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Abstract— We introduce CAT, a constraint-aware teleop-
eration method that can track continuously updating 6-
DOF end-effector goals while avoiding environment collisions,
self-collisions, and joint limits. Our method uses sequential
quadratic programming to generate motion trajectories that
obey kinematic constraints while attempting to reduce the
distance to the goal with each step. Environment models are
created and updated at run-time using a commodity depth cam-
era. We compare our method to three additional teleoperation
strategies, based on global motion planning, inverse kinematics,
and Jacobian-transpose control. Our analysis, using a real robot
in a variety of scenes, highlights the strengths of each method,
and shows that the CAT method we introduce performs well
over a wide range of scenarios.

I. INTRODUCTION

Deployment of mobile manipulators in human settings

could be accelerated by including human-in-the-loop system

components. Teleoperation could be used for the more-

difficult components of a task, leaving the rest to auton-

omy, or as a fallback option if autonomy fails. However,

teleoperation can be tedious and difficult. Highly-articulated

arms often have non-anthropomorphic configurations, non-

intuitive workspaces and joint limit constraints. Controlling

such arms is made more difficult when trying to also avoid

collisions with objects in cluttered human environments.

One way to address this problem is to create tools

that leverage autonomous capabilities even during operator-

guided motions. In this paper, we explore how to use control

and planning methods to allow an operator to command

an end-effector pose without worrying about kinematics or

collision avoidance, leaving those tasks to the robot. Along

the way we introduce CAT, a locally-optimal trajectory gen-

eration strategy based on sequential quadratic programming.

A. Problem Description and Goals

Our problem set-up includes a robot equipped with a

dexterous (7-DOF) arm. A remote operator controls the

robot’s arm by moving a Cartesian end-effector goal pose,

and the robot continuously tries to track the current goal.

Focusing on applicability to complex tasks in unstructured

and cluttered environments, the problem is set up as follows:
r The goal is specified as a 6-DOF gripper pose, allowing

for general end-effector movement while not requiring the

operator to reason about the kinematics of the arm.
r The operator can continuously update the goal, without

first waiting for the robot to achieve previous goals.

r The robot does not have a pre-constructed map of

obstacles in the environment, but instead maintains a

continuously-updating model of obstacles using a live

stream of data from its sensors (e.g. Kinect depth camera).

Our goal in this paper is to compare methods for tracking

the end-effector goal specified as above, while enabling

the user to focus on task completion rather then joint-level

constraints. At each time step, the chosen arm control method

takes as input the current configuration of the arm as well as

the current goal pose, and outputs joint torques. In designing

our arm control methods, we aspire to the following goals:
r Tracking: the end-effector should track the goal pose.

When the goal is unachievable (as defined by the con-

straints below), the end-effector should follow as closely

as possible.1

r Collision avoidance: the robot should avoid undesired

collisions anywhere on the arm.
r Joint limit avoidance: the arm configuration should avoid

having joints close to or against their limits, to increase

manipulability and make future goals easier to achieve.

B. Contributions

This work is the first, to the best of our knowledge, to

examine the problem of tracking a continuously-updating

6-DOF end-effector pose while avoiding contact with a

volumetric model generated in real-time from visual sensing.

We propose a constraint-aware teleoperation (CAT) con-

troller based on sequential quadratic programming which

enables us to meet the tracking and obstacle avoidance goals

set forth above. In order to analyze the performance of

CAT, we implemented three other teleoperation strategies for

comparison, based on extensions to established arm-motion

methods:
r Joint-space global motion planning (MP), using sampling-

based planning to continuously replan as the goal changes.
r Collision-aware inverse kinematics (IK), combining IK

for the goal pose, joint-space interpolation, and collision

detection to find a collision-free trajectory.
r Jacobian transpose torque control (JT), with no additional

constraint or collision avoidance capabilities.

In our experimental section we quantify and compare the be-

havior of each approach over a common set of experiments.

