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SUMMARY. We consider inference for the treatment-arm mean difference of an outcome that would have 
been measured at the end of a randomized follow-up study if, during the course of the study, patients had 
not initiated a nonrandomized therapy or dropped out. We argue that the treatment-arm mean difference 
is not identified unless unverifiable assumptions are made. We describe identifying assumptions that are 
tantamount to postulating relationships between the components of a pattern-mixture model but that can 
also be interpreted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas imposing restrictions on the cause-specific censoring probabilities of a selection model. 
We then argue that, although sufficient for identification, these assumptions are insufficient for inference 
due to the curse of dimensionality. We propose reducing dimensionality by specifying semiparametric cause- 
specific selection models. These models are useful for conducting a sensitivity analysis to examine how 
inference for the treatment-arm mean difference changes as one varies the magnitude of the cause-specific 
selection bias over a plausible range. We provide methodology for conducting such sensitivity analysis and 
illustrate our methods with an analysis of data from the AIDS Clinical Trial Group (ACTG) study 002. 

KEY WORDS: Attrition; Augmented inverse probability of censoring weighted estimation; Curse of dimen- 
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1. Introduction 

The AIDS Clinical Trial Group (ACTG) study 002 was a 
double-blind, randomized clinical trial designed to compare 
the efficacy and safety of high-dose AZT (1500 mg/day) ver- 
sus low-dose AZT (1200 mg/day for 4 weeks and 600 mg/day 
thereafter) in AIDS patients (Fischl et al., 1990). Between 
December 2, 1986, and November 12, 1987, 520 subjects were 
enrolled and randomized to receive one of the two treatments, 
with 261 subjects assigned to high-dose AZT and 259 assigned 
to low-dose AZT. The design of the study called for clinic vis- 
its to be made every 8 weeks, at which time data on CD4 
lymphocyte count, total white blood cell count (WBC), num- 
ber of bouts of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPneumocystis carznzi pneumonia (PCP), and 
whether or not the subject was still taking the assigned AZT 
treatment were to be obtained. In this article, we will be con- 
cerned with the analysis of data from the first four postbase- 
line clinic visits. 

Some patients stopped coming to their scheduled clinic vis- 
its and others had intermittent clinic visits, i.e., missed a clinic 
visit but returned for a later one. In the high-dose AZT arm, 
137 subjects stopped their clinic visits and 22 had intermit- 
tent clinic visits. For the low-dose AZT arm, these figures 
were 114 and 25, respectively. 

During the course of the trial, evidence from other studies 
pointed to the potential benefits of prophylaxis therapy for 
PCP. In August 1987, the study was revised to allow the use 
of prophylaxis therapy for subjects who experienced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit second 
bout of PCP. In April 1988, the study was further changed 
to allow all subjects to use prophylaxis therapy. Except for 
general guidelines, the decision whether or when to a.dminis- 
ter prophylaxis therapy was left up to the patients and their 
physicians. As a result, prophylaxis therapy was a nonran- 
domized treatment embedded in the randomized trial. Of the 
261 (259) patients in the high-dose (low-dose) AZT arm, 18 

(30) had initiated prophylaxis at or prior to week 32. 

The initiation of a nonrandomized therapy like prophylaxis 
complicates the analysis of even an ideal and unrealistic trial 
in which no patient misses a clinic visit. If the nonrandom- 
ized therapy influences the outcome of interest and the rates 
of therapy differ in the two treatment arms, then differences in 
the observed outcome distributions of the two treatment arms 
do not necessarily reflect treatment effects because these dif- 
ferences might only be due to the fact that the rate of therapy 
is higher in one arm than in the other. In the ACTC: study, 
the rate of prophylaxis therapy was higher in the low-dose 
arm, and it is biologically plausible that prophylaxis therapy 
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might have a beneficial effect on CD4 count by preventing 
PCP since PCP is an opportunistic infection that can stimu- 
late HIV replication. 

Therefore, one important public health question raised by 
ACTG 002 is whether or not high-dose AZT would have had 
a different effect than low-dose AZT had all subjects received 
identical prophylaxis therapy. In this article, we are concerned 
with addressing the following specific question: Would there 
have been a difference between the means of CD4 count at 
week 32 in the two treatment arms in the hypothetical sce- 
nario in which no subject missed the clinic visit at week 32 or 
started prophylaxis therapy during the course of the trial? 

