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Abstract: Achieving complete understanding of any living thing inevitably requires thorough
analysis of both its anatomic and its dynamic properties. Live cell imaging experiments car-
ried out to this end often produce massive amounts of time-lapse image data containing far
more information than can be digested by a human observer. Computerized image analy-
sis offers the potential to take full advantage of available data in an efficient and reproducible
manner. A recurring task in many experiments is the tracking of large numbers of cells or par-
ticles and the analysis of their (morpho)dynamic behavior. In the past decade, many methods
have been developed for this purpose, and software tools based on these are increasingly
becoming available. Here we survey the latest developments in this area and discuss the var-
ious computational approaches, software tools, and quantitative measures for tracking and
motion analysis of cells and particles in time-lapse microscopy images.

1 Introduction

A fundamental property of any real-world object is that it extends in both
space and time. This is particularly true for living organisms, which, by
definition, require the passage of time for their metabolism, growth, reac-
tion to stimuli, and reproduction. Full understanding of any animate entity
therefore necessitates studying not only its spatial (anatomic) but also its
temporal (dynamic) properties (Tsien, 2003). It is therefore no surprise that
research in medicine and biology has come to rely increasingly on time-
lapse imaging and longitudinal examinations. In both the health sciences
and the life sciences, the technologically deficient times when researchers
had to draw conclusions based on static two-dimensional (2D) images are
long gone, and it is now commonplace to image and study subjects in three
dimensions over time (denoted 3D+t or 4D).

Live imaging of dynamic processes at the cellular and molecular lev-
els has been made possible by the development of a vast spectrum of fluo-
rescent proteins and nanocrystals and groundbreaking advances in optical
microscopy technology. The resulting increase in the amount, size, dimen-
sionality, and complexity of the image data has brought about new chal-
lenges for automated data analysis and management (Vonesch et al., 2006;
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Figure 1: Percentage of publications in the PubMed database (National Library of Medicine,
National Institutes of Health, Bethesda, MD, USA) as a function of publication year for the
indicated combinations of words in the title and/or abstract. The plot shows the exponentially
increasing interest in cell and particle tracking in the biomedical (and related) literature. No-
tice that by plotting percentages (of the total body of literature published in any given year)
we have corrected for the intrinsic growth of the number of publications. In other words, the
curves indicate a rising “market share” of tracking related research.

Rittscher, 2010; Peng, 2008; Swedlow et al., 2009). A topic for which in-
terest has increased exponentially in recent years (Figure 1) is object track-
ing (Zimmer et al., 2006; Meijering et al., 2006, 2009; Dorn et al., 2008;
Jagaman and Danuser, 2009; Rohr et al., 2010). Indeed, it is practically
impossible to manually follow hundreds to thousands of cells or particles
through many hundreds to thousands of image frames, and sophisticated
computerized methods are very much needed for these tasks.

Although first attempts to automate the tracking of cells or particles
by digital image processing date back at least 30 years, the development
of more advanced tracking methods really took off in the past decade, and
it is only since a couple of years that biology at large is able to reap the
fruits of these efforts through the increased availability of software imple-
mentations of such methods. The purpose of this article is to summarize
these developments and to provide hands-on suggestions for practitioners
in the field. After a brief description of the main tracking approaches, we
highlight freely available software tools for cell and particle tracking, dis-
cuss frequently used measures to quantify dynamics, and conclude with
concrete tips and tricks on various practical aspects.

2 Tracking Approaches

Before discussing tracking tools it is useful to survey the different method-
ological approaches on which these may be based. Since the appearance
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and behavior of cells can be quite different from particles, the image pro-
cessing techniques developed to track them are usually also quite different,
and are therefore discussed separately here. In either case, there are gen-
erally two sides to the tracking problem: 1) the recognition of relevant
objects and their separation from the background in every frame (the seg-
mentation step), and 2) the association of segmented objects from frame to
frame and making connections (the linking step).

