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tems involve components that learn from past experience. This dissertation studies

computational methods for learning from examples, for classification and for decision

making, when the decisions have different non-zero costs associated with them. Many
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unchanged) to pay more attention to examples with higher misclassification costs.

The dissertation discusses several different weighting methods and concludes that

a method that gives higher weight to examples from rarer classes works quite well.

Another algorithm that gave good results was a wrapper method that applies Powell's

gradient-free algorithm to optimize the input weights.
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The second approach to cost-sensitive classification is conditional density esti-

mation. In this approach, the output of the learning algorithm is a classifier that

estimates, for a new data point, the probability that it belongs to each of the classes.

These probability estimates can be combined with a cost matrix to make decisions

that minimize the expected cost. The dissertation presents a new algorithm, bagged

lazy option trees (B-LOTs), that gives better probability estimates than any previous

method based on decision trees.
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a situation that arises frequently in cost-sensitive classification problems.
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METHODS FOR COST-SENSITIVE LEARNING

CHAPTER 1

INTRODUCTION

1.1 Motivation

Each of us throughout our lives faces continually the necessity of making

decisions, and our existence is governed by the consequences of these decisions. At the

moment we make the decision, very often we are aware of the possible outcomes and

guide our decision making process to maximize the potential benefits and minimize

the losses. For example, we choose to have children vaccinated against measles,

because we are willing to pay the cost of the vaccine instead of having the children

at risk of getting the disease. We also consider that the lives of the children are safer

by giving them the vaccine, even though it is known that there exists a very small

(but non-zero) risk that the vaccine will cause permanent brain damage. Should we

give the vaccine? Why? What are the risks that we take by giving the vaccine? What

are the risks for not giving it? What are the losses that we might experience? These

are the kinds of questions that we would like to answer as accurately as possible.

Similar situations and similar questions occur very often throughout our daily lives

and we would like to be able to make the best rational decisions.

Because of the large amounts of information available for most of the problems

we face and because the complexity of many of the concepts that need to be handled,

computational models have proven in many cases to make better and more rational

decisions than humans. Therefore these models deserve our attention.
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The goal of this dissertation is to present different algorithmic approaches for

constructing and evaluating systems that learn from past experience to make the

decisions and predictions that not oniy minimize the expected number or proportion

of mistakes, but minimize the total costs associated with those decisions.

1.2 Machine Learning, Supervised Learning and Cost-Sensitive Learning

Machine learning is the research area that seeks to build systems that improve their

performance by analyzing data organized in datasets or collected directly from the

environment. During the last few years, the scientific world has been witnessing

significant practical achievements of learning systems. Several mature learning algo-

rithms have been developed and are available for practical applications.

These methods include decision rules [123] and decision trees [31, 149], neural

networks [156, 189], genetic algorithms [21], Bayesian classification and statistical

methods [34, 3}, instance-based learning [7], multistrategy learning [124], ensemble

learning [54, 73, 26], graph transformer networks [45], and support vector machines

[182, 44, 14].

In practice, machine learning algorithms have been successfully applied to an

increasing variety of problems such as natural language processing [46], handwriting

and speech recognition [190, 95], document classification [115], medical data analysis

and diagnosis [168], knowledge discovery in databases, process control and diagnosis

[171], telephone fraud and network intrusion detection [145, 113], remotely-sensed

image analysis [110}, prediction of natural disasters [129], game playing [109], web

caching and search [23], and email filtering [138].

In the meantime, a large number of empirical studies (e.g., [116], [53], [12], [55],

[52]) have been performed. These studies show that there is no single algorithm that

performs best in all domains.
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Supervised learning is the subarea of machine learning that studies systems that

learn to produce predictions for different inputs based on input-output pairs that

were previously perceived (often the outputs are provided by a helpful teacher).

When the set of possible predictions is discrete, this task is called classification.

The work described in this dissertation starts from the realization that the ap-

plications described above raise new challenges for fundamental research. Most of

these problems require significant reformulation before learning algorithms can be

applied, and in many cases, existing algorithms require ad-hoc tuning and modifica-

tions before being applied to a particular problem.

Before proceeding toward the design of any system, one needs to know what

measures will be used to assess the performance of that system and what "good"

or "improved" performance means. The desire is to have objective, realistic, and

robust measures of performance. In the case of classification, the simplest perfor-

mance measure can be defined as the proportion of errors (mistakes) that are made.

Therefore, most existing algorithms have been designed to minimize the number of

errors that are made. However, in almost all practical situations different kinds of

prediction errors have different costs, and a more realistic performance measure of a

learning system is the total loss, calculated as the sum of the costs of all errors made

by the system. As a result, new learning approaches and new statistical evaluation

methods are needed to address these problems.

For example, Kubat et al. [106] describe a learning approach to the problem

of detecting oil spills from radar images of the sea surface. In this problem, the

cost of indicating a spill when in fact there is none differs from the cost of missing

a spill. Two other examples are described by Fawcett and Provost [68] and by

Zhang and Tjoelker [171]. Both of these research teams describe their approach to

building learning systems that detect potential occurrences of important events in
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event sequences (for [68] the events are calls made from a cellular phone account,

and the important events are the fraudulent calls made from that account). In both

cases the cost of not predicting an important event when in fact one will occur

(false negatives) is much smaller than the cost of predicting the occurrence of an

important event when in fact none will occur (false positives). Another example is

medical diagnosis, where the cost of diagnosing a patient having a life-threatening

disease as being healthy is in many cases higher than diagnosing someone as being

ill when she is in fact healthy.

The area of machine learning that addresses problems with non-uniform costs is

known as cost-sensitive learning.

The goal of this dissertation is to address the practical challenges of cost-sensitive

learning, introduce new learning algorithms that build cost-sensitive models, and

present new statistical evaluation methods for assessing the learned models, under

a general framework for cost-sensitive classification. The thesis will also describe

the issues that need to be considered in the process of designing and evaluating

classification methods for the minimization of the expected costs of the predictions

and will review the major approaches to the cost-sensitive learning problem.

Within the scope of the thesis, the terms "cost-sensitive learning" and "cost-

sensitive classification" will refer to the general problem of minimizing the total cost

associated with the decisions. It is important to notice that there also exist other

research questions (e.g. the order in which diagnostic tests should be performed, or

the selection of training instances), which are addressed in the general cost-sensitive

learning literature. Turney [178] presents an overview the various types of costs that

can occur in classification problems.



1.3 Overview of the Thesis

This dissertation is structured as follows:

Chapter 2 introduces the fundamental concepts of supervised learning, describes

the formal setting of the cost-sensitive learning problem and reviews the main ap-

proaches to learning cost-sensitive models. It also argues for the necessity of good

statistical evaluation methods and reviews the advantages and disadvantages of some

of the current assessment methods.

Chapter 3 presents a new general purpose wrapper method for learning and a

set of heuristic methods that allow stratification methods to be used in multi-class

problems.

Chapter 4 presents the theory for applying conditional density estimation to

output cost-sensitive hypotheses, introduces a new class of algorithms for class prob-

ability estimation, and shows how these algorithms can be used in practice for cost-

sensitive learning

Chapter 5 introduces new statistical methods for the cost-sensitive evaluation

of learned models and discusses their relationship, advantages, and disadvantages

over the ROC graph methods.

Chapter 6 describes the experimental results of applying the newly developed

learning methods to some real-world and synthetic tasks. The new statistical meth-

ods presented in Chapter 5 are evaluated experimentally.

Chapter 7 reviews the contributions of this thesis and outlines some directions

for future research.

5



CHAPTER 2

SUPERVISED LEARNING AND COST-SENSITIVE
CLASSIFICATION

2.1 Overview

This chapter defines the supervised learning problem and the cost-sensitive classifica-

tion problem. It also presents a framework for cost-sensitive learning that categorizes

all existing research approaches. Basic notations and terms used throughout the dis-

sertation are defined, and the basic cost-sensitive learning concepts are introduced.

We will try to motivate the importance of studying cost-sensitive learning algorithms

in the context of every-day real-world practical applications.

The task of cost-sensitive evaluation of classifiers is studied, and we analyze what

issues need to be addressed by new test methods, beyond the only existing evaluation

technique for cost-sensitive learning: the Receiver Operating Characteristic (ROC)

graphs [25, 145].

Some preliminary research results that will be used later in the thesis are pre-

sented along with the basic general questions that are the subject of ongoing research

in cost-sensitive learning.

2.2 Formal Setting of the Cost-Sensitive Classification Problem

In this dissertation we address aspects of the supervised learning problem. The in-

put to a supervised learning algorithm is a set of labeled examples (xi, yj), called

training data (or instance space), where x, is a vector of continuous or discrete val-

6



Training data <x,y,>

Cost matrix CKXK

Learning algorithm

X (x,y)

I-

h(x)

output hypothesis

FIGURE 2.1: General framework of Supervised Learning.

ues called attributes and y is the label of x2. The training data is assumed to be

generated according to an unknown probability distribution P(x, y). The labels can

be elements of a discrete set of classes {1, 2,... , K} in the case of classification (or

concept learning), or elements drawn from a continuous subset of a continuous set

(e.g. a continuous subset of the reals) in the case of regression. The attributes are

of two possible types, numeric and symbolic. A numeric attribute takes values from

a subset of some ordered set of values (e.g. the set of integers). When this subset

is continuous, the attribute is called a continuous attribute (e.g. a real valued at-

tribute). A symbolic attribute takes values from a finite, discrete set on which no

ordering relation is assumed.

Assuming that all the examples that are presented to the learning algorithm are

drawn from the same (unknown) distribution supervised learning means finding a

compact mapping h (i.e., a mathematical model) that will be able to label correctly

a high proportion of unlabeled examples drawn from the same distribution. There-

fore, the learning algorithm describes a procedure for building or selecting a model

and tuning the model's internal parameters, such that the model will implement a

function h(x) that best approximates f for any examples drawn according to the

same probability distribution P. We will call h a hypothesis.

The goal of the learning algorithm is to minimize the total expected loss e of the

hypothesis:

7
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(h)
=

f P(x, y)c(h(x), y)dxdy, (2.1)

where c(h(x), y) is the cost function describing the loss incurred by h on an

instance (x, y).

This dissertation focuses on classification tasks and assumes that the cost func-

tion, c is static and can be represented as a K-by-K matrix C called the cost matrix,

where K is the number of possible classes (class labels).

We will denote the possible class labels with positive integers from 1 to K, with

Y = {1, 2,... , K} the set of possible class labels, and with m the number of training

instances.

The Cost Matrix

The algorithms described in this thesis assume that, for a K-class problem, a K-by-

K cost matrix C is available at learning time. The contents of C(i, j) specify the

cost incurred when an example is predicted to be in class i when in fact it belongs to

class j. None of the values in C changes during the learning or the decision making

process, therefore C is stationary.

In general, the cost values of a cost matrix are represented in terms of a fixed

measuring unit (usually, dollar values) associated with the corresponding decisions.

The learning task is not altered if all the cost values are scaled by a constant factor.

The individual cost values can represent either losses or benefits, or both, and a

careful analysis is needed prior to designing the matrix so that all potential costs that

are incurred by a decision are captured. Losses are represented by positive values,

whereas benefits are represented by negative values. By discretizing equation 2.1

and using C as the cost function, the optimal hypothesis will need to minimize



Predicted Class

Fraud

No-Fraud

Fraud No-Fraud

1.5 10.0

100.0 0.0

In this example the cost matrix indicates that if a fraudulent call is labeled by

the system as legal, there will be an average loss of about 100.0 for the provider. If

P(x, y)C(h(x), y), (2.2)

x,y

In other words, the general objective of a classification system is to minimize

the total cost of its hypothesis, computed as the sum of the costs of the individual

decisions.

To illustrate the properties of a cost matrix representation of a cost function, let

us consider the 2 x 2 cost matrix shown in Table 2.1. In this case the cost matrix

represents the (approximate) costs for the decisions associated with the diagnosis of

fraudulent calling card calls. The "Fraud" label indicates that a particular call is

fraudulent, whereas "No-Fraud" means the call is legal. The row labels, "Fraud"

and "No-Fraud" are the labels that indicate the decision of the classifier. The action

associated with the "Fraud" decision is to immediately close the account involved in

the call. No action is taken as a result of a "No-Fraud" decision.

TABLE 2.1: Example of a cost matrix for a calling card fraud detection problem.

Correct Class



The Optimal Prediction

If the probabilities for each class given an example x, P(yIx) are available, x should

be labeled with Yopt, the class that minimizes the conditional risk of the labeling

decision [63]:

Predicted Class

Fraud

No-Fraud

Fraud No-Fraud

0.0 10.0

101.5 0.0

10

a call is mislabeled as fraudulent (and the account is mistakenly terminated), the

dissatisfaction of the customer is evaluated at an average loss of 10.0. There is also

a cost for correctly labeling a call as fraudulent which is represented by the cost of

canceling the existing account and creating a new one for the customer. Although

the actual costs of canceling an account are the same no matter whether the call

was a fraud or not, it would be erroneous to construct a cost matrix that has similar

values in the first row. This is true because the cost function needs to take into

consideration not only actual costs but also potential (or future) losses (e.g. losing

a customer that was annoyed by the action taken by the provider) and potential

benefits (in the case of a good action that also has some costs associated with it, e.g.

protecting the customer from fraud) as it was also pointed out by Elkan [66].

TABLE 2.2: Transformed cost matrix for the calling card fraud detection problem.

Correct Class



Then C1 C2.

K

Let h be a classifier. Let Ph (i, j) be the probability that an example generated

at random belongs to class j and is classified by h as being in class i. Let C be a

cost matrix. Then, according to Equation 2.2, the expected loss of h on C is

L(h) = Ph(i,j)C(i,j). (2.4)

i=1 j=1

Note that Ph(i,j) = Ph(ij)P(j), where P(j) is the probability that an example

belongs to class j, and Ph(ij) is the probability that h will classify an example from

class j as class i.

Definition 2.2.1 Let h1 and h2 be any two classifiers. Let C1 and C2 be two cost

matrices corresponding to loss functions L1 and L2.

The two cost matrices C1 and C2 are equivalent (C1 C2) if, for any two

classifiers h1 and h2, L1(h1) > L(h) iffL2(hi) > L(h2), and L1(h1) = L1(h2) if

L2(h1) L2(h2).

