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Methods for Computing and Modifying
the LD V Factors of a Matrix

By Philip E. Gill, Walter Murray and Michael A. Saunders

Abstract.   Methods are given for computing the LDV factorization of a matrix B and

modifying the factorization when columns of B are added or deleted.   The methods

may be viewed as a means for updating the orthogonal (LQ) factorization of B with-

out the use of square roots.   It is also shown how these techniques lead to two nu-

merically stable methods for updating the Cholesky factorization of a matrix follow-

ing the addition or subtraction,respectively, of a matrix of rank one. The first method

turns out to be one given recently by Fletcher and Powell; the second method has
not appeared before.

1. Introduction.  Any m x n matrix B of rank m  (m < n) has an LQ factoriza-
tion of the form B = [L 0] Q, where L is a nonsingular lower-triangular matrix and Q
is orthogonal (QTQ — QQT = /).  The columns of L and the first m rows of Q are
uniquely defined, apart from sign.  Let l(i be the diagonal elements of L and let a diag-
onal matrix D = diag(</j, d2, ... , dn) be defined by

lft,      i = 1,2, ... ,m,
1,      i = m + 1,...,n.

An LDV factorization of B may then be written in the form B = [L 0]DV, where L
and V are defined in terms of L, Q and D by the equations

[L0]D1/2 = [L0],      Dll2V = Q.

The diagonals of L are unity and the rows of V are orthogonal.  The following relations
are easily proved:

(la) VVT=D-\
(lb) VTDV = I.

Henceforth we shall use the notation L for both L and L above, since it will always be
clear from the context whether or not L has a unit diagonal.

In this paper we derive methods for computing the LDV factorization of a matrix
and methods for modifying the factorization when columns are added and deleted. The
resulting methods are described in Sections 3 and 4 and may be applied immediately to
the Simplex method for linear programming.  The motive for working with LDV factors
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1052 PHILIP E. GILL, WALTER MURRAY AND MICHAEL A. SAUNDERS

rather than LQ factors is that square roots are eliminated and the amount of computa-
tion and storage is reduced.

In Section 5 we show how these results lead naturally to two methods for com-
puting the Cholesky factors L and D of the matrix LDLT = LDLT + ozzT for some
vector z and scalar o.  The method for the case o > 0 turns out to be one given by
Fletcher and Powell (1973), while the method for the case a < 0 has not appeared be-
fore.

The keynote to this work is the construction of LQ factors for two elementary
matrices of the form

Mand   / - qqT

for given vectors p and q, where ||<7||2 = 1.  The special structure of these factors is
given in the Appendix.  Although the derivation of the recurrence relations involved is
relatively complicated, we emphasize that the recurrence relations themselves are very
simple.

1.1. Notation.   We shall use the notation M = M(p, ß, y) to denote a special
lower-triangular matrix constructed from the vectors p, ß and y according to

Mtj
0, /</,

7/-        i = 1,
[Pißr     i>j.

If the diagonal elements of M form the vector e = (1, 1, ... , l)r we shall write either
M = M(p, ß, e) or just M = M(p, ß).

The notation ||u|| will always mean the 2-norm ||u||2 = (vTv)ll2 of a vector v, and
a diagonal matrix D with diagonals d¡   (i = 1, 2, . . . , n) will be written D =
diâg(dx,d2, ... ,d„).

2. LDV Factors.  We have defined in Section 1 what will be called a proper LDV
factorization of a general rectangular matrix B.   For later use the notion needs to be
generalized in the following way.  Suppose that L is unit lower triangular, D is a diag-
onal matrix with positive diagonal elements, and V is a matrix such that

(2) B = [L 0]DV.

If there exist nonsingular diagonal matrices Dx and D2 such that the matrix Q = DXVD2
is orthogonal (unitary), then we shall call (2) an LDV factorization of B.   (In other
words we require that V can be transformed into an orthogonal matrix by simple row
and column scaling.)

We now define (2) to be a proper LDV factorization in the event that

Dx =D1'2    and    D2 =1,

in which case Q = D1^2 V and the relations
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COMPUTING AND MODIFYING LDV FACTORS OF A MATRIX 1053

VVT=D-1    and    VTDV = /

hold as stated in Section 1.
We shall be particularly interested in the case where some of the columns of B

are null.  Matrices B of this kind will always arise in such a context that they are expres-
sible in a form LDV such that, corresponding to each Be, which is null, Le- = e-,   Ve- =
e,,  eJVj = ej and De, = 0, where e- is the /th column of the identity matrix.  If D+ =
diag(dx, d2 , ... , d„) is defined by

then the relations VVT = (D+)~1 and VTD+ V = I hold in place of (1).  It should be
emphasized that when several columns of B are null, the LDV factorization is far from
unique; the particular form of the factorization LDV described above will arise in a
natural way in the algorithms we describe.

3. Computing the LDV Factorization of an m x m Matrix B.   Let A be a matrix
made up of/ columns of B and m - j columns of the zero matrix (initially we shall
not specify any particular ordering of the columns of A), and assume that the LDV
factorization of A, denoted by A = LDV, is known. We shall describe a method for
computing the LDV factors of the matrix A obtained by replacing a zero column of
A by a new column b.  This technique leads naturally to a method for computing the
LDV factorization of B since, if B0 denotes the zero matrix with factorization B0 =
LqDqV0, where L0 = I,  D0 = 0 and VQ = I, the columns of B can be added one by
one to B0.