2.1 Cell Tracking Approaches

In images where the cells have sufficiently and consistently different inten-
sities than their surroundings, they are most easily segmented by threshold-
ing, which labels pixels above the intensity threshold as “object” and the
remainder as “background”, after which disconnected regions can be auto-
matically labeled as different cells. In the case of severe noise, autofluo-
rescence, photobleaching (in fluorescence microscopy), poor contrast, gra-
dients, or halo artifacts (in phase-contrast or differential interference con-
trast microscopy), thresholding will fail, and more sophisticated segmenta-
tion approaches are needed. Popular examples (see Meijering et al. (2008,
2009) for a more elaborate discussion) are template matching (which fits
predetermined patches or models to the image data but is robust only if
cells have very similar shape), watershed transformation (which completely
separates images into regions and delimiting contours but may easily lead
to oversegmentation), and deformable models (which exploit both image
information and prior shape information).

The simplest approach to solving the subsequent association prob-
lem is to link every segmented cell in any given frame to the nearest cell
in the next frame, where “nearest” may refer to spatial distance but also
to difference in intensity, volume, orientation, and other features. This
nearest-neighbor solution works well as long as the cells are well sepa-
rated in at least one of the dimensions of the feature space. Essentially, this
criterion also applies to so-called online cell tracking approaches, which
alternate between segmentation and linking on a per-frame basis. For in-
stance, template matching, mean-shift processing, or deformable model
fitting is applied to one frame, and the found positions or contours are used
to initialize the segmentation process in the next frame, and so on, which
implicitly solves the linking problem (see Figure 2 for an example result of
applying such a scheme to a challenging tracking problem).

2.2 Particle Tracking Approaches

Individual proteins or other (macro)molecular complexes within cells (col-
lectively referred to as particles) are hardly (if at all) visible in brightfield
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Figure 2: Cell tracking and lineage reconstruction for studying embryogenesis. The top row
shows four time points of a 3D+t fluorescence microscopy image data set of a developing
C. elegans embryo, starting from the four-cell stage until approximately the 350-cell stage,
with the segmentation and tracking results (surface renderings with arbitrary colors) overlaid
on the raw image data (volume renderings). In this case, a level-set based model evolution
approach was used for segmentation and tracking, modified from Dzyubachyk et al. (2010a).
The bottom graph shows the lineage tree automatically derived from the tracking results, with
the horizontal guidelines (red, dashed) corresponding to the four time points.
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or phase-contrast microscopy and require fluorescent labeling and imaging.
Since fluorescent proteins are two orders of magnitude smaller (nanome-
ter range) than the optical resolution of typical microscopes (100 nm or
worse), they appear as diffraction limited spots (foci) in the images. If
their contrast to the background is sufficiently large throughout the image,
they can be localized to nanometer resolution by intensity thresholding and
computing the centroid position of each segmented spot, or by fitting a
theoretical or experimentally acquired model of the point spread function
(Cheezum et al., 2001; Carter et al., 2005). However, in live cell imaging,
the contrast is often poor, and more sophisticated approaches are needed.
The results of a recent comparison study (Smal et al., 2010) suggest that
better results can be obtained by specialized algorithms from mathematical
morphology and supervised (machine-learning) approaches.

Similar to cell tracking, the most straightforward strategy to solve the
association problem is to apply local nearest-neighbor linking. However,
in the case of particle tracking, the available information to resolve poten-
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Figure 3: Particle tracking for studying vesicle dynamics. The left image shows the last
frame of a 2D+t fluorescence microscopy image sequence of vesicles moving in the cyto-
plasm, with the detection and tracking results overlaid (arbitrarily colored trajectories). The
results, adapted from Smal et al. (2008), were obtained using a tracking algorithm based on
a Bayesian estimation framework, implemented by particle filtering. On the right, the trajec-
tories are alternatively presented in a spatiotemporal rendering.

tial ambiguities in the matching process is much more limited (often the
particles all have similar appearance). In addition, particles may disappear,
(re)appear, split, and merge. More consistent results can be achieved by
using global rather than local linking strategies. Examples include spa-
tiotemporal tracing (Bonneau et al., 2005) and graph-based optimization
approaches (Sbalzarini and Koumoutsakos, 2005; Jagaman et al., 2008).
Alternatively, various Bayesian estimation approaches have been explored
in recent years (Genovesio et al., 2006; Smal et al., 2008; Godinez et al.,
2009), with promising results (see Figure 3 for an example).