In Section 6, we note that, under our analytic model, unless 
all patients return to the clinic visit at week 32, data obtained 
on patients subsequent to missing a clinic visit or initiating 
prophylaxis therapy is, asymptotically, uninformative for in- 
ference about the treatment mean difference of interest. Thus, 
in our analyses, we disregard the data obtained on subjects 
subsequent to their first missed clinic visit or their time of ini- 
tiation of prophylaxis. With a slight abuse of terminology, we 
refer to the first time a subject misses a clinic visit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas his/her 
dropout time. In our approach, we regard drop-out and ini- 
tiation of prophylaxis as competing causes of censoring. 

In Section 3, we argue that the treatment-arm-specific 
means of interest and hence their difference, denoted as A, 
are not identifiable from the data recorded in ACTG 002. 
To identify them, we must make nonverifiable assumptions. 
We then describe a class of nonverifiable, identifying assump- 
tions. In doing so, our purpose is twofold. First, we want to 
isolate a set of untestable assumptions, i.e., assumptions that 
can’t be rejected by any statistical test, that are sufficient for 
identification of A. Our second objective is to provide various 
interpretations of these identifying assumptions with the goal 
of facilitating communication with the field investigators. We 
argue that these assumptions essentially encode the a priori, 
unverifiable belief about the influences of unmeasured prog- 
nostic factors for CD4 count at week 32 on the decision of 
subjects to drop out of the study and of doctors to prescribe 
prophylaxis therapy. Our proposal is to model these influences 
via (nonidentified) cause-specific selection-bias functions. We 
recommend conducting a sensitivity analysis to examine how 
inference about A changes as one varies the selection-bias 
functions over plausible ranges. 

2. ACTG 002 Data Configuration 

Throughout, we refer to a subject that has not dropped out or 
started prophylaxis at or prior to visit t as uncensored at visit 

t .  We say that the subject is censored due to drop-out (pro- 
phylaxis use) by visit t if he/she missed a clinic visit (started 
prophylaxis) at or prior to visit t and prior to initiation of pro- 
phylaxis (missing a clinic visit). Let X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 if the subject is as- 
signed to the low-dose AZT arm and X = 1 otherwise. Define 
I$, t = 0 , .  . . ,4, as the vector (CD4t, WBCt, PCPt, AZTt)’, 
denoting the CD4 count and white blood cell count at visit t ,  
i.e., at week 8t, the number of PCP bouts experienced prior 
to visit t ,  and the indicator that the subject is taking some 
AZT at visit t that would be recorded (possibly contrary 
to fact) if the subject is not censored at or prior to visit t. 
Let Y = CD44. Our goal is to conduct inferences about the 
treatment-arm-specific means E(Y I X = z) and their differ- 
ence A = E ( Y  \ X = 1) - E(Y / X = 0) .  

For t = 1, . . . ,4, define the cause-specific censoring indica- 
tor, 

0 
1 

2 

if the subject is uncensored at visit t ,  
if the subject was censored by visit t 

if the subject was censored by visit t ,  
due to prophylaxis use, 

Rt-( due to drop-out, 

and set R(-l) = Ro = 0. Let C = 5 if R4 = 0 and C = 

min{t : Rt # 0) otherwise. We regard the observed data 
in trial 002 as 520 realizations of the random vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(R, X, Vc), where R = (R1 , .. . , R4) and, for any t = 1, .  . . , 5, 

In TabIe 1, we present the cumulative percentages of sub- 
jects who were censored due to drop-out, censored due to 
prophylaxis use, and remained uncensored at each clinic visit, 
stratified by treatment arm. Note that 60% (7%) of subjects 
are censored due to drop-out (prophylaxis use) in the high- 
dose arm compared with 51% (12%) in the low-dose arm. Ta- 
ble 2 presents summary statistics of the time-varying covari- 
ates & for uncensored subjects at each visit time, stratified 
by treatment group. 

3. Identifiability and a Sensitivity Analysis 

In the ACTG 002 study, the observed data 0 does not identify 
either E(Y 1 X = z) or A unless R4 = 0 with probability one. 
By this we mean that, even if the law of 0 was entirely known, 
this would not suffice to determine what the true values of 
E(Y I X = z) or A are. To see this, write f (Y  I X) as the 

= (VO, v1,. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.,&-I). 