From our remarks in Section 2, the diagonal matrix associated with the factoriza-
tion A = LDV has m -j zero elements and F has m - j columns of the identity matrix.
Let p be the vector such that Lp = b, and ps the first element of p such that ps ^ 0
and ds = 0.   Define

Ä = A + beTs

(that is, the column b is added into the sth position).  The recurrence relations we shall
derive are invalid if ps = 0.  However, if B is nonsingular it can be shown that there
exists at least one |p.| > 0 (otherwise the new column is a linear combination of those
that have already been processed).  Using the LDV factorization of Awe have

A = LDV + beT = L(DV + pej).

S'By definition, the sth row of V is es, giving

(3) Ä = HD + pef)V.
From Theorem A2 we have that the LDV factorization of D + peT is of the form

(4) D + peí = LDV,

where
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(5) L  =

1

Mi
Mi

1

P3ß2

Pßl Ps$2 Psßl

Ps+A     Ps+lß2      Ps+lß3

Ps+2ßl     Ps+2ß2     Ps+2ßl

(6)    V

Pmßl Pmß2 Pmßz

1-ßlPi
-ß2px 1 - ß2p2

~ß3Pl ~ß3P2 l~ß3P3

ßsPl -ßsP2 ~ßsP3
0 0 0

1

Ps+lßs     1

P*+2ß,     0     1

Pmßs      «     0

ßl

ß2

ßl

ßs-l

ßs

0     0     1

D = diag(dx, d2, ... ,dm)

= diag(dx,d2, ... ,ds_x, ds, ds+x, ... ,dm),

and the matrix (Z)"1")1'2 V(D+)~ll2 is orthogonal.  The vectors d and ß are generated
by the following recurrence relations:

(i)  define t0 = 1 ;
(ii)  for k = 1,2, ... ,s - I compute the following:   if dk = 0,then set vk = 0,

otherwise set vk = pk/dk,  tk = tk_x + vkpk,  dk = dktjtk_x, ßk = vk/tk;
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COMPUTING AND MODIFYING LDV FACTORS OF A MATRIX 1055

(iii)  define <?, = p2Jts_j and ßs = \/ps.
Substituting (4) in (3) gives A = LLDVV. From the orthogonality of (D+)1/2K(i>+)"1/;
we have

(7) V(D+)~1VT = (D+)~1.
Now

(VV)(VV)T = VVVTVT = V(D+)~lVT = (D+)-\   from (7).

Consequently, if we write VV = V,   D = D and LL = L, then we have a factorization
of A of the form required.

By adding each column of B in turn and using the results just obtained we can
generate a product form of the factorization (2). As the factorization proceeds, a new
element of the diagonal matrix D becomes nonzero and a new column of L and column
of V are defined.  Let D , V¡ and L  denote the matrices D, V and L defined at (4)
which are associated with the matrix made up of / columns of B.   Then we have

B = LxL2---LmDmVm--- V2VX,

or B = LDV, if we write L = LXL2 • • • Lm,   V = Vm • • • V2 Vx and D = Dm.
The important feature of the matrices Lj and V- is that they both can be con-

structed from the pair of vectors p and ß.  We shall show in Section 4.1 how their
special form can be exploited to obtain the solution of equations of the form Ly = z
and products of the form y = V-z.

3.1. Stability and Sparseness Considerations.   The general algorithm just given
could be numerically unstable if the columns of B were added in random order.  Just
as with LU factorization, some "pivoting" strategy is required to ensure that the new
column at each stage has a sufficiently large pivot element (ps above).  A preliminary
ordering of the rows and columns of B would reduce the amount of column inter-
changing required.  In the context of linear programming, the preassigned pivot pro-
cedures of Hellerman and Rarick (1971,1972) would be useful.

In general, the purpose of preassigned pivot procedures is to rearrange the rows
and columns of an arbitrarily sparse matrix before the factorization commences in
order to reduce the subsequent storage requirements. In mathematical terms we seek
permutation matrices Px and P2 such that the fill-in during the solution of the equa-
tions PxBP2y = Pxb, is less than that during the solution of Bx = b. The solution x
can be obtained from y using x — P2y. One useful rearrangement of B, in view of the
factorization being considered, is to choose Px and P2 such that PXBP2 is of the form

(8)
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This matrix is lower triangular except for the matrix B, defined as a bump. The lower-
triangular matrices Lx and L2 are known as the forward triangle and backward triangle,
respectively.  Hellerman and Rarick (1971 and 1972) have given two algorithms for
determining a further reordering of the matrix B. These algorithms give a matrix PXBP2
as in (8) together with a matrix B which is itself lower triangular save for further bumps
BX,B2, ... ,B (there may be any number), each of which is lower triangular save for
columns of nonzero elements called spikes.   For example, a bump /?■ could be of the
form

x     •      •      •      •     x
X        •         • • X

X        •        X X •       X

X X

X      X       - X X

X       X        • X X

with x denoting the nonzero elements.  Our example has spikes in the fourth and last
columns.

If we apply the LDV factorization to a matrix which has been obtained by apply-
ing the Hellerman and Rarick scheme to B, then significant savings in fill-in are achieved.
In this case, corresponding to a nonspike column, the L> is an elementary matrix and
the Vj is an identity matrix with its /th diagonal element replaced by 1/0-.  The number
of nontrivial F;'s is equal to the number of spike columns.

Rather than computing the LDV factors of B directly, there is an alternative strat-
egy which maintains numerical stability and at the same time improves the sparsity of
the factors.  It is:

(1) compute a triangular factorization B = LU, using Gaussian elimination with
column interchanges to preserve stability;

(2) use the above algorithm to compute an LDV factorization of U.   In this case
it is natural to add the columns of U in order from left to right.

The final result is a factorization of B in the form

B = LU = LLxL2'--LmDmVmVm_x •'• • Vx.