3 Tracking Tools

Computational approaches to cell and particle tracking as described in the
previous section are interesting in their own right, but have no value to
practitioners in the field unless they are implemented and released in the
form of user-friendly software tools. Fortunately there is an increasing
tendency among computer scientists, spurred by various open source and
reproducible research movements, to go the extra mile and develop such
tools. Table 1 lists over 30 currently available tools for cell and/or particle
tracking, their main features, and where to find more detailed information
about them. Here we briefly comment on common aspects.
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Table 1: Available tracking tools. The columns indicate (from left to right) the name of the
tool, availability (Free = freeware, Paid = paid license code required or available as a paid
service only, Request = freely available from the developers on request), the platform on
which the tool runs (Java = runs on all platforms with the Java Virtual Machine installed,
Imaged = plugin for ImagedJ and runs on all platforms with Java installed, IDL = runs on all
platforms with the IDL Virtual Machine installed, Matlab = runs on all platforms with Matlab
installed, Lin = distribution for Linux, Mac = distribution for Mac OS X, Win = distribution for
Microsoft Windows), whether source code is available, whether it was developed primarily for
cell tracking or for particle tracking, whether it can track multiple objects, the maximum spatial
dimensionality per frame it can handle (2D image or 3D stack), the level of automation (Auto
= automatic after initial parameter setting, Manual = requires continuous user input, Semi =
partly automatic but requires user input), the author of the tool or a literature reference (with
year) describing the tool, and finally the website where to find the tool.

3.1 Cell Tracking Tools

The general assumption made by most cell tracking tools is that the cells
can be modeled as bright regions against a darker background (the fluo-
rescence microscopy scenario). If this is not the case, or if the images
are too noisy, it is necessary to apply suitable filters to match this as-
sumption. Most commercial tracking tools (such as Volocity, ImarisTrack,
MetaMorph, Image-Pro Plus), as well as more general purpose open source
software packages (CellProfiler, FARSIGHT, ICY, and Imagel/Fiji), offer
ample functionality for image preprocessing.

Virtually all cell tracking tools are capable of tracking multiple cells
and allow the user to compute basic dynamics parameters from the result-
ing trajectories. Few tools (such as StarryNite) are designed specifically
for the study of embryogenesis, which requires not only segmentation and
tracking of individual cells, but also accurate handling of all cell divisions
and the reconstruction of the complete cell lineage tree. Several freeware
tools (such as AceTree (Boyle et al., 2006; Murray et al., 2006), and ALES
(Braun et al., 2003), not listed in the table) are available for the visualiza-
tion, curation, and analysis of the cell lineages.

3.2 Particle Tracking Tools

Similar to cell tracking, most particle tracking tools, too, assume the target
objects (foci) to be significantly brighter than the local background, and
prefiltering (noise reduction and deconvolution) of the images generally
has a positive impact on their performance. In contrast with the mentioned
commercial tools, many of which contain functionality for both cell track-
ing and particle tracking and are stand-alone applications, most freeware
particle tracking tools are available either as a plugin of the widely used
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Imagel/Fiji image analysis platform (MTrack2, Octane, ParticleTracker,
SpotTracker), or as a Matlab module (plusTipTracker, u-track).

While all tracking tools generally perform well if the image data sat-
isfies certain conditions (see the tips and tricks at the end of this article),
experimental constraints often force these conditions to be violated, as a re-
sult of which automated tracking falls short or fails completely. Fixated on
full automation, most tools offer very little functionality for manual trajec-
tory inspection, curation, or creation. A tool specifically designed for this
purpose is MTrackl, an Imagel/Fiji plugin, which at the time of writing has
already been used in over a 100 scientific journal publications, testifying
that fully automated tracking is still utopian in many situations.

