

CERIAS Tech Report 2004-09

METHODS FOR CLUSTER-BASED INCIDENT DETECTION

by Brian D. Carrier, Blake Matheny

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Methods for Cluster-Based Incident Detection∗

Brian D. Carrier Blake Matheny
carrier@cerias.purdue.edu bmatheny@purdue.edu

Center for Education and Research in
Information Assurance and Security - CERIAS

Purdue University
West Lafayette, IN 47907 USA

Abstract

In this paper, we introduce a statistics-based anomaly
detection technique for identifying systems that could have
been compromised and had trojan executables installed. At-
tackers frequently install rootkits and other trojan files onto
hosts they compromise so they can easily gain access in
the future. Many detection systems use signatures to iden-
tify unauthorized files, but signatures for all platforms and
patch levels do not exist in large-scale environments, such
as government and university networks. Our anomaly de-
tection system organizes hosts into clusters based on their
files and uses statistics to identify those that should be ex-
amined in more detail.

1. Introduction

When a computer is attacked and compromised, it is
common for the attacker to modify the system such that he
can easily gain access to it in the future and that he can per-
form actions that will not be observed by users or adminis-
trators. One way to modify the system is to replace system
executables with trojan versions. This behavior has been re-
ported to Internet mailing lists [13], has been documented
by the Honeynet Group [5], and has been observed by our-
selves while performing computer forensics.

The typical method of identifying a trojan file is to com-
pare it to a known and trusted version. This works well on a
small scale, but does not scale in an environment with thou-
sands of hosts that have different administrators, have dif-
ferent operating systems, and have different patch levels.
The administrators may need a copy of every file from ev-
ery operating system deployed and every patch released.

∗ Presented at 2nd IEEE International Workshop on Information Assur-
ance. April 8-9, 2004. Charlotte, NC

System executables, such as/bin/ls or /bin/ps,
are commonly modified by an attacker because many rootk-
its will replace them with ones that hide data from the
user. For example, a trojan/bin/ls executable can hide
the files and directories that the attacker created. Network
servers are also modified so that they grant access to unau-
thorized users. For example, SSH servers can be modified
so that they allow the attacker to login if he provides a magic
password. The password is compiled into the server exe-
cutable and logs are not created when this password is used.

In this work, we propose a statistical-based anomaly de-
tection procedure to identify systems that have trojan files
on them. The procedure can be used by large-scale networks
where not all hosts are regularly patched, monitored, or ad-
ministered. Some government and university networks fall
into this category. Section 2 details previous work in detect-
ing trojan executables, Section 3 describes our process, Sec-
tion 4 describes our implementation of the process, and Sec-
tion 5 gives future work.

2. Related Work

Existing work on detecting trojan executables has been
oriented towards small-scale environments. The executables
on each host are examined to identify if they have been
modified and the central theme is to compare the existing
files to a known good or known bad object. Existing tech-
nology uses both of these comparisons to identify trojan
files.

One common method of detecting a malicious file is by
calculating a one-way hash of it and comparing it to val-
ues stored in a database. Examples of commonly used hash
functions include MD5 [11] and SHA-1 [9]. When any bit
in the file changes, the MD5 or SHA-1 value will change
as well. Therefore, the hash value can be used as a unique
identifier, or fingerprint, for the file.

Hash databases exist for both known good and known
bad files. The National Institute for Standards and Technol-
ogy (NIST) has produced the National Software Reference
Library (NSRL) that contains hashes of both known good
and known bad files [10]. Currently, the majority of the files
are based on the Microsoft Windows operating system, so it
is not as useful for detecting modifications to Unix files. An-
other common hash database is Hashkeeper [4], which also
contains both known good and known bad files.

Sun has developed the Solaris Fingerprint Database [14]
on its web site that allows users to enter the MD5 hash of
files into a form and the web site will identify which Solaris
file that the hash corresponds to. This allows you to easily
identify if the file is a valid Solaris executable. Similar func-
tionality exists with therpm command [12] in Linux. Both
of these databases provide a record of known good files.

Databases of only known bad files also exist. The Cyber-
Abuse Rootk(it)ID Project is a collection of known rootk-
its [2]. Maintaining a database of known bad files is very
difficult because it requires you to constantly update the
database when new “bad” things are found. Whereas, a
database of known good files only requires updating when
you update a host with new “good” files.

