or L leads to the following approximations for level O:

Merl ot ; =W ne M (<1madeFromGrapg) M T,
Mer | ot ; = W ne M (<1madeFromGrapg) rn L.

No sub concepts of level 1 appear in the concept expressiohbfol ot . There-
fore,Mer | ot | andMer | ot { are equivalent td/er | ot . The nesting of existential and
universal quantifiers is an important measure of the conitylex satisfiability checking
when considered from a worst case complexity perspectiomifdet al, 1992]. These
are motivations for Cadoli and Schaef to make their specifistsution choices. Fur-
thermore, they are able to show a relation betw€gn andC;--approximation and their
multi-valued logic based ory-1- and S-3-interpretations [Schaerf and Cadoli, 1995].
Therefore, properties obtained f6¢1- andS-3-approximation also hold fat;’ - andC;--
approximation. These properties include the followingr $&mantically well founded,
i.e., there is a relation with a logic that can be used to gieammg to approximate an-
swers; (2) Computationally attractive, i.e., approximatsveers are cheaper to compute
than the original problem; (3) Duality, i.e., both sound imdomplete and complete but
unsound approximations can be constructed; (4) Improyalele approximate answers

li.e.,3R.¢ whereg is any concept term
2A wine and food ontology which forms part of the OWL test su@\L, a].

KWEB/2004/D2.1.2/v1.2 January 302005 5



2. S-1- AND S-3-APPROXIMATION

can be improved while reusing previous computations; (Bkible, i.e., the method can
be applied to various problem domains. These properties wentified by Cadoli and
Schaerf to be necessary for any approximation method.

Although the proposed method by Cadoli and Schaerf [SchadrCadoli, 1995]
satisfies the needs of the Semantic Web identified in Sectiom iheory, lit-
tle is known about the applicability of their method to preak problem solv-
ing. Few results have been obtained f6r1l- and S-3-approximation when
applied to propositional logic [Groett al, 2004, ten Teije and van Harmelen, 1997,
ten Teije and van Harmelen, 1996], but no results are cuyrkendwn to the authors when
their proposed method is applied to DLs. Current work focosesmpirical validation of
their proposed method. Furthermore, DLs have changedadenadily in the last decade.
Cadoli and Schaerf proposed their method for approximatiegldnguagedLE (they
also give an extension fod £LC), but ALE has a much weaker expressivity then the lan-
guages that are currently proposed for ontology modellingh® Semantic Web such
as OWL. The applicability of their method to a more exprestavguage like OWL is
an open question. Current work takes the method of Cadoli ahde®ttas a basis and
focuses on extending it to more expressive DLs.

2.1 Approximating Classification

The problem of classification is to arrange a complex conegptession into the sub-

sumption hierarchy of a given TBox. We choose this task for teasons. First, the

worst-case complexity of classification algorithm evendgpressive representation lan-
guages like OWL-DL is known to be worse. Efficient alternativeve only been pro-

posed e.g. for subsets of DLs [Grostfal., 2003].

Second, classification is a very important part of many othasoning services and
applications. For example, classification is used to geedhe subsumption hierarchy
of the concept descriptions in an ontology. Furthermomessification is used in the task
of retrieving instances. From a theoretical point of viehecking whether an instanc¢e
is member of a conceg can be done by proving the unsatisfiability-ef)(:). Doing
this for all existing instances, however, is intractabldefiefore, most DL systems use
a process that reduces the number of instance checks. Humas that the ontology is
classified and all instances are assigned to the most speaifeept they belong to. In-
stance retrieval is then done by first classifying the querncept® in the subsumption
hierarchy and then selecting the instances of all succes$@rand of all direct predeces-
sors of() that pass the membership testin We conclude that there is a lot of potential
for approximating the classification task.

In the following, we first describe the process of classiftmain DL systems. After-
wards we explain how the approximation technique introduneSection 2 can be used
to approximate (part of) this problem.

6 January 3%, 2005 KWEB/2004/D2.1.2/v1.2
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Algorithm 1 classification
Require: A classified concept hierarchy with rofvot
Require: A query concept)

VISITED (=&
RESULT =g
GOALS :={T}

while Goals# @ do
C € Goalswhere{direct parents o€} C Visited
GoALs = Goals\ {C}
VISITED := VisitedU {C}
if subsumed-by(Q,Chen
GoALs := Goalsu {direct children ofC}
REsuLT := (Resultu {C}) \ {all ancestors o€}
end if
end while
if |[Result = 1 A subsumed-by(C,QGhen
EQuUAL :='yes’
else
EQUAL :='no’
end if
return Equal, Result

For classifying a concept expressighinto the concept hierarchy (Algorithm 1) a
number of subsumption tests are required for comparing tiegygconcept with other
conceptsC; in the hierarchy. As the classification hierarchy is assutoelde known,
the number of subsumption tests can be reduced by startitige dtighest level of the
hierarchy and to move down to the children of a concept ontigefsubsumption test is
positive. The most specific concepts w.r.t. the subsumgtierarchy which passed the
subsumption test are collected for the results. At the enldeoélgorithm, we check if the
result is subsumed b¥ as this implies that both are equal.

Algorithm 1 contains more than one step that can be apprdginaFor example,
the subsumption tests, representedsijpsuned- by ( X, Y) in the algorithm, can be
approximated using the method of Cadoli and Schaerf. Thessaog subsumption
tests@) C C can be reformulated to test the unsatisfiability(@f1 —=C (Algorithm

Algorithm 2 subsumption
Require: A complex concept expressi@n
Require: A Query(@
CURRENT :=Q n-=C
RESULT := unsatisfiable(Current)
return Result

KWEB/2004/D2.1.2/v1.2 January 30 2005 7



2. S-1- AND S-3-APPROXIMATION

Algorithm 3 approx<' " -subsumption
Require: A complex concept expressi@n
Require: A Query(@
| :=0
repeat
CURRENT = (Q1-0C);
RESULT := unsatisfiable(Current)
if Result = ‘true’then
break
end if
| :=1+1
until Current=C
return Result

Algorithm 4 approx<'+-subsumption
Require: A complex concept expressian
Require: A Query@
| :=0
repeat
CURRENT = (Q 1 -0)f
RESULT := unsatisfiable(Current)
if Result = ‘false’then
break
end if
| :=1+1
until Current=C
return Result

2). The idea is to replace standard subsumption checks byies s& approximate
checks of increasing exactness. In particular, we use wesgkgroximationsC," for
the appr ox- C'"- subsunpt i on algorithm (see Algorithm 3) and stronger approxi-
mationsC;- for theappr ox- C*- subsunpt i on algorithm (see Algorithm 4). Using
Theorem 1 we can conclude that we are done whenever the wstesis. If the test
does not succeed, we move to a more precise approximatiomg¢bsasing/). This is
repeated until we reach the original concept expressiorparfdrm the exact subsump-
tion test. Algorithm 5 integrates both approximations ire@rocedure. The approxi-
mate versions, i.eappr ox- C'"- subsunpt i on, appr ox- C*+- subsunpti on, and
appr ox- C1- O] - subsunpt i on will replace the methodubsuned- by in Algo-
rithm 1.

While these approximate versions can in principle be appbedll occurrences of
subsumption tests, we restricted the use of approximatiotie first part of the algorithm
where the query concept is classified into the hierarchy.
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Algorithm 5 approx€';-C; -subsumption
Require: A complex concept expressi@n
Require: A Query(@
=0
repeat
CURRENT = (Q M —~C)+
RESULT := unsatisfiable(Current)
if Result = ‘false’then
break
end if
CURRENT :=(Q M ~C)]
RESULT := unsatisfiable(Current)
if Result = ‘true’then
break
end if
| :=1+1
until Current=C
return Result

Each DL reasoner (e.g., Fact [Horrocks, 1998a], Racer [Haeasid Moller, 1999,
Haarslev and Ndller, 2001b]) implements the classification functinalitgernally. In
order to obtain comparable statements about approximassiitation, independently
from the implementation of a particular DL reasoner, whicaynuse highly optimized
heuristics, we implement our own and independent classditanethod. The classifi-
cation procedure was built on top of an arbitrary DL reasaezording to Algorithm
1. The satisfiability tests are propagated to the DL reastimeugh the DIG interface
[Bechhoferet al, 2003] as depicted in Figure 2.1.