Theorem 2.2.1 Let C1 be an arbitrary cost matrix. If C2 = C1 + L, where L is a

matrix of the form

11

6

6

6

62

62

62 ... 6k

(2.5)

y0p = argmin R(yx) = argmin P(y3jx)C(y, y3). (2.3)
yEY yEY j=1



L1(h1) =

i=1 j=1

K

Pi(i,j)Ci(i,j) = P1(ijj)P(j)Ci(i,j)
i=1 j=1

K

P1(ijj)Ci(i,j)
i=1

L2(h1) - L2(h2) = C2(i,j)[P1(i,j) - P2(i,j)]
i=1 j=1
KK

i=1 j=1

KK

i=1 j=

Ci(i,j)[Pi(i,j) - P2(i,j)}

P2(ij)P(j)C1 (i, i)

[Ci(i,j) + }[P1(i,j) - P2(i,j)}

K K

j=1 j=1
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Proof: Let C1 be an arbitrary cost matrix, and C2 = C1 + L. Let h1 and h2

be two arbitrary classifiers.

We will prove that L1(h1) - L1(h2) = L2(h1) - L2(h2) which implies C1 C2.

Let P1 (i, j) be the probability that classifier h1 classifies examples from class j as

belonging to class i. Let P2(i, j) be defined analogously. According to Equation 2.2

K K

(2.6)

(2.7)

S[P1(i,j) - P2(i,j)J

(2.9)

and, similarly

K K K K

j=1 i=1

If we subtract the two, we obtain

K K
L1(h1) - L1(h2) Ci(i,j)[Pi(i,j) - P2(i,j)]. (2.8)

i=1 j=1

Equivalently,



= L1(h1) - L1(h2) +

= L1(h1) - L1(h2) +

= L1(h1) - L1(h2) +

L2(h1) - L2(h2) = L1(h1) - L1(h2) +

j=1
K K

j=1

P1 and P2 are probability distributions; therefore we know that > Pi(ijj) = 1

and P2(ij) = 1, and hence

L2(h1) - L2(h2) = L1(h1) - L1(h2) + 6P(j)(1 - 1) = L1(h1) - L1(h2). (2.11)
j=1

So the difference in the loss of two classifiers is unaffected by adding to C1 and

The next corollary follows from this result.

Corollary 2.2.2 A cost matrix can always be transformed into an equivalent matrix

with zero values on the diagonal, or into an equivalent matrix with non-negative

values.

Proof: Let C1 be an arbitrary cost matrix. Let L\ be a matrix of the form

described by Equation 2.5.

By setting 6j = Ci(j,j), 1 < j < K, the matrix C2, with C2(i,j) = Ci(i,j)+L,

will be equivalent to C1 and will have the diagonal values C2(i, i) = 0.

By setting 6j = minC1(i,j), the matrix C3, with C3(i,j) = Ci(i,j) + , will

be equivalent to C1 and will have the all cost values C3(i,j) 0.

j=1

[Pi(i,j) - P2(i,j)J

>[Pi(iij)P(j) - P2(ij)P(j)}

K

i=1
(2.10)

83P(j) [Pi(i[j) - P2(ijj)]

i=1

K K K
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63P(j)[Pi(ij) -

c1c2. .
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These results show that all that matters is the relative size of C(i, j) separately

in each column j. So, when we generate loss matrices at random, we could generate

them so that some element in each column as 0, and the others were positive. That

element is not necessarily the diagonal element.

As a result, for example, the matrix in Table 2.1 can be transformed into the

equivalent matrix from Table 2.2 with zero costs on the diagonal.

Also, without loss of generality, we can assume that the cost matrices have only

non-negative values.

Non-stationary costs

As described above, the cost matrix assumes a uniform cost over examples from the

same class that are misclassified into the same class. A more general representation of

the cost function would be a cost matrix that is a function of the individual instances

like the one shown in Table 2.3. This type of cost function representation would be

more appropriate iii applications where data points have a spatial component and

f are functions of distance measures (e.g., Burl et al. volcanoes on Venus detection

task [37]).

TABLE 2.3: Example of a cost matrix which is a function of the individual instances.

Correct Class

Predicted Class

Fraud

No-Fraud

-1.5f00(x) 10.Ofoi(x)

100.Ofio(x) O.Ofii(x)

Fraud No-Fraud
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Another generalization of the cost function representation can be obtained by

allowing it to have a temporal component [69]. For example, in Table 2.3, the f

can be functions of the time the instances were collected. This would be useful and

more appropriate in problems in which the costs of the decisions change over time.

For example, in the case of cellular phone fraud (e.g. cellular phone cloning), the

cost of not detecting the fraud (while charges are made) increases with time, as the

total amount of time the account is used fraudulently is growing and more losses

result for the carrier.

In this dissertation, we will assume that none of the values in the cost matrix

changes during the learning or the decision making process; therefore C is static.

We will also assume that the cost matrices that are being discussed have only non-

negative values.

2.3 The Three Classes of Strategies for Cost-Sensitive Learning

Conceptually, given the general supervised learning framework shown in Figure 2.1,

there are three major types of strategies for cost-sensitive learning Each of these

strategies is implemented by manipulating, replacing, or altering one of the three

main components of the framework: the training data, the learning algorithm, and

the output of the learned model.

2.3.1 Cost-Sensitive Learning by Manipulating the Training Data

The most common practical approach to cost-sensitive classification is to modify the

class distribution of the training data in order to make the learning algorithm output

a hypothesis that minimizes the costs of the decisions for future examples.

For two-class problems, the simplest and most common way to do this is to present

the learning algorithm with a training set in which the proportions of examples in
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the two classes are changed according to the ratio of the cost values. For example, in

the case of the cost matrix from Table 2.2, this approach would be implemented by

training a classifier on data in which examples from the positive ("Fraud") class are

10.15(= 101.5/10.0) more numerous than the rest of the examples. This procedure is

called stratification (or rebalancing), and it is usually implemented by undersampling

the examples from the less expensive class, or by oversampling the examples from

the more expensive class [94].

The advantage of stratification is the simplicity that makes it easy to implement

for any two-class problem. However, this advantage comes at the expense of two

major drawbacks: (1) in its original formulation, stratification can address only two-

class problems, and (2) stratification damages the original distribution of the data

by not taking into consideration the internal mechanisms used by learning algorithm

to construct the hypothesis.

Chapter 3 describes new stratification procedures that generalize to multi-class

problems and that also addresses the class imbalance problem (i.e., when one or more

classes are underrepresented).

Another method that uses training data manipulation to learn a cost-sensitive

classifier is Domingos' MetaCost [59]. MetaCost is an algorithm that employs the

learned class probability estimates for the training instances and plugs them into

Equation 2.3 to relabel optimally the input data. Then, it trains an arbitrary 0/1-loss

classification algorithm on the relabeled data to output the cost-sensitive hypothesis.

A description of MetaCost is given in Appendix B.

Another approach to the cost-sensitive classification problem is to change the internal

mechanisms of the algorithm that compute the output hypothesis such that the
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algorithm will make use of the cost function (as an input parameter) to build the

classifier.

There are three major approaches in machine learning algorithms that build

decision boundaries to classify the data. One group of methods use heuristics that

are correlated with minimizing the cost (usually, in the past, the 0/1 loss). Most

algorithms for learning decision trees, decision lists, and classification rules use a

mutual information heuristic. For example, each test that splits the data in a node of

a decision tree is constructed based on the information gain (an entropy measure) of

the distributions that result after performing the split. The second class of methods

define a cost function that includes the expected loss on the training data plus

a term that penalizes for overfitting. For example, neural networks are typically

trained to minimize the squared loss plus a weight decay term. The third group

of methods represent algorithms that combine the outputs of multiple classifiers

to improve the accuracy of classification. These methods are known as ensemble

methods (or committees) [511 and experimentally, it has been shown that in many

applications they produce the most accurate classifications [150, 30, 53].

In the case of 0/1 loss, heuristic algorithms, and sometimes ensembles, are typi-

cally more efficient than loss-minimizing algorithms. However, it is harder to incor-

porate cost functions into these groups of algorithms.

Drummond and Holte [61] show that, in the case of decision trees, cost-insensitive

splitting criteria can perform as well as or even better than splitting heuristics that

are designed to be cost-sensitive. Their experiments also suggest that performing

cost-sensitive pruning (e.g. [24]) on the cost-insensitively grown trees might reduce

the cost of the decisions.

Fan and Stolfo [67] introduce a two-class cost-sensitive version of adaptive boost-

ing, AdaCost, and show that, on some datasets, it can reduce the cost over the origi-
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nal, cost-insensitive algorithm. Margineantu [118] presents two multiclass versions of

cost-sensitive Bagging [27] which improve the cost on some datasets. However, the

multi-class cost-sensitive version of boosting that is presented in [118] outperforms

the original AdaBoost only in a few cases.

Kukar and Kononenko [108] perform a comparative study of different approaches

to training cost-sensitive neural networks. Their methods include probability esti-

mation and data manipulation techniques. Overall they show that all the algorithms

under consideration reduce the costs of misclassification of cost-insensitive neural

networks. However, the networks that were trained using a backpropagation version

that used a cost-sensitive weight-update function performed the best.

2.3.3 Cost-Sensitive Learning by Manipulating the Outputs

To output a class label for a particular instance x, many classification algorithms

compute internally either a probability estimate of each class P(yx), Vy E Y, or

a real-valued ranking score (yjx), Vy e Y of the possible labels for that instance.

These values can always be computed using the learned hypothesis h. For example,

in the case of decision trees, the class probability distribution of an example can be

estimated by the class distribution of the examples in the leaf that is reached by that

example. In the case of neural networks, class ranking is usually done based on the

activation values of the output units. If the learned model does not explicitly compute

these values, most classifiers can be modified to output some value that reflects the

internal class probability estimate. For example, Platt [141] describes how class

probability estimates can be computed by training support vector machines, and

Friedman et al. [76] derives the class probability estimates for Adaptive Boosting

(or AdaBoost), a very accurate ensemble learning method [75].
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If class probability estimates are available for an instance x, according to Equa-

tion 2.3, its optimal label predicted Yopt should be computed by minimizing the

estimated conditional risk

K

Yopt = argmin1(yx) = argmin P(jjx)C(y, j), (2.12)
yEY yEY

Chapter 4 introduces algorithms for estimating the underlying class probabilities

P(ylx) of the data. These methods are compared against some of the best current

approaches to computing class probability estimates.

2.3. Cost-Sensitive Evaluation of Classifiers

Without good statistical methods, it is difficult to tell whether any cost-sensitive

methods are better than existing methods, and it is also difficult to give an estimate

of the cost of a given cost-sensitive method for a particular application. Chapter 5

describes two new paired statistical tests that are the first usable methods for multi-

class cost-sensitive evaluation of learned models when the cost matrix is known.

In this section, we discuss the relation between these methods and cost-sensitive

evaluation methods that are currently used by researchers. We will also study their

advantages and disadvantages in comparison with other methods.

2.3.4.1 ROC graphs

A popular method for the cost-sensitive evaluation of classifiers is the Receiver op-

erating Characteristic, or ROC graph [84, 145]. We assume that the classification

algorithm to be evaluated can output some instance class rankings. By changing the

thresholds for making the decisions (based on the ranking), the learned classifier will

output the whole spectrum of hypotheses that are computable by that classifier. For
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a two-class problem, this spectrum ranges from predicting always class 0 (e.g. "No

Fraud", or negative examples) to predicting always class 1 (e.g., "Fraud", or positive

examples). The ROC graph of an algorithm is the curve (in the [0,1] x [0,1] space)

formed by the points whose coordinates are the False Positive Rate (usually on the

x axis) and the True Positive Rate (on the y axis) for different decision threshold

settings. Let us denote with tp (true positives) the number of positives correctly

classified, with tn (true negatives) the number of negatives correctly classified, with

fp (false positives) the number of negative examples that were classified as positives,

and with fn (false negatives) the number of positives classified as negatives. The

True Positive Rate (TPrate) is defined as the ratio of the positives correctly classified

to the total number of positives:

# of positives correctly classified tp
TPrate= = . (2.13)

total # of positives tp + fn

Similarly, the False Positive Rate (FPrate) is computed as the ratio of the number

of negatives incorrectly classified to the total number of negatives:

FPrate
# of negatives incorrectly classified

(2 14)- total # of negatives - fp + tn

The ROC graph shows the different cost tradeoffs available for a given algorithm

for different decision threshold values. Figure 2.2 shows an example of an ROC

curve. The origin of the graph corresponds to the classifier that always predicts the

negative class. The (1,1) point of the graph corresponds to the classifier that always

predicts the positive class. The best possible performance would occur at the point

(1,0), where all examples would be classified correctly. All classifiers above the (0,0)

- (1,1) diagonal have predictions that are better than random, while the ones below

have an accuracy worse than random.



0.8

0.6

0.4

F-

0.2

0
0

sample ROC curve

0.2 0.4 0.6

False Positrae Rate (FPrate)

0.8

FIGURE 2.2: Example of an ROC curve.

The ROC method is designed for two-class problems and it is a powerful method

for visualizing the behavior of classification algorithms without regard to class dis-

tribution or cost matrix C.

ROC graphs are a robust method for evaluating classifiers, and there have been

several attempts at inferring metrics from the ROC graph that would evaluate the

performance of machine learning algorithms including the area under the ROC curve

(A UC, [25]), and the ROC convex hull method [145}. Drummond and Holte [60]

present a dual representation of the ROC curves called cost curves. This represen-

tation makes the task of comparing two (two-class) classifiers more easier. Fawcett

and Provost [69] introduce a variant of the ROC curve that is more suitable for the

evaluation of activity monitoring tasks, and tasks with a temporal component: the

Activity Monitoring Operating Characteristic (AMOC). One disadvantage of these

methods is that they are applicable only to two-class problems and their generaliza-

tion to multi-class tasks is non-trivial. Hand and Till [83] show how the multi-class

equivalent of the AUC can be computed using the Wilcoxon statistic.

21
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However, probably the major disadvantage of the ROC-based methods (and their

multi-class generalizations) is that, when used to compare two algorithms, they do

not address the question of "what are the parameter settings that allow one of the

algorithms to achieve the minimum cost and what is that cost?". Instead they just

answer the question whether "there exists a setting for the parameters that allows

one of the algorithms to win". Finding the values of the optimal parameter settings

is sometimes a difficult problem, especially in the case of multi-class problems.

2.3.4.2 Ranking, ROCs and AUC

All the previously published cost-sensitive research regards the ranking and proba-

bility estimation problems as being equivalent from the cost-sensitive learning per-

spective. They are not. In fact the accurate ranking problem is a relaxed version of

the accurate probability estimates task. If a learned model does a perfect ranking of

the instances but fails to estimate accurately their class probabilities, it is hard to

output the optimal decision, especially for multi-class tasks.

Let us consider the example from Table 2.4. We have two classes 0 and 1, ten in-

stances x, i = 1 . . . 10, and their actual class labels (in the second column). Columns

3 and 4 describe two class probability estimators 'yi and 72 and their computed class

probabilities P (1jx) for the ten examples. The examples are sorted in ascending

order by the value of P(1jx).