Another alternative is to calculate the hashes of files be-
fore the system is deployed. You can create the database
with themd5sum command [3], themd5deep command
[6], or with monitoring tools [15]. Similarly, an investiga-
tor can use hashes from a trusted system that is known to
have the same patches applied as the suspect system. Hash
databases made by these tools can be processed using a sim-
ple text search toolgrep, the lookup option inmd5deep,
or binary search tools [1].

When available, hash databases are very efficient at iden-
tifying trojan executables. The problem is having them
available for use. Hashes of system executables are typically
not calculated before a system is deployed and there are not
enough hash databases with all patches to all systems to ef-
fectively rely on. Similarly, new trojan files are created ev-
ery day and the trojan source code will create many exe-
cutables and hashes depending on what compiler was used.

Another technique to detect trojan files is to use sig-
nature analysis. Some trojan files have certain characteris-
tics that can be identified. For example, executables from
a system-level rootkit typically use a configuration file that
lists which files or processes to hide from the user. The path
to the configuration file may be found by looking at the
ASCII strings in the executable. Or, the configuration file
maybe found on the host by looking in standard directories.

Similarly, some network services are modified to allow
an attacker to login with a predefined password that was
compiled into the system. Many of the trojan servers will
store the MD5 of the back door password so that the pass-
word is not easily found when viewing the ASCII strings

of the executable. A trojan server maybe detected by look-
ing for a password or a 128-bit hexadecimal value in the ex-
ecutable strings. The chkrootkit program uses these types
of signature techniques to find rootkits that are installed on
hosts [8].

Signature detection of trojan files has the same limi-
tations as signature detection for network attacks; it only
works for known trojan files. Furthermore, it is trivial to ob-
fuscate the strings in the executable file or store configura-
tion files in non-standard places.

The techniques outlined in this section are useful when
examining a couple of hosts, but they do not scale for hun-
dreds or thousands of hosts (unless you have the file hashes
calculated before the system is deployed). We will next out-
line steps to reduce the effort required to identify suspect
systems when the original hashes are not known and hash
databases do not exist for all types and patch levels of your
systems.

3. General Detection Theory

In this section, we present our method for identifying
sets of hosts with trojan executables installed on them. Our
method does not rely on a database of known good or bad
hashes or signatures of trojan files. The general process is
to cluster similar hosts together based on system executa-
bles and analyze the groups instead of the individual sys-
tems.

The hashes from the systems must be collected in a se-
cure fashion. A compromised host could send false data
when requested for hash values, so trusted media and, ide-
ally, a trusted kernel should be used. The hash values for
specific files are calculated on each host and sent to a cen-
tral analysis station. The hosts with the same operating sys-
tem are grouped together and analyzed. Patch levels within
the operating system version are not used in this analysis.
The details of our collection utility are outlined in the Sec-
tion 4.

The remainder of this section describes the general the-
ory of host clusters and then two detection techniques are
presented.

3.1. Clusters of Hosts

Hosts can be organized into sets based on their sys-
tem executables. We assume that system executables and
libraries in a host are changed by administrators who ap-
ply patches or by attackers who install trojan files. All sys-
tems start in the same set, the one for unpatched systems.
When a system is patched and the system executables and
libraries are changed, the system is removed from its cur-
rent set and placed into a new set. For example, let setC0

be the set of hosts that have no patches applied and let host

w/Trojan #1
Patch #1

w/Trojan #2

C_5C_4

Patch #1
w/Trojan #1

Patch #2

C_0 C_1 C_2

C_6

C_3

Fully
Patched

No
Patches

Patch #1 Patch #2

Figure 1. Sets of hosts with four patch sets
and three trojan sets

h1 ∈ C0. When a patch is applied to hosth1 ∈ C0, a trans-
formation removesh1 from C0 and adds it toC1.

C0 = C0 \ h1

C1 = C1 ∪ h1

Sets that contain hosts with only valid executables are
patch sets. All hosts start in a patch set when they are
deployed. Atrojan set contains hosts that have been re-
moved from a patch set because they had trojan executa-
bles installed on them. The installation of trojan files can be
thought of as an unauthorized patch because it forces sys-
tems to change sets. Figure 1 shows an environment that has
four patch sets (C0, C1, C2, andC3) and three trojan sets
(C4, C5, andC6). Hosts inC4 andC5 both have the same
patch applied, but they have different trojan files and there-
fore are in different sets.

