
AIR POLLUTION AND HEALTH (S ADAR AND B HOFFMANN, SECTION EDITORS)

Gerard Hoek1

Published online: 24 October 2017
# The Author(s) 2017. This article is an open access publication

Abstract

Purpose of Review Epidemiological studies of health ef-

fects of long-term exposure to outdoor air pollution rely

on different exposure assessment methods. This review

discusses widely used methods with a special focus on

new developments.

Recent Findings New data and study designs have been

applied, including satellite measurements of fine particles

and nitrogen dioxide (NO2). The methods to apply satel-

lite data for epidemiological studies are improving rapidly

and have already contributed significantly to national-,

continental- and global-scale models. Spatiotemporal

models have been developed allowing more detailed tem-

poral resolution compared to spatial models. The devel-

opment of hybrid models combining dispersion models,

satellite observations, land use and surface monitoring

has improved models substantially. Mobile monitoring

designs to develop models for long-term UFP exposure

have been conducted.

Summary Methods to assess long-term exposure to outdoor

air pollution have improved significantly over the past de-

cade. Application of satellite data and mobile monitoring

designs is promising new methods.

Keywords Outdoor air pollution . Exposure . Fine particle .

Model . Satellite

Introduction

Assessment of long-term exposure to ambient air pollution

for epidemiological studies remains challenging. Early co-

hort studies characterized exposure to individual partici-

pants by assigning the average concentration measured at

one or a few central sites within a city to each participant

from this city [1, 2]. These cohort studies thus limited the

health effect analysis to between-city exposure contrast.

However, many studies have documented significant varia-

tion of outdoor air pollution at a small scale within urban

areas for important pollutants such as nitrogen dioxide

(NO2), black carbon and ultrafine particles [3–5]. Within-

city spatial contrasts may be even larger than the between-

city contrast for particularly combustion-related pollutants

[4]. An analysis in the Women’s Health Initiative study sug-

gested that the risks of fine particles related to within-city

contrasts were larger than for between-city contrasts [6]. To

characterize the intra-urban contrasts, approaches beyond

direct monitoring were applied and further developed, in-

cluding exposure indicator variables (e.g. traffic intensity at

a residential address or distance to a major road), interpola-

tion methods (e.g. kriging, inverse distance weighing), dis-

persion models and land use regression models [7]. Recent

trends in epidemiology studies of long-term air pollution

exposures have led to further development of these models.

One recent development in air pollution epidemiology

is the use of very large populations (populations of over 1

million adults) to be able to estimate air pollution effects

in the low-exposure range. For this, often, national co-

horts based upon administrative databases [8–10] are

used. These studies have to rely on existing monitoring

data, as targeted campaigns would be too costly. Routine

surface air pollution-monitoring networks often do not

cover the full population, thereby limiting assessment of
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exposure to part of the population [10]. To overcome

these limitations, air pollution monitoring from satellites

is increasingly applied.

Another new development is the necessity to study

health effects of long-term exposure to particle metrics

beyond the regulated PM2.5 and PM10, including ultrafine

particles (UFPs), black carbon (BC) or other combustion-

related air pollutants. Routine monitoring data is typically

limited to regulated pollutants and does not measure ultra-

fine particles and black carbon. Hence, there is much less

information on health effects of long-term exposure for

these components than for fine particles, despite the poten-

tially high health risks of these combustion-related parti-

cles [5, 11]. UFP and BC are characterized by high tempo-

ral and spatial variabilities [5, 11]. Models for these highly

variable pollutants require a higher spatial resolution than

what is achievable with routine monitoring data. In recent

years, mobile and short-term monitoring campaigns have

been conducted to develop land use regression models for

ultrafine particles and black carbon.

There is increased recognition of the limitations of

dispersion/chemical transport modelling, land use regres-

sion modelling and monitoring to assess individual expo-

sure for epidemiological studies [7]. As an example, routine

monitoring data is typically spatially sparse and temporally

rich, whereas typical land use regression models are spatial-

ly more detailed but temporally less rich. Studies have

started to combine different methods such as land use or

chemical transport modelling and monitoring data using a

variety of approaches, exploiting the strengths of different

methods.