1The exact definition of “closeness” may be task dependent; this paper
assumes end-effector Cartesian pose error is the dominant factor.



II. RELATED WORK

Our work draws from many areas of research in teler-

obotics, including control, haptics, and motion planning.

Dragan and Srinivasa [6] formalized the “do what I mean”

problem in teleoperation by defining an arbitration or policy-

blending component of the control loop. The CAT method

(and each alternative) can be viewed as an arbitration strategy

where the user provides input, the robot “predicts” geometric

constraints from sensor data, and CAT creates a motion

that attempts to satisfy both. Unlike [6], however, we are

concerned with general arm motion rather than specific task

prediction.

Control methods in telerobotics typically compute torques

that “pull” a system toward one or more goals while pushing

it away from obstacles. Potential fields [12] are one such

method; circular fields [7] are better at avoiding local min-

ima. Sentis and Khatib [28] outline a method for hierarchical

control of task goals and constraints in which each goal is

achieved as closely as possible using artificial potential fields

in the nullspace of all higher-priority goals. Passenberg et al.

[23] provides an excellent summary of several methods for

improving bilateral teleoperation by adapting controllers to

the environment, operator, or task.

We draw some inspiration from haptic rendering methods;

we use a kinematic “proxy” for the robot state, and the pose

error is expressed through a virtual-coupling [4]. (Our system

can render the virtual coupling forces to the operator through

a haptic device, but this paper does not explore that aspect.)

Since we use a proxy and a sensor-based environment model

to compute motions, our system is a type of model-mediated

teleoperation [20]. In this context our motion constraints are

also a form of forbidden-region virtual fixtures [1] created

in real-time from sensor point clouds. Mitra and Niemeyer

[19] used constraints from model-based geometric collision

detection to avoid self-collisions and generate haptic force

feedback while teleoperating two 6-DOF arms, but they did

not do any environmental collision avoidance.

Randomized motion planning in arm configuration space

is very popular in autonomous robot systems [5], but it has

only recently reached the speed necessary for responsive

performance with continuously updating goals. Hauser [9]

tested a motion planning approach for teleoperation of 3-

DOF tasks that is very similar to the MP method we use;

however, our method uses 6- DOF end-effector goal poses,

and is implemented and tested on a real robot using live

sensor data for collision avoidance. Knepper et al. [13]

proposed a hierarchical planning method to greatly improve

responsiveness, using a rough global planner to guide a local

planner.

Several recent studies have used sequential quadratic pro-

gramming methods for fast generation of robot motion plans,

though none have used these methods in teleoperation of

a real robot or with an emphasis on real-time collision

avoidance. Posa and Tedrake [25] focused on the problem of

planning through rigid-body contact, applied to generation of

walking trajectories; Werner et al. [29] similarly optimized

walking motions. Lampariello et al. [15] created optimal

trajectories for catching a ball in real-time, demonstrated in

simulation. Pham and Nakamura [24] demonstrated trajec-

tory deformation and motion stitching in response to new

motion goals. Finally, Schulman et al. [27] showed robust

motion-planning using a similar formulation to ours, but

they (and the other strategies above) spend time obtaining

global trajectories because they are designed for use in

autonomous robotic systems. In our context, we assume the

human operator fills the role of a “global planner,” so CAT

creates local plans at a rate one order of magnitude higher

than those in [27].

Most similar to our work, Jain et al. [11] used sequential

quadratic programming to enforce joint limit and contact

constraints while trying to reach a 6-DOF target. The contact

constraints in their work are generated using force sensors

and are intended to limit (but not eliminate) contact with

obstacles. This strategy is complementary to ours; visual sen-

sors alone cannot predict collisions with invisible or occluded

obstacles, while force sensors alone cannot avoid contact

with fragile or light obstacles for which even minor contact

can be disastrous. Using a full collision map generated by

visual depth sensing allows the CAT method to compute a

multi-step trajectory (Sec. IV-D), producing smoother and

faster motion. Detecting contact points only through force

sensing means that the robot has no geometric model of

obstacles before hitting them and thus cannot predict contacts

in advance.