Note that since U is upper triangular the elements ps+ x, ... , pm are zero for each
factor Ls.

This strategy has been implemented and tested on some medium-scale linear pro-
grams.  The procedure P3 (Hellerman and Rarick (1971)) was used to specify an initial
row and column ordering for B.   (In practice only a few additional column interchanges
are then required to ensure stability in the LU factorization.)  The recurrence relations
defining the LU factorization of PXBP2 imply that fill-in occurs only in the spike col-
umns.  For example, the LU factorization of (9) is of the form

(9) Bi =
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X

X

X

X

X

X

X       X

X       X

X       X

X

The important facts are that
(a) the bulk of the LU factorization is in L, and
(b) U is almost strictly diagonal (except for the spikes).
In practice we find that there is virtually no further fill-in in the spike columns

during the LDV factorization of U   To summarize, this means that for a general sparse
matrix B (of the type encountered in LP) it is possible to compute an orthogonal fac-
torization B = LDV in product form, whose density is only slightly greater than that
of the triangular factorization B = LU. This is a surprising result.

4. Adding and Deleting Columns of B.   When combined, the two theorems in this
section show how the LDV factors of a nonsingular square matrix B can be modified
when one column of B is replaced by a new column.

Theorem 1 (adding a column).  Let B be an m x m nonsingular matrix and
let the m x (m + 1) matrix [B 0] have a proper LDV factorization [B 0] = [L 0]DV,
where L is unit lower triangular, D = diag(c?j, d2, ... ,dm, 1) and Dll2Vis orthogonal.
If a column as is added to B to give the matrix B, then B has a proper LDV factoriza-
tion B = [B a] = [L 0]DV, with

L = LM,   D = diag(c?j, d2 dm,a\),    V=VV,

where

Lp =as,    M = M(p, ß),   N = M(p, ß)1 - ßpT -RrX v =Li :}
and Dil2V is orthogonal.   The quantities d-, ß- and a2 are defined by the following
recurrence relations:

(10)

10(i) define t0 = 1;
10(ii) for j = 1,2, ... , m set

t, = tf_1 +pfldj,
dj=d/tj/tj_x,
ßj = P//W;

lO(iii) define a2 = \\tm.

Proof.   Adding the column to B gives

(11)        B= [50] +asem + x = [LQ]DV + LpeTm + x = [L0] (^ + [q]^ + 1),
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where p is the solution of Lp = as.  Now D1^2V is orthogonal and the last column of
[B 0] is zero; hence D1/2 V is really of the form

*»r-\J g.
where Q is the orthogonal matrix in the LQ factorization of B itself.  Since d\l\ x = 1
this means that eJn + xV = eT1+x.  Substituting into (11) gives

B = [L 0] [D + m + l V= [L 0]LDVV = [L 0]DV,

where we are now using the corollary of Theorem A2 to write down an LDV factoriza-
tion of D + [P)]sJn + x. Using the notation of the corollary of Theorem A2,we have

(a)

so that

(b)
(c)

[L 0] = [L 0]L = [L 0]
M    0

lßT    lJ [LM 0],

L = LM;     D =D;

V = vv.
The structure of V, M and TV and the recurrence relations (10) also follow from the
corollary of Theorem A2.  Finally we have

51/2p = 3l/2^F=01/2^,-l/2X2)l/2F)

where both parenthesized quantities are orthogonal matrices.  It follows that D1^2V is
orthogonal and the theorem is proved.    D

Theorem 2 (deleting a column). Let B be an m x (m + 1) matrix with a
proper LDV factorization B = [L 0]DV, where L is unit lower triangular, D =
diag(rfj, d2, ... ,dm,a\) Is positive definite and Dll2Vis orthogonal.  If B is the
matrix remaining after the rth column ar is deleted from B, then B is nonsingular, and
[B0] has a proper LDV factorization [B0] = [L 0]DV, with

L=LM,   D=dmg(dx,d2,...,dm,l),    V=VVÏl,

where

La2.
= DVer,   M = M(p,ß),    V =

MT    a2ß

*2J
fi = a permutation matrix

and Dll2 V is orthogonal.   The quantities d ■ and j3- are defined by the following recur-
rence relations:

(12)

12(i) define tm + x =a2la2;
12(h) for j = m, m - \, ... ,\ set

¡l^tj+i +Pj/dj>
dj=djtj+xltj,
ßj = -Pjl(djtj+i)-
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Proof.   If n is the permutation matrix which interchanges columns r and m + 1
of B, we have the identity

(13) [B 0] = (B - areT)n.

Also, if we compute the rth column of DV as [ap ] = DVer we have

and

ar=Ber= [L0]DVer= [L 0] |^J

since V DV = I from (lb).  Substituting for ar and er in (13) gives

[BO] = [lo](d- [^[PTa2])vn.

Now from the definition of p and a2 we have \\D~1^2 [ p ] II = \\D1/2Ver\\ = 1 since
Dll2V is orthogonal. Hence the conditions of Theorem A4 are satisfied and we can
write down an ¿DK factorization of D - [p ] [pT a2] to give

[B 0] = [L 0]LDVVU s [L 0]DV.

Using the notation of Theorem A4, we have

(a)

so that

(b)

(c)

[L 0] = [L 0]L = [L 0]
.a2PT     °.

= [LM 0],

L =LM;    D = D;

V = VVU.

The structure of V and M and the recurrence relations (12) also follow from Theorem
A4.  Finally we have

£1/2 y = ¿1/2 ffVn = 0112 fo- 1 /2)(£)l/2 yy^^

where all parenthesized quantities are orthogonal matrices.  It follows that Dll2V is
orthogonal and the theorem is proved.