The ROC curves corresponding to 'y and 72 are shown in Figure 2.3. They are

identical because the quality of the ranking of the two learned models is the same.

Suppose the task is to minimize the total cost of the predictions for the cost

matrix described in Table 2.5. The optimal classifier would set the decision threshold

between x and x2 so that only x1 is predicted to be in class 0 and all other points

are predicted to be in class 1. This threshold corresponds to an average cost of



TABLE 2.4: Probability estimates 'y' and 'Y2 for a set of ten instances.

Instance

x1

x3

x5

x7

x8

x10

Actual class

o

1

0

O

O

1

1

0

1

1

FIGURE 2.3: The ROC curves for 'yi and 72 are completely overlapping.
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P,1(1lx) P2(1Ix)

o.oi 0.35

0.07 0.40

0.30 0.65

0.45 0.70

0.60 0.72

0.70 0.75

0.75 0.77

0.90 0.79

0.92 0.8

0.95 0.85

0.2 0.4 0.6 0.8

False Positive Rate (FPrate)



Predicted Class

0

1
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4/10=0.4. If equation 2.12 is used to compute class boundaries, however, the cost

incurred by 7i is 14 (average cost is 1.4) and the decision boundary is set between

x2 and x3. For 72 the cost is 5 (an average cost of 0.5) and the computed classifier

always outputs class 1.

In the case of the 0/1 loss, the error rate (computed using equation 2.12) of 71

is 0.3 (it would misclassify x2, z5 and x8) while the error of 72 is 0.5 (x2, x3, x4, x5

and x8 would be the misclassified instances). The optimal classifier, however, would

set the decision boundary between x5 and x6 (an error rate of 0.2).

TABLE 2.5: Cost matrix for the two-class problem in Table 2.4.

Correct Class

These are just two situations in which either one or the other of the classifiers

was the winner, although their ROC curves are identical. However, in none of the

cases could the optimal decision be computed using equation 2.12.

In most practical applications, the ultimate purpose is to minimize the cost as

defined in equation 2.2. For a two-class problem, this can be translated into the

Neyman-Pearson criterion [65] that states that the purpose is to find the point with

the highest possible TPrate that does not exceed the maximum FPrate allowed.

0 1

0.0 10.0

1.0 0.0
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As we can observe from the example above, the ROC methods alone are not

sufficient for the selection of the best classifier.

The extra step needed for the ROC methods is a search along the ROC graph for

the optimal operating point. Provost and Fawcett [146] also point out this problem

and provide a method, the ROC convex hull (ROCCH), that uses decision analysis

to build the best classifier (for any parameter settings) from the models available.

Their method, as well as a search along the curve that would find the best operating

point, are efficient only in the case of a two-class problem. For an arbitrary number

of classes K [167], the generalized versions of ROC methods would have to run in

a new (hyper)space, which is a K2-dimensional space to which these algorithms do

not scale up.

To rectify these problems, chapter 5 presents two statistical methods for the

cost-sensitive setting. Chapter 6 assesses these methods experimentally.

2.4 Summary

This chapter has defined the main concepts and notations for cost-sensitive learn-

ing. The research problems that need to be addressed, were identified, and previous

approaches were reviewed. A categorization of the cost-sensitive learning was intro-

duced, based on the framework of supervised learning: there are three main strategies

of making supervised learning cost-sensitive. We have defined an equivalence rela-

tion for cost matrices and have shown how a cost matrix can be transformed into an

equivalent one. We have described the ROC graph, a method for evaluating and vi-

sualizing the quality of the rankings for two-class problems. However, ROC methods

do not show how to set classification thresholds to minimize misclassification costs

and are not applicable to multi-class problems. We have shown that if class proba-

bility estimates are not accurate, equation 2.3 cannot be used to classify examples,
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even if the estimates represent very good rankings. This motivates the need for new

statistical methods for cost-sensitive evaluation.



CHAPTER 3

COST-SENSITIVE LEARNING BY TRAINING DATA
MANIPULATION

3.1 Overview

In supervised learning, we assume that the data sample is drawn according to a

probability distribution P(x, y) and hence, the class labels will have probabilities

P(y). An important method for making a classifier cost sensitive is to alter the

proportion of training examples or their labels to reflect a different distribution F' (y).

If the learning algorithm is sensitive to P(y), this will cause it to shift its decision

boundaries. For example, if the cost matrix for a problem is the one shown in

Table 3.1, one might decide to grow a decision tree model by presenting the decision

tree learning algorithm a sample that contains ten copies of each instance labeled

with Class 1 in the original data. The reasoning behind this heuristic is that Class 1

is ten times more expensive to misclassify than Class 0, and the learned model will

be able to minimize the overall cost if the training is preformed on data in which

examples from Class 1 are more abundant.

This chapter studies methods for changing the class distribution of the original

training data such that the learning algorithm will construct a cost-sensitive classifier.

In practice it is usually the case that the original class distribution is distorted

to have each class represented in proportion to its "importance" to the learning

algorithm at the time of training. In the case of two-class problems, the level of

"importance" is computed using a function of the value of the misclassification cost of

the class and the original priors (class distribution). Some machine learning software

27



Predicted Class

Fraud

No-Fraud

Fraud No-Fraud

0.Q lOc

c 0.0
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TABLE 3.1: Example of a two-class cost matrix for which a good heuristic to learn
a cost-sensitive model would be to change the original class distribution by sampling
each instance from Class 1 ten times and leave the number of examples from Class
o unchanged. c is an arbitrary positive cost value.

Correct Class

packages allow the user to specify the "importance" in the form of weights that are

associated either to individual examples or to class labels. This is the reason why

the learning techniques that use modified class priors are also known as weighting

methods and the priors are sometimes called weights.

Once the weights are computed, if the base learning algorithm ) does not provide

an explicit way of incorporating them (e.g., the C4.5 decision tree learning package

provides the Weights[] variable), the simplest implementation of the weighting mech-

anism is to present the algorithm, at training time, each example in proportion to

its weight.

Weighting is a technique that can be applied to any classification algorithm It

has the advantage of providing a powerful means for changing the learned classifier,

while the user is not required to know all the implementation details and internal

mechanisms of the learning algorithm.

The general framework of learning cost-sensitive models by weighting is shown in

Figure 3.1, and the pseudo-code for it is given in Table 3.2. The algorithm assumes

that the cost matrix and the base 0/1-loss learning algorithms are available.
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Weighting exploits the sensitivity of learning algorithms to the input data distri-

bution.

TABLE 3.2: CS-DATAMANIP, a general procedure for learning cost-sensitive models
via training data manipulation.

CS-DATAMANIP

Input: Training data D = (xi, y), cost matrix C, 0/1-loss learning algorithm A

(K is the number of classes)

//Initialize the weights.

for i from 1 to K, let w = 1.0

// Update the weights. Some procedures like the wrapper method described in Section 3.2.1

// make use of the learning procedure A to compute the new set of weights.

w = UPDATEWEIGHTS(X, y, C, A)

// Use the 0/1-loss learning algorithm to learn the cost-sensitive model

h = A (x, y, w)

Output: h

end CS-DATAMANIp

For a two-class task, with a generic cost matrix like the one described in Table 3.3,

the problem of finding the optimal class weights is equivalent to finding the class

weights for 0/1-loss learning but for some test data distribution in which the exam-

ples from Class 1 have a frequency of occurrence which is cio/coi higher than their fre-

quency in the training data. If we denote the probability values that refer to the new

test data distribution with P, then P5(l) = P(1)cio/c01 and P(0) = P(0)coi/cio.



Training data <x,y>

Cost matrix CKXK

Update class priors

UpdateWeights (x,y,C)

A

Learning algorithm

X(x,y)

h(x)

output hypothesis

FIGURE 3.1: General framework for Cost-Sensitive Learning via Changing Class
Weights. The dashed line indicates that some procedures might use the learning
algorithm for computing the class weights.

TABLE 3.3: Example of a generic two-class cost matrix.

Correct Class

Predicted Class

0

1
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This means that the examples from Class 1 should be weighted by crn/coi, or

equivalently, the examples from Class 0 should be weighted by coi/cio.

For a K-class task, learning by weighting makes use of the K weight parame-

ters, whereas the cost matrix has K(K - 1) - 1 free parameters. As a result, for

K > 2, there is, in general, no way to exactly implement the cost matrix using the

weight parameters. In other words, because for more than two classes there exists,

in general, more than one non-zero misclassification cost for each class (there is a

misclassification cost for each pair of classes) - the two-class weighting procedure can

not be generalized for arbitrary K-class tasks. Nonetheless, it might be possible to

set the weights to approximately implement the cost matrix.

0 1

0 c10

0Co1
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Our primary goal in this chapter is to answer the question of how the class weights

should be set to train multi-class learners when the misclassification costs are known.

In other words, we will study different algorithms for the implementation of the

UPDATEWEIGHTS procedure in Figure 3.1. One wrapper method and two types of

heuristic approaches are presented and discussed.

3.2 Multi-class Weighting Methods

We present five different methods for choosing the input weight vector w. These

methods can be divided into three different categories: wrapper methods, class

distribution-based methods, and cost-based methods. This section describes each

of these in turn.

3.2.1 A Wrapper Method

The most expensive approach is a "wrapper" method, which treats the learning

algorithm as a subroutine (i.e., this method might take the path described by the

dashed line in the framework from Figure 3.1) as follows. Suppose we randomly

partition our training data into a subtraining set and a validation set. When the

learning algorithm is applied to the subtraining set with input weight vector w, the

cost of the resulting model can be measured using the validation set and the cost

matrix C. Hence, we can use a general-purpose optimization algorithm to generate

different w's and try to find the w that minimizes the cost Oil the validation set.

We chose Powell's method [143}, which is a gradient-free, quadratically-convergent

optimization algorithm. The method is described by the pseudo-code in Table 3.4.

It works by performing a sequence of one-dimensional optimizations. The search

directions are chosen to try to make them orthogonal, so that rapid progress is made

toward the minimum.
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TABLE 3.4: Algorithm that uses Powell's optimization method to compute the class
weights.

POWELL-UPDATEWEIGHTS

Input: Training data D = (xe, y), cost matrix C, 0/1-loss learning algorithm ),

pv the proportion of training data used for validation

w the weights, initially having randomly assigned values

let svsaved = w; // save the initial values of the weights

ford=ltoK
I/initialize the set of directions ud with the basis vectors (1 in the d' position, 0 otherwise)

let ud = (0,... ,0,1,0,... , 0); /1 where 1 is in the dth position

end I/for d

repeat

let w0 = Wsaved //starting point

for d from 1 to K i/all directions

// perform a line search

// call ) and move Wd_1 along direction Ud to a minimum; call it wd

let ad = argmin .X(wd_1 + aud); let wd = Wd_1 + adud; let Ud adud;

end //for d

for d from 1 to K - 1 let ud = ud+1;

let UK WK - w0;

// perform a line search

// call ). and move WK along UK to a minimum; call it wo

let a0 = argmin\(wK + auK); let w0 = wK + aouK; let u0 = aouK;

until convergence of w;

Output: w

end POWELL-UPDATEWEIGHTS



33

The overall procedure is the following: Powell's algorithm is executed using the

sub-training set and the validation set to determine the values of the weights w.

Then, the final model (e.g. decision tree) is built using w on the whole training set.

3.2.2 Class Distribution-based Methods

The second group of methods is based on making some measurements of the fre-

quencies of the different classes and different errors on the training set and then

computing a good input vector w from this information.

Most prediction errors committed by learning algorithms tend to result from

predicting items that belong to less frequent classes as being in more frequent classes.

This observation suggests the following two methods.

The first method in this category is GlassFreq. In this method, we first compute

the class frequencies in the training data, such that Tij is the number of training

examples belonging to class i. Then, the input weights to the 0/1-loss classification

algorithm are set so that n. x w is constant for all classes 1 < i < K. This gives

higher weight to classes that are less frequent.

The second method, called EvalCount, is based on first learning a model to min-

imize the traditional 0/1-loss. This is accomplished by subdividing the training

data into a sub-training set and a validation set, constructing a classifier on the

sub-training set, and then measuring its costs (according to cost matrix C) on the

validation set. We then set w to be the sum of the costs of the examples from class

i that were misclassified, p1us 1 (to avoid having weights with a value of zero).

As with the wrapper method, we need to set another input parameter, v, the

proportion of training data used for validation.



3..3 Cost-based Methods

The third group of methods for computing w calculates them directly from the cost

matrix without either invoking the learning algorithm or measuring class frequencies

in the training data. We call such methods cost-based methods. The big advantage

of these methods is that they are extremely efficient. Two cost-based methods are

proposed for calculating the weights.

The first method is called MaxCost. Each weight is computed as the maximum

of the corresponding column:

= maxC(i,j) (3.1)

The intuition is that the maximum value within a column is the worst-case cost

of misclassifying an example whose true class corresponds to that column.

The second method is called AvgCost and is similar to the one suggested by

Breiman et al. [31]. Each weight is computed as the mean of the off-diagonal

elements in the corresponding column:

k

i=r1,ij Ck(z,J)
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(ki)
The intuition here is that the average of the non-zero values within a column

approximates that average cost of misclassifying an example whose true class corre-

sponds to that column.

(3.2)

3.3 Summary

We have presented five weighting methods for multi-class tasks. The wrapper method

uses the base learning algorithm as an internal procedure; therefore we expect it to
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be more accurate than the other methods in certain situations. The cost-based

algorithm can give poorer results especially when the misclassification costs take

values from a large interval, because these methods will create very imbalanced data

distributions, which may cause the learning algorithm to overfit. The distribution-

based methods will create the same problem if the original distribution of the data

is skewed.

Unfortunately, the wrapper approach is also the most expensive to execute, so

this raises the question of whether some of the cheaper methods will work well in

commonly-occuring situations.



CHAPTER 4

COST-SENSITIVE LEARNING BY CONDITIONAL DENSITY
ESTIMATION

4.1 Overview

In the case of a K-class problem where the cost matrix C is known, an instance x

should be labeled with the class 'y that minimizes the conditional risk (or, expected

loss) for that instance

R('yjx) P(jx)C(y, j). (4.1)

j=1

This equation gives us the optimal labels if the probabilities P(jlx), Vj 1... K,

are accurately computed. In this chapter we will study different approaches for learn-

ing accurate class probability estimates and how these methods should be employed

for cost-sensitive classification. First we will review one of the best existing methods,

the bagged probability estimation trees (B-PETs). Then we will outline the potential

advantages that the lazy learning framework offers for class probability learning and

will introduce a new approach, the lazy option trees (LOTs) and the bagged lazy

option trees (B-LOTs).