In this review, first, an overview of methods will be pre-

sented. The review will focus on new developments particu-

larly regarding mobile monitoring and the use of satellite-

based remote sensing. Second, examples of studies that have

combined different methods will be discussed. We complete

the review with a discussion of issues that apply to all

methods, including the assessment of historical exposure con-

trasts and potential bias related to residence-based exposure

assessment. The text on land use regression (LUR) models

builds on a previously published book chapter [12]. An ex-

haustive review of all studies that have contributed to long-

term air pollution exposure assessment methodology is not

possible, because of the large volume of studies. Rather, ex-

amples are presented from different research approaches.

Overview of Methods

Table 1 presents an overview of methods that have been ap-

plied in epidemiological studies of long-term exposure to out-

door air pollution. An extensive discussion of the principle of

most methods has been published previously [7, 12, 13]. T
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Monitoring and Interpolation

Monitoring data from typically one or a few (routine) monitors

per city have been assigned to individual subjects by calculat-

ing a city average and assigning this average to all subjects in

the city [2]. Another simple approach is to assign monitoring

data from the nearest monitor to individual subjects [14].

The merits of direct assignment of measured concentra-

tions from typically a routine monitoring network include

low cost, consistency of monitoring methods and often a long

period ofmonitoring. The use of direct monitoring data further

avoids potential problems related to the use of models with

limited or uncertain validity. A main limitation is the lack of

characterization of intra-urban contrasts related to motorized

traffic emissions and other local sources, because networks are

typically not spatially dense enough.

Simple assignment of a city average measured concentra-

tion may be defensible if the variability between cities is large,

such as in the American Cancer Society (ACS) study covering

much of the USA [2]. Further rationales for this approach

include the following: (1) More detailed modeling of outdoor

concentrations at, for example, residential addresses, without

data on time activity of participants may add additional noise

to exposure assessment. The assumption that subjects spend a

large fraction of time in their city of residence is less strong

than the assumption that they spend all time at their residence.

(2) For components that are difficult to model because emis-

sion factors are not available and specific sources are not

known, using direct monitoring may be attractive. This argu-

ment has been made in a recent LUR study of the oxidative

potential of particles [15].While LURmodels were developed

with good explanatory power, the model was likely not spe-

cific for oxidative potential. (3) Assigning a city average con-

centration to all subjects in a city likely leads to a Berkson

error in exposure, which does not lead to biased risk estimates

when applied in an epidemiological study [16].

Interpolation of monitoring data has been used to over-

come some of the limitations of assignment of a city average

or data from the nearest station [7]. Methods that have been

used include inverse distance weighing [17] and kriging

[18]. Interpolation methods use data from multiple stations

and assign more weight to stations that are at a shorter dis-

tance from the receptor point (e.g. residential address).

Although interpolation methods provide a spatially more

resolved pattern than a simple average, the assumed smooth

spatial change of concentration may be too simple in urban

areas. In urban areas, local sources such as major roads may

result in sharper changes than assumed in interpolation

methods. Interpolation is more attractive for components

with a relatively small local source component, including,

for example, PM2.5, and in more rural areas.

A recent study in Oakland, CA, used a mobile monitoring

approach to map air pollution across the city [19]. A large

number of repeats for all road segments in the study area

allowed the direct use of the average measured concentration

by road segment as an estimate of exposure in epidemiological

studies without the need for model development [19]. This ap-

proach could be applied in epidemiological studies when rela-

tively small neighborhoods are studied. The use of mobile mon-

itoring formodel development is discussed inmore detail below.

Developments of low-cost sensors may allow more spatial-

ly dense networks in the future [20, 21]. It is unlikely that

networks will be sufficiently dense to use them directly for

exposure assessment. Larkin and Hystad discuss the use of

(low-cost) sensors in individual exposure assessment [22].

Land Use Regression Models

Land use regression models are empirical (regression) models

derived by combining monitoring of air pollution at a limited

number of locations and collection of (land use) variables via

geographic information systems (GIS), which can potentially

predict the measured spatial variation [12, 13]. Typically,

(linear) regression models are developed using a variety of

methodologies to select predictors, such as supervised step-

wise procedures or machine-learning algorithms. The regres-

sionmodel is then applied to a large number of locations in the

study area where no measurements are available to predict the

point-specific air pollutant concentration, e.g. the residential,

school or work addresses of subjects, in an epidemiological

study. LUR modeling uses as predictor variables various traf-

fic representations, population/address density, land use and

variables such as altitude. Land use regression is an empirical

approach in contrast to dispersion/chemical transport models

which are based upon physical principles and actual emission

data. This explains the difficulty to transfer LUR models from

one study area to another. Epidemiologists have applied land

use regression because the models are directly based upon

locally measured air pollution data, the relative ease of apply-

ing the method, the lower demand on input data compared to

dispersion/chemical transport models and the typically good

performance of the models (high explained variance of mea-

sured spatial variation).