III. TELEOPERATION SYSTEM OVERVIEW

We begin with an overview of our system in order to

provide context for the teleoperation strategies described

later.

The input command is a 6-DOF end-effector pose read

from the operator at 30 Hz. In our implementation, the pose

can be commanded through mouse interaction with on-screen

controls, or through a 6-DOF Razer Hydra input device.

Each teleoperation strategy is responsible for processing

this input pose at every time step and sending a command to

the appropriate low-level controller. Fig. 1 shows the system

block diagram for three of our strategies: CAT (Sec. IV),

MP (Sec. V-B), and IK (Sec. V-A). These three methods

all generate a trajectory of joint configurations which is

passed to a low-level joint trajectory follower. Quintic splines

between joint trajectory points are computed and passed to

a standard joint impedance controller. By contrast, the JT

method (Sec. V-C) simply passes the goal pose directly to

a low-level Jacobian-transpose controller not shown in the

diagram. After processing a goal command, each strategy

restarts using the most recent goal pose. Section IV-D

describes how we ensure continuity of trajectories while the

robot arm is in motion.

We assume that the robot has joint encoders for measuring

its own kinematic configuration, and one or more sensors

for perceiving the environment. Our implementation uses a

commodity depth camera to build a continuously-updating

volumetric representation of the world, which is used for



Fig. 1. Block diagram showing the hierarchical control structure for the

CAT, MP, and IK methods. The number of joints is denoted by n, and N

is the number of trajectory points.

predicting (and avoiding) collisions in the CAT, MP, and IK

strategies as decribed in section IV-B.

IV. CONSTRAINT-AWARE TELEOPERATION STRATEGY

The first method we describe is the Constraint-Aware

Teleoperation (CAT) controller, one of the main contributions

of this study. In general terms, CAT creates joint trajectories

by computing incremental joint position changes that reduce

the value of a cost function while simultaneously obeying

a set of constraints. It is designed to be used in a local

fashion, quickly computing small steps away from a known

joint configuration, but not expected to be globally optimal.

We argue that in the domain of teleoperation it is valuable to

have an option that combines responsiveness and constraint-

awareness.

We formulate the problem as an instance of convex

optimization, namely a quadratic program (QP) with linear

inequality constraints that operates on a (time-varying) lin-

earized model of the robotic system. The solution to the

QP represents a small incremental change to the state of

the system. The QP is reformulated after each step due to

the nonlinear kinematics and because each new kinematic

configuration may result in new constraints due to predicted

contact with the environment. We note that our problem is

formally an instance of linear model predictive control [21]

(MPC) where each step has a time horizon of length one.

We note that each iteration of the QP solves for a single

step, but in each command period the QP is run many times2

to create a continuous trajectory (see section IV-D).

A. Quadratic Program Formulation

We wish to compute joint deltas, ∆q, that move us closer

to a goal expressed as a quadratic objective function. In our

QP, the optimization variables are ∆q ∈ R
n, where n is

the number of joints, and the objective is a sum of quadratic

functions of the optimization variables. In particular, our QP

objective is composed of three parts:

2We use CVXGEN, a tool that generates highly-optimized, problem-
specific C-code (www.cvxgen.com) [18]. This allows each QP step to be
solved orders of magnitude faster (around 200-400 µs) than if using a
generic solver, allowing us to take small steps (for fine-grained constraint
checking) while computing a longer trajectory in each period.