2.2 Experiments

The main question focused on in the experiments is which foiri@pproximation, i.e.,

C, Cit, or their combination, can be used to reduce the complexitgasoning tasks.

The focus of the experiments will not be on the overall corapah time, but on the

number of operations needed. The goal of approximation igptace costly reason-
ing operations by a (small) number of cheaper approximasarng operations. The
suitability of the method of Cadoli and Schaerf thereforeat&}s on the number of clas-
sical reasoning operations that can be replaced by theioappate counterparts without
changing the result of the computation.

In the experiments queries are generated automatically.system randomly selects
a number of concept descriptions from the loaded ontolobgs€ definitions are used as
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2. S-1- AND S-3-APPROXIMATION

gueries and are reclassified into the subsumption hi-  Query
erarchy. Note that the queries are first randomly se-
lected, then they are used in the experiments with
all forms of approximation.

li Approximate
The first experiments were made with the
TAMBIS ontology in which we (re)classified 16 Classify ]
concept definitiond. Only the approximation
method originally suggested by Cadoli and Schaer
[Schaerf and Cadoli, 1995] fadLE (described in

Section 2) was used. Subsurr;es/Satlsfy Taxc;nomy
The results of the first experiments are shown J |
in Table 2.1, which is divided into four columns. DIG Interface

Each column reports the number of subsumption —— — ~
tests when using a certain form of approximation.

The first column reports results for the experiment Racer
with normal classification (i.e., without approxima- S S :
tion), the second column fo€';--approximation, ]

the third column forC] -approximation, and theFigure 2.1: Architecture of the ex-
fourth column for a combination of-- and ;7 Perimental setup.

approximation.

Each column of Table 2.1 is divided into a number of smallersrand columns. The
rows represent the level of the approximation used, whedenotes normal subsumption
testing, i.e., without approximation. The columns repn¢sehether the subsumption test
resulted in true or fals&.This distinction is important, because Theorem 1 tells as th
only one of those two results will immediately lead to a raducin complexity, while
for the other result approximation has to continue at the lexel. This continues until
Nno more approximation steps can be done.

normal o+ cf cit&cT
| true | false true | false true | false true | false
i | 157 | 32 |[c7 | 8 | 181 | ¢t | 157 | 32
Tambis (16) ci| 0 | 0 [cr| 0 0 |cf| 8 | 149
N| 24 279 v | 24 | 247 N | 16 [ 279 N | 16 | 247

Table 2.1: Subsumption tests for the reclassification ofdr&epts in TAMBIS.

The first column shows that for the reclassification of 16 emts in the TAMBIS
ontology, 24 true subsumption tests and 279 false subsamiasts were needed.

3A biochemistry ontology developed in the TAMBIS project gaet al., 1998].
“We will use the shorthand ‘true subsumption test’ and ‘falgbsumption test’ to indicate these two
distinct results.
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The second column shows that--approximation leads to a change in normal sub-
sumption tests. Compared to the normal case, the numbersef$absumption tests are
reduced from 279 to 247. However, the 24 true subsumptida &e not reduced. Note
that 32 (279 - 247) false subsumption tests are replaced byrd&C;--subsumption tests
and 32 false”;--subsumption tesfs.

The third column shows that," -approximation also leads to a change in normal
subsumption tests, but quite different when compare@;teapproximation. WithC;' -
approximation we reduce the true subsumption tests frono2lbt However, the 279
false subsumption tests are not reduced. Note that 8 (24trd&subsumption tests are
replaced by 8 tru€’] -subsumption tests and 181 falég -subsumption tests. Analo-
gously toC:--approximation, na”;"-approximation was used when this would not lead
to a change in the subsumption expression.

The fourth column shows the combination @f- and C," -approximation by using
the approximation sequenc&-,Cy ,Ci,C/,...,C+ |,CT | normal. This combina-
tion leads to a reduction of normal subsumption tests, wiidhe combination of the
reductions found when using;-- or C;" -approximation by itself. The true subsumption
tests are reduced from 24 to 16 and the false subsumptianaesteduced from 279 to
247. Note that the reduction of 8 (24 - 16) true subsumptiststand 32 (279 - 247) are
now replaced by 157 tru€; -subsumption tests, 32 falgg--subsumption tests, 8 true

C, -subsumption tests, and 149 falSg-subsumption tests.

2.2.1 Analysis ofC;--/C."-Approximation

The approximation of concept classification in the TAMBISadogy using the method
of Cadoli and Schaerf reveals at least four points of intefesst, Table 2.1 shows that
using C;--approximation can only lead to a reduction of the false soiyion tests and
C-approximation can only lead to a reduction of the true soiygtion tests. These
results could be expected as they follow from Theorem 1 amdedlected by Algoritm 3,
4, and 5. Using Theorem 1 we have the following reasoningssta;--approximation:

Query [Z Concept < (Query M -—Concept ) is satisfiable
< (Query M —Concept ); is satisfiable

Hence, wher{Quer y 1 —Concept ) is not satisfiablenothing can be concluded and
approximation cannot lead to any gain.

SNote that the numbers do not add up. The reason for this isibximation is not used when there
would not be any change in the subsumption expressionwirenC;- = C' the DL reasoner is not called
and no subsumption check f6t- is performed.
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Using Theorem 1 we have the following reasoning steps’forapproximation (cf.
Algorithm 3):

Query C Concept < (Query n—Concept ) is not satisfiable
< (Query M —Concept )/ is not satisfiable

Hence, wher{Query rn —Concept ), is satisfiable nothing can be concluded and ap-
proximation cannot lead to any gain.

Second, no true approximations are used on a level higherzén@. This is a direct
consequence of the TAMBIS ontology containing no nested goindefinitions. Further
on, we show this to be the case for most ontologies found icticea

Third, bothC;-- and C;" -approximation are not applied in all subsumption tests tha
are theoretically possible. With normal classification 328 + 279) subsumption tests
are needed. However, with--approximation in only 189 (157 + 32) cases was approxi-
mation actually used. In the remaining 114 (303 - 189) cagpsxaimation had no effect
on the concept definitions, i.eC;* = C, and no test was therefore performed. Hence,
in 38% of the subsumption tests, approximation was not uSedilar observations hold
for O -approximation. This observation indicates thdt-/C;" -approximation is not very
useful (at least for the TAMBIS ontology) for approximatirigssification in an ontology.

Fourth, apart from the successful reduction of normal soipgion tests, we must
also consider the cost for obtaining the reduction. For etanwith C;--approximation
we obtained a reduction in 32 false subsumption tests 3enormal false subsumption
tests could be replaced by 32 cheaper falgesubsumption tests, however it also cost an
extra 157 trueC;y-subsumption tests that did not lead to any reduction. Akingtcan
be deduced from these 157 trd&-subsumption tests, these computations are wasted
and reduce the gain obtained with the 32 reduced false suydignrests considerably.
Obviously, these unnecessary tiig-subsumption tests should be minimized. No final
verdict can be made however, because it all depends on thputation time needed to
compute the normal subsumption tests aifdsubsumption tests, but 157 seems rather
high. Similar observations hold f&r," -approximation.

Analysing the high amount of unnecessary subsumption, testsliscovered a phe-
nomenon, which we catierm collapsing We illustrate term collapsing through an ex-
ample taken from the Wine ontology. Suppose that during asiflaation the sub-
sumption testQuery C Wit eNonSweet W ne is generated. The definition for
VWi t eNonSweet W ne is:

W ne 1 JhasColor{ White} M VhasSugaf OffDry, Dry}.

The subsumption query is first transformed into a satisfiglist, i.e.,Query C
Whi t eNonSweet W ne < Query 1 —Wi t eNonSweet W ne is unsatisfiablebe-
causeC;--/C;"-approximation is defined in terms of satisfiability checkin
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The definition of-VWhi t eNonSweet W ne is

= —(W ne M JhasColo{ White} M ¥ hasSugaf OffDry, Dry})
= —W ne U VhasColor—{ White} U 3hasSugar{OffDry, Dry}.

and therefore the approximatign\Wi t eNonSweet W ne) is

= (=W ne U YhasColor—{ White} LI 3hasSugar{OffDry, Dry}),

(=W ne ), U (VhasColor-{ White}); U (3hasSugar{OffDry, Dry}),
-W ne U VhasColor—-{ White} U T

= T.