4 Tracking Measures

The direct result of applying tracking tools is a sequence of coordinates
indicating the position of each tracked object at each time point. While
this is an essential step and a tremendous data reduction, from millions to
billions of (mostly irrelevant) pixels to a few (or perhaps a few tens or hun-
dreds of) thousands of coordinate values, by itself this does not lead to new
insights. The final step to knowledge is the computation of biologically
meaningful quantitative measures from these coordinates. Here we distin-
guish four categories of measures, characterizing the motility, diffusivity,
velocity, and morphology of the moving objects, respectively.

4.1 Motility Measures

The first step towards quantitative analysis is to reconstruct the trajecto-
ries of the tracked objects from the measured coordinates. This problem
of “connecting the dots” is practically always solved by linear interpola-
tion, resulting in piecewise-linear trajectories, although higher-order in-
terpolation schemes (in particular cubic splines) can be expected to yield
(bio)physically more accurate representations. Given the trajectories, a va-
riety of measures can be straightforwardly computed. The most obvious
measures of motility include (see Table 2 for definitions) the total trajec-
tory length (the total distance traveled by the corresponding object), the
distance between start and end point (the net distance traveled), the max-
imum distance to the start (or any other reference) point, and the confine-
ment ratio (also referred to as the meandering index or the straightness
index) (Beltman et al., 2009). Related measures, but for which varying
definitions are found in the literature, include the chemotactic index and
the McCutcheon index (Meijering et al., 2008). Other obvious measures
to compute are local orientations (with respect to the coordinate system or
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Measure Definition

Total distance traveled diy = fvz_ll d(pi,piv1)
Net distance traveled doee = d(p1,PN)
Maximum distance traveled dinax = max; d(p1, i)
Total trajectory time for = (N — 1)At

Confinement ratio
Instantaneous angle
Directional change

Instantaneous speed

Feon = et/ ot
o; = arctan (yi+1 — i)/ (xiy1 —x;)
Yi =0 — Qi
vi =d(pi,pi+1)/At

1 N—1

Mean curvilinear speed V= q-7 L Vi

Mean straight-line speed Vin = et/ ot

Linearity of forward progression Flin = Vin/V

Mean squared displacement MSD(n) = Nl_n YN d2 (pi, Pisn)

Table 2: Quantitative tracking measures commonly found in the literature. The drawing (top)
shows a sample trajectory consisting of N points p; = (x;,y;) and the table (bottom) defines
the measures. The example is given for the 2D+t case but the measures can be extended
straightforwardly to 3D+t. A constant frame rate is assumed with a time interval of Ar seconds
between successive frames. The distance d(p;,p;) between any two points p; and p; is
usually taken to be the Euclidean norm ||p; — p;.

a reference point), directional change (turning angle) (Soll, 1995; Beltman
et al., 2009), and the autocorrelation of the latter, which is indicative of
directional persistence and process memory.

4.2 Diffusivity Measures

A more sophisticated measure computable from a trajectory is the mean
squared displacement (MSD). It is a function of time lag (see Table 2)
and enables one to characterize the mode of motion of the corresponding
object by inspection of the resulting MSD-time curve (Qian et al., 1991;
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Saxton and Jacobson, 1997). In the case of a pure random walk (such as
Brownian motion of particles), the curve will be a straight line, given by
MSD(t) = ¢Dt, with ¢ =4 in 2D and ¢ = 6 in 3D, and where D denotes the
so-called diffusion coefficient. If the motion is impeded by obstacles, the
diffusion is anomalous, and characterized by MSD(¢) = ¢Dt* with o < 1.
An object whose motion is confined to some region, will yield a curve that
may be modeled as MSD(¢) = R[1 — a; exp(—aycDt /R)], which converges
to a maximum value R proportional to the size of the region, where a,
and a; are positive constants related to the geometry of that region. The
ultimate case of R = 0, corresponding to immobile objects, results in a
curve that is zero everywhere. On the other hand, if there is directed motion
(flow) in addition to diffusion, the curve behaves as MSD(¢) = cDt + (vt)?,
where v is the speed. Notice that the MSD is just the second-order moment
of displacement. It may be helpful to compute other moment orders as well
(Sbalzarini and Koumoutsakos, 2005).