1) Move toward a goal pose: For a desired Cartesian goal

pose, xd ∈ R
6, we compute the necessary pose change, ∆xd,

from the proxy end-effector pose. Since our linear system

model is only valid for small displacements the error is

clipped to a maximum distance and angle of rotation when

computing ∆xd. With the end-effector Jacobian J ∈ R
6×n

and a weighting matrix Wx ∈ R
6×6, the objective term is:

(∆xd − J∆q)T Wx (∆xd − J∆q). (1)

2) Discourage large joint changes: This term encourages

the optimized variables to stay small. Even for a small

Cartesian movement, certain configurations can result in

solutions with large joint displacements, which is an artifact

of the linearized system. Defining a diagonal weighting

matrix W∆q ∈ R
n×n, the objective term is

∆qT W∆q ∆q. (2)

3) Reach a given joint posture: This term encourages the

joints to move toward a desired vector of joint positions, qd.

A “passive” way to use this term is to set qd = (qmax +
qmin)/2, which has the effect of biasing each joint toward

the center of its workspace and away from joint limits.

Alternatively, qd can be actively commanded; for example,

if qd is set to the value of an IK solution and the other

objective terms are given zero weight, this term basically

turns the entire CAT controller into an IK controller that

obeys constraints. Defining the weighting matrix as Wq ∈

R
n×n, the objective term is:

((q +∆q)− qd)
T Wq ((q +∆q)− qd) (3)

The QP constraints are defined as follows:

1) Obey joint limits: Simply put, the incremental joint

change may not push any joint past its position limits.

qmin ≤ (q +∆q) ≤ qmax (4)

2) Do not move in the direction of contact: After each

step, the collision detector checks for contact with the

environment model, providing a point, ci ∈ R
3, and normal,

ni ∈ R
3, for each contact. On the subsequent step this

contact set is used to constrain the change in position of

each contact point. The velocity Jacobian is computed for

each contact point and is denoted Jci ∈ R
3×n. We assume

that motion perpendicular to the contact normal is acceptable,

but the point of contact may not move further into collision:

nT
i (Jci∆q) ≥ 0. (5)

Additional objective terms or constraints are certainly

possible. For example, while the contact constraints used in

this paper can be viewed as an example of forbidden-region

virtual fixtures [1], terms could be added to the objective to

help a user follow a particular path or track a moving object.



Fig. 2. Left: a teleoperated robot performing a manipulation task in a
cluttered environment. Right: the scene as seen by the operator, with visual
controls (colored rings and arrows) used for specifying end-effector pose
goals, and the robot’s collision map temporarily overlaid for visualization.

B. Collision Detection

Collision detection is a key component of the CAT, MP,

and IK strategies. Our system uses a commodity depth

camera to build a continuously-updating volumetric repre-

sentation of the world. Specifically, we use the Flexible

Collision Library (FCL) [22] to perform collision checks

with an octree representation of the environment maintained

using the Octomap library [10]. An example of a real-world

scene and the corresponding Octomap is shown in Fig. 2.

We note that the robot’s body is filtered out of the point

cloud data before updating the Octomap; filtering is reliant

on reasonably good forward-kinematics and a “padding”

parameter around the robot links.

Since the Octomap provides a quantized world model,

normals provided by the mesh-octree collision detection al-

gorithm are typically aligned with the faces of the underlying

octree cells. To help smooth the normals, (and hence, the

constraints), our implementation uses a normal-refinement

step, illustrated in Fig. IV-C. Each contact point is used

to query the center-points of nearby occupied octree cells.

Those points are assigned compactly-supported radial basis

functions that are used to estimate an implicit field at the

contact point, yielding a more accurate normal. This is a

direct application of the algorithm described in Leeper et al.

[17], with the metaball radius set to 1.5 times the octree

cell size. We note that collision detection is by far the most

expensive part of the trajectory computation process, taking

on the order of 1 ms per check in our implementation.

C. Step Validation

In the CAT controller, collisions are computed after each

QP step. The updated kinematic state is used to find the

contact points and normals between the robot model and the

environment model. Steps that have taken the robot into a

colliding state can be accepted or rejected depending on the

tolerance for predicted collisions. The contact information

is used to formulate the constraints on the next QP step,

which will prevent further motion into the contact constraint.