Therefore, approximating the expressiQuery M —\Wi t eNonSweet W ne results
in checking unsatisfiability oQuery,, i.e., (Query mn —Wi t eNonSweet W ne)|

& Query, NT < Query, is unsatisfiableThis test most likely fails, because in a con-
sistent ontologyQuer y will be satisfiable and aQuer y is more specific thaQuery,
the latter will be satisfiable.

Analogously, applying”;--approximation may result in a collapse of tQaery to
L. This occurs whenevé&puer y contains a conjunction with at least ofiguantifier. In
this case, the entire subsumption test is collapsed intokomg the satisfiability ofL. As
L can never be satisfied, this results in an unnecessary sphsuartest.

For the TAMBIS ontology we counted the numbers of occurrené¢ésrm collapsing
in approximated concept expressions. With-approximation 65 terms out of 181 col-
lapsed. In other words, 35.9% of the approximated falsewsupsion tests are obviously
not needed and should be avoided. With-approximation it becomes more drastic: 157
terms out of 157 collapsed. If we can avoid term collapsing%®f the approximated
true subsumption tests can be reduced leading to a real wenpient in this case. With
the combination of”;*- andC;"-approximation 190 terms out of 306 collapsed or 62.1%
of the approximated subsumption tests are obviously nassegy.

Summarizing, using the proposed approximation method byolCashd Schaerf
[Schaerf and Cadoli, 1995] on classification queries in th®IBAS ontology led to many
collapsing terms. Furthermore, in only a few cases are estpesubsumption tests re-
placed by cheaper approximated subsumption test. Thesksraglicate that their ap-
proximation method does not fit in practical situations. fiatent approximation method
may provide better approximation.

2.2.2 Further experiments

Although practical results af;--/C." -approximation are somewhat disappointing for the
TAMBIS ontology, similar experiments were made with othetadogies. Table 2.2 sum-
marizes the results af’;--/C;"-approximation applied to the reclassification of 10 con-
cepts in five other ontologies.

KWEB/2004/D2.1.2/v1.2 January 30 2005 13



2. S-1- AND S-3-APPROXIMATION

normal ct cy cr&cy
true | false || true | false | true | false || true | false
ct - - 0 0 - - 0 0
Dolce (10) | ¢ - - - - 0 0 0 0
N | 10 | 113 10 113 10 113 10 | 113
ct - - 0 0 - - 0 0

Galen (10) | ¢f - - - 0 0 0 0
N || 10 | 12190| 10 | 12190 10 | 12190| 10 | 12190

ct |l - - 0 0 - - 0 0
Monet (10) | ¢f - - - - 0 0 0 0
N || 20 | 656 || 20 | 656 | 20 | 656 | 20 | 656
ct | - - 145 0 - - 145| O
MadCow (10)| ¢7 | - - : - 5 | 140 | 5 | 140
N | 66 | 152 | 66 | 152 || 61 | 152 | 61 | 152
ct |l - - 228 1 - - 228 1
Wine (10) [¢f | - - - - 6 | 223 | 6 | 222

N || 33 | 252 33 | 251 27 | 252 27 | 251

Table 2.2: Number of subsumption tests for reclassificatidive ontologies.

For the first three ontologies of Table 2.2, the DOI’CBaleri, and Monet on-
tology?, C;-- or C."-approximation has no effect. In these three ontologigs;/C;"-
approximation does not change any concept expression amnefdhe no reduction in
normal subsumption tests can be obtained. An analysis eéttieee ontologies shows
that the ontologies use some roles and/or attributes, leufi-tland/orVv-quantifiers are
very rarely used. For example, the Monet ontology contal@2Zoncepts, 34 roles, and
10 attributes. Thel-constructor is only used in 13 definitions (0.64% of all ogpicde-
finitions). TheV-constructor is only used in 11 cases (0.54% of all concefitiens).
Therefore in the ten queries, which are randomly selectede of the checked concept
definitions contains any quantifiers. The-/C," -approximation seems to be useless for
those ontologies.

The next two ontologies of Table 2.2, MadCband Wine, are somewhat artificial
because they are developed for demonstrating the expegsswer of DLs rather than
for being used in practiceC;--/C"-approximation was applied to classification in both
ontologies, but this leads to almost no reduction of nornadlssmption tests. In the
Madcow ontology only 5 true subsumption tests are reducédrathe Wine ontology
only 7 subsumption tests are reduced (6 true subsumptitsnitdsalse subsumption test).

6An ontology for linguistic and cognitive engineering [Méset al., 20003].
’A medical terminology developed in the Galen project [Reetal., 1993].
8An ontology for mathematical web services [Caprettal., 2004].

90Ontology about mad cows, part of the OWL Reasoning ExampleéL[M].
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Many more subsumption tests are not reduced. In many cages@pating subsumption
tests led to term collapsing and useless subsumption tests.

2.3 Conclusions

We argued that the idea of approximate logical reasoningmeatthe requirements of
the Semantic Web in terms of robustness against errors anabihty to cope with lim-
ited resources better than conventional reasoning mettAadise same time, approximate
logical inference avoids the problems of many numericat@g@ghes for approximate rea-
soning that lack a proper interpretation of the numeric @asasigned to statements and
the problem of acquiring these numbers. We tested a coneretieod for approximate
logical reasoning in DLs against these claims by applyirg the classification problem
on a number of real ontologies. In particular, we used thdatkto replace subsumption
tests by a series of presumably easier tests. We investitja¢euse of weaker approx-
imations to approximate negative and stronger approxanatto approximate positive
tests. We showed that in principle both approximations aanribute to a replacement
of subsumption tests (compare Section 2.2).

The main result is that the use of the approximation methodics proposed by
Cadoli and Schaerf is problematic for two reasons:

e A problematic side effect of using the approximation metiothe collapsing of
concept expression that produce meaningless results. hBlpigens either when
terms of a disjunction are replaced Byor terms of a conjuction are replaced by
The former case appears when using the weaker approximéafioon a concept
that contains a universal quantifier at the top level of tHend®n. The latter is an
effect of using the stronger approximatioft for a query concept with existential
guantifiers at the top level of the definition. This featurelw approach is quite
problematic as it excludes an important class of query qasdeom the method,
namely translations of conjunctive queries which are ngdsdinslated using nested
existential quantifications.

e The experiments showed that only in some cases was the mabiedo replace
subsumption tests. In the other cases like DOLCE, Galen, ammeiho test could
be substituted. This observation can be explained by thétfatthe approximation
method only works on nested expressions that are exidtgmfimntified. Many ex-
isting ontologies, however, do not contain concept expoassvith nested expres-
sions. The average ontology on the Semantic Web rather ugessgmple concept
expressions that, if at all, are of depth one. The approxematethod by Cadoli
and Schaerf was designed based on theoretical consideyatl the approxima-
tion strategy was chosen in such a way that it reduces thet wase complexity
of the subsumption problem and it does not take practicasidenations like the
nature of definitions that are likely to be found in ontolagieto account.
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We conclude that the use of this specific way of approximagungsumption is often
not suited for Semantic Web reasoning. Nevertheless, weveeh the general idea of
approximate logical reasoning. The goal is to find an appnakion strategy that takes
the specifics of ontologies into account. A particular peoblwith the current approach
is the reliance on nested definitions. A straightforward teasnodify this approach is to
find alternative strategies for selecting subexpressioaisare to be replaced by or L,
or other simpler sub concepts. A good candidate, that wikx@ored in future work,
can use domain knowledge to determine the subset of the wlaecglio be replaced. We
could for example first exclude very specific terms and thexwlgally add more specific
ones. This and other options for approximating Semantic k¥aboning will be studied
in future research.
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Chapter 3

Approximation in ABox Reasoning

by IAN HORROCKS, DANIELE TURI & JEFF Z. PAN

The W3C recommendation OWL is a recently emerged standardkpyegsing on-
tologies in the Semantic Web. One of the main features of OWhasthere is a direct
correspondence between (two of the three “species” of) OWA. escription Logics
(DLs) [Horrocks and Patel-Schneider, 2003].