4.2 Decision Trees

One of the most studied 0/1-loss learning algorithms is the decision tree algorithm

[31, 148, 149]. It produces tree models like the one shown in Figure 4.1 for classifi-

cation. The decision trees consist of internal nodes and leaves. The internal nodes

36
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FIGURE 4.1: Example of a binary decision tree for deciding whether a patient is
suspect of having AIDS, and therefore whether to perform an HIV test. Internal
nodes representing tests on possible attribute values, are represented by circles (fr
is the frequency of recurrent infections per month, temp is the body temperature).
Leaf nodes indicating the decision, are represented by rectangles.

specify tests on attribute values while the leaves specify class labels. To classify an

unlabeled example, the decision tree will perform the attribute test specified by the

root node and follow the branch corresponding to the outcome of the test (e.g., an

instance with fr = 1 will follow the NO branch in the tree from Figure 4.1). In the

case of reaching another internal node, the instance will traverse the tree through

the branches corresponding to the outcomes of the tests, all the way to a leaf node.

When a leaf node is reached, the example will be assigned the class label specified

by the leaf.

The standard binary decision tree induction algorithm is described in Table 4.1.

In each node, all possible attribute tests are considered and assessed (on the training

data) based on some evaluation function (usually a heuristic). The test with the

highest score is chosen, and the training data is split using the test. The induction

procedure is called recursively for each partition of the data. The splitting process
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halts when any one of the following conditions is satisfied: (1) all training instances

reaching the node belong to the same class, (2) all training instances have the same

attribute values, (3) the number of instances is smaller than the minimum number

allowed (a parameter given by the user), or (4) the assessment heuristic indicates

that no further improvement of the model can be achieved. Most of the heuristic

evaluation functions for choosing a test that are used in practice, make use of some

measure of the purity of the data (i.e., seek tests that lead to nodes in which the

number of instances in one class is much larger than the instances from other classes,

ideally having only instances from a single class). CART [311 uses the Gini criterion,

whereas 1D3 [148] and C4.5 and C5 [149] employ a function of the entropy of the

data (information gain and gain ratio). Other possible splitting criteria include the

g-criterion invented by Kearns, and Mansour [98], criteria based on the x2 and C2

statistics [126], and meta-criteria based on the p-value of any of the above tests [58].

When the tree model is constructed, a pruning procedure is employed in order to

avoid overfitting the input data. Three categories of pruning methods are commonly

used in practice for pruning trees for 0/1-loss classification. Holdout and cross-

validation methods use a portion of the training data for validation, and the model

is pruned to minimize an error function on the validation data. Cost-complexity

pruning [31] used in CART and reduce-error pruning fall in this category. The

second category includes methods that rely on an information-theoretical approach

that seeks the model with minimal complexity, for example based on the minimum

description length (MDL) criterion [153, 10]. The third category is represented by

methods that rely on a probabilistic estimate of the error based on the counts of

instances in each node. Pessimistic error pruning [149] used in the C4.5 programs

belongs to this category.



DECISIONTREE

Input: Training data D = (Xj,yj), MaxExamples a constant

if all instances in D have the same label y then return Lea 1(y1)

if all instances in D have the same attribute values

then y MajorityLabel(D); return Leaf(yj)

if card(D) <MaxExamples then Yi = MajorityLabel(D); return Leaf(y,)

select an attribute test T

let D05 = all instances in D for which the outcome of the test T is positive

let D9 = all instances in D for which the outcome of the test T is negative

// now, call the procedure recursively

let LeftBranch DECISIONTREE(DOS, MaxExamples);

let RightBranch = DECISIONTREE(DTheg, MaxExamples);

Output: Node (T, LeftBranc.h, RightBranch);

end DECISIONTREE

TABLE 4.1: The standard binary decision tree induction algorithm.
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Decision trees are popular among practitioners (to give just a few examples of

their use in practical applications, see [91, 159, 147, 95, 158J) because fast induction

algorithms are available, because they classify new examples quickly, and because

they can output rules that are understandable by users. Typically, the probability

estimates for an unseen instance that reaches a leaf 1 are approximated using the

class counts of training instances that reach 1. For example, if the rightmost leaf in

Figure 4.1 is reached by 4 instances from class perform test and 0 instances from the

rio test class, the probability estimated using the tree, for an instance x that reaches

the same leaf is P(perforrn testx) = 4/4 = 1.0 and P(no testix) = 0/4 0.0.
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As noted by [165, 25, 147, 29, 144}, the class probability estimates of the decision

trees are poor. There are three major factors that cause this deficiency. First, the

greedy induction mechanism that splits the data into smaller and smaller sets leads

to probability estimates that are computed based on very small samples, and this

leads to inaccurate estimates. Second, most of the existing decision-tree induction

algorithms focus on minimizing the number misclassifications (through the purity-

based heuristics) and on minimizing the size of the model (through the pruning

procedure). This causes the learned models to compute class probabilities that are

too extreme (i.e., close to 0.0 and 1.0), as in the example above, and therefore

incorrect. The third factor is the shape of the decision tree hypotheses (piecewise

linear decision boundaries). This kind of decision space assigns uniform probability

values to points that are iii the same region and will not differentiate between points

that are closer to the boundary of the region and points that are farther from the

boundary.

4.3 Probability Estimation Trees

Provost and Domingos [144] show that decision tree class probability estimates can be

improved by skipping the pruning phase and smoothing the distributions by applying

a Laplace correction (or Dirichlet prior) as follows

P(yx) = N
(4.2)

where N is the total number of training examples that reach the leaf, N is the

number of examples from class Yj reaching the leaf, K is the number of classes, and )

is the prior for class Yi (assumed to be uniform = 1.0 Vi = 1 .. . K in this case, and
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in all other applications in which there is no prior knowledge about the distribution of

the instances). The Laplace correction [80, 39, 241 will smooth probability estimates

that are too extreme because of the small size of the sample that reaches the leaf. This

smoothing permits Probability Estimation Trees to reduce the effects of the second of

the causes for inaccurate estimates (extreme probabilities), described in the previous

section. To handle the other two sources of inaccuracy of tree-based probability

estimates, Provost and Domingos apply Bagging [31]. The resulting models are

called Bagged Probability Estimation Trees (or B-PETs). Bagging averages the

probabilities computed by multiple models. Each of the models is trained using a

bootstrap replicate [64] of the training data. The Bagging algorithm is described in

detail in Appendix B.

4.4 Lazy Learning

We propose an alternative to B-PETs based on lazy learning. Lazy learning is the

framework in which a model is built only when the attribute values of the instance

to be classified are known. Commonly, under this framework a model (ideally, "the

best model") is built for each individual unlabeled test instance. The most popular

example of a lazy learning algorithm is the nearest neighbor algorithm [87, 172, 47,

187], which classifies an example based on the labels of the instances that are closest

to it (according to some distance measure). The major advantage of lazy learning is

that it exploits knowledge of (at least) some of the attribute values of the instance

to be classified and therefore has the potential of building more accurate and more

compact models focusing solely on the query instance. The disadvantage is that

classification time can be significantly larger for lazy algorithms, and this can affect

their utility in some practical applications.
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FIGURE 4.2: Sample decision "tree" built by the lazy decision tree algorithm
for a specific unlabeled instance (fr = 6, weight loss = NO, blood pressure =
HIGH, body temperature = 101.5).

Our decision to employ the lazy learning framework is based on the intuition that

lazy models can capture more accurately the specific characteristics of previously

unseen instances and the neighborhood around them and therefore may be able to

compute better probabilities.

4.5 Lazy Trees

In order to learn better class probability estimates, we start by employing a com-

bination of the lazy learning idea and decision tree algorithms, an algorithm called

lazy decision trees introduced by Friedman et al. [34, 77}. The lazy decision tree

algorithm builds a separate decision tree for each test instance (the query point). Be-

cause only one instance has to be classified by the learned model, each internal node

will have only one outgoing branch the one that tests positive on the query point.

For each internal node, the selected test will be the test that maximally decreases the

entropy for the node to which the test instance would branch. The information gain

is defined to be the difference between the two entropy values. Table 4.2 outlines the



LAZYDECISIONTREE(D,X ,MaxExamples)

Input: Training data D = (Xj,yj, Unlabeled example x, MaxExamples a constant

if all instances in D have the same label 1 Output D

if all instances in D have the same attribute values Output D

if card(D) <MaxExamples Output D // D has less than MaxExarnples instances

select an attribute test T

let t= the value of test T on x

let D = all instances in D for which the value of the test T is t

LAZYDECISIONTREE(D, x, MaxExamples); // call the procedure recursively

end LAZYDEcISIONTREE

The most straightforward estimate of the class probabilities can be computed

using the class label counts of training data D in the leaf node

P(yjx) = (4.3)
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generic lazy decision tree learning algorithm, and Figure 4.2 shows an example of a

decision tree induced by the lazy decision tree algorithm.

TABLE 4.2: The lazy decision tree learning algorithm.

where N is the total number of examples in D, and N is the number of examples

from class lii in D.
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FIGURE 4.3: Sample tree built by the lazy option tree algorithm for a
specific unlabeled instance (fr = 6, weight loss = NO, blood pressure =
HIGH, body temperature = 101.5). The numbers in the leaves indicate the number
of training examples (from each of the classes, respectively) that reach that leaf.
Each leaf computes a probability estimate based on those numbers. These estimates
are then averaged to produce the final estimates. The labels of the leaves indicate
the decision in the case of 0/1 loss.

4.6 Multiple Options at Nodes: Lazy Option Trees (LOTs)

Although, by their ability to focus on individual unlabeled instances, the lazy trees

attempt to avoid inaccurate estimates of points too close to the decision boundary,

the small sample and the greediness of the induction method are still influencing the

quality of the probabilities.

To correct this, instead of having a single test in the internal nodes, we allow

multiple tests (options) in each node to grow lazy option trees (or, LOTs). We have

extended Wray Buntine's [34] and Kohavi's and Kunz' [101] ideas of option decision

trees for classification, into the lazy tree learning framework. The lazy option tree

algorithm selects in each node the best b tests with the highest information gain.

A lazy option tree example that was constructed for the instance x = (fr

YES

44
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6, weight loss = NO, blood pressure = HIGH, body temperature = 101.5), is

depicted in Figure 4.3. Let us denote as class 1 the perform medical test class

and as class 2 the do not perform medical test class. To compute the class prob-

ability P(1jx), the algorithm will calculate the proportion of training examples

from class 1 from each of the three leaves and will average the values. This corre-

sponds to taking all the paths from the root node to the leaf node. Because the

tree was built just for x, all the tests on these paths will be satisfied by the at-

tribute values of x. In this case P(1x) = (0.75 + 0.375 + 0.583)13 0.5694, and

P(2jx) = 1.0 - P(1jx) 0.4306.

The options represent an alternative to the voting mechanism of Bagging, for

smoothing and improving the probability estimates of the tree models. The advan-

tage of the options mechanism is that tests having an information gain almost as

high as the best test will be performed, while they might never be performed in

decision trees, lazy trees, or even bagged trees. This way, diversity is increased, and

this might lead to better probability estimates. In addition, lazy option trees (LOTs)

offer a single compact model that is comprehensible.

Nonetheless, to improve the class probability estimates of the LOTs we propose

applying bagging on top of the algorithm, resulting in bagged lazy option trees (B-

LOTs). Our intuition is that the different nature of the two mechanisms, options

and bagging, will help improving the computed estimates. In the case of LOTs

and B-LOTs, the user will have to set two additional parameters: MaxTests the

maximum number of tests that are allowed in a node, and gthe minimum gain

proportion (0.0 < MinG < 1.0), a number indicating the minimum gain for a test

in order to be selected. g is the proportion out of the gain of the best test achieved

within that node (e.g., if the best test in a node has a gain on g, we will will discard

all tests that have a gain of less than gI, within that same node).



4.7 Summary

The issue of cost-sensitive learning via class probability estimates has been addressed.

We have presented a new class probability estimation approach based on the idea

of lazy tree learning. We have shown that decision trees produce poor class prob-

ability estimates for three reasons: (1) their focus on minimizing the 0/1 loss (the

misclassification rate) leads to extreme estimates (close to 0 and 1), (2) they generate

piecewise constant estimates over large regions, and (3) fragmented data. The PETs

reduce the first two causes, and the B-PETs also address the third.

We have proposed a lazy learning solution, the B-LOTs. Lazy learning focuses

on a specific instance and will tailor the learned model for it. The intuition is that

the options in the nodes improve ensembles over bagging.
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CHAPTER 5

THE COST-SENSITIVE EVALUATION OF CLASSIFIERS

5.1 Overview

A fundamental issue in developing machine learning algorithms for applications is

the assessment of their performance. Evaluation of the algorithms should be one of

the first things to consider, rather than an afterthought. Evaluation is a complicated

issue, especially if considered in the context of real-world applications. To evaluate a

machine learning algorithm, we need to systematically assess its performance. This

will help us to understand how a system performs, how to solve a problem, and what

are the causes and effects of different patterns in the data.

Previous work that described multi-class cost-sensitive classification methods has

either applied no statistical testing or has applied statistical methods that are not

appropriate for the cost-sensitive setting. We need good statistical methods to tell

whether new cost-sensitive methods are better than existing methods that ignore

costs, and to estimate the cost of a given cost-sensitive method for an application.

Evaluation of 0/1-loss algorithms has turned out to be difficult. The most used

method for predicting out-of-sample errors is 10-fold cross-validation, and for com-

paring misclassification rates of two learning algorithms are McNemar's test, the

10-fold cross-validated t test, and the 5x2cv test [9, 52].

To rectify these problems, this chapter presents two statistical methods for the

cost-sensitive setting. The first constructs a confidence interval for the expected cost

of a single classifier to answer the question "what is the performance of classifier 7?".
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This is useful for estimating the costs that are likely to be incurred on a given practical

task and also for determining whether the available test data set is large enough to

estimate the expected cost accurately. The second method constructs a confidence

interval for the expected difference in cost of two classifiers to answer the question

"which classifier performs better, 'y or '72?". This is useful for comparing classifiers

for a particular application, and it will also help guide research on cost-sensitive

learning. In both cases, the basic idea is to separate the problem of estimating the

probabilities of each cell in the confusion matrix from the problem of computing the

expected cost.

Our tests are based on the idea of bootstrap [64], a computational method that

is used for estimating the standard error of a parameter q (e.g., the mean) of an

unknown distribution D, based on a random sample s = (si, ,s,) drawn from

that distribution. The bootstrap works by drawing with replacement T samples

s1, s2,... s' (each consisting of n data values), from s. the value parameter of

interest q is computed for each of these samples qi, q2,. T. The standard error

of q is estimated by the sample standard deviations of the T replicates (also called

bootstrap replicates).

We show both theoretically and experimentally that our new tests work better

than applying standard z tests based on the normal distribution. The two statistical

tests are designed for the cost-sensitive setting where the cost matrix C is available.