Land use regression modeling has been based upon

existing routine monitoring as well as on specially designed

monitoring campaigns. Routine monitoring networks have of-

ten been used for national or continental models. These large-

scale national or continental LUR models are limited to rou-

tinely measured pollutants (typically no novel or emerging air

pollution measures such as UFP or oxidative potential).

Depending on the representation of sites in the network, they

may not cover local traffic impacts sufficiently, as is the case

in North American models which include only very few

traffic-monitoring sites [23]. The latter concern applies less

to European networks, as these typically include a sizable

fraction of traffic-monitoring stations [24•].

452 Curr Envir Health Rpt (2017) 4:450–462



Next to LURs based on routine monitoring, LURs have

been developed in the framework of dedicated studies. In

these studies, specially designed measurement networks oper-

ating for a limited time are typically spatially denser within

urban areas than routine networks and the distribution of site

types (e.g. traffic, background) and pollutants can be opti-

mized for the study objectives. The disadvantages of

purpose-designed monitoring include the additional cost and

the limited temporal coverage of the measurements. The typ-

ical purpose-designed monitoring campaign consists of be-

tween 7–14-day sampling campaigns that are repeated be-

tween one and four times in 1 year to capture all seasons.

The method has been applied to the gaseous components

NO2, NOx and VOCs and to particulate matter such as

PM2.5, PM10 and soot. Measurements are typically not con-

ducted simultaneously at all sites and thus require a reference

site to adjust for temporal variation.

New Developments in LUR Modeling

Recently, LUR models for particle composition have been

published, responding to one of the key needs in air pollution

epidemiology, which is the identification of the hazardous

components of the complex air pollution mixture [25, 26•,

27]. Compared to NO2 and PM2.5, these models are based

upon fewer routine monitoring sites. In a North American

study, models developed for elemental carbon (EC), organic

carbon (OC), S and Si for six US cities explained between-city

variability well, but within-city variability was not well ex-

plained [26•]. In a European study based on dedicated sam-

pling, within-study area models for Fe, Cu and Zn had good

explanatory power, whereas models for the other five ele-

ments (S, Si, V, Ni and K) had moderate to low explanatory

powers [25]. This was attributed to the lack of specific land

use predictors for these latter components, affected especially

by non-traffic sources (Fe, Cu and Zn reflect non-tailpipe traf-

fic emissions). Models for PAH and levoglucosan (emitted by

wood smoke) also had moderate explanatory power, related to

the difficulty to assess the spatial distribution of wood smoke

emissions [28, 29].

Recently, UFP LUR models based on fixed-site monitoring

approach have been reported in the cities of Amsterdam,

Augsburg and Rome and a Swiss area [30–33]. A limitation

of these studies is the modest number of sites, which could be

monitored with this approach. An advantage compared to the

later discussed mobile monitoring campaigns is the higher pre-

cision of the site average, leading to typically higher model R2.

Methodologically, progress has been made in assessing the

robustness of LUR models in relation to the number of mon-

itoring sites [34, 35]. The ability of models to predict variabil-

ity of measured concentrations at independent sites not used

for modeling especially increased from models that used only

20 monitors to those that used about 80 in two studies

conducted in the city of Girona, Spain, [35] and the

Netherlands [34]. Beyond 80 sites, only modest improve-

ments in explained variance were observed.