Unfortunately, while existing techniques fofBox reasoning (i.e., reasoning
about concepts) seem able to cope with real world ontoloffiemrocks, 1998b,
Haarslev and Ndller, 2001a], it is not clear if existing techniques fBoxreasoning (i.e.,
reasoning about individuals) will be able to cope with r&tadisets of instance data. This
difficulty arises not so much from the computational comipjeaf ABox reasoning, but
from the fact that the number of individuals (e.g., annotag) might be extremely large.

In this section, we describe an approach to ABox reasonirtgiels withrole-free
ABoxes, i.e., ABoxes that do not contain any axioms assertlegrelationships between
pairs of individuals. The result, which we call &rstance Storgs a system that can deal
with very large ABoxes, and is able to provide sound and cote@aswers to instance
retrieval queries (i.e., computing all the instances of\eigiquery concept) over such
ABoxes.

Although this approximation may seem a rather severe céisin, the functionality
provided by the Instance Store is precisely what is requisethany applications, and in
particular by applications where ontology based terms aeel tio describe/annotate and
retrieve large numbers of objects. Examples include th@tigetology based vocabulary
to describe documents in “publish and subscribe” appbeatiUscholdet al., 2003], to
annotate data in bioinformatics applications [GO, ] andrinaate web resources such
as web pages [Dikt al, 2003] or web service descriptions [Li and Horrocks, 2008] i
Semantic Web applications.
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3.1 Instance Store

An ABox A is role-free if it contains only axioms of the form: C. We can assume
without loss of generality that there is exactly one suclomxfor each individual as
x : C'U—-C holds in all interpretations, and two axioms C' andz : D are equivalent to
asingle axiomx : (CT1D). Itis well known that for a role-free ABoX, instantiation che
reduced to TBox subsumption [Hollunder, 1996, Tessaris1R0@., if C = (7, .A), and
Aisrole-free, therk =z : Diff v : C € AandT = C C D. Similarly, if K = (T, A)
and A is a role-free ABox, then the instances of a conc@ptould be retrieved simply
by testing for each individuat in A if I =z : D. This would, however, clearly be very
inefficient if A contained a large number of individuals.

An alternative approach is to add a new axiolC D to 7 for each axiomz : D
in A, whereC,, is a new atomic concept; we will call such concepgeudo-individuals
Classifying the resulting TBox is equivalent to performingaanplete realisation of the
ABox: the most specific atomic concepts that an individuiglan instance of are the most
specific atomic concepts that subsu@eand that are not themselves pseudo-individuals.
Moreover, the instances of a concéptan be retrieved by computing the set of pseudo-
individuals that are subsumed B

The problem with this latter approach is that the number etigs-individuals added
to the TBox is equal to the number of individuals in the ABox, aihthis number is
very large, then TBox reasoning may become inefficient or é&eak down completely
(e.g., due to resource limits). The basic idea behind th&amce Store is to overcome
this problem by using a DL reasoner to classify the TBox andtaldee to store the
ABox, with the database also being used to store a complelisatan of the ABoX,
i.e., for each individuak, the concepts that realises (the most specific atomic concepts
thatz instantiates). The realisation of each individual is cotedwsing the DL (TBox)
reasoner when an axiom of the fonm C'is added to the Instance Store ABox.

A retrieval query to the Instance Store (i.e., computing $be of individuals that
instantiate a query concept) can be answered using a conalid database queries and
TBox reasoning. Given an Instance Store containing a(KkB.A) and a query concept
@, the instances ap can be computed using the following steps:

1. use the DL reasoner to compuie the set of most specific atomic conceptsZin
that subsumé), andD, the set of all atomic concepts ih that are subsumed by

Q;

2. use the database to computg, the set of individuals id that realisssomeconcept
in D, andA¢, the set of individuals in4 that realisesveryconcept inC;

3. use the DL reasoner to computg, the set of individuals: € A¢ such thate : B
is an axiom in4 and B is subsumed by;

4. return the answed U Ap,.
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Theorem 2 The above procedure is sound and complete for retrievalgiveen a concept
Q, it returns all and only individuals il that are instances @j.

Proof: For soundness, if is in Ag U Ay, then it must be an instance of some concept
CC@stCeD,orz: Bisanaxiomind andB is subsumed by). In either casey
is an instance of).

For completeness, suppose thas an instance of) andzx is not in the answer. As
x is an instance of), there must be an axiom: B in A such thatB is subsumed by).
Moreover,z is an instance of every concept that subsu@eand in particular of every
concept inC, but does not realise any conceptl) so it must realise every concept in
C. This means that is in the answer, contradicting our initial assumption. .

Note that ifQ) is equivalent to an atomic conceft, then{X} C C C D, and the
answerAg can be returned without computind, .

3.2 An Optimised Instance Store

In practice, several refinements to the above proceduresa@ to improve the perfor-
mance of the Instance Store. In the first place, as it is palgntostly, we should try to
minimise the DL reasoning required in order to compute sa#ibns (when instance ax-
ioms are added to the ABox) and to check if individualsiin are instances of the query
concept (when answering a query).

One way to (possibly) reduce the need for DL reasoning is tadarepeating com-
putations for “equivalent” individuals, e.g., individgat,, x5 wherez; : C; andz, : Cy
are ABox axioms, and’; is equivalent ta”; (concepts” and D are equivalent, written
C = D, iff C C DandD C ). As checking for semantic equivalence between two con-
cepts would require DL reasoning (which we are trying to dydhe optimised Instance
Store only checks for syntactic equality using a databasiaup? Individuals are grouped
into equivalence sets, where each individual in the setgsréed to be an instance of a
syntactically identical concept, and only one represematf the set is added to the In-
stance Store ABox as an instance of the relevant concept. Wiseveang queries, each
individual in the answer is replaced by its equivalence set.

Similarly, we can avoid repeated computations of sub andrsapncepts for the same
concept (e.g., when repeating a query) by caching the sesdtuich computations in the
database.

Finally, the number and complexity of database queriesl@soa significant impact
on the performance of the Instance Store. In particularctmeputation ofA, can be

1The chances of detecting equivalence via syntactic chemKd be increased by transforming concepts
into a syntactic normal form, as is done by optimised DL reas® [Horrocks, 2003], but this additional
refinement has not yet been implemented in the Instance.Store
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costly asD (the set of concepts subsumed by the query cor@gptay be very large. One
way to reduce this complexity is to store not only the mostgmeconcepts instantiated
by each individual, but to storeveryconcept instantiated by each individual. As most
concept hierarchies are relatively shallow, this does maeiase the storage requirement
too much, and it greatly simplifies the computatior4gf: it is only necessary to compute
the (normally) much smaller s&' of most general concepts subsumedkynd to query
the database for individuals that instantiate some membBY.oOn the other hand, the
computation ofA. is slightly more complicated ad, must be subtracted from the set
of individuals that instantiate every conceptin Empirically, however, the saving when
computingA, seems to far outweigh the extra cost of computitzg

3.3 Implementation

We have implemented the Instance Store using a componesd heshitecture that is able
to exploit existing DL reasoners and databases. The corpaoemt is a Java application
that implements an APl and, for test purposes, a simple os&face. The Instance Store
connects to a DL reasoner via the DIG interface [Bechhofdd3R@nd can therefore use
one of several DIG compliant reasoners, including FaCT [bldks, 1998b] and RCER
[Haarslev and Mller, 2001c]. It also connects to a DB via standard intefa@nd has
been tested with HSGL.MySQL?® and Oraclé.

initialise(Reasoner reasoner, Database db, TBox t)
assert (I ndividual i, Description D)

renmove( |l ndi vi dual i)

retrieve(Description Q: Set{l ndividual)

Figure 3.1: Instance Store basic functionality

The basic functionality of the Instance Store is illustdaby Figure 3.1. The four
basic operations atieni ti al i se, which loads a TBox into the DL reasoner, classifies
the TBox and establishes a connection to the datalzesser t , which adds an axiom
i : D to the Instance Store;enove, which removes any axiom of the forin: C
(for some concept’) from the Instance Store; arrcet ri eve, which returns the set
of individuals that instantiate a query concépt As the Instance Store ABox can only
contain one axiom for each individual, assertingD wheni : C'is already in the ABox
is equivalent to first removingand then asserting: (C' 1 D).