We note that cases of desired contact, such as between the

gripper and the environment, can be handled by disabling

collision checking for links or objects that should not be

constrained.

Fig. 3. Contact normals reported for contact with occupied cells in
the Octomap (orange boxes) are re-computed against an implicit metaball
surface representation (wavy red surroundings). This helps to mitigate the
“stair-step” nature of the Octomap and provides better constraints.

D. Generating Suitable Motion Trajectories

The CAT, MP and IK methods each generate joint-space

trajectories which are executed on the robot by a low-level

1kHz joint impedance controller. In general, the following el-

ements complicate the relationship between responsiveness,

speed, and safety in our teleoperation strategies:

1) Velocity Limits: The trajectory of joint motions gener-

ated via CAT (and the IK method) is checked for collisions.

The number of steps is limited by computation time in each

command period, so the robot has a finite horizon in which

it can predict constraints. Hence, the robot must limit joint

velocities such that each joint can come to a complete stop

at the end of any given trajectory. Otherwise, this could lead

to an inevitable collision state, where the robot is unable to

stop in time to avoid obstacles that appear suddenly.

Since longer computed trajectories will result in higher

allowable movement speed, we run the CAT and IK methods

at 30 Hz (which is the update rate of the user command input)

and compute as many steps as possible in the allotted time

(approximately 15-20 in our implementation), as opposed to

sending a single trajectory point at a time at a much faster

rate (about 400 Hz on current hardware). This is a major

difference from the MPC used in [11], which must compute

a single point at a time and move slowly since the collision

detection comes from force-contact sensors and cannot be

predicted.

2) Continuity: The trajectory that was most recently sent

to the joint trajectory follower will be partially executed by

the time a new trajectory result is available. Hence, it is

necessary to ensure continuity of commanded joint positions

and velocities when splicing in the new trajectory.

Each strategy is responsible for returning a result before

a time limit, tf , at the end of each command period. The

starting state, q, for the computation is picked to be the first

point in the previous trajectory that was scheduled to be

executed after tf . Assuming the trajectory is computed in

time, it can be spliced into the execution queue.

If a trajectory is not computed in time for any reason,

the result must be discarded altogether. To prevent repeated

failure due to insufficient time, we use an adaptive command

period (similar to [8]), allowing more time if the previous

computation failed and less time if there was time to spare.



We note that this adaptive timing is most important for the

MP strategy, since the incremental nature of CAT and IK

means they can work within a given time limit.

V. ALTERNATIVE METHODS

We implemented three established approaches to arm tele-

operation for comparison to our CAT method. Each method

represents a different technique for approaching the prob-

lem stated above, each with advantages and disadvantages,

depending on the situation.

A. Collision-Aware Inverse Kinematics (IK)

In each command period (at 30 Hz), for the current end-

effector goal pose, we look for a set of collision-free joint

angles that achieve the goal. For a robot arm with 7+ degrees

of freedom, there is an infinite set of joint angles that place

the end-effector at any reachable goal. The IK solver for

the 7-DOF arm on the PR2 robot searches over the space of

redundant joint angles by iterating over the range of possible

values for one joint and using an analytical IK solver to

rapidly compute the other six, checking the resulting config-

uration for collisions until a collision-free solution is found.

The search is formulated to avoid large changes in joint

values when possible, to avoid unpredictable arm motions

due to small changes in commanded end-effector pose. If

the IK search is successful, we create a trajectory to the goal

using linear interpolation in joint-space. A collision check is

performed for each step in the interpolation, ensuring the

motion will avoid collisions. If the command period will be

exceeded by checking the entire trajectory, a partial trajectory

is used (section IV-D), and the computation picks up again

during the next command period.

B. Motion Planning (MP)

Motion planning can be used to compute continuous,

collision-free joint space trajectories that connect start and

goal configurations of a robot [16]. For higher dimensional

systems (e.g., robot arms), sampling-based planning algo-

rithms are starting to approach the computational efficiency

and responsiveness needed for arm teleoperation. Our MP

method uses RRT-Connect [14], a bi-directional sampling-

based planner implemented in OMPL [5], to compute a tra-

jectory to the most recent goal configuration (which is found

using collision-free inverse kinematics as described above).