Different methods have been applied for variable selection

in the development of LUR models, including supervised

stepwise procedures and the deletion-substitution algorithm

(DSA) [36]. DSA is a machine-learning algorithm that uses

a covariate search algorithm to fit a generalized linear model,

minimizing the cross-validation mean squared error [36]. Reid

and co-workers applied a variety of machine-learning

methods to develop models to predict PM2.5 concentrations

related to forest fires [37]. Few comparisons have been made

between the performance of different variable selection

methods. In a study in Girona, Spain, performance measured

by hold-out validation statistics did not differ substantially

between DSA and the supervised stepwise method used in

the European Study of Cohorts for Air Pollution Effects

(ESCAPE) study [35]. In a Canadian mobile monitoring

study, no material difference was found in performance

between stepwise selection and a machine-learning meth-

od [38]. Based upon internal cross-validation statistics,

random forest (a machine-learning method) performed

better than supervised stepwise selection to develop pre-

diction models [39].

One limitation of many LURs is their lack of temporal

variation. To overcome this limitation, spatiotemporal models

were developed which account for the common unbalanced

spatiotemporal data structure by incorporating spatial and

temporal predictors in one model [27, 40]. Spatiotemporal

models for monthly average fine and coarse particle concen-

trations were developed for the USA, combining spatial and

temporal predictors in a generalized additivemodelling frame-

work [41, 42]. Models for fine particles had higher perfor-

mance than models for coarse particles. Spatiotemporal

models for daily averages have been developed using satel-

lite data; see the “Satellite Remote Sensing” section.

Spatiotemporal models offer the investigator more flexibil-

ity in defining biologically relevant exposure metrics than

the spatial models based upon an annual average. An exam-

ple is exposure estimation in birth cohort studies where

trimester-specific estimates are frequently used to assess

health effects [43].

LUR Based Upon Short-Term or Mobile Monitoring

Campaigns

A further new development is the modeling of particle metrics

such as UFP or BC, characterized by highly variable spatial

and temporal distributions, with a large number of short-term

measurements or mobile monitoring campaigns [38, 44–47].

The instruments available to measure ultrafine particle or total

particle number concentrations are typically too expensive or

require too much operator interference to be used in the

Curr Envir Health Rpt (2017) 4:450–462 453



monitoring campaigns based upon fixed sites where instru-

ments are left unattended for 1–2 weeks. Instead, short-term

campaigns with a large number of repeated measurements

using only one or few instruments can be conducted. These

short-term campaigns can be differentiated into short-term

fixed-site monitoring and on-road mobile monitoring. Short-

term fixed site monitoring typically uses one or few instru-

ments at a large number of locations with short sampling pe-

riods per location (15–60 min) and a small number of repeats

at each site. In a study in Girona, Spain, over 600 sites were

measured for 15-min periods each, outside rush hours in the

summer [45]. In later studies, three repeats of 30-min averages

in different seasons were performed [48, 49] or a single repeat

of 60-minmeasurements [46]. On-roadmobile monitoring has

also been used with typically even shorter sampling periods in

a specific street but with more repeats. Mobile campaigns are

typically conducted with one instrument while driving a car or

bicycle or walking [44, 47, 50, 51•]. For model development,

the mobile data are often aggregated per street segment. GIS

predictors are collected for the centroid of the street segment.

Because of the short duration per site, the potential for

temporal bias is even larger than in the design with 1–2-week

samples at fixed sites. One or more (urban or rural back-

ground) reference sites are often used to adjust for temporal

variation. The strength of the design is the large number of

sites that can be measured, allowing inclusion of a variety of

site types that takes into account the complexity of urban

areas, e.g. different traffic intensities and configurations of

streets. Site or route selection is less demanding than site se-

lection for longer-term sampling, where safety is an important

requirement. The design is further efficient in terms of person-

nel cost [45, 51•].

Because of the short sampling period, temporal fluctuations

affect the site average typically used for modelling more than

in studies using longer sampling times. Therefore, these short-

term and mobile sampling campaigns are less precise in de-

termining spatial variation of long-term average concentra-

tions, unless a large number of repeats are performed. This

was shown in a recent mobile monitoring study in Oakland,

CA, involving a car equipped with state-of-the-art air pollu-

tionmonitors driving a large number of routes [19]. This study

documented that up to about 10 repeated driving days, the

stability of the measured average increased, and after about

10–20 driving days, the stability of the average did not im-

prove appreciably with further repeats [19].