In the current implementation, we make the simplifying asggtion that the TBox
itself does not change. Extending the implementation tbwi#h monotonic extensions
of the TBox would be relatively straightforward, but delgtinformation from the TBox
might require (in the worst case) all realisations to be ngmoted.

2http://nsqldb.sourceforge.net/
Shttp://www.mysgl.com/
“http://www.oracle.com/
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Our experiments can be found in deliverable D2.5.2 “Repo®uaery Language De-
sign and Standardisation”. These show that the Instance Btovides stable and effec-
tive reasoning for role-free ABoxes, even those containieiy Varge numbers of indi-
viduals. In contrast, full ABox reasoning using the®eR system exhibited accelerating
performance degradation with increasing ABox size, and veasable to deal with the
larger ABoxes used in this test.

3.4 Discussion

Our experiments show that the Instance Store providesessatal effective reasoning for
role-free ABoxes, even those containing very large numbenrsdaviduals. In contrast,
full ABox reasoning using the RCER system exhibited accelerating performance degra-
dation with increasing ABox size, and was not able to deal withlarger ABoxes used
in this test. (It may be possible to fix this problem by chaggsystem parameters, but
we had no way to investigate this.) The pseudo-individugireach to role-free ABox
reasoning was more promising, and may be worth further tigagson. It does not, how-
ever, have the Instance Store’s advantage of ABox persistamel it appears to be less
likely to scale to even larger ABoxes: it does not cope welhvarge answer sets, and is
inherently limited by the fact that DL reasoners (at leastuirrent implementations) keep
the entire TBox in memory. Moreover, it is not clear how theyskeindividual approach
could be extended to deal with ABoxes that are not role-free.

The acceptability of the Instance Store’s performance dobliously depend on the
nature of the application and the characteristics of the K& af typical queries. It is
likely that the performance of the Instance Store can betanbally improved simply
by dealing with constant factors such as communicationhmaas—in the current im-
plementation, communication overheads between the lostdtore and the DL reasoner
account for nearly half the time taken to answer queriesréwire significant amounts
of DL reasoning to compute the answer (i.e., whigis large). It may also be possible
to improve the performance of the database, e.g., usingigeds such as indexing and
clustering, or by reformulating queries.

As well as dealing with the above mentioned performancdedratks, future work
will include the investigation of additional optimisat®rand enhancements. Possi-
ble optimisations includsemantic indexing feedbaekadding new indexing concepts
to the ontology for the purpose of query optimisati@&scription canonicalisatior-
canonicalising the descriptions passed to the Instanae,Sto that equivalent descrip-
tions can be more effectively identifiedardinality estimatior—estimating the cardi-
nality of the result (and in particular df) before executing a query, and giving users
the chance to refine queries if the cost of answering thenkéylito be very high;

51t may be possible to fix this problem by changing system patars, but we had no way to investigate
this.
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andresult caching—caching the results of queries and of DL subsumption tests-i
der to avoid DL reasoning when answering subsequent qué?@essible enhancements
include providing a more sophisticated query interfacéwitpport for, e.g., conjunctive
gueries [Tessaris, 2001].

As discussed in [Paet al,, 2004], we are currently engaged in extending the Instance
Store to deal with ABoxes that are not role-free. The impaat this will have on per-
formance is likely to be heavily dependent on the structdrdhe given ABox. In par-
ticular, the Instance Store is not likely to perform well lvABoxes that result in highly
non-deterministic precompletions. ABoxes that are hightgriconnected and/or contain
many cyclical connections are also likely to have an advaffeet on performance. An
evaluation of the effectiveness of the extended Instanaee Still therefore have to wait
for the completion of the prototype, and on the developmérpplication ontologies
containing large numbers of individuals—currently these ia rather short supply, but
we hope that development of such ontologies will be encaddyy the existence of the
extended Instance Store.
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Chapter 4

Towards Resolution-Based
Approximate Reasoning for OWL-DL

by PASCAL HITZLER & BORIS MOTIK

We propose a new technique for approximate ABox reasoniny @iL-DL on-
tologies. It comes as a side-product of recent researcHtsesn the relationship
between OWL-DL and disjunctive datalog [Hustadtl, 2004a, Hustadtt al., 2004c,
Hustadtet al., 2004b, Motiket al., 2004]. Essentially, it relies on a new transformation of
OWL-DL ontologies into negation-free disjunctive datalagd on the idea of performing
standard resolution over disjunctive rules by treatingrtfas if they were non-disjunctive
ones.

4.1 Introduction and Motivation

Knowledge representation and reasoning on the Semantici$vdbne by means of
ontologies. While the quest for suitable ontology languaigestill ongoing, OWL
[Patel-Schneideet al, 2002] has been established as a core standard. It come®ée th
flavours, as OWL-Full, OWL-DL and OWL-Lite, where OWL-Full coma OWL-DL,
which in turn contains OWL-Lite. The latter two coincide sarneally with certain de-
scription logics [Baadeet al., 2003a] and can thus be considered to be fragments of first-
order predicate logic.

OWL ontologies can be understood to consist of two parts, oi@msional, the other
extensional. In description logics terminology, the irgienal part consists of a TBox
and an RBox, and contains knowledge about concepts (czldede} relations between
concepts (calledoles), and information about hierarchical dependencies amtagges
and among roles. The extensional part consists of an ABox,canthins knowledge
about entities and how they relate to the classes and rasstfre intensional part. For
the Semantic Web, the ABox correspondsatanotations i.e. pointers delivered e.g.
with web pages, indicating how items occuring on the web pagkate to the intensional
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knowledge.

With an estimated 25 million active websites today and amoadingly more web-
pages, it is apparent that reasoning on the Semantic Wehawd to deal with very large
ABoxes. Complexity of ABox reasoning — also calldata complexity— thus measures
complexity in terms of ABox size only, while considering tmensional part of the on-
tology to be of constant size. For the different OWL variadeta complexity is at least
NP-hard, which indicates that it will not scale well in gesler Methods are therefore
being sought to cope with large ABoxes in an approximate manne

The approach which we propose is based on the fact that datplexity is polyno-
mial for non-disjunctive datalog. We utilise recent resbaesults [Hustadtt al., 2004a,
Hustadtet al., 2004c, Hustadet al,, 2004b, Motiket al,, 2004] which allow the transfor-
mation of OWL-DL ontologies into disjunctive datalog. Ratllean doing (expensive)
exact reasoning over the resulting disjunctive datalogWwedge base, we do approximate
reasoning by treating disjunctive rules as if they were dsjinctive ones. The result-
ing reasoning procedure is complete, but may be unsoundsiscdts data complexity
is polynomial. We are also able to give a characterizatiothefresulting approximate
inference by means of standard methods from logic prograigsgmantics.

This chapter is structured as follows. We first introducerfakterminology and no-
tation for OWL-DL, a part of which can safely be skipped by aegder who is familiar
with OWL-DL and description logic syntax. We also briefly rewi Datalog and SLD-
Resolution. Then, in Section 4.3, we explain how OWL ontolsgian be transformed
into disjunctive datalog. In Section 4.4 we introduce the approximate SLD-resolution
procedure which we propose. A short analysis of the new pitweewill be followed by
conclusions in Section 4.5.

4.2 Preliminaries

4.2.1 OWL-DL Syntax and Semantics

OWL-DL is a syntactic variant of the SHOZN (D) description logic

[Horrocks and Patel-Schneider, 2004]. Hence, althougherabvXML and RDF

syntaxes for OWL-DL exist, it will be convenient to use thediteonal description logic
notation since it is more compact. For the correspondenteeea this notation and
various OWL-DL syntaxes, see [Horrocks and Patel-Schneké].

SHOZIN (D) supports reasoning with concrete datatypes, such as stongte-
gers. For example, it is possible to define a minor as a persmsevage is less than
or equal to 18 in the following wayMinor = Person N Jage. <;3. Instead of ax-
iomatizing concrete datatypes in logi§HHOZN (D) employs an approach similar to
[Baader and Hanschke, 1991], where the properties of candaghtypes are encapsu-
lated in so-calle¢oncrete domainsA concrete domaiis a pair(Ap, p ), whereAp is
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an interpretation domain an, is a set of concrete domain predicates with a predefined
arity n and an interpretation® C AZ%. An admissibleconcrete domai is equipped
with a decision procedure for checking satisfiability of tenconjunctions over concrete
predicates. Satisfiability checking of admissible coremdmains can successfully be
combined with logical reasoning for many description ledicutz, 2003].