Note also that the last row of D112 V is

el + iD1l2V = eTi + xD1!2VVn = em+xVVn=[pTa2]Vn

= eTVTDVÏl = eTïl = eTm + x,

and hence Dll2 V is of the form

D'I2V = Q
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where Q is the orthogonal matrix in the LQ factorization of B.    D
Theorems 1 and 2 imply that when a column of B is replaced by a new column

we can extend the product form of Section 3 by adding new factors Lm + X, Vm + i,
Lm + 2> Fm + 2 and updating Dm to become D^ + 2.

4.1. Use of the Special Matrices M and V.   The matrices M = M(p, ß) in Theorems
1 and 2 will be used to solve systems of the form

My - z    or   MTy = z.

Algorithms are given in Saunders (1972) which show that y can be computed using two
multiplication operations for each nonzero element in p.   Similarly the matrices V in
Theorems 1 and 2 will be used to compute products of the form

y — Vz    or   y = VTz,

and it is easy to show that y can again be computed using only two multiplies per non-
zero element in p.

5. Modification of the Cholesky Factors. This section is concerned with the mod-
ification of the Cholesky factors of a symmetric positive-definite matrix A after a rank-
one correction.  In mathematical terms, the problem is to compute the Cholesky factors
LDLT such that

(14) LDLT =1 = A + azzT = LDLT + ozzT.

It will be assumed throughout that the elements d- and d¡ are positive, which
implies that the matrices A and A are positive definite. We shall scale the vector z
such that the modification (14) is either of the form

(15) LDLT = LDLT + wT,

or

(16) LDLT = LDLT - vvT.

Although this scaling requires an additional n divisions and a square root, it minimizes
the probability of overflow/underflow on the occasions when o is large and ||z|| is small.

Since A is positive definite, it can be written in the form A = BBT, where B is a
nonsingular m x m matrix.  If B has the proper LDV factorization B = LDV, then L
and D are the Cholesky factors of A.   The two methods given in 5.1 and 5.2 for per-
forming the modifications (15) and (16), respectively, are based upon the theorems given
in the appendix for modifying the LDV factorization of B without storing V.

S.\.LDLT = LDLT + wT.  We have the identity

(17) Ä = L(D + ppT)LT,

where p is the solution of the equations

(18) Lp = v.

We can now apply Lemma A3 to write down the LDLT factors of D + ppT as
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D + ppT = MDMT,

where M = M(p, ß) and D = diag(dx, ... , dm) can be computed using the recurrence
relations

19(i) define r0 = 1; \
19(h) for/= 1,2, ... ,m set    1

09) t, = tj_l+p2ldj,
ï = d,ti/tj_x,
/?,. = Pjlidjtj). )

Clearly the required Cholesky factors are given by L = LM and D = D.  These recur-
rence relations for computing |3- and d- are identical to those given by Fletcher and
Powell (1973) although they have been derived in a different way.

The special structure of the matrix M enables the product LM to be efficiently
computed in terms of the /?. using the following forward recurrence relations suggested
by Gill, Golub, Murray and Saunders (1974):

(i)  define i/'^ = Lp\
(ii)  for/ = 1, 2, ... , m set

uC/+i) = „(/)_ pi        1
(20) '   _ ','     I,      r=j + \,...,m.

lrj=lrj + ßj^+1)\

The vector i/1) needed to initialize the recurrence relations is known, since t/1) =
Lp = v.  Also, each of the vectors i/')   (/ = 1,2, ... ,m) can be obtained during the
,'th stage of the initial forward substitution (20) since

m j— 1
vrñ = Z  lriPi = Vr - T,   lriPi> r = j, j + I, . .. , m.

i=j 1=1

We note also that, using the expression for v^.'+1\ we can rearrange the equation
for / • in the form

li = ¡rj + ßj(VrD - Pjlrj) = 0 " Pfifa + ^
(21) =(di/fyrj + ßJ4».
This method requires 3w2/2 + 0(m) multiplications to completely update the factors,
whereas only m2 + 0(m) are required using (19) with (20).

Rounding-error analysis of the recurrence relations (19) and (20) and of (19) and
(21) have been carried out by Fletcher and Powell (1973).  This analysis shows that
the corresponding rounding errors involve a term with coefficient d./d- and dj/d¡, respec-
tively.  The recurrence relations (19ii) indicate that d;- > d;- for all/; and, consequently,
the formula (21) should be used to obtain the new factor, since the term d¡/dj has a
damping effect on the error.  The resulting algorithm has the unsatisfactory feature that
an additional w2/2 multiplications are required.  However, Gentleman (1973) has sug-
gested using formula (20) until the ratio djd^ exceeds a certain fixed quantity.  It has
been observed in practice that the amount of work for this modified process is still ap-
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1062 PHILIP E. GILL, WALTER MURRAY AND MICHAEL A. SAUNDERS

proximately m2 + 0(m) since large values of dJd, are only likely to occur on one or
two occasions during a single updating.  For example, if djdk exceeds the bound, only
m - k additional multiplications are required.

In summary, the algorithm for performing the modification (15) is given by
(i)  define t0 = 1, v(l) = v;

(ii)   foi j = 1,2, ... , m compute
Pj = #>.
tj_=tj-i +Pj/di,
dj=djtj/tj_x,
ßj = Pf/idfi),
if dj/dj > 4, then set

/ + I, ... , m,

otherwise set

V(i+D = vU)-p.i ."r r r¡rrj
r =j + I, ... ,m.