Recent benchmarks [3] show that RRT-Connect works well

in typical manipulation settings. We found that other bi-

directional planners (e.g., SBL [26]) produce similar results,

while single-tree planners significantly increase planning

times. Due to their randomization, sampling-based planners

typically produce jerky, unpredictable paths. To alleviate this

problem we also run a standard randomized path shortening

algorithm on every computed motion plan.

Motion planning has the advantage of operating in the

global configuration space, and is able to find paths that

take locally error-increasing steps in order to escape local

minima. The downside is the additional computation time

needed; the MP method was run at a nominal rate of 4 Hz

(with adaptive timing as needed). Unlike previous work using

motion planning in a teleoperation task [9], our analysis is

applied to a real robot, uses real sensor data for collision

avoidance, and tracks goal poses in all 6 DOF of translation

and rotation.

C. Jacobian-transpose Control (JT)

This method tracks the Cartesian goal using a standard

torque control law of the form

τp = JT f , (6)

where f is a wrench computed from the error between the

actual gripper pose and the goal pose at 1 kHz. New goal

poses are sent to the controller at 30 Hz.

Since 7-DOF arms have one redundant degree of freedom

after constraining the end-effector pose, we additionally bias

the arm towards a desired neutral posture (which could be

robot- or task-dependent, or specified by the operator) by

adding nullspace joint torques (τn) to the controller:

τn = k ∗ (I − J†J) ∗ qe (7)

where qe are the joint differences between the current and

desired posture, J† is the Jacobian pseudo-inverse, and k is

a vector of joint gains. The final torques sent to the joints are

a combination of the pose-tracking torques and the nullspace

posture torques:

τ = τp + τn (8)

In addition to goals such as posture control, Jacobian-

transpose controllers can explicitly be made somewhat

collision-aware by layering goals, each in the nullspace of

the last. However, avoiding unwanted collisions by making

it a secondary goal in the nullspace of a pose goal does not

prevent collisions from happening if the pose goal cannot be

reached without colliding. Conversely, making a pose goal

a secondary goal in the nullspace of a goal that only avoids

collisions can prevent the end effector from reaching the pose

goal when potential collisions are nearby, even if the arm

could be moved into a configuration that accomplishes both

goals together. Chiaverini [2] explores some of these issues

in task-priority and redundancy resolution.

Even in non-collision-aware form, a Jacobian-transpose

control law is often used for teleoperation when trying to

control the forces exerted at an end effector. Adding an

impedance matrix allows the controller to exert different

maximum forces at the end effector in various task-space

directions, for tasks such as wiping a surface or turning a

crank. For example, if the contact normal for a surface in

collision with the end-effector is known, it is possible to

change the impedance matrix to better avoid pushing with

high force into the surface, while sliding along it with high

stiffness in a tangential direction. For our experiments, we

do not change the impedance matrix according to contact

normal, but we do limit the overall magnitude of the desired

Cartesian wrench.

Unlike our Collision-Aware IK method, Jacobian-

transpose controllers are good at getting close to unreachable



goals or goals in collision, since a Cartesian pose goal does

not need to be feasible in order to result in valid incremental

joint torques according to the Jacobian-transpose control law.

VI. EXPERIMENTAL RESULTS

We implemented, tested and compared all the teleoperation

methods described above on a variety of scenes and trajecto-

ries. The hardware consisted of a PR2 robot, equipped with

a 7-DOF arm. For environment sensing we used a Kinect

sensor mounted on the robot’s head.