We do not treat the case where C is not available, although one strategy might be to

apply the methods of this chapter to several different C matrices drawn by sampling

from some distribution of likely cost matrices.



5.2 Bootstrap Methods for Cost-Sensitive Classification

Cost-sensitive evaluation of learned models is made difficult by the fact that in many

domains the expensive errors correspond to the rare cases. In air traffic control,

for example, crashing an aircraft is a very expensive error, but (fortunately) there

are very few training examples of airplane crashes, compared to the number of safe

flights.

In the ordinary 0/1 loss case, we can group together all of the different mis-

classification errors and estimate the total fraction of misclassifications. But in the

cost-sensitive case, we need to treat each different kind of misclassification error

separately, because they have different costs.

The difficulty of the statistical problem created by the scarcity of expensive ex-

amples is illustrated in Figure 5.1, which plots the distribution of the total loss on

1000 separate test sets for a fixed classifier and cost matrix. For different test sets,

the costs varied over a huge range because of the presence or absence of rare, expen-

sive errors. In this case, a large test set is needed to ensure that we obtain enough

data to be able to detect these rare, expensive cases.

The theoretical motivation of this distribution and why normal distribution based

t or z tests fail, is simple. Given a set of n test examples, we can apply the learned

classifier to evaluate each example. Let the cost of classifying example (xe, y) be

Ct = Cy(x), ye). We can compute the mean and standard deviation of the ct values

and construct a confidence interval based on the t or z statistics. The central limit

theorem [185] assures us that the mean of n cost values will be normally distributed

with a variance of a//, where ci is the variance of the Ct values. Unfortunately if

the values in the cost matrix C are very different, the variance a will be very large,

so the resulting confidence interval will be very wide. Consequently, this procedure
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FIGURE 5.1: Example of distribution of losses for a classifier and a cost matrix over
1000 different test sets drawn from the same underlying distribution.

will not give us a very tight confidence interval.

The alternative approach is to estimate the probability on the test set, for each

kind of mistake. Let p(i, j) be the probability that a test example belonging to

class j was predicted to be in class i. These probability values can be computed by

constructing a confusion matrix and dividing each cell by ri. Once these probabilities

are computed, we can compute the expected cost of the classifier by multiplying each

element p(i, j) by the corresponding cell C(i, j) and summing the results:

p(i,j) C(i,j). (5.1)

Based on a small test set, there will be some uncertainty about each of the p(i, j)

values. If the corresponding cost C(i, j) is very large, then this uncertainty will

have a big impact on the estimated error. Fortunately, each probability p(i, j) is

a better-behaved statistic than the average of the c values. It has a variance that

50 100 150 200 250 300 350 400 450
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depends only on its true value, and extreme values (near zero and one) have smaller

variances than intermediate values. Moreover, when the test data set is small, we

can use Laplace corrections (or equivalently, Dirichlet priors) to incorporate prior

beliefs about the sizes of the p(i,j) values [80, 39].

The approach that we take is to compute the p(i, j) values, adjust them using

uniform Laplace corrections, and then apply bootstrap methods to construct confi-

dence intervals for the expected cost of the classifier. We will see that this approach

gives much better results than simply computing a confidence interval based on the

t or z statistics.

5.2.1 Estimating the Expected Cost of a Classifier: BC0sT

Let 'y be a classifier, and V be a test set of ii examples. Let M be the K x K

confusion matrix computed from 2' and V, where element M(i, j) is the number of

test set examples predicted by -y to be in class i but actually belonging to class j.

Let p(i, j) be the normalized, Laplace-corrected confusion matrix defined as fol-

lows:

p(i, j)
M(i, j) +

- K2+n
Here, the constant \ > 0 determines the strength of the Laplace correction. The

p(i, j) values can be viewed as a multinomial probability distribution over the K2

combinations of predicted and correct classes.

The B COST procedure computes a confidence interval for the expected cost of

classifier y as shown in Table 5.1. This pseudo-code generates Nb simulated confusion

matrices M by generating a sample of size n according to the distribution p(i,j).

For each simulated confusion matrix, it then computes the cost by taking a dot

(5.2)
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product between M and the cost matrix C. This gives Nb simulated costs. For a 95%

confidence interval, it then outputs the first and the last of the middle 95% values

after sorting them into ascending order. For example, if the number of bootstrap

rounds is 1000 (Nb = 1000), it will sort the 1000 values and will output the 26th

and 975th simulated costs. This is a bootstrap confidence interval for the mean cost

after applying a Laplace correction to the original confusion matrix.

TABLE 5.1: The BCOST method of constructing a confidence interval for the ex-
pected cost of a classifier.

B COST(P,C,P,n)

Input: Confidence value p, cost matrix C, distribution p, number of test examples n,

number of bootstrap rounds Nb

for tt from 1 to Nb do

Let M = 0, a simulated confusion matrix.

for v from 1 to n do

draw a pair (i,j) according to p(i,j)

increment M (i, j).

end I/for v

Let ë = M C be the cost of 1t2[,.

end I/for tt

Sort the ë values into ascending order.

Let lb= LxNbi+1;Letub=Nb+1lb

Output: The confidence interval [ölb, cb}

end BC0sT
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5.2.2 Comparing the Expected Cost of Two Classifiers: BDELTACOST

The second statistical problem is to compare the costs of two different classifiers to

decide which is better. Given two classifiers 'Yi and 72, we want to test the null

hypothesis H0 that the two classifiers have the same expected cost (on new test

data) against the alternative hypothesis H1 that the two classifiers have different

costs. We want a test that will accept the null hypothesis with probability p if the

null hypothesis is true (i.e., a test that has a Type I error of 1 - p).

We follow essentially the same approach as for BC0sT. The key is to define a new

kind of three-dimensional confusion matrix M. The contents of cell M(ii, i2, j) is the

number of test set examples for which 71 predicted that they belong to class ii, 72

predicted that they belong to class i2, and their true class was j. Analogously, we can

define a three-dimensional cost matrix such that (i1, i) C (i1, ) - C (i2, j).

In other words, the value of (i1, i2,j) is the amount by which the cost of classifier

71 is greater than the cost of classifier 72 when 'Yi predicts class i, 72 predicts class

i2, and the true class is j. Given a 3-D confusion matrix measured over a test set,

we can compute the difference in the costs of 7i and 72 by taking the "dot product":

M(ii, i2,j)(i1, i2,j).
il ,i2,j

We can obtain our statistical test by computing a confidence interval for M . L and

rejecting the null hypothesis H0 if this confidence interval does not include zero.

If the confidence interval does contain zero, we cannot reject the null hypothesis.

The confidence interval is constructed in exactly the same way as for B COST. We

take the 3-D confusion matrix measured on the test set, normalize it, and apply a

Laplace correction to get a multinomial probability distribution p(i1, i2, j). We then

simulate Nb confusion matrices M by drawing (i1, i2, j) triples according to this

distribution. We compute the difference in cost £ of each simulated confusion matrix
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(by computing M z), sort these differences, and choose the appropriate elements to

construct the confidence interval. The pseudo-code for the BDELTAC0sT procedure

is shown in Table 5.2.

TABLE 5.2: The BDELTACOST method for comparing two classifiers.

BDELTACOST(p4,P,n)

Input: confidence value p, 3-D cost matrix , distribution p, number of test examples n,

number of boostrap rounds Nb

for u from 1 to Nb do

Let M = 0, a simulated 3-D confusion matrix.

for v from 1 to ii do

draw a pair (i1,i2,j) according top(i1,i2,j)

increment JTu(1,2,j).

end I/for v

Let 5 = M be the cost of M

end I/for u

Sort the 8 values into ascending order.

Let lb= Li- xNbj +1; Let ub=Nb+1lb

Output: Reject H0 with confidence p if [lb, ub} does not contain 0;

Otherwise, do not reject H0 with confidence p

end BDELTACOST



5.3 Summary

We have presented two new statistical tests for cost-sensitive evaluation of classifiers.

The first procedure, BCOST, estimates the expected cost of a classification model.

The second method, BDELTACOST, is a paired test for comparing two classifiers on

a given domain. The two statistical tests described in this chapter are the first usable

evaluation methods for cost-sensitive learning with a known cost matrix. These two

tests were also reported in [121].
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CHAPTER 6

EXPERIMENTAL RESULTS: COST-SENSITIVE LEARNING IN
PRACTICE

6.1 Overview

This chapter presents the experiments that were performed to test the methods

introduced thus far. We first assess the two evaluation tests introduced in Chapter 5.

Next we test the cost sensitive learning methods from Chapters 3 and 4.

6.2 Evaluation of the Bootstrap Methods

This section presents experimental tests to verify that the two statistical evaluation

methods described in chapter 5BC0sT and BDELTACOSTare working properly.

We will also compare the confidence intervals these methods output to the confidence

intervals based on the normal distribution.

6.2.1 Experimental Evaluation of BC0sT

The purpose of this experiment is to construct a situation in which we have a classifier

'y whose true expected average cost is known. We can then simulate a large number

of different test sets, apply the B COST procedure to each of them, and see whether

the resulting confidence interval does indeed capture the true mean in fraction p of

the trials. In our experiments, we set p = 0.95, so we are seeking a 95% confidence

interval.
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We performed our tests on two synthetic domains: Expf5 and Waveform. Fig-

ure 6.1 shows the decision boundaries for the Expf5 domain with two features (on

the two axes) and five classes (denoted by the numbers in the figure). Waveform is a

three-class problem that was invented with the purpose of testing CART by Breiman

et. al [31]. Each of the classes represents a random convex combination of two wave-

form functions. The waveforms are triangular piecewise linear functions. Figure 6.2

shows h1, one of the waveforms. The other two functions, h2 and h3, have similar

shapes, but the waveforms are centered around 15 and 9, respectively. The data is

sampled at the integers, and therefore has twenty-one attributes to which random

noise was added. The attribute values of the instances from the three classes are

generated using the following formulae. y = I (Class 1):

y = 2 (Class 2):

y = 3 (Class 3):

Xm = uhi(rn) + (1 - u)h2(m) + rn = 1,.. . m, (6.1)

Xm = uhi(m) + (1 - n)h3(m) + m, m = 1,. . . m, (6.2)

Xm = uh2(m) + (1 - u)h3(m) + m = 1,.. . in, (6.3)

where u is a random number drawn from the uniform distribution, 0 u 1, and

the attribute noise m is normally distributed with mean 0 and variance 1. The

waveform data sets for our experiments are generated to be perfectly balanced, each

class being equally represented.

In the case of Expf5, one million examples were drawn uniformly randomly from

the space depicted in Figure 6.1 and labeled according to the decision boundaries in

the figure. Similarly, for Waveform, one million test examples were generated using

the mathematical model described above.
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FIGURE 6.2: h1(t) - one of the three waveform functions employed to generate data
for the waveform domain.

To build a classifier, we used the C4.5 algorithm [149] modified using the AvgCost

procedure described in Chapter 3 (each example was weighted in proportion to the

average value of the column of the cost matrix C corresponding to the label of the

example). The classifier is trained on a separate set of one thousand examples drawn

from the same distribution as the one million test examples. Table 6.1 shows the

probabilities of each of the class labels computed from the test data.

-10 -5 0 5 10
xl

FIGURE 6.1: Decision boundaries for the Expf5 data set.



TABLE 6.1: Class frequencies for the Expf5 domain.

Class (%)
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Each experiment involves testing several different cost matrices, C. These were

generated randomly based on eight different cost models. Table 6.2 shows the un-

derlying distributions for each of the cost models. The diagonal elements of C are

non-zero for cost models M7 and M8, and they are drawn from a uniform distribution

over the range described in the third column. For all cost models, the off-diagonal

elements are drawn from a uniform distribution over the range described in the sec-

ond column of the table. In cost model M5, for example, the cost of mislabeling an

example from class j as belonging to class i is determined by the ratio of the number

of examples in class i to the number of examples in class j. In particular, if class i

is very common, and class j is very rare, then this mistake will (on the average) be

very expensive, because P(i)/P(j) will be a large number. For cost model M6, we

reversed this relationship, so that the least expensive errors are those that mislabel

a rare class j as belonging to a common class i. Finally, model M8 is like model

M2 except that there are non-zero costs on the diagonal of C. While in the case

of Expfô, classes are imbalanced, and P(i)/P(j) takes different values for each (i, i)

pair.

Frequency

0 21.02

1 44.73

2 25.68

3 0.16

4 8.41
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Unif[0, 10001

Unif[0, 10]

Cost

Model

Ml

M2

M3

M4

M5

M6

M7

M8

C(i,j)

ij
Unif[0, 101

Unif{0, 100]

Unif[0, 1000]

Unif[0, 10000]

Unif[0, 1000 x P(i)/P(j)]

Unif[0, 1000 x P(j)/P(i)]

Unif[0, 10000]

Unif[0, 100]

C(i,i)
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TABLE 6.2: The cost models used for the experiments. Unif[a, bJ indicates a uniform
distribution over the [a, b] interval. P(i) represents the prior probability of class i.

In Waveform, the three classes are equally represented, and therefore, cost models

M5 and M6 are equivalent to M3 in this case.

For each of the one thousand test sets, we ran B COST and computed the 95%

confidence interval for the expected cost. The true expected cost was considered to

be the average cost for the entire one million example data set. We set the Laplace

correction parameter ) = 0.1. Table 6.3 shows the number of test sets for which

BCOST outputs a 95% confidence interval that includes the true expected cost. The

values are averaged over ten cost matrices for each cost model. A perfect 95%

confidence interval would include the true average cost exactly 0.95 Nb times out of

Nb. In the case of Waveform, the confidence intervals are too narrow. For the Expf5

domain, we see that the confidence intervals are all sufficiently wide, although the

intervals for M5 and M6 are somewhat too wide.
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We also computed a normal confidence interval for each test set both for Expf5

and Waveform. For all five cost models, the true average cost was included in the

normal 95% confidence interval 100% of the time (i.e., for all 1000 test sets). This

means that the normal confidence intervals are definitely too wide.

TABLE 6.3: Results of running BC0sT on the 1000 1000-example test sets for nine
different cost models. 10 cost matrices were used for each cost model. The second
column shows the proportion of runs of BCOST for which the true cost was included in

the confidence interval. 1000 bootstrap rounds were executed (Nb = 1000). Laplace
correction )s. 0.1. True cost was computed as the average cost of the classifier for
all 1,000,000 examples.