'rj = lrj+ßj"ri+1)\

5.2. LDLT = LDLT - vvT.  In this case, instead of (17) we have

(22) A = Lip - ppT)L7',

where p satisfies (18).  Consider the quantity a2 = 1 -pTD~ip.  From (22) we have

det(J) = [det(Z,)] 2det(Z? - ppT).

Since L is unit lower triangular det(L) = 1, and consequently

det(J) = det(£> - ppT) = a2det(D).

Since by assumption A is positive definite, det(A) > 0 and a2 is positive.  This
implies that we can apply Lemma A4 to give the factorization D - pp    = MDM  , using
the recurrence relations:

(i)  define tm + x =a2;
(ii)  for / = m, m - 1, ... , 1 set

tf = tj+ !   + pf/df,     d¡ = djtj+ Jtj,     ßf = - py/(d//+ i).
Since the elements of the vector ß are computed in the order ßm, ßm _ x, ... ,ßx,

it is convenient to compute the product LM using the backward recurrence relations :
for j = m, m - I, ... , I set

f = PP
lrj = lrj+ßj4i+i)\

r»      r = j + 1, ... ,m.
(23) v^ = v¡'+^+Pjlrjy

In this case there is no need to consider an alternative recurrence relation for /„,-
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since, as mentioned earlier in 5.1, the error involved using a recurrence relation of the
form (23) is multiplied by the factor dJd- and d- < d- for all /.

Unlike the recurrence relations for adding a rank-one matrix, the formation of
L cannot take place during the computation of the vectors p and ß since all of p must
be known before the recurrence relations for ß can commence.  For this reason the com-
putation of the modified factors requires 3m2¡2 + 0(m) multiplications.  It is a feature
of this method that, provided a2 > 0, the modified matrix is positive definite regardless
of any rounding errors made.

The final algorithm to perform the modification (16) is thus as follows:
(i)  Solve the equations Lp = v and define tm+, = 1 - pTD~~ 1p; if tm + x < 0

set tm + x = e, where e  (e > 0) is the machine precision;
(ii)  for / = m, m - 1, ... , 1 set

f/ = '/+i +Pf/dP
dj=djtj+iltj'
ß, = -P,l(diti+1),
u/'->=p/5

Zj = lrj + ßjV(ri+1))
r =,'+ I, ... ,m.

Acknowledgments.  The authors would like to thank Dr. J. H. Wilkinson for his
careful reading of the manuscript and a number of helpful suggestions.

Appendix.  Here we give the lemmas and theorems referred to earlier which develop
the special structure of the following matrices:

(a) the product P of certain sequences of elementary orthogonal matrices which
reduce an «-vector z to a multiple of the unit vector en, thus:

Pz = \\z\\en

with P = Pn_xPn_2 • ' • P2PX and P = PXP2 • • • Pn_2Pn_x, where each P] is a plane
rotation;

(b) the LQ factors of matrices of the form

n and    I-qqT       (IMI=1);

(c) the LDV factors of matrices of the form

and    D~qqT       (\\D~ll2q\\ = 1)n
where D is a positive-de finite diagonal matrix;

(d) the Cholesky factors of matrices of the form

D + ppT   and   D - ppT.

Lemma Al. Let z be an n-vector and P an orthogonal matrix such that

0) Pz = \\z\\en.
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In particular, let P be the product of plane rotations

(2) P = Pn_x---P2Px,

where each P, is a symmetric orthogonal matrix of the form

PJ = -C;

Si

(row j).

Equation (1) holds if the elements c- and s- are such that

(3a)

where

(3b)

(3c)

(3d)

*¡ cJlp/-J Ut

pf=pf-i+*f,
Cj   =P,-Jpj,

*t   =Zj/Pj>

for j = 1, 2, ... , n - 1.  (When / = 1 we define p0 = zn.) If the last component of z
is nonzero, P can be formed into the matrix

a-,z2^1 ?2 a-^z2'n

a-,z3"2 73

7„_i

where the elements O: and y, are defined by the recurrence relations

4(i) for j = 1, 2, ... ,n - 1 define

(4) oj=sjlpj_x,    yi = -cj;

4(ii)  define on = l/pn_x   (=l/||z||).
[Note:   We require zn J= 0, but in general there may be z, = 0 for / < n.   For such /
we define P- = /, a- = 0, y- — 1, so the /th row and column of P will be unit vectors.
Without loss of generality we may assume zx =£ 0.]
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Proof   We shall define

1065

p — p       p . . . p pr      rn-lrn-2 rlrl

TPÍ

and the partial product

PA-i '•'P2P1-Qv
The first t rows of Qt are unaffected by subsequent rotations Pt+ x, ..

and so we can write

TPi

■>Pn-

(5) Qt
pi

-f+i

"n-l

Using Eq. (1), the vector Q^z = vt is of the form

(6) ur = (°> •■• >°>zf+i> ••• .2„-i>Pr)'

and since Qt is orthogonal

(7) z = Qfvt.
Substituting (5) and (6) into (7), we have

r+i

n-l

Zn

-f+1

Ln-l

0

+ Ptqt
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giving

T       /Zl    Z2 Zt Zn\

At the (t + l)th stage, Qt is premultiplied by Pt+X giving the row pj+x as a linear com-
bination of the two rows

(0,0, ... ,0, 1,0, ... ,0,0)

\pt Pt'     Pt Pt)
Thus

T      _ iZlSt+l   Z2St+l ztst+i    _ _ z«5/+1\
Pt+i - y Pt  . Pf  >•••>  Pf » cf+i>°.  Pf y '

and if we define ot+x = st+x/pt and 7f+1 = - ct+x, we have the required result.    D
Theorem Al (LQ factorization of an elementary matrix). Let A be a

matrix of the form

lj     7m + 1 + ~m + l-

where q is an m-vector.   The matrix A has the LQ factorization A = LQ, where L is a
special lower-triangular matrix and Q is an orthogonal matrix of the form

\y J' Q N
aq :]

Both M and N are special lower-triangular matrices defined by

M = M(q,a,8),      Ñ = N(o, - q, y) = AT1 = MT aq'

where the vectors o,y,8 and the scalar a are generated by the following recurrence
relations:

8(i) define p0 = 1 ;

8(ii) for j = 1,2, ... , m set

P2=pf_x+qf,
(8) Oj =-qjl(plPj_1),

7/ = -P/_i/P/.
5; = 1/7/,

8(iii) define ct = l/pm.