Note that the clusters can be created in more general
terms. Clusters in the above description are created with
hosts of the exact same hashes, but they can also be cre-
ated with hosts that are a given distance,D, from each other.
The above description creates clusters with a distance of 0.

3.2. Naive Detection Process

A naive detection method using the sets of hosts is to
choose one of the hosts from each set and analyze it. If hash
databases or other techniques outlined in Section 2 exist,
then they can be utilized. If the host is found to have been
compromised, then the entire set is a trojan set and they all
have trojan files on them. If trojan files were not found, then
the set is likely a patch set. This method allows the admin-
istrator to reduce the number of hosts that must be investi-
gated, unless each set has only one host in it. This technique
does not help the investigator to focus on specific sets to an-
alyze though.

/bin/ls
Patched

/bin/ls
Trojan

/bin/ls
Trojan

Trojan Set

C_m

Patch #j

C_jC_i

Figure 2. Two patch sets that link to the same
trojan set

3.3. Threshold Detection Process

To help the investigator focus on specific systems, we use
a threshold. This technique uses the assumption that the tro-
jan sets will contain fewer hosts than the patch sets. The size
of each set is examined and if the size of the set is smaller
than a thresholdT , then the set is identified as a possible
trojan set. One host from each of the suspect sets can be ex-
amined in more detail to identify if the set is a patch set or a
trojan set. An implementation of this could keep a database
of confirmed patch sets to prevent future false positives.

Note that this process does not directly rely on the num-
ber of files that are updated in each patch. It only relies on
the number of hosts that have applied the patch and the
number of hosts that have trojan files installed. Although,
if a patch modifies the same system executables as a rootkit
does, then the trojan set for the two patch sets will be the
same. For example, let patchPj be applied to a subset of
the hosts in setCi. Pj updates only the/bin/ls file and
it moves the hosts to setCj . Let there be a rootkit that mod-
ifies only the/bin/ls file. If the rootkit is installed on
hosts inCi andCj , then the hosts will both be in the same
trojan set,Cm. This example can be seen in Figure 2. This
set may not be detected by our algorithm because it is the
union of two sets and its size could be larger than the thresh-
old.

The probability of finding the trojan installations in-
creases with the number of types of trojan files that are in-
stalled on a patch set. For example, if there are 100 compro-
mised hosts for a given patch set and only two rootkits are
installed, then there will be two trojan sets with an average
of 50 hosts per set. On the other hand, if there are 10 rootk-
its among the 100 compromised hosts, then there will be 10
trojan sets and an average of 10 hosts per set. If the thresh-
old is set between 10 and 49, then the algorithm will detect
the sets of 10 and not the sets of 50.

4. Implementation

To test the detection methods, we created a sample data
set of hashes and implemented the detection process. This
section will describe how the data set was created, the meth-
ods used for statistical detection, and the detection results.

4.1. Utilities

The first step in the implementation was to develop a col-
lections agent to gather the hashes, a data dumper to format
the hash data, and an analysis tool to examine the formated
data. Our implementation of these utilities aresweeper,
datadumper, andstathost. We briefly discuss these
tools below.

Our implementation of the collections agent,sweeper,
takes a list of hosts to be surveyed and a list of files on the
host that should be hashed.sweeper used SSH to con-
nect to each host and executed the local version ofmd5sum
to calculate the checksums. Once data was “swept” up, the
hashes, host names and system types were inserted into a
database. The database schema we used is specified in the
Appendix.

Our analysis tool,stathost, was written in Matlab
[7] and therefore the data had to be translated from the
database format to a format that Matlab could process. The
datadumper tool gathered information from the database
and put it into a format usable bystathost. The details
of stathost are described in Section 4.3.

4.2. Data Set Creation

Although we wrotesweeper to collect hashes from re-
mote systems, we did not have access to an environment
large enough to utilize it for testing our process. It would
also be difficult to maintain control of a live environment
that large so that we knew how many hosts were indeed
compromised. Therefore, we created a sample data set of
hashes that could be analyzed with our detection process.
The data set that was generated was the equivalent to run-
ning collection tools on many hosts and storing the sets of
hashes in one location. This section outlines how the data
set was created.