Philosophy 

Table 1 

Cumulative percentages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof subjects who were censored due to drop-out, censored due 
prophylaxis use, and remained uncensored at each clinic visit, stratified by  treatment a rm 

Group Status Week 8 Week 16 Week 24 Week 32 

High dose Censored due to drop-out 21.07% 35.25% 48.24% 60.15% 
Censored due to prophylaxis use 1.15% 1.92% 4.21% 6.90% 
Uncensored 77.78% 62.48% 47.51% 32.95% 

Low dose Censored due to drop-out 13.90% 27.41% 37.84% 50.97% 
Censored due to prophylaxis use 1.54% 3.47% 6.18% 11.58% 
Uncensored 84.56% 69.11% 55.98% 37.45% 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

Mean CD4, WBC, PCP, and percentage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof subjects who took their assigned AZT 
treatment among uncensored subjects at each clinic visit, stratified by treatment group 

Variable Group Baseline Week 8 Week 16 Week 24 Week 32 

CD4 High dose 85.43 140.70 108.89 83.45 72.67 
Low dose 86.50 146.99 104.32 77.94 76.22 

WBC/100 High dose 38.95 37.74 32.76 31.38 32.29 
Low dose 38.00 41.93 37.56 34.52 33.58 

PCP High dose 0.00 0.05 0.11 0.19 0.45 
Low dose 0.00 0.04 0.10 0.31 0.47 

AZT(%) High dose 100.00 86.21 91.46 93.55 90.70 
Low dose 100.00 91.32 94.41 93.10 95.88 

mixture 

f (Y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 X )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(Y 1 R4 = 0,  X ) P  (R4 = 0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX )  
2 4  

j =1  t=l 

(1) 

where 

f t j ( Y ( X ) =  f ( Y ( R t - R ( t - 1 )  = j , G , X )  

x f(Vt 1 Rt - R(t-1) = j , X ) d G .  
s 

In this mixture, the law f ( Y  1 Rt - R(+l) = j , % , X ) ,  
being the distribution of Y in a censored population, is not 
identified by the observed data 0. This implies that f (Y  I X )  
and E ( Y  1 X )  are also not identified from 0. 

Our strategy to resolve the identification problem is to pos- 
tulate a known exponential tilt relationship between f(Y 1 
Rt = O , q , X )  (the distribution of Y for uncensored sub- 
jects at each occasion t with a given recorded history %) and 
f (Y I Rt - R(t-l) = j ,  G, X )  (the distribution of Y for pa- 
tients with the same recorded past that are censored at time 
t due to a specific cause); i.e., for t = 1,. . . , 4 ,  we specify 
functions qtl(Y, G, X )  and qtz(Y, G, X )  and postulate that, 

for j = 1,2,  

f (Y I Rt - R(t-1) = j ,  % , X )  

f ( y  I Rt =O,%,X)exp{4t3 (y,Vt,x)} 
E [exp { qt, (y,  %, x )  } I Rt = 0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVt, x ]  . - (2) 

- - 

Note that (2) implicitly assumes that f(Y 1 Rt = 0,  G, X )  
andf(Y 1 Rt-R(t-l) = j , G , X ) , j  = 1,2,havethesamesup- 
ports. The expectation E[exp{qt3 (Y, G, X ) }  I Rt = '3, q, X ]  
in (2) exists because CD4 count, and hence Y ,  has bounded 
support. In the Appendix, we show by reverse induction that 
assumption (2) identifies f(Y 1 X ) .  

Using Bayes' rule, it is easy to verify that relationship (3) 

is equivalent to assuming that 

(3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI P ( R t  = j  I R(t-1) = O , Y , V t , X )  

P (Rt = 0 1 R(t-1) = 0,  Y, %, X )  
log { 

- - ht, ( G J )  +qt ,  ( Y , V t , X ) ,  

where ht, (G, X ) ,  t = 4,. . . ,1, j = 1,2, are defined via back- 
ward recursion as follows: 

with 

4 r  2 1-1 

k=t+l L k 1  J 

and {.} = 1. 

Equation (3) shows that specifying the functions qt j ,  t = 
1 , .  . . , 4  and j = 1,2,  is tantamount to quantifying the influ- 
ence of Y on the odds that patients drop out at clinic visit t 
and the odds that doctors prescribe prophylaxis therapy be- 
tween visits t - 1 and t, after adjusting for all the recorded 
prognostic factors up to visit t - 1. Thus, qtj determines how 

Y enters into a polytomous logistic regression model for the 
cause-specific probabilities of censoring. We refer to the func- 
tions qt j  as cause-specific selection-bias functions. Because 
by specifying the functions qtj we do not place any restric- 
tions on the distribution of the observed data 0, restriction 
(2) with given qtj 's determines a nonparametric model For the 
law of the observables. Models that make explicit assumptions 
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about the censoring mechanism are referred to in the missing 
data literature as selection models (Little and Rubin, 1987). 
In contrast, models that relate the distribution of the out- 
come in the uncensored population to that of the censored 
population are referred to as pattern-mixture models (Little, 
1993, 1995). We have shown that a model that specifies just 
the selection-bias functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqt3 is a nonparametric model that 
has interpretation both as a selection model and as a sequen- 
tial pattern-mixture model. 