The sensitivity of BCOST to the choice of the Laplace correction parameter A

is shown in Figure 6.3. Each curve illustrates the probability that B COST returns

Avg. # of cases for which the true cost

was included in the c.i. (out of 1000)

Cost

Model Expf5 Waveform

Ml 0.9561 0.9444

M2 0.9555 0.9454

M3 0.9549 0.9436

M4 0.9539 0.9433

M5 0.9941 0.9436

M6 0.9717 0.9436

M7 0.9529 0.9465

M8 0.9531 0.9438
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FIGURE 6.3: Plots that describe the sensitivity of BC0sT to the choice of \ for the
nine cost models. For each cost model, 10 different matrices were tested, and each
point plots the average result over the 10 matrices. In the case of Expf5, the test is
significantly more sensitive to the choice of ) than in the case of Waveform.
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a confidence interval that includes the true cost for one of the nine cost models,

as A varies from 0.0 to 3.0. In the case of Expf5, all curves reach a maximum

within the interval (0.0,0.51. No Laplace correction (A = 0) will cause BC0sT to

generate confidence intervals that are too narrow, while values of A larger than 0.5

will produce intervals that are too wide and biased too high. For Waveform, the test

is significantly less sensitive to the choice of A (note that all probability values from

Figure 6.3(b) are between 0.92 and 0.95), but the curves never reach 0.95, which

means that the test was more pessimistic. This proves that in this case the test gives

confidence intervals that are marginally too narrow.

6.2.2 Experimental Evaluation of BDELTACOST

Given two arbitrary classifiers 'y and 72, the BDELTACOST procedure decides whether

one classifier has a lower expected cost than another. There are only two possible

decisions [50]: (1) the two algorithms have the same cost (the null hypothesis, H0)

and (2) the two algorithms have the different costs (the alternative hypothesis, H1).

Under these circumstances, any statistical test can commit two kinds of errors: Type

I and Type II. A Type I error occurs when two classifiers have exactly the same cost,

but the statistical test rejects the null hypothesis. If a statistical test is conducted

with a confidence level of 0.95, then it should commit a Type I error with probability

0.05. The second kind of error, the Type II error, occurs when the statistical test

fails to reject the null hypothesis even when the two classifiers have different expected

costs.

For the assessment of BDELTACOST, we have run our experiments on the two

domains described in the previous section: Expf5 and Waveform. To evaluate the

probability that BDELTACOST commits a Type I error, we face a difficult experi-

mental problem. We need two classifiers, 71 and 72, that are different and yet that
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have identical average costs. Furthermore, the worst case scenario for a statistical

test usually occurs when the two classifiers are very different from each other [52},

since this variability tends to "fool" the statistical test into thinking that the classi-

fiers have different expected costs. So we want to design the two classifiers so that

they misclassify different test examples and yet have the same average cost. To do

this, we first ran C4.5 with AvgCostto produce 7i. Then, we computed the confusion

matrix M* for 'y on the entire collection of one million test examples. To construct

our second classifier, 72, we don't need to actually construct a decision tree (or any

other real classifier)all we need to do is assign a label to each test example, which

we will declare to be the label assigned by 72 We want to assign these labels so that

the cost of 72 (defined in this way) over the entire one million test examples is the

same as the cost of 'Yi We will do this by ensuring that 72 has the same confusion

matrix as 'yr. For each test example, (xe, yr), we choose randomly a new label Yi

such that M*(yi, y) > 0, assign that label to example £, and decrement M*(yi, yr).

When we have labeled all of the test examples, every cell of M* will be zero. This

is equivalent to randomly permuting the '-yr labels of all test examples belonging to

the same true class. This makes the individual decisions of each classifier highly

uncorrelated, but makes their confusion matrices identical, so their average cost on

each of the 1000 test sets is the same. Table 6.4 shows the results of running this

procedure on Expf5 under each of our nine cost models with no Laplace correction.

It plots the proportion of test sets for which the null hypothesis is not rejected. This

number should be 0.950 if the test is working perfectly. The results show that the

probability of Type I error is higher in the case of cost models that generate matrices

with higher costs.

To test the sensitivity of BDELTACOST to the choice of the Laplace correction

parameter, we ran the procedure described in the previous paragraph for different
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TABLE 6.4: Results of running BDELTACOST on Expfô and Waveform on 1000-

example test sets for the two classifiers that have the same expected average cost.
The number of bootstrap rounds was 500 (Nb = 500). \= 0.

values of ) from the interval (0.0,0.51 on Expf5. ) 0.1 caused BDELTAC0sT to

generate confidence intervals that were too wide in the case of all cost models. In

particular, for models M5 and M6 (in the case of Expf5), the probability of rejecting

the null hypothesis for any ..\ > 0 was smaller than 0.005, which indicates that the

confidence intervals were definitely too wide. This might happen because of the

uniformity of the correction (A is kept the same for all elements of the confusion

matrix), and a non-uniform Laplace correction might be a better solution. One

possibility is to set A(ii,i2,j) based on the distribution of elements in the confusion

matrix or based on prior knowledge on the class distribution.

Proportion of cases for which

H0 was not rejected

Cost

Model Expf5 Waveform

Ml 0.94860 0.94780

M2 0.95016 0.94926

M3 0.94970 0.94710

M4 0.94853 0.94570

M5 0.93044 0.94710

M6 0.94620 0.94710

M7 0.94996 0.94410

M8 0.94592 0.94648
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The standard way of measuring Type II errors is to plot a power function which

graphs the probability that the null hypothesis will be rejected as a function of the

amount by which the two classifiers differ in their expected costs [50].

To generate the power curves, we must generate pairs of classifiers 'y and 72 that

have a specified degree of difference in their expected costs. We started with the 'Xi

and 72 classifiers constructed above. We then built a new classifier, 'y by randomly

changing q of the labels that 72 had assigned to the test eamples. We varied q from

0 to 1,000,000, ran BDELTACOST 10 times for each value of q, and averaged the

results for three matrices within each cost model.

Figures 6.4 and 6.5 plot these power functions for each of the nine cost models

as a function of q (the nine curves have been split up for readability purposes) and

Figures 6.9 and 6.10 plot the power functions as a function of the ratio in the cost

of'yto'y1

cost(4) - cost(yi)J

eost('yi)

where cost(7) is the cost incurred by classifier when it classifies all the examples

in a test set.

Figure 6.4 shows that in the case of cost model M5 and dataset Expf5, the test

has a higher probability of Type II errors. That cost model assigns higher costs

for misclassifying instances that belong to rare classes, and we can observe that in

these two cases the probability that H0 is not rejected is greater than 0 (0.092 for

cost model M5) even when q = 1, 000, 000. Notice that while M6 looks best in

Figure 6.4, it appears worst in Figure 6.9. This is because M6 assigns high costs

to frequent errors, so even a small change in the number of such errors gives a high

change in the cost ratio. For M6, BDELTACOST requires a large change in the cost

ratio before it can discriminate between the two classifiers.

(6.4)
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FIGURE 6.4: Power of BDELTACOST (A = 0) for Expf5. Each curve plots the
probability of rejecting H0 as a function of q.
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FIGURE 6.5: Power of BDELTACOST (\ = 0) for Waveform. Each curve plots the
probability of rejecting H0 as a function of q.
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We can also look at the variability of the probability of rejecting the null hypoth-

esis, within each cost model. For readability purposes this information is plotted in

separate graphs shown in Figures 6.6, 6.7, and 6.8. Each graph uses error bars to

show the range of measured values. The variability is minor except for cost model

M5 when q is large.

In addition to running BDELTACOST on each pair of classifiers, we also ran the

paired-differences z test as follows. Let c' be the cost incurred by classifier 'yi when

it classifies example £, and c be the cost incurred by classifier 'y, when it classifies

example £. The paired-differences test constructs a normal 95% confidence interval

for the differences c' - c and rejects the null hypothesis if this confidence interval

does not contain zero.

When we ran this test for the various cost mOdels and the various values of q for

both Expfô and Waveform, we found that in all cases, the null hypothesis was never

rejected. In other words, this test has no power to detect when one classifier has

different expected cost than another.

Next, we have tested the sensitivity of BDELTACOST to the number of bootstrap

rounds, Nb. We have repeated all experimental tests described above for Nb = 300

and Nb 100 both on Expf5 and on Waveform. Figures 6.11, 6.12, 6.13, and 6.13

show the first portion (q < 10000) of the power curves for each cost model for the

three different values of Nb: 100, 300, and 500. We have chosen to show only the

first portions of the curves, because that is the region where, in some cases, the

setting of Nb has influenced the tests. For larger values of q, there were no significant

differences between the curves for most of the cost models.

For both Expf5 and Waveform, setting the number of bootstrap rounds, Nb, to

100 has caused BDELTACOST to output intervals that are significantly more narrow

than for Nb = 300 or Nb = 500. In the meantime, setting Nb to 500 has produced
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FIGURE 6.6: Enlarged plots from Figure 6.4. Error bars show range of observed
probability of rejecting H0. Nb = 500. ) = 0.
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slightly (but only slightly) better confidence intervals in comparison to Nb = 300 for

all cost models except M8 on Expf5. These results suggest that if classifier testing

time is a major concern for an application, BDELTACOST with 300 bootstrap rounds

is a reasonable choice for a test procedure.

Finally, we wanted to analyze how sensitive the BDELTACOST test is to the dis-

tribution represented by Mt (the confusion matrix), or equivalently, to the accuracy

of the classifier. C4.5 with AvgCost builds fully grown, cost-sensitive decision trees,

and, as a result, M* and p (the probability matrix computed using the counts in

M*) have larger values on the diagonal.

We reran all experiments on a classifier that is just slightly better than random

guessing - the cost-insensitive, decision tree algorithm with a maximum depth of

the model set to two. Figures 6.15 and 6.16 show the power curves of BDELTACOST

for each cost model, for depth-two decision trees. It is important to observe that in
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FIGURE 6.10: Power of BDELTACOST ( = 0) for Waveform. Each curve plots the
probability of rejecting H0 as a function of the cost ratio.
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FIGURE 6.12: Power of BDELTACOST (A = 0) for Expf5 for different values of Nb.
Cost models 5, 6, 7, and 8.
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FIGURE 6.13: Power of BDELTACOST (A = 0) for Waveform. Each plot depicts
the power curves for a cost model, for Nb = 100, Nb = 300 and Nb 500.
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FIGURE 6.14: Power of BDELTACOST (A = 0) for Waveform. Each plot depicts
the power curves for a cost model, for Nb = 100, Nb = 300 and Nb = 500.

the case of Expf5, BDELTACOST falsely rejects the null hypothesis for cost models

with high off-diagonal costs. Especially in the case of M6, the poor predictions of

the classifiers combined with the high penalties for misclassifying the most common

class labels have caused the algorithm to exhibit a high Type I Error. The test

was less sensitive to the classification algorithm in the case of Waveform because

of the uniform class distribution. For both domains, BDELTAC0sT with depth-two

trees had a slightly higher Type II Error compared to the cost-sensitive, fully grown

decision trees.

Overall, the tests show that the very high class imbalance of Expfô combined

with cost functions that penalize heavily misclassifying either rare or more common

instances, can cause the bootstrap methods to have higher variance and instability.

The behavior of the tests on Waveform is significantly more stable and less sensitive

to the input parameters.
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FIGURE 6.15: Power of BDELTACOST \ = 0) for Expf5 for depth-two decison tree
classifiers. Each curve plots the probability of rejecting H0 as a function of q.
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tree classifiers. Each curve plots the probability of rejecting H0 as a function of q.
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TABLE 6.5: Data sets studied in our experiments.

6.3 Evaluation of Algorithms for Data Manipulation

Now that we have validated the statistical tests, we apply them to evaluate the

cost-sensitive learning methods introduced in Chapters 3 and 4.

We have first tested the methods for cost-sensitive learning by training data

manipulation (described in Chapter 3). To do this, we have employed data from

a set of sixteen domains of the the UC Irvine machine learning repository [18}.

81

Name

#of
Classes

#of
Attributes Discrete Continuous

Abalone 21 8 1 7

Audiology (audio) 8 69 69 0

Breast Cancer Yugoslavia (bcy) 2 9 5 4

Glass 6 9 0 9

Hepatitis 2 19 13 6

Iris 3 4 0 4

Liver Disorders (liver) 2 6 0 6

Lung Cancer (lung) 3 56 56 0

Lymphography (lympho) 4 19 16 3

Segmentation (segment) 7 19 0 19

Sonar 2 60 0 60

Soybean large (soybean) 15 35 35 0

Vehicle 4 18 0 18

Voting records (voting) 2 16 16 0

Wine 3 13 0 13

Zoology (zoo) 7 16 15 1



TABLE 6.6: Approximate class distributions of the studied datasets.
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Name

# of

Classes

Class

Distribution

abalone 21 [.003,.013,.03,.06,.09,.14,.17,.15,.12,.063,.047,.03,.024,.016,

.014,.O1,.008,.006,.003,.001,.002]

audio 8 [27,.11,.1,.28,.04,.03,.12,.05]

bcy 2 [.7,.3}

glass 6 [.33,.36,.08,.06,04,.13}

hepatitis 2 [.21,.79]

iris 3 [.33,.33,.33J

liver 2 [.42,.58}

lung 3 [.28,.4,.32]

lympho 4 [.O1,.55,.42,.02]

segment 7 [.14,.14,.14,.14,.14,.14,.14J

sonar 2 [.53,.47]

soybean 15 [.031,.031,.031,.14,.07,.031,.031,.15,.031,.031,.031,.07,.031,.14,.14}

vehicle 4 [.254,.254,.238,.254}

voting 2 [.613,387]

wine 3 [.33,.40,.27]

zoo 7 [.405,. 197,.05,.129,.04,.08,.099J
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FIGURE 6.17: Barplot showing the results of running BDELTAC0sT for comparing
the PoweillO wrapper method against AvgCost for the sixteen UCI data sets. White
bars represent the number of ties, black bars represent the number of wins of AvgCost,
and the grey bars represent the number of wins for Poweill 0.
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FIGURE 6.18: Barplot showing the results of running BDELTAC0sT for compar-
ing the PoweillO wrapper method against MaxCost for the sixteen UCI data sets.
White bars represent the number of ties, black bars represent the number of wins of
MaxCost, and the grey bars represent the number of wins for PoweillO.
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FIGURE 6.19: Barplot showing the results of running BDELTAC0sT for compar-
ing the PoweillO wrapper method against ClassFreq for the sixteen UCI data sets.
White bars represent the number of ties, black bars represent the number of wins of
ClassFreq, and the grey bars represent the number of wins for PoweillO.
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FIGURE 6.20: Barplot showing the results of running BDELTACOST for comparing
the PoweillO wrapper method against EvalCountlO for the sixteen UCI data sets.
White bars represent the number of ties, black bars represent the number of wins of
EvalCountlO, and the grey bars represent the number of wins for PowelilO.