To generate the data sets, we had to specify the percent-
age of hosts that are typically compromised, the percentage
of compromised hosts that have executables modified, and
the number of files that are modified by attackers. We also
had to specify how many systems were fully patched, how
many were partially patched, and how many had no patches.
Unfortunately, we could not find any statistics on these val-
ues. Therefore, we estimated these values and varied them
to compare the detection algorithm’s performance.

The data set hadY types of systems andX systems in
each type. For our trials we setY = 1, however this number
won’t impact the accuracy of the algorithm. SettingY > 1
will simply segregate the data intoY sets, because between
systems the duplication of binaries is rare. Also, we expect
that the collection tool will sort the data by operating sys-
tem. Each system hadZ hashes collected from it.

To create multiple patch sets, we simulated the process
of applying patches. LetA be the percentage of hosts in
a type that have no patches applied,B be the percentage of
hosts in a type that have all patches applied, and the remain-
der of the hosts,C percent, be those that have some of the
patches applied.

For example, an environment would haveY = 4 if So-
laris 5.7, Solaris 5.8, RedHat Linux 8.1, and Microsoft Win-
dows XP were deployed;X = 200 if there were 200 hosts
of each platform; andZ = 75 if there were 75 files on
each host to examine. For the patch values, an environment
would haveA = 30 if 30 percent of the systems had no
patches applied,B = 30 if 30 percent of the systems were
fully patched, andC = 40 if 40 percent of the systems were
partially patched.

The data set was generated by calculatingZ random hash
values for each type of system and populating each host
with them. Therefore, all hosts in the operating system type
had the same starting hash values. TheA percent of hosts
that had no patches applied kept the original hash values
and formed a patch set. TheB percent of hosts that are fully
patched had 35 percent of the original hash values changed
to new random values and added to a new patch set. All
hosts that were fully patched had the same set of hashes. In
other words, we assumed that a fully patched system had
35 percent of its system executables modified from the ini-
tial installation.

To create the patch sets for hosts with a partial number
of patches applied, some of the changes that were applied to
the fully patched hosts were applied to the remaining hosts
(C percent of the total). The first 20 percent of the partially
patched hosts had 15 percent of the changes that were ap-
plied to the fully patched systems, the second 20 percent had
30 percent of the changes, the third 20 percent had 45 per-
cent of the changes, the fourth 20 percent had 60 percent of
the changes, and the final 20 percent had 75 percent of the
changes. These modifications were used to simulate an en-
vironment where many hosts had only some subset of avail-
able patches applied, as would be the case for many real en-
vironments.

Q percent of the hosts that were not fully patched were
chosen at random to become compromised systems. 2 per-
cent of the hashes for the selected host were changed. The
assumption was that fully patched systems would not be
compromised and that only a small fraction of the actual
system executables would be modified. For example, a typ-

Figure 3. The size of host clusters in a sam-
ple data set

ical Unix rootkit only modifies five or six of the executables
in the/bin/ directory.

The modifications to the compromisedQ percent of the
hosts were subject to alteration by specifying a number of
rootkits, R. For all our simulations we specifiedR = 5.
The rootkits were equally distributed among the compro-
mised hosts and a random rootkit was created for everyRth

compromised host. This method was used to simulate some
standard rootkits being used across the data set, but non-
standard ones being used occasionally as well. One thing
that was not considered, for the sake of simplicity, was
rootkits that only impact one type of system (e.g. a spe-
cific patch level). In reality this type of localized cluster-
ing would help the algorithm, because a stronger correla-
tion would be seen.

As an example of an environment in our data set, Fig-
ure 3 shows the results from clustering the hosts in one of
the data sets based on their file signatures. The x-axis is the
cluster number and the y-axis is the number of hosts in a
cluster. We can see the 1000 hosts have been broken down
to 29 clusters. If the threshold were set to 250, then all clus-
ters except for cluster 22 would be identified as suspect. If
the threshold were set to 40, then all clusters besides 1, 2, 5,
9, 15, 18, and 22 would be identified.