The following two key remarks provide the formal justifi- 
cation for the sensitivity analysis philosophy of this article. 
First, the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqt3 are not identified because all choices 
of these functions are compatible with the law of the observed 
data. Thus, no statistical test can reject any specific choice of 
qtl. Second, specification of the functions qt3,  t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, . . . , 4  and 
j = 1,2, identifies the treatment-arm-specific distribution 
of Y .  

The first remark is in line with intuition. Because the 
selection-bias functions quantify the influences of unmeasured 
prognostic factors on the decisions of subjects to drop out 
and start prophylaxis, it would be scientifically unreasonable 
that they would be identified in the absence of further in- 
formation about these factors. The second remark says that 
indeed we can identify the treatment-arm means once we pos- 
tulate the selection-bias functions. Since the data contain no 
evidence about the selection-bias functions, we recommend 
repeating the analysis estimating the treatment means un- 
der a range of selection-bias functions judged plausible by 
the field expert. Our recommendatior, is not new. The impor- 
tance of conducting several inferences rather than a single one 
has been noted by many authors (Little and Rubin, 1987; Lit- 
tle, 1994; Copas and Li, 1997). Sensitivity analyses conducted 
by making different unverifiable assumptions have been dis- 
cussed in the missing-data literature by Baker, Rosenberger, 
and DerSimonian (1992), Nordheim (1984), Robins (1997), 
Rotnitzky, Robins, and Scharfstein (1998), Scharfstein, Rot- 
nitzky, and Robins (1999), and Robins, Rotnitzky, and Scharf- 
stein (2000) and in the competing risk literature by Klein and 
Moeschberger (1988), Slud and Rubinstein (1983), and Zheng 

and Klein (1995, 1996). Our proposal differs from these ar- 
ticles in that we allow for selection-bias functions that are 
cause specific. This methodology is particularly attractive in 
the ACTG 002 trial because there is no a przori reason to 
believe that unmeasured prognostic factors for Y influence 
identically the decision of patients to drop out of the study 
and of doctors to prescribe prophylaxis therapy. 

Specifying that qtj is equal to zero for all t and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj is tan- 
tamount to assuming that the recorded data constitute all 
the prognostic factors for CD4 count that physicians use to 
prescribe prophylaxis therapy and that patients use to de- 
cide whether or not to return to the next clinic visit. Ac- 
cordingly, when qt j  = 0 for all t and j ,  we say that censor- 
ing is explainable; otherwise, in accordance with the missing 
data terminology, we say that censoring is nonignorable. Ex- 
plainable censoring is related to the assumption of no unmea- 
sured confounders of Robins et al. (1992) and to a sequential 
version of Rosenbaum and Rubin’s (1983) strong ignorability 
assumption. Technically, explainable censoring is not equiva- 
lent to the assumption that the data are missing at random 
(MAR), as defined by Rubin (1976). The MAR assumption 
says that subjects uncensored at  time t and subjects censored 
at time t with the same recorded past have the same distribu- 
tion of the entire current and future variables (Y, &), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v, = (Vt, . . . , V4). Explainable censoring, on the other hand, 
specifies that, among subjects with the same recorded past, 
the population of subjects censored due to each specific cause 
at time t has the same distribution of the outcome of interest 
Y as that of the population of uncensored subjects at time 
t. We note however that it would be rare in practice that 
explainable censoring would hold but the MAR would not. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. The Curse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Dimensionality and the Need for 

Inference about E(Y I X = z) under a model that assuines 
only that the functions qtII are known requires estimation of 
unknown functions of %. For example, since E(Y 1 X = z) is 
the functional of the law of the observed data, 

Addit ional Modeling 

then, when Vt is discrete for all t ,  its nonparametric maximum 
likelihood estimator (NPMLE) is calculated by evaluating the 
expectation under the empirical law of the observed data and 
replacing ht,(G,z) with its NPMLE, & ( q , x ) ,  obtained by 
replacing in (4) the population distributions by the empirical 
distributions. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVt has at least one continuous compo- 
nent, then one needs to estimate htj using smoothing tech- 
niques. Unfortunately, when % has two or more continuous 
components, impractically large sample sizes will be required 
for E(Y 1 X = z) to have an approximately centered nor- 
mal sampling distribution with variance small enough to be 

of substantive use. This is so because, with moderate sam- 
ple sizes, essentially no two units will have %-vectors close 
enough to one another to allow the borrowing of information 
necessary for smoothing. This phenomenon is usually referred 
to as the curse of dimensionality (Huber, 1985; Robins and 
Ritov, 1997). 