We use a set of concept nam¥g, sets of abstract and concrete individualg and
N, respectively, and sets of abstract and concrete role naipeand N, respectively.
An abstract roleis an abstract role name or the inverse of an abstract role namg
(concrete roles do not have inverses). In the following, ssiane thaD is an admissible
concrete domain.

An RBoxR consists of a finite set of transitivity axionisans(R), and role inclusion
axioms of the formk C S andT C U, whereR and S are abstract roles, arid and
U are concrete roles. The reflexive-transitive closure ofthe inclusion relationship is
denoted with=*. A role not having transitive subroles (w.rtt.*, for a full definition see
[Horrockset al., 2000]) is called aimplerole.

The set ofSHOZIN (D) conceptss defined by the following syntactic rules, whete
is an atomic concepty is an abstract role$' is an abstract simple rolé,;, are concrete
roles,d is a concrete domain predicate,andc; are abstract and concrete individuals,
respectively, and is a non-negative integer:

C — A|-C|CiNCy|CLUCy |IR.C|VR.C|>nS|<nS|{a,...,an} |
|>aT|<nT|3T,...,To.D|VTi,...,Tp.D
D — d|{c,...,ch}

A TBox7 consists of a finite set of concept inclusion axiof$- D, whereC' and
D are concepts; aABox.A consists of a finite set of concept and role assertions and
individual (in)equalities”(a), R(a,b), a ~ b, anda # b, respectively. ASHOZIN (D)
knowledge baséT, R, .A) consists of a TBox , an RBoxR, and an ABOXA.

TheSHZQ(D) description logic is obtained frodiHOZN (D) by disallowing nom-
inal concepts of the forfflay, . . ., a, } and{c,, . .., ¢, }, and by allowing qualified number
restrictions of the form> n S.C'and< n S.C, for C aSHZ Q(D) concept and a simple
role.

Instead of using a direct model-theoretic semantics f6(HOZN (D)
[Horrockset al., 2000], we present an equivalent semantics by translatitm multi-
sorted first-order logic. We do this because our approacheisimeavily on the results
from [Hustadtet al, 2004a, Hustadtt al,, 2004b], where this approach had been taken.
To separate the interpretations of the abstract and theretendomain, we introduce
the sortsa andc, and use the notation® and f© to denote that: and f are of sortc.

We translate each atomic concept into a unary predicaterbbhseachn-ary concrete
domain predicate into a predicate with arguments of soand each abstract (concrete)

KWEB/2004/D2.1.2/v1.2 January 30 2005 25



4. TOWARDS RESOLUTION-BASED APPROXIMATE REASONING FOR OWDL

Mapping Concepts to FOL

7y (YT, ..., Ton.d, X
7, (3T, .., Ton.d, X

VYt U NTi(Xy5) — d(ys, - - ur)
Elylv"'vyfn ' An(vaf)Ad(ylv"';ym)

my(T,X)=T my (L, X)=1
r(A X)=A(X 7, (~C, X) =, (C. )
wy(C’I‘ID X)=,(C,X) A1, (D,X) ,(CLD,X)=,(C,X)Vr,D,X)
my(VR.C, X)=Vy : R(X,y) — 7 (C,y) m,(3R.C,X)=3y : R(X,y) A ms(C,y)
my({ar...,an}, X)= X ma1V...VX ~a,
(< WRC,X)= Yyr,. .. ynsr tANRX i) AN 72(Coyi) = V v =y
my(>nR.C, X;Z Fy1,.o o Un  ARX,yi) AN 7 (Coyi) AN vi % yj
):
):
)

T (ST, X)= WSy s AT(X0E) — V) o ~ Y
7ry(> nT, X)= 35, .. un : AT(X, y5) AN v§ % 45
Mapping Axioms to FOL
7(C(a))=m,(C,a) m(R(a,b))=R(a,b)
m(a = b))=a=b m(asb)=a%b
7(C C D)= Vz :m,(C,z) — my(D, x)
T(RE S)= Vr,y: R(z,y) — S(z,y)
m(Trans(R))= Vz,y,z: R(x,y) A R(y,z) — R(z, 2)

Mapping KB to FOL

m(KB)= /\RGNR Vz,y: R(z,y) < R (y,2) A /\aeKBRUKBTUKBA (a)
whereX is a meta variable and is substituted by the actual variable
andr, is defined asr, by substitutings andz; for all y andy;, respectively.

Table 4.1: Translation af HOZN (D) into FOL

role into a binary predicate of sartx a (a x ¢). The translation operatar is presented
in Table 4.1.

4.2.2 Datalog and SLD-Resolution

A (definiteor negation-fregdisjunctive logic progran® consists of a finite set alauses
or rulesof the form

commonly written as
H1V"~\/Hm<—A1,...7Ak,

wherezx, ..., x, are exactly all variables occuring i, Vv --- VvV H,, «<— A1 N --- N\ Ay,
and all 7; and A; are atoms over some given first-order signattireThe disjunction
HyV---V H,, is called theule head and the conjunction; A - - - A A, is called therule
body The set of all ground instances of atoms defined avisrcalled theHerbrand base
of P and is denoted by3p. The set of all ground instances of rulesfnis denoted by
ground(P). A rule is said to baon-disjunctivef m = 1. Itis called afactif £ = 0. We
abstract from the order of the atoms in the heads respectiglies; it is not important
for our results. A disjunctive logic program is calledDatalog program if it does not
contain function symbols.
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Note that we do not consider a logic program to come with oreeifip semantics.
Some people for example associate Datalog with the mininoalainsemantics only. For
our treatment, Datalog and logic programs are defined vieagyanly. We do not specify
a specific semantics because in the following we will disdifsrentsemantics for logic
programs in their relation to proof procedures. One of theas#ics we will consider is
the semantics coming from interpreting logic programs astasfirst order formulae,
and in this case we use to denote entailment in first-order predicate logic.

SLD-resolution(see e.g. [Lloyd, 1988]) is an efficient top-down query-aasng
technique for programs consisting of non-disjunctive sulend has been implemented
and successfully applied in standard Prolog systems (&49/I{Prolog, 2004]). In this
framework, a ground atom can be derived from a program if aig ibit is true in the
least (and thus in all) Herbrand models of the program.

In the following, we mean by aonjunctive quergimply a conjunctionB; A --- A B,
of atoms. The query is calleggtoundif it does not contain any variables.

Given a conjunctive queri; A - - - A B,,, anSLD-resolution stepn the atomB; with
a non-disjunctive ruléf — Ay, ..., A, produces a conjunctive query

BiA---ANB; 10 NAOA---NAGABi10A--- A By,b

wheref is the most general unifier d8; and H. An SLD-refutationof a conjunctive
queryB; A --- A B, in a non-disjunctive prograr® is a finite sequence of conjunctive
queriesQo, . .., Qn, where () Qo = By A --- A B,, (ii) each@); with ¢ > 0 is obtained
from @;_; by an SLD-resolution step with some rule frafon some literalB;, and {ii)
Q. = 1, i.e. the conjunctive quer§,, does not contain any literals. If an SLD-refutation
of By A--- A B, in P exists, we writeP -+ B; A --- A B,,.

One of the fundamental results in logic programming states 4 € Bp can be
proven by SLD-resolution if and only ifl is a logical consequence &f, i.e. if and only
if Aistrue inthe least Herbrand model Bf

Theorem 3 ([Apt and van Emden, 1982, Lloyd, 1988])For a ground conjunctive query
By A --- A B, and a non-disjunctive prograR, P - By A --- A B, if and only if
P = By A--- A B,. In other words, entailment of ground conjunctive queriadar
SLD-resolution is entailment in predicate logic.