Proof (of Theorem Al).  The LQ factors of A could be computed directly from
the relation

ar-M QT _
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where Q is a product of plane rotations designed to eliminate the elements of q one by
one. However, we show now that Q may instead be constructed as a product of plane
rotations such that

5[r] ■"«••• v.[vl(9) e[j J ■^•••ViLiJ-«•*■.+!.
with
(10) co = (qTq+ 1)1/2.

(It turns out that this method is slightly more efficient, and it allows us to use Lemma
Al to develop the structure of Q.)  Let L be partitioned in the form

[/■ «}
r1

and suppose that in place of (9) and (10) we have

Multiplying the relation L Q = A by [""^ ] gives

i.e.

P Í3 ■ [' ï;}
Mw ro'

Lyrw + acoj      Ll

Since M must be nonsingular this gives w = 0, aco = 1 and go2 = qTq + 1.
We have thus proved that Eqs. (9) and (10) are true.
From Lemma Al we can therefore say that Q = Pm • • • P2PX is of the form

Q = N
Taq :]•

where
(i) N = N(a, - q, y) is a special lower-triangular matrix;

(ii)  the quantities a, y and a are obtained from the recurrence relations (3) and
(4) by replacing z, a and n by [~1<?], [°a]   and  m + I, respectively;

(iii) in particular,

Jm + i = V |[1*]|-(«r« + ir1/a-i/«.

which is consistent with the use of a in L above.
Using (3) to eliminate c- and s- in (4) now gives the recurrence relations (8) for

generating a, y and a, and the structure of Q and N is determined.
It remains to determine the structure of L and M. From the equation A = LQ

it follows immediately that MN = I, and hence the diagonals of M are the reciprocals
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of those of Ñ, i.e. Mtí — 1/t- = S-.  Next, the equation AQT = L readily gives the re-
lation M = NT + qoT, and from the structure of A^ it follows that Mtj = q¡Oj for i >/,
and hence M is the special lower-triangular matrix M(q, o, 8).  Finally, the equation
AQT = L also gives y = a, which completes the structure of L.  The theorem is now
proved.    D

Theorem A2 (LDV factorization of an elementary matrix). Let A be a
matrix of the form

A=D + peT,

where p is an m-vector such that ps =£ 0 and D = diagidj, d2, ... , dm) with ds = 0
and d, > Qforj = 1, 2.s - 1, s + 1.m. If ps is the first element of p such
that \ps\ > 0 and ds = 0, then A has an LDV factorization A = LDV where

L =

1

P2ßi        1

P301 P302

Psßl PA Psßl

Ps+lßl   Ps+lß2 Ps+lßj

Ps+2ßl   Ps+2ß2 Ps+2ß3

Pmßl       Pmß2 Pmßs

1

Ps+lßs     1

Ps+2ßs      0      1

Pmßs       0     0

V =

1-Plßl
- ß2Pl l - P2ß2

-fVl -ß3P2 l~P3ß3

ßsPl -ßSP2 ~ßsP3

0 0 0

ßl

02
ß3

0,-1

ßs

0     1
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D =diag(dx,d2, ... ,dm) = diag(dx, d2, ... , ds_x, ds, ds+x, ... ,dm)

and the matrix (D + )l¡2 V(D+)~1^2 is orthogonal.   The vectors d and ß are generated by
the following recurrence relations:

ll(i) define t0 = 1;

1 l(ii) for k = 1,2, ... , s - I compute the following:

if dk = 0 then set vk = 0 otherwise set vk = pk/dk,

(H) h = 'jfe-i + vkPk>
dk = dktkltk-l>

ßk = vJh'
ll(iii) define ds = p2/ts_x and ßs = l/ps.

Proof.   We shall prove this theorem in two stages.  Firstly, we shall assume that
ds is the only zero element of D and then consider the case where other d, are zero
(together with their associated p.).

Consider the matrix As made up of the first s rows and columns of A.   If A is
partitioned as

[Dx    ?<>>

Ps

P(2)   D2

A =

then As can be written as

¿s =

Dx    pM D\'2 I   q D\'2

(Dt^A/Pt)112,

where

(12) ¿s =

I   a

1

L    psJ

Dt =

Ö,

1

and    q=Dxll2p.

From Theorem Al we know that As has the orthogonal factorization As = LSQS
where Ls and Qs are constructed from the quantities q, a, y, 8 and a as shown.  Let
us define

d^dfi,     ß, = afö,d}'2),
(13) 9j=yjl8j=U8f,      A = diag(S1,62,... .1.«).   )

and e = (1, I, ... , l)T.  Using the notation of Theorem Al, we now have
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k+)1/22>,+)I/2 = (Dtfl%Qs(Dt)112,

where

k+)]/% = p;)i/2

(14a)

and

'm(p, ß, e)

PsßT

M(q,o,8)

(D+)i/2A = L(D+yi2A

QsW2 =
N(a,-q,y)   o

-aqT        a

+ N1/2(K)

(14b)
A(A+)+ W2

s

N(ß,-p^\9)      ß
A(£>+)1/2K

Combining (14a) and (14b) gives A  = LDV, where

L =
M

Psß1     !