4.3. Detection Procedure

The stathost application was written in Matlab to
process the data sets and detect the compromised systems
using the threshold detection technique. The implementa-
tion includes a distance metric for determining the relative
closeness of hosts, a clustering method for grouping hosts,
and an extension for more localized clustering. While the
procedure was originally described using set theory, we im-

plemented it using matrices. Before moving onto the theo-
ries, we define some commonly terms used.

We begin by populating a matrixA, of sizeZ× (X ∗Y),
whereZ is the number of hashes andX ∗ Y is the total
number of systems being surveyed. A row inA contains the
hashes for one file on different systems and a column inA

contains the file hashes for one system. We use the notation
|A| and||A|| to denote the number of rows and columns, re-
spectively, in a matrix or vectorA. A:,n denotes all rows of
columnn of matrixA. Am,n denotes the cell at rowm, col-
umn n of matrix A. Also, the terms “system” and “host”
may be used synonymously.

We define the distance between two hostsH1 andH2

represented by column vectors of the same size as follows:

d(H1, H2) = |H1| − Σ(H1 == H2)

H1 == H2 returns a column vector consisting of a zero
where rows inH1 andH2 were not equal and a one where
rows in H1 and H2 were equal.Σ(H1 == H2) returns
a sum of the binary values in the new column vector re-
turned byH1 == H2. Therefore the distance betweenH1

andH2 is 0 when every row is equal, and the distance be-
tweenH1 andH2 is |H1| when there are no rows of equal
value. We say that two hosts are equal with respect to their
column vectors when their distance is0.

Our process takes a matrixA, the desired distanceD and
a thresholdT . The return value is a new matrix,σ, whose
nonzero columns correspond to hosts in a cluster with dis-
tanceD and a size less than or equal toT . The return matrix
was calculated using the following method:

σ(A, D, T) = [x|(

||A||∑

i=1

Σ(

||A||∑

j=i

d(A:,i, A:,j) = D) ≤ T ;

∀Ai ∈ A, Ai ∈ x)]

This method createsσ by iterating over all columns of
the matrixA, finding the distance betweenA:,i and the re-
maining columns. If the total number of these columns is
≤ T then we copy the columns to the same location in
σ. This process does not iterate over columns that have al-
ready been included in a cluster. The number of members in
a cluster can be determined easily by the sum of all nonzero
columns of distanceD in σ.

While matrixσ andA will both be of the same size, it
should be noted that, in general,σ ⊂ A for the nonzero
rows ofσ. The only case where

∀i, j σi,j = Ai,j

is true, is the case where there are no clusters inA whose
size is less than or equal toT .

WhenD = 0, a host can fall into only one cluster and
this property is important for analysis purposes because
hosts in more than one cluster represent duplicate work that
may need to be done. Duplicate hosts may also contribute
unnecessarily to a cluster’s size.

After this procedure, a list of clusters and hosts is re-
turned to the user and a single host from each cluster can
be sampled to determine if it is compromised. Discovering
a compromised system that is part of a cluster indicates that
every host in the cluster is compromised.

The procedure discussed is a simple one. For environ-
ments where the majority of hosts are not compromised,
the large clusters will contain hosts that are not compro-
mised and some of the smaller clusters will contain hosts
that are compromised. For environments where the major-
ity of the hosts are compromised, some of the large clus-
ters may contain hosts that are compromised. For the sec-
ond scenario, it is necessary to invert the clustering function
such that hostsabovethe threshold are detected.

4.4. Detection Results

The simulated data sets were analyzed with the detec-
tion process and the results can be found in Table 1. We
used 18 different test cases and varied the number of hosts,
the percentage of patched hosts, and the percentage of com-
promised hosts. The threshold,T , was kept constant at five
percent of the total hosts so that we could “blind” the results
on the simulated data. In a real world situation the thresh-
old would likely not be kept constant because the number of
compromised systems would not be known ahead of time.
Our detection procedure used a distance,D, of 0 when cre-
ating the host clusters.

The number of false positives is the number of clusters
that were selected as being compromised, but did not con-
tain compromised hosts. Individual hosts were not counted
towards false positives, because if one host in a cluster was
a false positive, all hosts in the cluster were false positives
and only one would need to be investigated. The accuracy
of our procedure can be assessed using the percentage of
compromised hosts that were successfully detected and the
number of false positives.