For each scene, we used one of the two input devices

described in Sec. III (mouse and Razer Hydra) to record a

trajectory of end-effector goals over time. Starting from the

same initial robot pose, the recorded goal trajectory was then

played back for each of our teleoperation methods, and the

resultant arm motion was recorded. In addition, we used a

6 DOF force/torque sensor mounted in the wrist to record

end-effector forces from contacts with the environment. We

note that all collision-aware methods discussed in this paper

use only the data from the Kinect to build obstacle models.

Furthermore, even though all the collision-aware methods

reason about collisions anywhere on the arm, our hardware

only permitted us to record collision forces and torques on

the end-effector.

The first scene (fig. 4a) did not contain any obstacles.

While the focus of our methods is efficient operation in

cluttered settings, numerous tasks will contain at least parts

of the trajectories where no obstacles play a role, and good

tracking in these region is important for overall efficiency.

We present two cases: a step input where the goal pose is

directly set to the desired final pose of the gripper; and a

continuous input where the goal is moved from the starting

location of the gripper to its desired final pose over the

course of approximately 1.5s. We believe the second case to

be more representative of real-life teleoperation, where the

operator continuously updates the goal and moves it towards

the desired location.

We notice that all four methods track the desired pose. We

focus in more detail on two metrics: response time (time after

a new goal is specified until the arm starts to move) and total

time (needed to reach the goal). As expected, JT achieves the

lowest times for both metrics, while MP is the slowest. In the

step input case, CAT shows lower response time but higher

total time than MP; in the continuous input case, it achieves

lower times on both metrics, ranking immediately behind JT.

Fig. 4b looks at a case where the direct path to the

specified goal is blocked by obstacles (in this case, boards

clamped to the table). As seen in the tracking results, the JT

method gets physically stuck on the boards due to friction,

and the IK method detects the impending collision along the

path and stops; neither method reaches the final goal. MP is

able to plan a path around the obstacles, though it has some

trouble following the continuously moving goal as it passes

through infeasible locations. CAT performs the best in this

scenario as it is able to follow the goal quite closely while

“sliding” up and over the virtual constraints without actually

touching the boards (as shown in the force data).
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Fig. 4. (a) Response to free-space motion between a starting robot pose
(transparent) and the goal end-effector pose (opaque). The top plot shows
tracking results for a step input, showing the distance from the starting pose
over time, for both the goal pose and the end-effector pose achieved by each
teleoperation method. The bottom plot shows results for a continuous input.
(b) Motion across a set of rigid boards 9 cm wide, 6 cm high, and 24 cm
apart, in response to a continuous input translation.

We note that in the scene of Fig. 4b the obstacles do

not create a local minimum. However, in a case where the

straight path to the goal is perpendicular to the obstacle

surface (Fig. 5a), local methods such as JT and CAT are

unable to escape. MP is able to plan a path that temporarily

increases tracking error in order to eventually reach the goal.

Fig. 5b demonstrates how joint limit constraints affect the

presented methods. In this common scenario, the operator

wishes to move the gripper from pointing down to pointing

up. Due to the wrist pitch joint limit and the resulting

singularity when the wrist is straight, the “correct” way to

do this is to rotate the forearm. However, many operators

who are unfamiliar with the kinematic limits, the effect of

friction in the mechanism, or the implications of singularity

avoidance instead try to pitch the wrist up through its joint

limit. To investigate this source of frustration, the goal pose

was rotated through this wrist pitch limit using a continuous

input. By tracking the input directly, JT gets stuck against

the wrist pitch joint limit with the gripper in a horizontal

pose. In contrast, CAT, MP, and IK are able to keep the arm

away from joint limits and reach the goal (the final pose as

achieved by MP is shown in the image).

Fig. 5c shows the case where part of the goal trajectory is

outside the robot’s workspace. Here we notice that MP and

IK simply stop tracking while the goal is unreachable (from

4 seconds to approximately 8.5 seconds into the trajectory).