K =
A

L- a>")T 1/P,

and

(15)

D = (D^yi2A2(Dt)l<2 = A2/)+

= diag(d152,d252,...,ds_15^_1>pX)

Equations (14b) and (15) also give the orthogonal matrix Qs as

+ W2I>m+V-1/2  = Al/2^n+.-l/2uipTyi'VipT)-1" =D1'¿V(D^)

We can now simplify the expressions for d-, ß- and 9- in (13).  From the defini-
tions of p., a-, 6 • and <?. in (8) and (12) we have

p2=p2_1+<72=p^1+p2Aí/;

2 _ j„2/„2      .di = djhj =djpj/pj-i
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ß, = a/7//d//2 = q¡l(p2d}l2) = ptKp2d¿);

e, = y2= pf.Jpf = (pf -Pf/dflpj = i -pfKpfdf) = i -pfi,.
From 8(iii) we also have a2 = \jp2_x.  Since all these expressions require p2 rather
than p-, we can define t- - p2 and avoid the computation of all square roots.

If we now consider the factorization of the complete matrix D + peT, we must
have

A =
L

Y   I

D

D2j

where Y is a matrix to be determined. If the factors of the last expression are multi-
plied out and right- and left-hand sides are equated, we have p^ej = YDV, where ef
is the last row of the sth-order identity matrix. Multiplying both sides by (D*)-1 VT
and noting that V(D+)~ lVT =D~l, since D112 V(D+)~il2 is orthogonal, we have

p(2)el(D+)-lVT = YDV(Df)-lVT = Y.

Consequently, since

eI(D:rl ef and eTvT = If ¿]
we have

Y = p(2) [- a-
If we define ßs — \¡ps, this completes the proof in the case where d, > 0 for / = 1,
2,... ,s — l,s + 1,..., m.

If A has k rows and columns equal to zero (that is d- = 0 corresponding to
p. = 0), we can apply the method just described to the matrix of m - k remaining
rows and columns and regard the LDV factors so obtained as being of order m by in-
serting suitable rows and columns of the identity matrix.  This gives the recurrence
relations (11).    D

Corollary.  Let A be a matrix of the form

D + 'm +-n
where p is an m-vector and

D = diag(dj, d2, ,dm,l) = r i
with Dx positive definite.   The matrix A has an LDV factorization A = LDV where

Ñ
D = diagfdp d2, ... , dm,a2),L =

M

ßT    1
V =
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and the matrix Dx¡2 VD   1/i2 is orthogonal.  Both M and N are special lower-triangular
matrices defined by

M = M(p, ß),      Ñ = N(ß, -p,9)=MT- ßpT,

where the vectors d, ß,9 and the scalar a2 are generated by the following recurrence
relations:

16(i) define t0 = 1;

16(h) for j = 1,2, ... , m set

tf = t,_x + Pf/dr
(16) df =djtjltj_x,

ßf = pjKdfi),
0,'I-Pfii

16(iii) defined2 = l/tm.    D

Lemma A2. Let z be an n-vector and P an orthogonal matrix such that

(17) Pz=||z||e„.

In particular, let P be the product of plane rotations P = PXP2 ' ' ' P„_x, where each
P- is the form given in Lemma Al. Equation (17) holds if the element c- and s- de-
fining P. are such that

-■c,   if

LS/ C/J Lp/+i.
where

(18) Pf+1 + zf '      ci = pi+1 IPp      si = zilpi'

for j = n - \,n - 2, ... ,\.  (When / = n - 1 we define pn = zn.) If the last com-
ponent of z is nonzero, P can be formed into the matrix

a.z-, o.z-

T2 o-,z2^3

73 a.z3¿n

P =

7n-

7„-

where the elements a- and y¡ are defined by the recurrence relations
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19(i) for j = m - 1, n - 2, ... , 1 define

(19) oj = sjlpj+x,   7j = -cf,
19(h) define an = 1/p,   (= l/||z||).

[Note: As in Lemma Al, we require zn =£ 0; but if z, = 0 for / < n, we define P. = I,
oy'0,7^1.]

/to>o/.   This lemma is proved in a similar way to Lemma Al.    G
Theorem A3 (LQ factorization of an elementary matrix). Let A be an

(m + 1) x (m + 1) matrix of the form A = Im + x - qqT, where q = [*], with a a
scalar (a =£ 0) and \\q\\ = 1.   The matrix A has the LQ factorization A = LQ, where L
is a special lower-triangular matrix and Q is an orthogonal matrix of the form

M
■     Q

ota 0J

MT   eta

W

The matrix M = M(q, o, y) is a special lower-triangular matrix with the vectors a and
y defined by the following recurrence relations:

(20)

20(i)  define pm + x = a;

20(h) for j = m, m - 1, .

P/2=P/2+i +<?/>
°j = <ljl(Pj+iPj),

7/ = - P/+ i/Pj-

\
1 set

I
Proof.   We shall obtain the LQ factorization of À by construction.  Let Q be the

orthogonal matrix Q = PXP2 ' ' ' Pm constructed as in Lemma A2 such that

(21) Qq = \\q\\e,m + l -m + l

Replacing z, a and n by [% ],   [„ °    ]  and m + 1, respectively, we see from Lemma
^ m + l

A2 that Q may be partitioned in the form

MT
Q

aa

XPm + ll

where M = M(q, a, y).  From 19(h) we have am + l = l/||ff|| = 1, and using (18) to
eliminate c- and s;- from (19) gives the recurrence relations stated in (20).