The results show that our process detects a high percent-
age of the compromised systems and has a low number of
false positives. When 1 percent of the hosts were compro-
mised, we detected all of them and had no false positives.
When 10 percent of the hosts were compromised, we de-
tected between 90 and 100 percent of them and only had
one scenario with false positives. When 50 percent of the
hosts were compromised, we detected between 40 and 77
percent of them and 4 of the 6 scenarios had false positives.
The number of false positives was higher when we had a
smaller number of hosts.

To improve the accuracy of the detection method, the
threshold can be modified. Generally, to increase the num-
ber of systems that are successfully detected, then the
threshold should be increased, and to decrease the num-
ber of false positives then the threshold should be de-
creased. Our data shows that even an educated guess for the
threshold can yield useful results.

Table 1 supports our hypothesis for the synthesized data
set. One should note that for each trial (represented by a
row of the table), a different data set was generated with
random hash values. Our data shows that the accuracy of
detection decreases and the number of false positives in-
creases as the percentage of compromised hosts increases
and the threshold is held constant. This is because the size
of the clusters with no compromised hosts (patch sets) fall
below the threshold and the size of the clusters with com-
promised hosts (trojan sets) rise above the threshold as the
number of compromised hosts increase. However, our tests
were done using a static value for the threshold and the ac-
curacy could have been increased by modifying this appro-
priately. Using a larger threshold will identify the compro-
mised hosts, but it will likely also increase the number of
false positives.

This process relies on trends in systems. If no trends can
be found, no clustering can occur and the number of sys-
tems that need to be surveyed does not decrease. The opti-
mal trend is for all systems to be uniform because detecting
anomalies in this case is trivial. The worst case scenario is
for every system to be different. Our results show that even
in the case when the systems vary (many different clusters),
the rate of detection is still very high and the number of
false positives remains low. For example, Figure 4 shows a
graph representing clusters of hosts from one of the simula-
tions where 50 percent of the hosts are compromised. There
were 25 different clusters for only 100 hosts, however there
was a 62 percent detection rate and only one cluster with
false positives. For this specific scenario, a higher threshold
would have improved the results. We used a static thresh-
old of 5 percent of hosts, which is 5 in this scenario, and
there are two clusters containing 6 compromised hosts each
and one cluster containing 7 compromised hosts. Increas-
ing the threshold by a small amount in this scenario would
have found all the compromised hosts and not increased the
number of false positives.

Statistical analysis on our data sets consisted of a three
part process in which a distance metric determined the host
clusters, a threshold identified suspect clusters, and a new
data set was produced to determine the accuracy of the spec-
ified distance and threshold. If further refinement of a data
set is needed, this process allows us to easily change the dis-
tance variable,D, and the threshold,T . For our analysis, we
did not vary these values and keptD = 0 andT as five per-
cent of the the total hosts.

Hosts Patch Levels Compromised Threshold Detected False Positives
(X) None (A) All (B) Partial (C) Hosts (Q) (T) (in clusters)

100 30% 15% 55% 1 (1%) 5 1/1 (100%) 0
100 15% 30% 55% 1 (1%) 5 1/1 (100%) 0
100 55% 15% 30% 1 (1%) 5 1/1 (100%) 0

100 30% 15% 55% 10 (10%) 5 9/10 (90%) 0
100 15% 30% 55% 10 (10%) 5 10/10 (100%) 0
100 55% 15% 30% 10 (10%) 5 10/10 (100%) 4

100 30% 15% 55% 50 (50%) 5 31/50 (62%) 1
100 15% 30% 55% 50 (50%) 5 29/50 (58%) 2
100 55% 15% 30% 50 (50%) 5 20/50 (40%) 5

1000 30% 15% 55% 10 (1%) 50 10/10 (100%) 0
1000 15% 30% 55% 10 (1%) 50 10/10 (100%) 0
1000 55% 15% 30% 10 (1%) 50 10/10 (100%) 0

1000 30% 15% 55% 100 (10%) 50 94/100 (94%) 0
1000 15% 30% 55% 100 (10%) 50 92/100 (92%) 0
1000 55% 15% 30% 100 (10%) 50 95/100 (95%) 0

1000 30% 15% 55% 500 (50%) 50 386/500 (77%) 0
1000 15% 30% 55% 500 (50%) 50 335/500 (67%) 0
1000 55% 15% 30% 500 (50%) 50 205/500 (41%) 5

Table 1. Detection results using the simulated data sets

Figure 4. Size of clusters in data set with 50%
compromised hosts

5. Future Work

For a practical implementation, several changes to the
collection tool,sweeper, would need to take place. First,
the use of SSH may be inappropriate in some cases because
the system may not be running it or the administrator run-
ning the collections agent may not have access to the sys-
tem. An alternative to gathering the needed hashes would be

to distribute CDs withsweeper on them. System adminis-
trators can run the CD on their hosts and send the collected
data back for analysis.