SLD-resolution also allows to derive answers to non-grogueries: For a conjunc-
tive (and not necessarily ground) quepythere exist an SLD-refutation if and only if
P & 3z ...3x,.Q, wherez,, . .., z, are the variables occuring {@. By keeping track
of the most general unifiers used in the process, it is alssilpleso obtain bindings for
(some of) ther; in the form of (answer) substitutiords such thatP = Jy; ... Jy,(QF),
where they; are exactly those variables occurring@. In order to keep our exhibition
focused, we will only deal with ground queries.
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SHIQ(D Elimination of . Saturation Elimination of Conversion to Disjunctive
(D) L Translation . : L
kg P Transitivity > into Clauses —» byBasic % Function r—» Disjunctive —» Program
Axioms Superposition Symbols Datalog DD(KB)

Figure 4.1: Algorithm for Reducing’HZ Q(D) to Datalog Programs

4.3 Reducing OWL-DL Knowledge Bases to Disjunctive
Datalog Programs

Our approach is based on reducing the description logic ledye base to a disjunctive
logic program which entails the same set of ground factsastiginal knowledge base.
The full presentation of the translation with correspogdmmoofs of its correctness are
technically involved and lengthy. Here, we just provide aergiew of the procedure,

without going into details. For a complete presentation weatl the interested reader to
[Hustadtet al,, 2004a, Hustadtt al., 2004b].

Our approach does not support all 8OZN (D) since it does not support nom-
inals: to the best of our knowledge, no decision proceduseyed been implemented
for SHOZN (D): The combination of nominals, inverse roles, and numbericésn is
known to be difficult to handle, which is confirmed by the irase in complexity from
EXPTIME to NEXPTIME [Tobies, 2001]. Complexity, in this case,dembined complex-
ity, measured in the overall size of the knowledge base.

Let KB be aSHZ Q(D) knowledge base. The reduction &5 to a disjunctive data-
log progranDD( K B) can be computed by an algorithm schematically presenteidimé-
4.1. We next explain each step of the algorithm.

Elimination of Transitivity Axioms.  Our core algorithms cannot handle transitivity
axioms, basically because in their first-order logic foratian they involve three vari-
ables. However, we can eliminate transitivity axioms byaghicg KB into an equi-
satisfiable knowledge bas& KB). Roughly speaking, for each transitive rdle each
role S C* R, and each conceptR.C' occurring in KB, it is sufficient to add an axiom
VR.C C VS.(VS.C). Intuitively, this axiom propagates all relevant concepustraints
through transitive roles.

Translation into Clauses. The next step is to translate(kB) into clausal first-
order logic. We first user as defined in Table 4.1 and then transform the result
7(2(KB)) into clausal form usingtructural transformatiorto avoid exponential blow-
up [Nonnengart and Weidenbach, 2001]. We call the resuiB).
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Saturation by Basic Superposition. We next saturate the RBox and TBox clauses of
=(KB) by basic superposition [Bachmait al,, 1995] — a clausal calculus optimized
for theorem proving with equality. In this key step of theuwetion, we compute all non-
ground consequences B13. We can prove that saturation terminates because applicati
of each rule of basic superposition produces a clause witloat one variable and with
functional terms of depth at most two. This yields an expdaébound on the num-
ber of clauses we can compute, and thus an exponential timplegity bound for our
translation algorithm so far.

Elimination of Function Symbols. Saturation of RBox and TBox &( KB) computes

all non-ground consequences 8. If we add ABox assertions to this saturated clause
set, all “further” inferences by basic superposition witbguce only ground clauses.
Moreover, the resulting ground clauses contain only grofwmgtional terms of depth
one. Hence, it is possible to simulate each functional téfm) with a new constant .

For each function symbal, we introduce a binary predicatg, and for each individual

a, we add an assertiosy(a, as). Finally, if a clause contains the terfifz), we replace it
with a new variabler; and add the literahS;(x, z ), as in the following example:

~C(x) V D(f(x)) = =S¢z, 25) V ~C(z) v D(zy)

We denote the resulting function-free set of clauses WwihR(KB). In
[Hustadtet al, 2004a], we show that each inference step of basic supégrosi =( K B)
can be simulated by an inference stepFiR( KB), and vice versa. Hencd{B and
FF(KB) are equisatisfiable.

Conversion to Disjunctive Datalog. SinceFF(KB) does not contain functional terms
and all its clauses are safe, we can rewrite each clause mggation- and function-free
disjunctive rule. We usBD (K B) for the result of this rewriting.

The following theorem summarizes the properties of our rétlgm (we usel, for
cautious entailment in disjunctive datalog, which coiesicbn ground facts with first-
order entailment for negation-free datalog programs fttal., 1997a]):

Theorem 4 ([Hustadtet al., 2004a]) Let KB be anSHZ Q(D) knowledge base, defined
over an admissible concrete domaiy such that satisfiability of finite conjunctions over
dp can be decided in deterministic exponential time. Thenalewing claims hold:

1. KB is unsatisfiable if and only iDD( K B) is unsatisfiable.

2. KB |= «aifand only if DD(KB) . «, for « of the form A(a) or S(a,b), A an
atomic concept, and a simple role.
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3. KB [= C(a) ifand only if DD(KB U {C C Q}) . Q(a), for C' a non-atomic
concept, and) a new atomic concept.

4. Let|KB| be the length of{B with numbers in number restrictions coded in unary.
The number of rules iMD(KB) is at most exponential inKB|, the number of
literals in each rule is at most polynomial iAFB|, andDD(KB) can be computed
in time exponential iINKB)|.

For our approximate reasoning approach, the first two stépisectranslation may
suffice in many cases. This would avoid the worst-case expg@eomplexity of subse-
guent steps, but comes at a price: The resulting programdasauitain function symbols,
which may cause proof-search to fail to terminate in somesasience the procedure
would be incomplete in general.

4.4 Approximate Resolution

In the previous section we have shown h6#Z Q(D) ontologies can be translated to
(negation- and function-free) disjunctive datalog. Int®et4.2.2 we have reviewed SLD-
resolution as deduction procedure for non-disjunctiveldat In this section, we will
show how to deal with disjunctive rules in a non-disjunctizehion.

4.4.1 Approximate SLD-Resolution

Having to deal with disjunctive heads results in a considlerancrease in reasoning com-
plexity. We propose the following approximate reasonirmipteque to avoid this increase.
Given a conjunctive queri; A- - - A B,,, anapproximate SLD-resolution stem the atom
B; with a disjunctive rulefd; v --- vV H,, <+ Aq, ..., A, IS a conjunctive query

BiOAN---NBi 10NAON---NAONB1ON---NB,0

such that is the most general unifier @¥; and some7;. Approximate SLD-refutatiois
defined analogously to SLD-refutation, where approximate-gesolution steps are used
instead of (usual) SLD-resolution steps.

It is necessary to pursue the question of what notion of lemégit underlies the ap-
proximate reasoning technique we propose. For this purpeseneed the following
notion, which is derived from standard notions in logic peogming.

Definition 5 (cf. [Apt et al., 1988, Fages, 1994, Hitzler and Wendt, 2005 A model
M of a disjunctive programP is called well-supportedif there exists a function
[ : Bp — Nsuchthatforeach € M thereexistsaruldVv H,V---VH,, < Ay,..., A
in ground(P) with M |= A; andi(A) > [(A;) for all i andk.
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Definition 5 is a straightforward adaptation of the notionwll-supported model
for non-disjunctive programs, as given in [Fages, 1994} riam-disjunctive (negation-
free) programs, the well-supported models are exactly timemal ones, but this is not
in general the case for disjunctive programs: just condlikeprogram consisting of the
single rulep V ¢ «+. Then{p, ¢} is a well-supported model, but is not minimal. To our
knowledge, well-supported models have not been studiedi$prmctive programs before.

Lifted appropriately to (non-disjunctive) programs witlegation, well-supported
models also provide an alternative means for charactegride well-known stable
models. This was done in [Fages, 1994], but we will not nead tbr our pur-
poses. Stable models [Gelfond and Lifschitz, 1991] provigebase for the most pop-
ular non-monotonic reasoning paradigm callddswer Set Programmingof which
the two most prominent implementations arevDand SMODELS [Eiter et al,, 1997b,
Simonset al., 2002]. Our results thus stand well within this well-estsiebd tradition.