4.3 Velocity Measures

Other measures that can be easily derived from a trajectory are those con-
cerning the rate of displacement. Instantaneous velocity, for example, is
computed as the displacement from one frame to the next, divided by the
time interval (Table 2). Notice that this quantity is a vector, and its magni-
tude value is called speed, although in the literature the latter is also often
referred to as velocity. A useful measure derived from instantaneous speed
is the arrest coefficient (Beltman et al., 2009), defined as the fraction of
time that the object is pausing (having a speed less than some minimum
value). The mean curvilinear speed is computed as the arithmetic mean of
the instantaneous speeds. If the frame rate is constant, that is if the time
elapsed between any two successive frames in the image sequence is the
same, this is equal to computing the ratio between the total distance trav-
eled and the total trajectory time. Alternatively, if we use the net distance
traveled, the ratio yields the mean straight-line speed. The ratio between
the latter and the former speeds is a measure expressing the linearity of
forward progression. Rather than taking grand averages, it is often useful
to make speed histograms (Qian et al., 1991; Bahnson et al., 2005), as they
give more insight into the statistics of the dynamics.

4.4 Morphology Measures

In contrast with particle tracking, cell tracking algorithms usually record
the entire cell shape at each time point, from which a position estimate is
commonly derived by computing the centroid, to which, in turn, the above
mentioned measures can be applied. Having the full shape as a function of
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time also allows for the computation of a host of measures characterizing
the cell morphology (Soll, 1995; Bakal et al., 2007). A distinction can be
made here between measures of size and orientation versus measures of
geometric complexity. Examples of the former in the case of 2D+t (and
3D+t) include the perimeter (surface area), area (volume), and the major
and minor axes. Measures of (size and orientation invariant) complexity
include circularity (sphericity), eccentricity (ellipticity), and convexity or
concavity. More sophisticated analysis of morphology is possible by de-
composing the shape in terms of Zernike polynomials, or based on Fourier
analysis, independent component analysis (ICA), or principal component
analysis (PCA), the latter of which appears to be most suitable (see Pincus
and Theriot (2007) for a thorough discussion).

5 Tips and Tricks

Concluding this article, we complement our discussion of tracking meth-
ods, tools, and measures with tips and tricks (including some serious warn-
ings) concerning the imaging, tracking, and analysis. Since research goals,
available equipment, and experimental conditions may vary widely, it is
impossible to provide detailed protocols here. Nevertheless, the following
general remarks should serve as a good basis for further consideration in
designing cell and particle tracking experiments.

5.1 Imaging

¢ Dimensionality: The first thing to consider in preparing a time-lapse
imaging experiment is whether to study the processes of interest in 2D
or in 3D over time. If photobleaching and photodamage are to be min-
imized, or when dealing with very rapid motion of cells or particles,
3D+t imaging may simply be no option in view of the excess exposure
and recording times required. However, biological processes naturally
do take place in 3D+t, and it has been shown in various studies that
2D+t imaging and analysis may lead to different results (Meijering et al.,
2008). It is therefore important to verify one’s assumptions.

o Image quality: One of the most critical factors affecting the perfor-
mance of tracking tools is the signal-to-noise ratio (SNR) of the image
data. Several studies (Cheezum et al., 2001; Carter et al., 2005; Smal
et al., 2010) have indicated that the accuracy, precision, and robust-
ness of most particle detection and tracking methods drop rapidly for
SNR < 4. Thus, in order to minimize tracking errors, the illumination
settings should be such that at least this SNR is reached. Even though
for cell tracking the SNR may be somewhat less critical than for particle
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tracking (as cells are much larger and therefore more clearly visible), it
is advisable to use a similar minimum level.