86



U

zoo

87

audio

abalone

bcy

glass

hepatitis

I iris

liver

lung

lymph o

segment

sonar

soybean

vehicle

voting

wine

0 100 200 300 400 500 600 700 800

FIGURE 6.21: Barplot showing the results of running BDELTAC0sT for comparing
the Powell2O wrapper method against AvgCost for the sixteen UCI data sets. White
bars represent the number of ties, black bars represent the number of wins of AvgCost,
and the grey bars represent the number of wins for Powell2O.
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FIGURE 6.22: Barplot showing the results of running BDELTACOST for compar-
ing the Powell2O wrapper method against MaxCost for the sixteen UCI data sets.
White bars represent the number of ties, black bars represent the number of wins of
Max Cost, and the grey bars represent the number of wins for Powell2O.
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FIGURE 6.23: Barplot showing the results of running BDELTACOST for compar-

ing the Powell2O wrapper method against ClassFreq for the sixteen UCI data sets.
White bars represent the number of ties, black bars represent the number of wins of
ClassFreq, and the grey bars represent the number of wins for Powell92O.
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FIGURE 6.24: Barplot showing the results of running BDELTACOST for comparing
the Powell2O wrapper method against EvalCo'unt2O for the sixteen UCI data sets.
White bars represent the number of ties, black bars represent the number of wins of
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These datasets are presented in Table 6.5. The tasks associated with them are

described in Appendix A. The class distributions for each of the domains are given

in Table 6.6. We have run ten-fold cross validation for all eight cost models described

by the distributions in Table 6.2. For each of the models we have generated ten cost

matrices. To do the testing we have used BDELTACOST. For each of the domains,

800 tests were performed (8 cost models, 10 matrices per model, ten-fold cross-

validation).

Figures 6.17, 6.18, and 6.19 compare the PowelilO wrapper method against Avg-

Cost, MaxCost, and ClassFreq. Figures 6.21, 6.22, and 6.23 compare the Powell2O

wrapper method against AvgCost, MaxCost, and ClassFreq. Figures 6.20 and 6.24

compare the two methods that use hold-out data for validation, Powell and Eval-

Count, for 10% and 20% (denoted as PowelilO, Poweli2O. EvalCountlO, and Eval-

Count2O, respectively) of the available data used for validatioll.

The charts show that for all tests, and for all domains, the number of ties between

the tested methods in the pairwise comparisons is always larger than the number of

wins of either of them. Powell92O performs slightly better than PoweillO. PowellO

has a significantly better performance than AvgCost only in the case of liver and wine

domains, and a better performance than EvalCount2O for audio, soybean, and wine.

In the meantime it is interesting to observe that MaxCost is worse than Avg Cost,

although their nature is very similar. The methods that give the best results are

ClassFreq and Powell2O. When these two methods are compared (see Figure 6.23),

ClassFreq outperforms Powelt2O on seven data sets (audio, hepatitis, lymphography,

soybean, voting records, wine and zoo), Powell2O wins on three domains (breast

cancer Yugoslavia, liver disorders, and sonar), while on the rest of the domains the

two methods are tied (based on the 95% confidence interval).
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Given that the wrapper methods are expensive in terms of processor time, these

results suggest that the time required by them to compute the weight parameters,

might not always be worthwhile. In many cases, a simpler and faster heuristic method

like ClassFreq can give even better results.

An important thing to observe is that among the heuristic methods, the best

results are obtained by ClassFreq, the algorithm that in most of the cases sets the

smallest values on the weights, while EvalCount2O and Max Cost, the algorithms that

set the highest weights, give the worst results. Even in the case of two-class problems

(for which MaxCost is equivalent to the traditional weighting according to the cost

of misclassification for a class), MaxCost is outperformed by ClassFreq.

6.4 Evaluation of the Probability Estimation Algorithms

To test the accuracy of the class probability estimates computed by the bagged LOTs

(B-LOTs) and by the bagged PETs (B-PETs), we first need a synthetic domain for

which the true probabilities are known. As pointed out by Provost and Domingos

[144], one of the hardest tasks for class probability learning are the ones in which

the data was generated by overlapping distributions. Therefore, for our test, we

have employed a two-class domain in which the examples were generated by the two

overlapping Gaussians (each Gaussian corresponds to one class) shown in Figure 6.25.

We have run the B-LOTs and the B-PETs on data from the overlapping Gaussians

domain, and the estimated values of the probabilities are plotted against the actual

values in the scatter plots from Figures 6.26, 6.27, 6.28, 6.29, 6.30, 6.31, 6.32 and 6.33.

Perfect probability estimates correspond to the points on the diagonal (which is

plotted in all graphs, for reference). To analyze the sensitivity of the algorithms to

the different parameters, we varied the size of the training data (TDsize) between

100 and 1000, and the minimum number of instances (MlNinst) of a tree leaf from
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FIGURE 6.25: The overlapping Gaussians domain.

2 to 12. For all tests we plot the probabilities for 1000 test points (the same test

data was used throughout these experiments).

From these plots we can observe that the B-PETs have computed very good

rankings when the minimum number of instances in a leaf was large (especially for

TD 300). However, we can observe the flat regions corresponding to large number

of instances being assigned the same probability. For small values of MlNinst (e.g.,

MlNinst = 2) or large values of TD (e.g.,TD 600) we can observe that there are

some oscillations that disrupt the flat regions in a wrong direction. In the case of

B-LOTs, small values of TD and MlNinst have produced some extreme estimates

at both ends of the [0, 1) interval. When TD is larger, the lazy learning mechanism

causes some of these extreme values to be "dragged" towards the diagonal. In our

view the best estimates are computed for TD = 300 and MlNinst = 8, and for

TD = 1000 and MlNinst = 12. Although the flat regions tend to disappear as TD

is assigned larger values, it is clear that the estimates are far from perfect.
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Our intuition is that the purity-based criterion which is used for the LOTs and

B-LOTs is one of the causes for the bad estimates.

The good rankings of the B-PETs seem to be affected by the Laplace correction

especially in regions that are close to 0 and 1. To test the influence of the Laplace

correction parameter, we set it to 0 and reran the B-PET algorithm. Figures 6.34

and 6.35 show the scatter plots for MlNinst = 2 and MlNinst 8. We can

observe that, although the rankings are good (especially for large values of TD and

MlNinst), the probability estimates are very inaccurate.

Next, we have tested the lazy class probability estimators and the B-PETs on

the UC Irvine datasets presented in Table 6.5.

Again, we have run ten-fold cross validation for all eight cost models described by

the distributions in Table 6.2. This time, for each of the models we have generated

twenty-five cost matrices.

Figure 6.36 compares the B-LOTs and the B-PETs and shows the number of

times one procedure outperformed the other and the number of ties (computed by

BDELTACOST based on the 95% confidence interval). A total number of two thou-

sand bootstrap tests were performed for each of the domains two hundred (eight

cost models, twenty-five matrices per model) times ten (the number of cross valida-

tion folds).

For all tasks except the lung-cancer domain, the number of wins for the B-LOTs

is significantly larger than the number of B-PETs wins. In the case of nine domains

(audiology, abalone, iris, lymphography, segmentation, soybean, voting-records, wine

and zoo), the B-LOTs were the clear winner. These results suggest that the B-LOTs

work very well in these application domains. The question is, "What makes them to

outperform the B-PETs?".
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FIGURE 6.26: Scatter plots comparing the class probability estimates of the B-
PETs and B-LOTs (trained on 100 instances), with the true class probabilities, for
MlNinst = 2 and MlNinst = 8.
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FIGURE 6.27: Scatter plots comparing the class probability estimates of the B-
PETs and B--LOTs (trained on 100 instances), with the true class probabilities, for
MlNinst = 12.

There are three fundamental mechanisms that combine into the B-LOTs for learn-

ing the class probability estimates: 1. Lazy learning 2. Options for splitting 3.

Bagging

In order to have a better understanding of the reasons for which the B-LOTs per-

form well, we have removed each of the three mechanisms in turn from the algorithm

and rerun the experiments.

Figures 6.37, 6.38, and 6.39 show the results of the tests. B-LT denotes the

bagged lazy trees (no options), LOT denotes single lazy option trees (no Bagging),

and LT denotes single lazy trees (no Bagging, no options).

The lazy tree mechanism alone (i.e., the LTs, see Figure 6.39) scores more wins

than the B-PETs only in the case of seven domains (audiology, iris, lymphography,

segmentation, soybean, wine, and zoo). Figures Figures 6.37 and 6.38 show that

both bagging and options help improve the performance of the lazy methods signif-
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FIGURE 6.28: Scatter plots comparing the class probability estimates of the B-
PETs and B-LOTs (trained on 300 instances), with the true class probabilities, for
MlNinst = 2 and MlNirist = 8.
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FIGURE 6.29: Scatter plots comparing the class probability estimates of the B-
PETs and B-LOTs (trained on 300 instances), with the true class probabilities, for
MINinst = 12.

icantly. We can observe a slight advantage of the options mechanism over bagging,

especially in the case of abalone, lung-cancer, and sonar. These experiments show

that removing any of the two voting mechanisms (bagging and options) from the

B-LOTs hurts the performance of the learned classifiers, suggesting that they might

have complementary effects.

6. .1 Weighting and Probability Estimation Methods Compared

Both probability estimation methods (B-PETs and lazy tree based estimators) in-

volve a much larger computational effort than the heuristics described in Chapter 3

and tested in Section 6.3.
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FIGURE 63O: Scatter plots comparing the class probability estimates of the B-
PETs and B-LOTs (trained on 600 instances), with the true class probabilities, for
MlNinst = 2 and MlNirtst = 8.
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FIGURE 6.31: Scatter plots comparing the class probability estimates of the B-
PETs and B-LOTs (trained on 600 instances), with the true class probabilities, for
MlNinst = 12.

Therefore, we wanted to see whether this effort is worthwhile and compare the

two best weighting methods against the B-LOTs and the B-PETs on the sisteen UCI

domains. Figures 6.40, 6.41, 6.42, and 6.43 show the results.

6..2 The River Channel Stability Task

We have also tested the bagged LOTs and the bagged PETs on data collected for a

geology task: evaluating the stability of river channels in the Upper Colorado River

Basin [128].

Over the course of the years, a river reaches a state of maximum efficiency in

transporting sediment through its basin [20]. That state is usually associated with

an energy equilibrium. More precisely, it is a dynamic equilibrium because rivers

constantly scour and deposit sediments. This dynamic equilibrium is occasionally

disrupted either because of human land use activities (e.g. mining, dams, urban
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FIGURE 6.32: Scatter plots comparing the class probability estimates of the B-
PETs and B-LOTs (trained on 1000 instances), with the true class probabilities, for
MlNinst = 2 and MlNinst = 8.
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FIGURE 6.33: Scatter plots comparing the class probability estimates of the B-
PETs and B-LOTs (trained on 1000 instances), with the true class probabilities, for
MlNinst = 12.

development), or as a result of natural disasters (e.g., glacial dam breakage), re-

sulting in unstable river channels. Excessive channel instability can be detrimental

especially when it has the potential of affecting human well being (e.g., it might

cause landslides). Therefore, estimating river channel stability accurately is a highly

important task.

Stephanie Moret, Peter Klingeman and their group of researchers in the Environ-

mental Sciences program at Oregon State University have collected channel stability

data in fifty-five locations in the Upper Colorado River Basin, resulting in fifty-five

examples. The data has eleven attributes: seven discrete and four continuous. In the

original data, each example had a stability factor (a real-value between 55 and 117.5)

associated with it, representing the output variable. Higher values of the stability

factor mean higher instability of the corresponding chailnel. We have transformed

the problem from its original regression format (the targets, represented by the sta-
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FIGURE 6.35: Scatter plots showing the class probability estimates of the B-PETs
(with no Laplace correction) with the true class probabilities. TD = 1000.

bility factors, were real valued numbers) into a two-class classification problem in

which the classes are stable and unstable. The original stability values were com-

puted using a table-based protocol (also called the Rapid Assessment Protocol, or

RAP) provided by the US Department of Agriculture (USDA). The values in the

table were calculated based on expert observations in the Rocky Mountain region.

Therefore, we cannot assume that the values represent precise or reliable measure-

ments, and furthermore the exact ("true") threshold Oo between stable and unstable

stability factor values is unknown. To handle this situation, we have defined dif-

ferent classification problems by assigning the stable-unstable threshold 0 different

values from the [80,95] interval. These threshold values were suggested to us by the

environmental sciences researchers studying this problem.

We first tested the algorithms in the absence of any cost matrix. To do this, we

employed Leave-one-out cross-validation (LOOCV) [78, 99], because of the small size
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FIGURE 6.36: Barchart comparing the performance of B-LOTs and B-PETs for the
sixteen UCI data sets. White bars represent the number of ties, black bars represent
the number of wins of B-PETs, and the grey bars represent the number of wins of
B-LOTs computed by BDELTACOST.
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FIGURE 6.37: Barchart comparing the performance of the bagged lazy trees (B-LTs)
and the B-PETs for the sixteen UCI data sets. White bars represent the number of
ties, black bars represent the number of wins of B-PETs, and the grey bars represent
the number of wins of B-LTs computed by BDELTACOST based on 95% confidence
intervals.
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FIGURE 6.38: Barchart comparing the performance of the lazy option trees (LOTs)
and the B-PETs for the sixteen UCI data sets. White bars represent the number of
ties, black bars represent the number of wins of B-PETs, and the grey bars represent
the number of wins of LOTs computed by BDELTACOST based on 95% confidence
intervals.
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FIGURE 6.39: Barchart comparing the performance of the single lazy trees (LTs)
and the B-PETs for the sixteen UCI data sets. White bars represent the number of
ties, black bars represent the number of wins of B-PETs, and the grey bars represent
the number of wins of LTs computed by BDELTACOST based on 95% confidence
intervals.
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FIGURE 6.40: Barchart comparing the performance of the B-LOTs and ClassFreq
for the sixteen UCI data sets. White bars represent the number of ties, black bars
represent the number of wins of B-LOTs, and the grey bars represent the number of
wins of ClassFreq computed by BDELTACOST based on 95% confidence intervals.
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FIGURE 6.41: Barchart comparing the performance of the B-PETs and ClassFreq
for the sixteen UCI data sets. White bars represent the number of ties, black bars
represent the number of wins of B-PETs, and the grey bars represent the number of
wins of ClassFreq computed by BDELTACOST based on 95% confidence intervals.
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FIGURE 6.42: Barchart comparing the performance of the B-LOTs and Powell2O
for the sixteen UCI data sets. White bars represent the number of ties, black bars
represent the number of wins of B-LOTs, and the grey bars represent the number of
wins of Powell2O computed by BDELTACOST based on 95% confidence intervals.
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FIGURE 6.43: Barchart comparing the performance of the B-PETs and Powell2O
for the sixteen UCI data sets. White bars represent the number of ties, black bars
represent the number of wins of B-PETs, and the grey bars represent the number of
wins of Powell2O computed by BDELTACOST based on 95% confidence intervals.
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of the available data sample. Table 6.7 shows the values of the area under the ROC

curve (AUC) for the two algorithms, for different values of the 0 parameter.