Itis apparent thatl € Bp follows from a progranmP by approximate SLD-resolution
if and only if it is true in at least one well-supported modélfa This is calledbrave
reasoning with well-supported models

Proposition 6 Entailment of ground conjunctive queries under approxém&LD-
resolution is brave reasoning with well-supported models.

As an example, consider the (propositional) program ctingi®f the two rulegp Vv
q < andr «— p A ¢. Its minimal models ardq} and{p} sor is not bravely entailed
by reasoning with minimal models. However all §f}, {p}, {p,q} and{p,q,r} are
well-supported models, sais bravely entailed by reasoning with well-supported medel

There is an alternative way of formalizing approximate Sid3elution using a mod-
ified notion ofsplit program[Sakama and Inoue, 1994], as follows. Given a rule

H1V'--\/Hm<—A1,...,Ak,
define thaderived split rulesas the following:

H1<—A1,...,Ak

Hm<—A1,...,Ak.

For a given disjunctive progran® define itssplit program P’ to be the collection of
all split rules derived from rules . Approximate SLD-resolution o is obviously
identical to SLD-resolution ovef”’.

Minimal models are well-supported. This can be seen for gtarfrom the fol-
lowing result which was obtained along the lines of resedaahout in [Hitzler, 2003,
Hitzler and Wendt, 2005].
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4. TOWARDS RESOLUTION-BASED APPROXIMATE REASONING FOR OWDL

Theorem 7 ([Knorr, 2003]) Let P be a disjunctive program. Then a modélof P is a
minimal model of P if and only if there exists a functioh: Bp — N such that for each
A which is true in)M there existsaruldl vV H; V ---V H,, < Ay,..., Ay in ground(P)
with M = A;, M [~ Hy, andl(A) > I(A;) for all i andk.

We hence have the following result, noting that= @ for any ground conjunctive
query@ and progran® if and only if ) is true in all minimal models of.

Proposition 8 Let P be a (possibly disjunctive) program a@dbe a ground conjunctive
query with P = ). Then there exists an approximate SLD-refutation(jor

We remark that for negation-free programs minimal modeisade with stable mod-
els oranswer set§Gelfond and Lifschitz, 1991], as in the currently evolviAgswer Set
Programming Systemsf which the two most prominent implementations ane/and
SMODELS [Eiter et al, 1997b, Simonegt al, 2002], as already mentioned.

4.4.2 Approximate Resolution for OWL-DL

Our proposal is based on the idea of converting a given OWL-Divwkedge base into a
(possibly function-free) definite disjunctive logic pragm, and then to apply approximate
resolution for ABox reasoning.

In order to be able to deal with all of OWL-DL, we need to add gpoeessing step to
get rid of nominals. We can do this lhyanguage Weakeniras follows: For every occur-
rence of{oy, ..., 0,}, wheren € N and thep; are abstract or concrete individuals, replace
{01,...,0,} by some new concept nanig, and add ABox assertion3(o,), ..., D(o,)
to the knowledge base. Note that the transformation justgioes in general not yield a
logically equivalent knowledge base, so some informatsdost in the process.

Putting all the pieces together, we propose the followirgssquent steps for approx-
imate ABox reasoning for OWL-DL.

1. Apply Language Weakening as just mentioned in order tainba SHZQ(D)
knowledge base.

2. Apply transformations as in Section 4.3 in order to obtamegation-free disjunc-
tive datalog program.

3. Apply approximate SLD-resolution for query-answering.

The first two steps can be considered to be preprocessing &iegetting up the
intensional part of the database. ABox reasoning is then dotie last step. From our
discussions, we can conclude the following properties gir@dmate ABox reasoning
for SHZQ(D).
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e Itis complete with respect to first-order predicate logimaatics.

e Itis sound and complete with respect to brave reasoningwéihsupported mod-
els.

e Data complexity of our approach is polynomial.

4.5 Conclusions

In a nutshell, our proposed procedure approximates reagdyi disregarding non-Horn
features of OWL-DL ontologies. We argue that this is a realslenapproach to approx-
imate reasoning with OWL-DL in particular because many — if most — of the cur-

rently existing ontologies fall in the Horn fragment of OWL-@nyway. A short survey
in [Volz, 2004] substantiates this claim.

Our approach provides ABox reasoning with polynomial timmptexity. While it is
complete, it is also unsound with respect to first-orderdogVe have shown, however,
that the inference underlying our approach can be charaeteusing standard methods
from the area of non-monotonic reasoning.

The checking whether a conjunctive query is a predicateclegnsequence of a
(negation-free) disjunctive logic program amounts to checking whether the query is
valid in all minimal models ofP, i.e. corresponds toautiousreasoning with minimal
models. Theorem 7 suggests how an anytime algorithm fomigst be obtained: after
performing approximate SLD-resolution, it remains to beaked whether there is any
(ground instance of a) rule used in the refutation of the yjuehich has an atom in its
head besides the one used in the refutation and suchltisafcautiously) entailed by the
program. Such an algorithm might then first find a brave prdaf guery, and then sub-
stantiate this proof by subsequent calculations. We na@dbat this approach does not
cover nominals in full, so the language weakening step de=sttearlier is still necessary.

Further work includes the development of anytime algorghas just laid out, the
implementation of our procedure, and more detailed semanalysis, in particular with
respect to the language weakening preprocessing stepga®po
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Chapter 5

Conclusion

by HOLGER WACHE

In this deliverable three approaches for approximationdeseussed. In general ap-
proximation methods can be classified into three groupguage weakening, knowledge
compilation, and approximate deduction. The three appremare examples for these
classes.

In Chapter 2 an approximated deduction approach originalgkbped by Cadoli and
Schaerf [Schaerf and Cadoli, 1995] is investigated. Thgwr@pmation method should
demonstrate its computational improvements in a more pgaication scenario, i.e., clas-
sification in large and real ontologies. Classification carelgarded as a sequence of sub-
sumption tests. The classification is now approximated thighthelp of an approximation
function which simplifies the subsumption queries by rejplgsub concepts. Cadoli and
Schaerf discuss two possibilities which sub concepts giaced but it is fundamental
for their approach that the sub concepts are replaced oy L.

Unfortunately the proposed method shows only mixed regulisiy evaluated ontol-
ogy. A large set of obviously unnecessary subsumption testaused by the effect of
term collapsing where the approximated query often is reddo meaningless queries,
i.e., “over-simplified”. Term collapsing shows that it istrsm important which sub con-
cepts are replaced. More important seems to be trough wdatithconcepts are replaced.
The experiments suggest that the replacement with | is inadequate in more practical
setting. Advanced approximation functions must considerenmeaningful replacement
with respect to the ontology.

The second approach is an example for language weakenieg.ephesentation lan-
guage for the individuals is reduced in order to allow welladlished database methods.
In InstanceStore relationships between individuals cameoepresented explicitly in the
ABox. However, an individual can instantiate a concept whiels some relationships
to other concepts. Relationships can be expressed but otthe iterminological knowl-
edge. As a consequence of the restriction many individuaisbe selected with normal
database queries. The expensive description logic raagaimainly reduced to classify
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the query and to select a few additional individuals in soimeatons. The experiments
impressively demonstrate the performance improvemeimtseadability of this approach.

The third approach in Chapter 4 combines knowledge compiiaind approximate
deduction. In a first step, the knowledge compilation, th®lagy in OWL-DL is trans-
formed into disjunctive datalog clauses (DDL) which allaigjunction (only) in the head
of a clause. During the transformation the implicit knowgeds determined and explic-
itly encoded in (additional) clauses. The resulting DDlognam can be executed by an
appropriate resolution.

For practical ontologies it can be observed that the disians appear only rarely. For
an approximation it is reasonable to omit the disjunctios. aéside effect the inference
engine can be reduced to the well-known SLD-resolution. résalting approximation is
unsound but complete. However, the effect and the promisamgfit must be proven in
practical environments.
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Related deliverables

A number of Knowledge web deliverable are clearly relatethi® one:

Project| Number| Title and relationship

KW | D2.1.1 | D2.1.1 Survey of Scalability Techniques for Reasoning with
Ontologiesgives an overview of methods for approximating the
reasoning.

KW | D2.5.2 | D2.5.2 “Report on Query Language Design and Standardisa
tion” contains the experiments of InstanceStore
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