Despite the often limited precision of the site average con-

centrations, robust land use regression models have been de-

veloped because of the large number of sites. LUR models

based upon mobile and short-term campaigns typically have

moderate explained variation of the short-term measurements

(modelR2 less than 50%). Themoderate model R2 values are a

result of the low precision of the site averages due to the short

measurement periods [48, 51•]. The model R2 may

substantially underestimate the explained variance of the mod-

el for spatial variability of average concentrations based upon

longer averaging times per site. Two studies documented that

the models explained a larger fraction of the variation in ex-

ternal measurements based upon longer averaging times per

site than the model R2 itself [48, 49]. A Dutch model for BC

based upon monitoring at 160 sites three times for 30 min per

site had a model R2 of 35%, but explained 61% of the varia-

tion of a proxy for BC measured during three 14-day average

campaigns in the Netherlands [48]. The explanation for the

observation of a low model R2 and robust spatial model is that

the measurement error in a continuous dependent variable

does not lead to bias in linear regression analysis [48].

Mobile campaigns with a large number of repeats per road

segment have typically also reported larger model R2 values

of up to 80% [38, 52, 53].

A concern with the application of models based upon on-

road mobile monitoring is that they may overestimate expo-

sures at residential addresses, even when the influence of

high-emission vehicles in front of the monitoring vehicle is

excluded in the analysis. A recent Dutch study documented

that models based upon mobile monitoring using an electric

car predicted about 30% higher UFP exposure than short-term

fixed-site monitoring models in the same study [51•].

However, predictions of the two models were highly correlat-

ed, suggesting that the application in epidemiological studies

would lead to similar conclusions. Further work is needed to

assess whether this finding also applied in settings where mo-

bile monitoring campaigns included freeways, as the distance

to homes is much larger.

The application of UFP LUR models based on mobile

monitoring in epidemiological studies of health effects of

long-term exposure to UFP has just started [54]. Further de-

velopment of the method is useful, particularly with respect to

validation with external data with longer averaging times per

site. Most mobile models have been developed within single

metropolitan areas. There is a need to develop large-scale

models to match the study area of (national) cohorts.

Dispersion/Chemical Transport Modelling

Dispersion/chemical transport models (DCTMs) have been

applied in epidemiological studies frequently, especially in

European studies [9, 55–58]. Some studies have incorporated

spatially detailed modelling down to points of individual ad-

dresses [55, 56], while other models for PM2.5were at a larger

spatial scale of 1 km2 or above [9, 59]. DCTMs are determin-

istic models, using physical and chemical knowledge tomodel

the dispersion and chemical transformations of emitted pollut-

ants from sources. Compared to land use regression models,

more effort and expertise are needed to collect input data. The

quality of the input data is a key determinant of the perfor-

mance of a DCTM. Awide variety of models exist that differ

454 Curr Envir Health Rpt (2017) 4:450–462



in the spatial scale which they cover (e.g. street, urban, region-

al, continental or even global scale) and the processes that they

include (only dispersion versus dispersion plus chemical

transport). A detailed discussion of DCTMs is beyond the

scope of this review. A discussion of DCTMs focusing on

particles is provided in various reviews [60–64].

Significant progress has been made in the application of

DCTMs to the estimation of particle number concentration

[65]. The uncertainty of emission factors is substantially larger

than for fine particles. In the California Teachers study, a chem-

ical transport model at the 4*4 km scale across California was

applied to assess health effects of long-term exposure to chem-

ical components in ultrafine and fine particles [66].

Validation with monitoring data is an important require-

ment for application of a DCTM. For long-term exposure

studies, validation implies a spatial comparison of average

modelling and monitoring data, which is more difficult to

achieve than temporal comparison at one of a few sites. Few

comparisons have been made between dispersion modelling

and LURmodelling. A study comparing dispersion modelling

and LUR in multiple European cities showed generally good

agreement for NO2 [67]. Fewer dispersion models were avail-

able for PM, and the agreement with LUR models was less

[67]. The size of respiratory health effects estimated in a birth

cohort recruited from a large part of the Netherlands by a

national LUR model and a detailed dispersion model was

virtually identical for all pollutants [68].

Satellite Remote Sensing

In the past decade, the use of satellite observations for

assessing air pollution exposure in epidemiological studies

has increased substantially [10, 69–71]. Satellite monitoring

of aerosol optical depth (AOD) has contributed significantly

to the development of global models of annual average PM2.5

concentrations used in the Global Burden of Disease (GBD)

assessments [72, 73]. Useful satellite observations include es-

pecially nitrogen dioxide (NO2) and AOD, measured by the

ozone-monitoring instrument (OMI) on board the Aura satel-

lite and the moderate resolution imaging spectroradiometer

(MODIS) and MISR instruments on board the Terra satellite,

respectively [73, 74]. Monitoring methods are based on ab-

sorption and scattering of specific wavelengths of sunlight.