The curse of dimensionality brings an important practi- 
cal limitation: in order to obtain well-behaved estimators of 
E(Y 1 X = z), we must place restrictions on the law of the 
observed data, 0. Little (1995) and Hogan and Laird (1997a) 
review currently available methods placing strong paramet- 
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ric restrictions on the observed data law. These methods do 
not allow for cause-specific censoring mechanisms and can 
be broadly classified as being based on selection models or 
on pattern-mixture models. Here we summarize the model- 
ing strategies and contrast the features of sensitivity analysis 
under the various approaches. 

Parametric selection models. Diggle and Kenward (1994), 
Baker (1995), Molenberghs, Kenward, and Lesaffre (1997), 
and Fitzmaurice, Laird, and Zahner (1996) assume (i) a para- 
metric model for the conditional distribution of C given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 5  

and X indexed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and (ii) a parametric model for the con- 
ditional distribution of V 5  given X indexed by q, where T 

and q are variation independent. A sensitivity analysis then 
requires that one vary both the assumed parametric forms 
on the censoring mechanism and on the full data law. The 
semiparametric selection models described below specify only 
models for the censoring probabilities, thus reducing the num- 
ber of assumptions to vary in a sensitivity analysis. 

Parametric or semiparametric pattern-mixture models. Ru- 
bin (1977), Herzog and Rubin (1983), Little (1993, 1994), and 
Little and Wang (1996) assume (i) a parametric, semipara- 
metric, or nonparametric model for the conditional distribu- 
tion of C given X indexed by a finite dimensional parameter 
T and possibly an infinite dimensional parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, (ii) para- 
metric models for the conditional distributions of V s  given 
X and C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t ,  indexed by &, where ( A , T )  and (El,.. .,&) 
are variation independent parameters, and (iii) restrictions 
on ((1,. . . , ( ‘5)  sufficient for identification of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(Y I X). In 
most approaches, the identifying restrictions in (iii) are tan- 
tamount to parameterizing either (a) the ratios f (Y  I %, 
X, C = t)/f(Y I G, X ,  C = t + 1) of the densities of subjects 
dropping out at two consecutive occasions and with the same 
recorded past or (b) the ratios f(Y I %,X,C  = t ) / f ( Y  I 
%, X ,  C = 5) of the density of subjects dropping out at time 
t to the density of the completers with the same recorded 
past. These parameterizations have an important limitation 
for conducting sensitivity analysis. Specifically, there is no 
natural parameter value associated with explainable censor- 
ing (e.g., the ratios in either (a) or (b) being all equal to one 
does not imply explainable censoring). In contrast, under the 
sequential pattern-mixture model (2), the functions qtj = 0 
correspond to explainable censoring, therefore allowing the 
study of sensitivity of inferences to local departures from this 
assumption. 

Random eflects models. Random effects models make either 
the selection model assumptions (i) and (ii) (Follmann and 
Wu, 1995; Wu and Carroll, 1988; Schluchter, 1992; DeGrut- 
tola and Tu, 1994; Tsiatis, DeGruttola, and Wulfsohn, 1995) 
or the pattern-mixture assumptions (i)-(iii) (Wu and Bailey, 
1988, 1989; Hogan and Laird, 1997b, 1998) except that they 
replace X with X ”  = ( X , p ) ,  where p is a random effect. A 
sensitivity analysis then requires that one also vary the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 
sumptions on the random effects distribution. 

Semiparametric selection models. These models place para- 
metric restrictions only on the functions ht,, i.e., they assume 
h t j ( q , X )  = ht j (G,X;q* ) ,  where ht j (%,X;q)  is a known 
function and q is an unknown finite dimensional parameter 
vector with true value q*. Thus, in contrast with the para- 
metric selection model approach, the semiparametric selec- 
tion model approach makes no assumptions about the law 

of V 5 .  Because the semiparametric selection model restricts 
the law of the observed data, then, at least in principle, we 
can check our assumptions on htj and q t j .  However, since the 
functional form of qtj is not identified when the functions htj 
are left unrestricted, our ability to check the validit,y of the 
assumed functional form of qt j  relies entirely upon the correct 
specification of htj . Thus, any model checking of qt j  is indee’d 
tantamount to checking the assumed parametric form for htj. 
Therefore, rather than checking the assumed model for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqt3 ,  
we recommend that inference about the treatment-arm CDcl 
count means be conducted under various plausible selection- 
bias functions qtj  (still regarded as known in the analysis). In 
addition, since inference can be sensitive to misspecification 
of the model for htj , we recommend choosing a flexible para- 
metric model for htj. In the Appendix, we show how to com- 
pute estimators of the treatment-arm-specific mean:; under 
the semiparametric selection model when the selection-bias 
functions qtj are regarded as known. 