Testing these theories on a large scale network would
be useful. The lack of statistics for the numbers of com-
promised systems and patch frequency made it difficult to
judge if our results properly reflect reality.

Hash values are useful because they provide unique val-
ues for a file, but they are limited because they do not show
how different two files are. Measurements other than hash
values should be investigated for this type of analysis. Static
analysis techniques on executables, such as flow graphs and
system call lists, could yield better clustering results.

Another possible expansion upon our existing work
would be that of multiple thresholds. Several thresh-
olds would be specified to the clustering function and
clusters are returned with a priority. This would allow ad-
ministrators to prioritize the order in which they investigate
the hosts.

6. Conclusion

In this paper, we presented techniques using clusters of
hosts to detect the modification of files. These techniques
are most useful in large-scale environments where there
are a minority number of compromised hosts. However the
methods presented can be modified via input parameters, to

work well in other situations. This procedure does not need
signatures of every operating system and patch level.

Overall our results showed that the detection rate was
high when the threshold was set at an appropriate level and
a minority of the systems were compromised. The threshold
being used for our trials was inappropriate when the num-
ber of compromised hosts was large, which caused a higher
number of false positives and a lower detection rate. De-
spite this, the overall clustering technique was still success-
ful in that it reduced the number of systems needed for a
representative sample.

Appendix

Below is a listing of our schema (implemented using
MySQL) for sweeper. It should be noted that this schema
is a variable one, in that the exact structure for a table is
not known untilsweeperis run, and the applications want-
ing to be surveyed are known.

CREATE TABLE tbl_name (
hostname TEXT NOT NULL,
app1 VARCHAR(64),
...
appN VARCHAR(64)

);

Where tbl name is the result of running the command
uname -msr (or something similar for machine with-
out the uname binary) and hostname is the host speci-
fied in the hosts list. app1-appN have a 1-1 correspon-
dence with applications listed in the applications list, and
the value is the md5 hash.

References

[1] B. Carrier. The Sleuth Kit, 2003. Available at:
http://www.sleuthkit.org/sleuthkit/.

[2] Cyber Abuse. Rootk(it)ID Project, 2003. Available at:
http://rk.cyberabuse.org/.

[3] GNU. Textutils, 2003. Available at:
http://www.gnu.org/directory/GNU/textutils.html.

[4] HashKeeper. HashKeeper Databases, 2003. Available at:
http://www.hashkeeper.org.

[5] The Honeynet Group.Know Your Enemy, 2003. Available
at: http://www.honeynet.org.

[6] J. Kornblum. MD5 Deep, 2003. Available at:
http://md5deep.sourceforge.net/.

[7] The MathWorks. Matlab, 2003. Available at:
http://www.mathworks.com/.

[8] N. Murilo and K. Steding-Jessen.chkrootkit, 2003. Avail-
able at: http://www.chkrootkit.org.

[9] National Institute of Standards and Technology (NIST).Se-
cure Hash Standard - FIPS PUB 180, May 1993.

[10] National Institute of Standards and Technology (NIST). Na-
tional Software Reference Libarary, 2003. Available at:
http://www.nsrl.nist.gov.

[11] R. Rivest.The MD5 Message-Digest Algorithm, April 1992.
Available at: http://www.ietf.org/rfc/rfc1321.txt.

[12] RPM. RPM Package Manager, 2003. Available at:
http://www.rpm.org/.

[13] Security Focus.Incidents Mailing List, 2003. Available at:
http://www.securityfocus.com.

[14] Sun Microsystems. Solaris Fingerprint Database,
2003. Available at: http://sunsolve.sun.com/pub-
cgi/fileFingerprints.pl.

[15] Tripwire Inc. Tripwire, 2003. Available at:
http://www.tripwire.com.