These satellites pass each location of the earth at the same

local time (~ 1330 hours for the Aura satellite and 1030 hours

for the Terra satellite), allowing a consistent comparison

across space. The instruments measure concentrations in the

total atmospheric column, which are then converted to surface

concentrations typically using the global chemical transport

model GEOS-Chem [74]. Satellite observations of ozone are

less useful, because of the high concentrations in the strato-

sphere, limiting the reliability of assessing surface concentra-

tions from total column concentrations. The data are publicly

available but require significant processing to be useful for

human exposure assessment.

Several studies have documented that satellite observations

correlate moderately well with surface measurements of NO2

and fine particles [72–75], particularly if the comparison is

limited to background measurement locations. Globally, the

spatial resolution of the NO2 and PM2.5 data is about

0.1° × 0.1°, translating to approximately 10 × 10 km. For

North America, PM2.5maps at 1 × 1 km have been developed,

allowing assessment of intra-urban variations in exposure

[76•]. For NO2, this is not possible yet. Because of the spatial

scale of the observations, satellite data cannot represent the

fine-scale variation related to, e.g. local traffic emissions.

Studies in North America and Europe have suggested that

satellite observations of air pollutants are especially useful in

providing the (regional) background component of ambient

air pollution in land use regression or other models [23, 77,

78]. The major advantage of satellite observations is that data

are available globally, in contrast to surface-monitoring data

that are available in a more limited number of countries and

often concentrated in urban areas in those countries with suf-

ficient monitoring. In international studies such as the global

study on asthma [69] and the GBD assessment [79], the con-

sistency of the measurement methodology is another advan-

tage of satellite data. Concentration contrasts between coun-

tries derived from surface monitoring may be affected by dif-

ferences in monitoring methods and selection of monitoring

sites. Limitations of the satellite method include the temporal-

ly and spatially varying relationship between column and sur-

face concentrations, the spatial resolution, interference by

clouds and the characterization of a single time of the day

[80]. Moreover, AOD does not give information about size

distribution and chemical composition of the particles.

Several methods have been developed to overcome the

problem of the temporally and spatially varying relationship

between column and surface concentrations. In a series of

North American studies, daily satellite AOD data were trans-

formed into daily surface concentrations combining daily sat-

ellite observations, land use and surface monitoring of PM2.5

[81, 82]. Mixed effect models were used, allowing the rela-

tionship between column AOD and surface PM2.5 to vary

from day to day and in space. Mixed models substantially

improved the prediction of surface concentrations compared

to an assumed constant conversion [81]. This novel method-

ology has now been applied outside North America, including

Israel and Europe [80]. The methodology typically provides

daily pollution estimates for a 1*1 km scale and allows spa-

tially varying temporal daily exposures in time series studies

of health effects of short-term air pollution exposures. After

averaging, the method may be useful for long-term exposure

studies as well.

A different approach was taken by van Donkelaar and co-

workers to account for the spatially varying relationship
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between column and surface PM2.5 in North America and

globally [76, 83]. The method starts to transform column

AODmeasurements into surface PM2.5 using the vertical pro-

files of the GEOS-Chem. The method thus uses geo-physical

principles in contrast to the previously discussed method [81,

82] that translates AOD directly into surface PM2.5 using

surface-monitoring data. The advantage is that the geo-

physical method can be applied globally and in the absence

of surface-monitoring data. Next, for North America, surface-

monitoring data and land use information are used to reduce

potential bias in the geo-physical-based surface PM2.5. The

difference between direct satellite-transformed and surface-

measured PM2.5 was regressed on various land use variables

and particle composition [76]. Altitude and urban emissions

were important factors resulting in difference between

surface-measured and modelled PM2.5. Geographically

weighted regression was used to develop the models, allowing

the regression slopes to differ spatially.