5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnalysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the ACTG 002 Study 

Using the estimating equations given in the Appendix in this 
section, we estimate the treatment-arm-specific CD4 means 
in trial 002 at week 32, say pa: x = 0,1, under the model 

that assumes that qtj(Y,G,x) = T~”’Y and htj(Vi,x) =- 

ht j (%,x;q*) ,  where 

= (q ( l ) ,q (2 ) ) ,  q(”) = (”1 (”1 (2) (”) (“1 : t = 
( r ] O t J , % J  ’V2J ,7733 7v4, ,753 

1,. . . , 5 , 3  = 1,2), and q* denotes the true value of q ;  i.e., we 
assume that, in each treatment arm, the cause-specific cen- 
soring probabilities follow separate polytomous logistic regres- 
sion models with occasion-specific intercepts. The parameter 

~1’” ’  (7.”’) has the interpretation as the increase in the condi- 
tional log odds of dropping out (initiating prophylaxis) versus 
remaining on study between subjects in treatment arm x who 

differ by one in CD4 count at week 32. The values rJ2) = 0, 
3 = 1,2, correspond to explainable censoring in treatment 
arm x. 

In our analyses, we regard the selection-bias parameters 

T:“), = 1 ,2  and x = 0,1, as fixed and examine how our 
inferences change as they vary over a plausible range of values. 
In Figure 1, we present point estimates of the CD4 count 

means in the high-dose arm for values of T:’), 3 = 1,2, ranging 
from -0.05 to 0.05. This range was chosen for illustration 
purposes only. In practice, we recommend that this range be 
selected in consultation with the field expert. In Figure 1, the 
estimated treatment-specific means are increasing functions of 

rl0) and T;’). This reflects the fact that larger values of these 
parameters imply that more subjects with large values of the 
(possibly) unobserved CD4 at week 32 either drop out or 
initiate prophylaxis therapy. Furthermore, for fixed values of 

the prophylaxis parameter T?’, the treatment-specific rneans 

are very sensitive to the drop-out parameter T!” .  In contrast, 

for fixed values of T!’), the treatment-specific means are not 
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Figure 1. Estimated treatment-specific mean CD4 count at 
week 32, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i5 ,  as a function of the drop-out selection-bias pa- 

rameter, ~ 1 ( ~ ) ,  and the prophylaxis drop-out parameter, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7i5), 

under model (5). 

very sensitive to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7;”. This reflects the fact that, as shown in 
Table 1, drop-out is much more prevalent than initiation of 
prophylaxis. 

In Figure 2, we investigate the effect of differential cause- 
specific selection bias in the two treatment arms. In this figure, 
on each plot we fixed the prophylaxis and drop-out parame- 

ters in the low-dose arm at one of the values T!” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -0.02, 0 ,  

or 0.02 and 7;’’ = 0 or 0.02. On each plot, on the horizontal 

axis we varied the levels of the prophylaxis parameter 7;’) 

and on the vertical axis we varied the levels of the drop-out 

parameter -rll’ in the high-dose group. For each combination 
of selection-bias parameters, we performed a test (at the 0.05- 
level) of the null hypothesis Ho: po = p1 with the selection 
bias parameters regarded as fixed. Each plot in Figure 2 is a 
contour plot of the 2-statistic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( f i ~  --jio)/[=r@l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a 
function of the two selection-bias parameters in the high-dose 
arm. (&, j = 0,1, and vyr were computed using the meth- 
ods described in the appendix.) The lines in each plot repre- 
sent the combination of selection-bias parameter values that 
lead to 2-statistics equal to 1.96 and -1.96. Above the 1.96 
line, we would conclude that high-dose AZT was preferred to 
low-dose AZT; and below the -1.96 line, we would conclude 
that low-dose AZT was preferred to high-dose AZT. Between 
the two lines, there is insufficient evidence to reject the null 
hypothesis Ho at the 0.05-level. The dot in each plot cor- 
responds to explainable censoring in the high-dose arm, i.e., 

7:” = 7;’) = 0. The dot in the middle plot of the first column 
corresponds to the assumption of explainable censoring in the 
two treatment arms. The estimated CD4 count means in the 
two treatment arms under this assumption were 64.90 and 
69.25 for the high- and low-dose AZT arms, respectively, but 
the difference did not reach statistical significance (pvalue = 
0.25). In contrast, the means among subjects uncensored at 
week 32 were 72.67 and 76.22 in the high- and low-dose arms, 
respectively (see Table 2). The lower means under explain- 
able censoring are possibly reflective of the fact that censored 
subjects (i.e., drop-outs and prophylaxis users) tend to be 
sicker than those who remain uncensored. The plots in Fig- 
ure 2 demonstrate that significant differential drop-out biases 
would have to occur in order to conclude that one AZT dose 
is preferred to the other. For example, the plots on the top 
row correspond to substantial nonignorable drop-out in the 
low-dose arm, with subjects with lower CD4 counts at week 
32 being more likely than others to drop out. Under this sce- 
nario, we would reject Ho and conclude that the high-dose 
arm is preferred only under the assumption that in the high- 
dose arm there is also substantial nonignorable drop-out but 
with opposite directionality to that in the low-dose arm. 