To obtain X we use Eq. (21) and the fact that Q is orthogonal.  Thus

A = AQTQ =(Im + l- qqT)QTQ = (QT ~ ¥m+i)Q

M

aoT   aj

■*£+i ß
M     0

T   0ao
Q =LQ,

as required.    Q
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Theorem A4 (LDV factorization of an elementary matrix). Let A be a
matrix of the form

" p~\
A=D- [pT   a2],

-a2.

where p is an m-vector, ax and a2 are nonzero scalars,

D = dmg(dx,d2, ... ,dm, a2) =
D,

and

D-^2\'      2=PTDxlp + a\
UJII <*2

= 1.

The matrix A has an LDV factorization A = LDV where

(22)

~ M      0~j

,   b
J*2ßT    Oj

diag(d1,d2,...,dm,l),     V-
[MT  a2ß~

PT    a2j

and the matrix Dx¡2 VD~l^2 is orthogonal. The matrix M = M(p, ß) is a special lower-
triangular matrix and the vectors d, and ß are generated by the following recurrence
relations:

23(i) define tm + x =a2/a2;

23(ii) for j = m, m - 1, ... , 1 set

(23) t^t^.+pf/dj,
dj=djtj+iltj>
ßj = -Pj/(diti+i).

Proof.   The matrix to be factorized can be written as

A =D [PT   a2]=D'l2(I m + l qq̂ T)DII2^DII22D1I2!

where

(24) Dxl/2p,      a = a2/ax,    q = 'm+l qq'

The requirement pTDx lp + a2/a2 = 1 ensures that qTq + a2 = \\q\\2 = 1; and hence
we know from Theorem A3 that A has the orthogonal factorization A = LQ, where
L and Q are constructed from the quantities q, o, y and a as shown.  Let us define

(25)
6, = <*;/>?,,      dj = 82,      ßj = ojl8j,

A = diag(51,52,...,5m,l),      e = (l,l,...,l)r.
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Using the notation of Theorem A3 we now have

A =D1/2AD112 = (D1/2L)(QD112),

where

D"2L

(26a)

and

(26b)

D\/2     0    M(q,o,y)   0

ax_       aoT        0

M(p,ß,e)    O1

M(p, a, 8)    0

u,aoT      0

a2ß> 0

QD'I2 =
M(q, a, y)      do

T

A=LA

D\l2

= A

L    q
^M(p,ß,e)T   a2ß

T

M(p, a, 8)T    axaa

l2  J

= AV.

Combining (26a) and (26b) gives A = LDV where L and V are the matrices defined in

(22), and

D = A2 = diag(52, S2, ... .Ô^l) = diagid,, d2, ...,dm,\).

Equation (26b) also gives the orthogonal matrix Q as

ß = AFD-1/2 =Dil2VD~il2,

as required.
Using the definitions of p;-, a;-, y¡ and q¡ in (20) and (24), we can now simplify

the expressions for d- and ß- in (25) as follows:

d,. = dy72 =djPf+x/p2;

ßj = V(7/í//a) = -qj/(pf+id}12) = -p]l(pf+ldj).
From 20(i) we also have pm + x = a2 = a2/a2. Finally, as in Theorem A2, we define
t- = p2 to avoid the computation of square roots. The recurrence relations (23) now

follow and the theorem is proved.    Q
Lemma A3 (Cholesky factors of Dx 4- ppT). If p is an m-vector and Dx =

diag(dj, d2, ... , dm) where di > 0, the Cholesky factorization of Dx + ppT is

(yin) n    -1- ""T — ^n  mt

where

Dx + ppT = MD2M',

D2=diag(dx,d2,...,dm),      M = M(p,ß),

with
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(27b)

(27c)

MD2ß = p,

ßTD2ß = 1 - a2 > 0.

The quantities d-, j3- and a2 are given by the recurrence relations (12).
Proof.   Using the notation and results of Theorem A2,we can write down the

LDV factorization

(28)

If

D

D =
A

i    P

1_

D,

= LDV.

D Q =Dll2VD~112,

then the matrix Q is orthogonal.  Post-multiplying (28) by D   l¡2 gives

\D\I2    pi = LDVD-1'2 =LD1¡2Q,

and since QQT = / we have

P\'2    p D\l2
LDL1 =

M

Iß    I
D, Mr   0

Hence

/>! + ppT   p

1

MD2MT        MD2ß

ßTD2MT    ßTD2ß + a2

and relations (27) follow immediately.    G
Lemma A4 (Cholesky factors of Dx - ppT). If p is an m-vector, Dx =

diag(dj, d2, ... , dm) where d¡ > 0 and a2 = 1 - pTDx1p > 0, the Cholesky factor-
ization of Dx - ppT is

(29a)

where

with

(29b)

(29c)

Dx - ppT = MD2MT,

D2 = dmg(dx ,d2,...,dm),      M = M(p, ß),

MD2ß = - p,

ßTD2ß = 1/a2 - 1 > 0.

The quantities d- and jay are defined by the recurrence relations (23), with 23(i) replaced
bytm + i =<*2-

Proof.   Using the notation and results of Theorem A4, we have a2 = a\la\ and
the LDV factorization
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D,

Hence

LU La2j
[pT   a2] =LDV(=LDLT) =

M

LMy   oJL     ULp
Ö, MT    aj

Dx - ppT      - a2p

T 2 2«1  -«ÎJL-a2p

and relations (29) follow immediately.    G

MD2MT       a2MD2ß

_a2ßTD2MT   a2ßTD2ß
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