A comparison between the application of satellite data with

and without the use of additional surface monitoring and land

use data for exposure assessment in a cohort study was con-

ducted by Jerrett and co-workers [84•]. Seven different

methods were applied to the baseline address of the ACS

study, including satellite AOD only, satellite AOD adjusted

to surface PM2.5 using geographically weighted regression

and Bayesian methods further incorporating land use and traf-

fic information. They reported that the relative risks of PM2.5

for circulatory and ischemic heart disease mortality in the

ACS study were lower when exposure was estimated exclu-

sively from satellites compared to ground-based estimates,

supporting the use of additional data in exposure assessment

using satellite remote sensing [84•].

Combination of Methods

Recognizing the limitations of any single method, studies

have developed hybrid models incorporating multiple

methods in one framework. LUR models may be the method

of choice if there is significant uncertainty about emission

factors or physical-chemical transformation processes. LUR

models cannot readily characterize atmospheric formation

processes and because of their empirical nature are less trans-

ferable to other areas. Surface-monitoring data are typically

spatially sparse, whereas models and satellite data are spatially

more complete at the expense of more uncertainty of the con-

centration. Table 2 lists selected examples of hybrid models.

Satellite Data in an Empirical Modelling Framework

Methods based upon satellite remote sensing data typically

include other data to improve the assessment of surface

PM2.5 and NO2 concentrations, as discussed in the T
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“Overview ofMethods” section. Reasons to include other data

are to reduce bias in estimated surface PM and to improve

spatial resolution, e.g. by including fine-scale traffic predic-

tors. Novotny and co-workers reported that satellite NO2 was

an important predictor in a national LUR model for the con-

tiguous USA [78]. The model includes fine-scale traffic pre-

dictors as well. Beckerman and co-workers documented that

remote sensing PM2.5 was a strong predictor of surface PM2.5

across the USA and substantially improved a LUR model

further including land use and traffic data [85]. After

Bayesian maximum entropy interpolation of residuals from

the LUR model, little difference was seen between models

with and without remote sensing PM2.5. The model without

remote sensing PM2.5 exhibits more fine-scale variation [85].

De Hoogh and co-workers documented that the use of satellite

AOD data and a large-scale chemical transport model (CTM)

significantly improved European-scale LURmodels for annu-

al average PM2.5 concentrations developed from surface-

monitoring data and land use and traffic data [24•]. NO2

LUR models were improved by the inclusion of CTM, with

no additional improvement by OMI satellite data, related to

the high correlation between OMI and CTM data.

Di and co-workers have used neural network methods to

combine satellite AOD, land use, surface monitoring, CTM

and a variety of different input data sources to develop a spa-

tiotemporal model for the USA for PM2.5 [86]. A neural net-

work was used to allow complex non-linear and interaction

effects. On a global scale, Bayesian hierarchical models were

used to derive annual average surface PM2.5 concentrations

from satellite AOD, a global chemical transport model and

surface-monitoring data [79, 87].

Models Without Satellite Data

A series of papers from the University of Washington MESA-

Air and NPACT study reported on spatiotemporal models in-

corporating spatial and temporal predictors in one model [27,

40, 88, 89]. Models were also developed and applied for par-

ticle composition [26]. The spatiotemporal model assesses 14-

day average PM2.5 concentrations as a function of three fea-

tures: spatially varying long-term means, spatially varying

temporal trends and spatially varying and temporally-

independent spatiotemporal residuals [26•]. The models in-

clude fixed daily surface monitor data at a limited num-

ber of sites, dedicated 14-day average spatially more re-

solved monitoring, land use and traffic.

A study in Catalonia used the Bayesian maximum entropy

method to integrate NO2-monitoring data, LUR and CTM

[90]. The Bayesian maximum entropy model performed better

than the individual models.

Friberg and co-workers developed a data fusion method to

model daily pollution estimates across Georgia [91]. The meth-

od combines daily model calculations by the chemical transport

model CMAQ on a 12*12 km grid scale and daily monitoring

data from routine monitoring stations for 12 pollutants includ-

ing PM2.5, gaseous pollutants and five PM components. Data

fusion allows the use of the spatial completeness of the CMAQ

model and the temporal richness of the monitoring data.