To assess the dependence of the sensitivity analysis on the 
assumed model for htj ,  we have separately repeated the anal- 
ysis under each of the two following more restrictive models 
for them: 

Figures 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 display the contour plots of the 2-statistics 
(jll -jio)/[=r(fil - - j i ~ ) ] ’ / ~  under (6) and (7). The conclusions 
of the analysis under (7) are nearly identical as those under 
the less restrictive model ( 5 ) .  In contrast, the conclusions of 
the analysis under (6) differ from those under (5) in many 
regions of the selection-bias parameter space. Assuming that 
the larger model (5) is correct, for each value of the selection- 
bias parameters, we subsequently conducted a test that the 
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Figure 2. Contour plots of 2-statistic (under model (5)) comparing low-dose versus high-dose mean CD4 at week 32 as 

a function of 71''' and 7;'' (high-dose cause-specific selection-bias parameters) for fixed values of T!" and T;" (low-dose 
cause-specific selection-bias parameters) ranging from -0.02 to 0.02 and 0.0 to 0.02, respectively. 

smaller model (6) was true, i.e., a test that &) = 77;;' = 

q g )  = &) = 0. Not surprisingly, the test rejected (results 
not shown) for most values of the selection-bias parameters in 
which the conclusions of the two analyses differed. In contrast, 
a test that model (7) is true did not reject over the entire 
selection-bias parameter region. This is in agreement with the 
point made in Section 4 that inference can be sensitive to 
misspecification of the model for the function htj and in line 
with our recommendation of choosing a flexible model for htj. 

6. Final Remarks 

In this article, we considered methods for conducting sensitiv- 
ity analysis when two reasons for censoring are present. The 
semiparametric polytomous logistic regression selection mod- 
els of this article can be trivially extended to  settings with 
more than two causes for nonresponse. 

In our analysis, we have disregarded data obtained on a 
subject subsequent to the first missed clinic visit or after the 
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Figure 3. Contour plots of 2-statistic (under model (6)) comparing low-dose versus high-dose mean CD4 at week 32 as 

a function of 71(') and 74') (high-dose cause-specific selection-bias parameters) for fixed values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7:') and 74') (low-dose 
cause-specific selection-bias parameters) ranging from -0.02 to 0.02 and 0.0 to 0.02, respectively. 

patient initiates prophylaxis. Indeed, we have done so for ro- 
bustness reasons. Specifically, arguing as in Rotnitzky et al. 
(1998), it can be shown that, if the conditional probabili- 
ties of not returning to the clinic and of continuing prophy- 
laxis therapy, P(Rt = j 1 R(t- l) ,  . . . , R1,X,  f i , Y ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1,2, 
are left unrestricted for all (R(t- l ) , .  . . ,R1) # (0, .  . . ,0) and 
are strictly less than one, then the data obtained on sub- 
jects after missing a visit or after initiating prophylaxis does 
not asymptotically provide information about the treatment- 

specific means. Since the above probabilities are not identified 
from the clinical trial data, we have chosen not to impose ad- 
ditional nonidentifiable modeling assumptions on these proba- 
bilities and therefore have disregarded the data obtained sub- 
sequent to a missed clinic visit. 
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Figure 4. Contour plots of 2-statistic (under model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 ) )  comparing low-dose versus high-dose mean CD4 at week 32 as 

a function of 7;') and 74'' (high-dose cause-specific selection-bias parameters) for fixed values of 7;'' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT?) (lowdose 
cause-specific selection-bias parameters) ranging from -0.02 to 0.02 and 0.0 to 0.02, respectively. 

CA74112, l-ROl-MH56639-01A1, R01-HD-38209-01, 1-RO1- 
DA10184-01A2. 