o Frame rate: Another critical imaging parameter to be tuned carefully
is temporal resolution. It is obvious that in the case of directed mo-
tion, the lower the frame rate, the larger the distances traveled by the
objects between frames, and thus the higher the chance of ambiguities
in reconstructing trajectories. For cell tracking, as a rule of thumb, the
frame rate should be chosen such that cells move less than their diame-
ter from frame to frame (Zimmer et al., 2006). For particle tracking, it
has been suggested (Jagaman and Danuser, 2009) that in order for the
nearest-neighbor linking scheme (used in many tools) to perform well,
the ratio (p) of the average frame-to-frame displacement and the average
nearest-neighbor distance within frames should be p < 0.5.

5.2 Tracking

o Preprocessing: In live-cell imaging, the SNR (directly related to light
exposure) is often deliberately minimized to avoid photobleaching and
photodamage, while it ought to be maximized to ensure high tracking
performance. This conflict of requirements may be resolved to some
extent by processing the data prior to tracking. Noise reduction filters are
widely available and in some tracking tools they are an integral part of
the processing pipeline. Sophisticated filters have also been developed
to transform transmitted light contrast images into pseudo-fluorescence
images (Xiong and Iglesias, 2010), making them suitable for processing
by tracking tools designed for fluorescence microscopy.

e Tool selection: As shown in this article, quite a number of tools al-
ready exist for cell and particle tracking, and it seems likely that more
tools will become available in the near future. There is no single cri-
terion to decide which of these is best for a given purpose, but Table 1
provides hints where to start looking. Commercial tools usually offer
the most user-friendly interfaces and extensive functionality but may be
prohibitively expensive. For many tracking and motion analysis tasks,
freeware tools are often sufficient, and if source code is available, it is
usually not difficult to tailor a tool to one’s needs.

e Verification: The results of automated tracking are rarely perfect. The
lower the SNR, or the larger the number of objects, their density, motil-
ity, or similarity, the larger the risk of tracking errors. It is therefore
advisable to visually inspect (a representative part of) the trajectories
prior to analysis, and, where necessary, to fix erroneous track initiation,
termination, duplication, switching, splitting, and merging events (Belt-
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man et al., 2009). Unfortunately, most tools (especially freeware) lack
flexible track editing functionalities, and it may be helpful to use tools
(such as MTrackl) designed specifically for this purpose.

5.3 Analysis

o Diffusivity: Several warnings are in order when estimating diffusion
coefficients from MSD-time curves (Meijering et al., 2008). First, the
2D diffusion coefficient (computed from 2D tracking) is equal to the 3D
coefficient only in isotropic media, where displacements in the three spa-
tial dimensions are uncorrelated. Second, the shorter the trajectories, the
higher the inaccuracy of diffusion estimates. Third, even for long trajec-
tories, the inherent localization uncertainty may cause apparent subdif-
fusion patterns at short time scales. Finally, a trajectory may contain
both diffusive and nondiffusive parts, which are obscured if the MSD is
computed over the entire trajectory.

e Velocity: The estimation of velocities based on finite differencing of
subsequent position estimates implicitly assumes linear motion from
frame to frame. It is important to realize that this minimalist approach
yields the lowest possible estimate, and results in underestimation of the
true velocities in cases where the dynamics is more complex. Another
warning concerns velocity estimation of migrating cells. Commonly this
is based on the cell centroid position. However, in the case of consid-
erable shape changes, the centroid position may show a much larger
fluctuation, and is no longer representative.

e Aggregation: A final issue to consider is how to aggregate the esti-
mates of a parameter when tracking multiple objects. In principle there
are two approaches (Beltman et al., 2009): object-based or frame-based,
which may lead to different results, depending on the statistic. For ex-
ample, when tracking objects consisting of two subpopulations (slow
and fast moving), a histogram of the per-object mean speeds will reveal
this, whereas the per-frame mean speed histogram does not. Conversely,
frame-based analyses would allow the detection of different modes of
motion (for a single object or a population of synchronized objects),
which may go unnoticed with an object-based approach.
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