In contrast, JT and CAT track the goal along the edge of the
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Fig. 5. Additional constrained teleoperation examples. a) Collision
constraint perpendicular to straight line motion to goal. b) Straight path
to goal hits joint limit (starting with gripper pointing down and ending with
gripper pointing up). c) Part of the goal trajectory is outside the robot’s
workspace. In this case, end-effector goals outside the workspace are shown
as disembodied grippers; closest reachable gripper pose for the goal in
the bottom right is shown as a transparent robot posture. (Plot colors are
consistent across all figures.)
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Fig. 6. a) Tracking results for reaching into a shelf with a collision-
free goal trajectory. b) Results for exiting the shelf with a colliding goal
trajectory.

workspace. Some single-tree motion planners [30] can move

toward infeasible goals; while we selected a bi-directional

planner for improved performance in most cases, a logical

extension would be to run multiple planners in these cases.

To show off more general, overall behavior in a typical

cluttered scene, Fig. 6 plots tracking results for reaching into

and retreating out of the cluttered shelf shown in Fig. 2.

The goal trajectory for the reach in was demonstrated with a

Razer Hydra, with the operator being careful to select goal

poses that were not colliding. Tracking error is shown in

Fig. 6a. In this case, JT performs best because the goal poses

happen to be collision-free. CAT follows close behind, with

the larger tracking error due to joint limit avoidance. IK gets

stuck because of momentarily infeasible goals. MP follows

the initial part of the trajectory, then stops, and eventually

moves to the goal (the plot is truncated to better show the

behavior of the other methods). Fig. 6b shows results for the

retreat, in which the goal trajectory collides with the shelf.

JT again gets there fastest, but hits the shelf with high force

(peak of 35 N) on the way. CAT follows close behind without

hitting the shelf, IK gets stuck, and MP eventually gets there.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we focused on the problem of assisted

teleoperation in unstructured environments based on visual

sensing. We introduced CAT, a constraint-aware teleopera-

tion controller based on sequential quadratic programming,

which continuously attempts to reduce tracking error while

taking into account constraints such as collisions or joint

limits.

Manipulation in cluttered environments is by nature a

highly-constrained task. In our experiments, we used a real

robot and real sensor data collected during task execution to

explore a number of these constraints. Our analysis included

the CAT controller, as well as three additional methods:

global motion planning with a continuously-updating goal

pose (MP), collision-aware inverse kinematics with joint-

space interpolation (IK), and Jacobian-transpose control (JT).

Our results show that each of the teleoperation methods

has desirable characteristics in some situations. The JT

approach is the most responsive and fastest to reach the

goal in less-constrained settings, though our implementation

lacks collision avoidance capabilities. (We note that, in this

study, we treated all collisions as undesirable. Assuming that

the robot can differentiate between undesired and desired

contact, a teleoperation controller would benefit from the ad-

ditional ability to regulate desired contact.) The IK approach

is also very responsive in less-constrained settings, avoids

colliding with itself and with the environment, and is better

than JT at dealing with joint limit constraints. However, it

easily gets stuck when obstacles are in the way or goals are

infeasible. Since the MP method is based on global motion

planning, it is the only one that will reach the goal when the

others get stuck in local minima. However, it is also the least

responsive of those tested, and current implementations also

lack the ability to provide a “best effort” approach in cases

where the goal pose is unreachable.

Based on the presented results, we believe that the CAT

controller provides the best balance in terms of our stated

goals: it can track constrained end-effector goal poses with

a fast response, including providing “best effort” approaches

to infeasible goals, avoid undesired collisions with itself and

with the environment, and deal with joint limit constraints.

With an operator in the loop to provide high-level motions

that can take the robot around major obstacles that would

cause the CAT controller to get stuck in local minima, we

believe that the CAT controller is the overall winner in most

situations.



However, our results also suggest that complete manip-

ulation tasks could benefit from the strengths of each of

these methods in different situations. An interesting approach

for future studies would be to investigate efficient methods

for combining or switching controllers based on context.

However, asking the operator to actively select situationally-

appropriate teleoperation methods requires a higher level of

expertise and introduces delay during a task.
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