RESUMB 

Nous nous intkressons au test d'une diffkrence moyenne en- 
tre groupes de traitement randomisks pour une rkponse qui, 
si il n'y avait pas eu de patient ayant dkbutk un traitement 
autre que le traitement randomisk ou encore de patients sortis 
d'ktude, aurait 6tk observke B la fin de l'essai. Nous affirmons 

que la diffkrence moyenne ne peut pas &re estimke B moins de 
faire des suppositions invkrifiables, qui reviennent B postuler 
des relations entre les composantes d'un modBle B mklange de 
populations, mais qui peuvent aussi Gtre interprktkes comme 
l'imposition, dans un modBle de sklection, de contraintes sur 
les probabilitks de censure relatives B chaque motif de censure. 
Nous affirmons ensuite que, bien que suffisantes pour effectuer 
une estimation, ces suppositions ne permettent pas 1'infL 'rence 
proprement dite, en raison de la dimension du probkme. Nous 
proposons de rkduire la dimension du probkme par la spkcifi- 
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cation semi-paramttrique de modkles de censure, modhles re- 
latifs B chaque motif possible de censure. Ces modhles peu- 
vent 8tre utilists pour conduire des analyses de robustesse 
permettant d'ttudier comment les variations, dans un inter- 
valle plausible, du biais de stlection li6 B un motif de censure 
affectent le test de la difftrence moyenne entre groupes de 
traitement. Nous dCcrivons la mCthodologie d'une telle anal- 
yse de robustesse et l'illustrons sur les donnkes d'un essai dans 
le sida (AIDS Clinical Trial Group Btude 002). 
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APPENDIX 

Augmented Inverse Probability of Cause-Specific 
Censoring Estimating Equations 

In order to obtain Figures 1-4, for each fixed value of = 

( T : ~ ) ,  T;"'), we estimated q(%) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApLs = E(Y 1 X = z) sepa- 
rately in each treatment arm z. Thus, without loss of gener- 
ality, we eliminate the superscript and subscript z from the 
parameters and consider the one-sample problem of estimat- 
ing the CD4 count mean E(Y) in one treatment arm. We used 
the following extension of the methods proposed by Rotnitzky 
et al. (1998) and Scharfstein et al. (1999). For each fixed value 
of T,  the estimators 6 and Q solve the joint system of estimat- 
ing equations, C Z 1  U(0i; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, T) = 0, where the summation 
is over the subjects in the specific treatment arm being con- 
sidered, U ( 0 ;  9, p,  .) = Wi (0; 9, T)', U z ( 0 ;  9, p, .)')', 

u2 (0; 9,  P, 7) 

&(%; 9) is a possibly data-dependent vector function of 
the same dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 9 whose definition is given later in 
this section, ?ito(Y, V 4 ;  9, 7) = IT$=, r k o ( Y ,  V k ;  17, T), and log 

T). Under regularity conditions, (6, ji) are consistent and 
asymptotically normal. A key to the consistency of (6,f i)  is 
the fact that U ( 0 ;  9, p, 7) is an unbiased estimating function, 
i.e., E(q,+T){U(O; 9, p, 7)) = 0 where the subscript (9, p,  T )  

indicates that the expectation is taken with respect to the 
distribution with parameters (9, p, 7). 

We computed consistent estimators of the asymptotic vari- 
ance of (6, ,L) using the sandwich variance estimator 

{Kk3(Y,Vk;rlr.)/KkO(Y,v;9,.)} = h k j ( V k ; 9 ) + q k 3 ( Y 1  v k ;  

I n  \ 

In our analyses, we used for all values of T I  and ~2 the 
functions 

4 t j  (G)  = 'P t j  (G;f j)  
t 2  

m=l k 1  

where pt,(G;q) = ahtj(G;q)/aq and f j  is the maximum 
likelihood estimate for 9 when 71  = 7-2 = 0. This choice gives 
the semiparametric efficient estimator for p when 7 1  = 7-2 = 0. 

Proof That Relationship (2) Identifies f (Y 1 X )  

We argue by reverse induction. The law f(Y 1 R4 = 0, V q ,  X ) ,  
being a law in an uncensored population, is identified. Now 
suppose that f(Y I Rt = 0,  G, X )  is identified. Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(Y 1 
Rt - R(t-l) = j ,  V t ,  X )  is also identified by relationship (2). 
But then f (Y  1 R(t-ll = 0, R-1, X )  is identified because it, 

equals C,=, P(Rt = j 1 R(t-l) = 0, %-1,X) Jf (y  I Rt - 
R(t-1) =j , f i ,X) f (V t  1 Rt -R(t- i )  = j , G - l , X ) d V t  and 
P(Rt = j I R(+1) = O , G - l , X )  and f(% 1 Rt - R(t-l) = 
j ,  G-1, X )  are identified by the observed data. Finally, f ( Y  I 
X )  is identified by equation (1). 
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