Selected Issues With Current Methods

Historical Exposure Estimation

An important issue in long-term air pollution exposure assess-

ment is that the year in which measurements are conducted

and/or the models are developed may be after recruitment of

the study participants has taken place. An example is the large

multicenter ESCAPE study where monitoring occurred most-

ly in 2009/2010 and recruitment went back to the mid-1990s

in some cohorts [92]. In a Canadian national cohort, satellite

data were only available after recruitment [10, 15]. A neces-

sary assumption for application of recently developed models

for long-term exposure that goes back in time several years is

the spatial stability of air pollution contrasts. Studies in the

Netherlands [93], Rome [94], Vancouver [95] and the UK

[96] have shown that for periods up to 10 years, spatial air

pollution contrasts of NO2 often remained stable. Figure 1

illustrates similar spatial patterns for Rome. LUR models

based on current NO2 data may therefore predict intra-urban

contrasts in exposure in the past well.

It is less certain whether this assumption of spatial stability

over time applies to other pollutants, even though it is plausible

that for other traffic-related pollutants includingUFP, spatial sta-

bility can be expected. A study in Amsterdam, the Netherlands,

documented that a LUR model developed in 2013 explained

36% of the variability of UFP measurements at 48 sites across

Amsterdam 10 years earlier, though the absolute levels were

underestimated [48]. Themoderate explained variance could be

due to either limited model performance or changes in spatial

contrast. If the change in spatial contrast for UFP is larger than

forNO2,more exposure estimation error occurs. In twopollutant

models, the pollutant with the lowest exposure estimation error

may remain most significant [16].

The stability of spatial air pollution patterns will not apply

in rapidly developing areas. In a cohort study in China, the

ranking of pollution of study areas changed during follow-up

from 1998 to 2009 [97]. Methods to assess historic exposures

related to changes in air pollution and residential address are

discussed in [23, 98].

Residence-Based Exposure Estimation and Personal

Activity Patterns

Interpolation, dispersion and land use regression models pro-

vide individual estimates of exposure usually at a residential
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address, because of lack of availability of data of where people

spend their time in cohort studies not designed to assess air

pollution health effects. Time activity patterns such as the

fraction of time spent at home, at work or at school and mode

of and time spent in transport may be important determinants

of personal exposure [99, 100]. Two studies evaluated the

potential bias in air pollution epidemiology studies when ex-

posure was characterized only at the residential address com-

pared to also including the work/school address and commut-

ing [101, 102]. Both studies reported only a modest bias to-

wards the null when NO2 exposure was based upon the resi-

dential address only: ~ 15% lower effect estimates in a study

in Basel [102], 16% lower effect estimates in Vancouver and

30% lower estimate in southern California [101]. This indi-

cates that by improving exposure assessment, less biased risk

estimates may be obtained [16]. The studies further suggest

that bias may not be severe in studies accounting for a resi-

dential address only. The methodology to combine time activ-

ity patterns assessed by GPS or smartphone and fine-scale

spatial maps is available [99], but currently cannot easily be

applied to large populations [22].

Vertical Gradients

Most models have largely ignored vertical gradients of air

pollution, even if information is available in most CTMs.

Geographical coordinates define the position using x- and

y-coordinates but often do not have the height attached. In

high-rise apartment buildings along major roads, this may

be an important issue, as several monitoring studies have

suggested important differences in air pollution related to

height for homes located in major streets [103, 104]. This

suggests that applying air pollution models in study areas

where a large fraction of the population lives in high-rise

apartment buildings, such as Hong Kong, may misclassify

exposure. A study from Taiwan showed that the floor of

the building was a significant predictor in a LUR model

developed based upon monitoring at sites at low and high

floors across the city [105].

Conclusions

Methods to assess long-term exposure to outdoor air pol-

lution have improved significantly over the past decade.

New data and study designs have been applied, including

satellite measurements of fine particles and NO2 and mo-

bile monitoring designs to develop models for long-term

UFP exposure. The methods applying satellite data for

epidemiological studies are still improving rapidly, but

have already proven to contribute significantly to nation-

al-, continental- and global-scale models. Spatiotemporal

models have been developed allowing more detailed tem-

poral resolution compared to spatial models typically for

the annual average. The development of hybrid models

including dispersion and chemistry transport models, sat-

ellite observations of NO2 and fine particles, land use and

surface monitoring has improved models substantially.

The use of new technology including GPS, smartphones

and smaller pollution sensors may offer new possibilities

to assess more individualized exposure.
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