The B-LOTs had better overall performance than the B-PETs for all values of 0

except for the [90,93] range.

TABLE 6.7: Performance of the learning algorithms on the river channel stability
task. This table shows the values of the Area Under the ROC Curve (AUC) for
the two algorithms (B-LOTs and B-PETs) for different values of 0 (the value that
sets the threshold between stable and unstable river channels). All channels with
a stability factor larger than 9 are labeled as unstable, while all other channels are
labeled as stable. These values were computed using leave-one-out cross-validation.
The results printed with bold face indicate the values corresponding to the algorithm
that was statistically significant better for a particular setting of 0.

0 B-LOTs B-PETs

80 0.813 0.743

81 0.839 0.814

84 0.818 0.795

86 0.789 0.743

88 0.780 0.652

90 0.673 0.684

93 0.610 0.656

95 0.671 0.652



Decisions when the Ranges in Costs are known.

The domain experts did not have precise values for the costs of the different decisions

in the case of this problem. However, they were able to provide us a the range of

values for the cost matrix. The ranges of the costs are represented in Table 6.8 (in

US Dollars). The largest cost is the cost of the unstable channels that are classified

as stable a value in the order of tens of millions (representing the losses of human

lives and losses of property that can be caused by an unstable channel that was not

remediated). An incorrect classification of a stable channel has associated with it

the cost of one day's work of an expert (sent to remediate the problem). A correct

classification of an unstable channel will incur the cost of one day's expert work plus

the cost of the remediation. The dominating cost however, is the cost of misclassifying

an unstable river channel. Therefore the objectives of the learned classifiers are to

classify all unstables correctly and to have as few misclassified stables as possible.

TABLE 6.8: The cost matrix for the river channel stability task, representing the
ranges of costs associated with each decision.
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For each threshold value 9, we have applied the bagged LOTs (B-LOTs) and

the bagged PETs (B-PETs) to learn the ranking of the river channels in order to

Predicted Class Stable

Correct Class

Unstable

Stable 0.0 human lives and property 10)

Unstable one day (r..i iO) one day + remediation ( i0)
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make the decision that satisfies the two conditions described above. The results are

summarized in Table 6.9.

TABLE 6.9: Performance of the learning algorithms on the river channel stability
task. The values represent the proportion of stable channels that were misclassified
(out of the total number of stable channels) when all unstable channels were classified
correctly. 9 is the value of the stability factor that sets the threshold between stable
and unstable river channels. All channels with a stability factor that is larger than
o are labeled as unstable while all other channels are labeled as stable. Or, in other
words, the table reports the false positive rate corresponding to a true positive rate of
1.0. A trivial classifier that would classify all examples as unstable has a proportion
of misclassified stables of 1.0.

These results show that if the decision threshold is set optimally, the B-PETs

give lower costs when 0 < 90 and the B-LOTs are better for larger values of 9. It is

important to observe that larger values of 9 correspond to fewer unstable examples

in the data, creating a class imbalance.

9 B-LOTs B-PETs

81 0.33 0.22

84 0.60 0.40

86 0.72 0.45

88 0.73 0.55

90 0.47 0.58

93 0.50 0.75

95 0.28 0.50
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This suggests that lazy learning was able to handle larger class imbalance better

than the bagged PETs by focusing on the individual examples.

For all experiments that involved LOTs and B-LOTs in this chapter we have

chosen the value for the maximum number of test allowed in a node to be maxT = 3

and the gain proportion g = 0.2. Preliminary experiments on some of the UCI data

sets show that although the complexity of the trees grows a lot with the value of

maxT, the results do not show major improvement of the LOTs or B-LOTs as maxT

is assigned larger values (we tested for maxT = 5, rnaxT = 7, and maxT = 10). In

the meantime, larger values of g have proven to hurt the overall performance of the

algorithm.

6.5 Summary

This chapter has presented the experimental results of testing the algorithms and

methods presented in this dissertation.

First we validated the statistical tests introduced in Chapter 5. We have shown

that these tests compute better confidence intervals than tests based on the normal

distribution, and this makes them a useful tool for cost-sensitive testing of classifiers.

Next, we tested the data manipulation algorithms presented in Chapter 3. The

results have shown that there is no clear winner among them but that ClasFreq can

be preferred because it is inexpensive and gives a slightly better performance.

Finally, we have run experiments for testing the class probability estimation al-

gorithms described in Chapter 4. The B-LOTs outperformed the B-PETs on the

UCI domains. The bagging and options mechanisms together, have proven to im-

prove significantly the performance of the algorithms. The probability estimates of

the two algorithms in the case of one-dimensional overlapping Gaussians have shown

that while the B-PETs give good rankings, the B-LOTs can sometimes give better
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probability estimates, but these estimates leave a lot of room for improvement. We

have also described the results of applying the probability estimation algorithms to

the river channel task. The B-LOTs were able to classify more accurately the very

expensive data points when these were underrepresented, showing that in the case

of imbalanced data, lazy learning is a good option in practical applications.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Most of the practitioners in the areas of machine learning and data mining regard

the problem of making predictions when the possible outcomes have different costs

associated with them to be among the most important problems that machine learn-

ing research needs to address. As a result, a better understanding of the problem,

and new and improved algorithms addressing this issue, are needed.

This dissertation has addressed that problem and presented methods that can be

applied to solve it in a real-world setting.

This final chapter summarizes the main technical contributions of this thesis and

discusses several promising directions for extending this research.

7.1 Contributions

The main goal of this dissertation was to give a structured overview of cost-sensitive

learning and to develop new tools for cost-sensitive learning.

We have obtained the following results:

We developed a new algorithm, the wrapper method based on Powell's opti-

mization procedure for learning cost-sensitive classifiers by manipulating the training

data. We also developed some simple heuristic methods for weighting. We have com-

pared the wrapper method against the different heuristics. All these methods can

be applied to problems with any number of classes while most existing algorithms

based on the idea of stratification are applicable only to two-class problems. We

found experimentally that ClassFreq, a heuristic that weights the examples based on
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the original class distribution, and Powell2O, the wrapper method using 20% of the

data for validation outperform the other weighting methods.

We developed a new class of algorithms for class probability estimation--the

bagged Lazy Option Trees and their variants. In our experiments we compared

the new methods against the bagged probability estimation trees. The B-LOTs

have performed better than the B-PETs on the sixteen UCI data sets. A more

detailed analysis has shown that both bagging and the options help improve the

performance of the lazy methods. In the meantime, the B-PETs have computed

very good rankings on a synthetic domain, but the probability estimates of the B-

LOTs were slightly better.

We introduced two new statistical tests for the cost-sensitive evaluation of

classifiers. These are the first practical evaluation methods for cost-sensitive learning

with a known cost matrix.

We developed a new methodology for building the power curves to verify sta-

tistical tests for the comparison of two classifiers. We needed two classifiers that

have the same cost but misclassify different examples. The second classifier was con-

structed by assigning the labels of the examples such that the two have the same

confusion matrix. In order to generate the power curve, the labels of the second

classifier were "damaged" randomly.

We proposed a framework for categorizing and understanding cost-sensitive

learning algorithms. This framework is based on the place (in the supervised learning

process) in which the costs are processed.

7.2 Directions for Further Research

The research and the results described in this dissertation can be extended in many

different directions.



7.2.1 Time and Space Dependent Cost Functions

This dissertation focuses on algorithms for cost functions represented by cost ma-

trices. As mentioned in Chapter 2, many applications require cost functions that

have spatial or temporal components. A subject for further research is the study of

algorithms that handle such cost functions.

7.2.2 Lazy Class Probability Estimators

Chapter 4 has presented a class of lazy learning methods for class probability esti-

mation. In many cases they performed better than the bagged PETs. However, if

the practical application requires a very fast answer (e.g., an estimate for one million

query points when the training data has millions of examples), the lazy algorithms

will be much slower than the B-PETs. It would be of interest to study methods of

speeding up the lazy class estimates for applications in which the new examples that

need to be classified are grouped in batches. The experiments on the overlapping

Gaussians have shown that there is a lot of room for improvement in both B-LOTs

and B-PETs. Methods for calibrating rankings like the ones presented by Zadrozny

and Elkan [191] could improve the probability estimates of these algorithms, given

that they can produce good rankings.

7.2.3 Parametric Methods

The class probability estimation techniques described in Chapter 4 were applied to

the cost-sensitive learning problem, but their applicability extends far beyond the

scope of cost-sensitive learning. One major direction for future research is the study

of the applicability of these non-parametric methods in areas in which parametric

methods (like hidden Markov models) have been very successful (e.g., speech recog-

nition).
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7.2.4 Active Learning

Active learning is the field that studies learning algorithms in which data is acquired

incrementally. In many real-world situations, there are high costs associated with

collecting and labeling examples and obtaining or computing attribute values. Thus

far, very little effort has been focused on using probability estimation for selecting

new training examples or for selecting attributes to query. We have started applying

the new probability estimators to these kinds of problems.

7.2.5 Hypothesis Testing

Cost-sensitive evaluation is not the only situation for which confidence intervals for

non-Gaussian. distributions (like the one described in Figure 5.1) are needed. Policy

evaluation in the field of reinforcement learning, and any problem making use of data

that has a multimodal distribution could also benefit from the two statistical tests

described in Chapter 5.

7.3 Summary

Once a practical problem requiring a supervised learning approach is identified, it

is important to first understand what error function needs to be minimized. In

most cases, costs are distributed non-uniformly. Next, the user will have to select

the algorithms that are appropriate for the task and the statistical tests that will

be employed to assess the performance. This dissertation proposes a structured

overview and new solutions for each of these steps for constructing learning systems

that incorporate the costs of the different decisions.
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Appendix A

UCI DATA SETS

This appendix describes the UC,Irvine (UCI) repository data sets as they were
used in our experiments. The UCI repository is accessible via the World Wide Web
at the URL http://www.ics.uci.edu/m1earn/MLRepository.htm1 or by anony-
mous ftp from ftp. ics . uci . edu. The documentation in the repository describes
further details on these data sets.

Abalone. The task is to predict the age of abalone from physical measurements.
In its original form, the domain has 29 classes labeled with 1,2,...29. We have removed
the classes that had fewer than six instances: class 1, class 2, class 24, class 25, class
26, class 27, class 28, and class 29.

Audiology (audio). The original owner of this database is Professor Jergen from
the Baylor College of Medicine in Houston. In its original form, the domain has 24
classes (representing different hearing disorders). We have removed the classes that
were represented by fewer than five instances.

Breast Cancer Yugoslavia (bcy). The task is to predict whether a patient has
recurrence events in breast cancer. The data was donated by the University Medical
Centre, Institute of Oncology, Ljubljana, Slovenia. There are two classes: Recurrence
events and No recurrence events.

Glass identification (glass). The task involves identifying different types of glass
for forensic science investigations. There are six classes.

Hepatitis. The task is to predict whether hepatits patients will die or not.
There are two classes: live and die.

Iris plant (iris). The task is to classify iris plants. There are three classes: Iris
Setosa, Iris Versicolor, and Iris Virginica.

Liver disorders (liver). The task is to identify patients with liver disorders.
There are two classes: sick and healthy.

Lung cancer (lung). The task is to classify three types of pathological lung
cancer.

Lymphography (lympho). The task is to classify different types of lymphoma
cancer. The data was donated by the University Medical Centre, Institute of Oncol-
ogy, Ljubljana, Slovenia. There are four classes: one is healthy and the other three
represent different types of lymphoma.
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Segmentation (segment). The task is to classify objects found in seven outdoor
images. The data was donated by Carla Brodley, who was at that time with the
Vision Group at the University of Massachussetts, Amherst. There are seven classes:
brickface, sky, foliage, cement, window, path, and grass.

Sonar. The task is to discriminate between sonar signals bounced off a metal
cylinder and those bounced off a roughly cylindrical rock. There are two classes:
metal and rock.

Soybean large (soybean). The task is to identify soybean diseases. The original
data has 19 classes. However, virtually all machine learning research studies use
only the first 15. The experiments described in this dissertation also employed the
15-class data set.

Vehicle. The task is to classify vehicles based on their silhouettes. There are
four classes: Opel, Saab, Van, Bus.

Voting records (voting). The task is to find out the party affiliation of the
members of the U.S. House of Representatives based on their votes (in 1984). There
are two classes: Republican and Democrat.

Wine. The task is to identify the origin of wines based on chemical analysis..
There are three classes,

Zoology (zoo). The task is to classify different categories of animals. There are
seven classes: mammals, birds, reptiles, fish, frogs, insects, marine animals (other
than fish).



Appendix B

ALGORITHMS

This appendix describes two algorithms that were cited in this dissertation: Bag-
ging and MetaCost.

Bagging

The first algorithm is Breiman's Bagging [27], an ensemble learning algorithm that
relies on voting hypotheses that were obtained by training a learning algorithm on
bootstrap replicates of the training set. Table B.1 gives the pseudo-code for the
algorithm.

Lines [1) through [4] construct T (given as an input parameter) bootstrap sam-
ples of the training data (sampled with replacement from the tanning set) and the
classifiers h1, h2,.. . h. are learned using a classification. algorithm. To output the
label of a perviously unseen example (line [5]) the algorithm computes the label that
is predicted by the majority of the classifiers h1, h2,. . .

TABLE B.1: The BAGGING algorithm. The formula [E = 1 if E is true 0

otherwise.

Input: a set S, of m labeled examples:
S =< (xi, y), i = 1,2,... , m>,
labels y G Y = {1,... , K},
ClassL earn (a classification algorithm)

for t = 1 to T do
St := Bootstrap sample of S (sampled with replacement from S);

:= ClassLearn(St);
endfor

Output: hf(x) = argmax h(x) =
yEY

=

//the majority label of hypotheses h
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Bagging can be transformed into a class probability estimation algorithm in two
ways:

1. If ClassL earn can not compute class probability estimates then

P(yIx)
V(y)1 <i <K,

where V(y) is the number of classifiers that predicted y as the label of x (in other
words, the number of votes received by yj).

2. If ClassL earn can compute its own class probability estimates p(yIx), then

P(yx) = '
1 i K.

T

TABLE B.2: The METACOST algorithm.

Input: a set S, of m labeled examples:
S<(x,y),i=1,2,... ;m>,
labels y E Y = {1,...
a K x K cost matrix C,
ClassProbEstim - an algorithm that computes class probability estimates
ClassLearn - a classification algorithm

[1] for i = 1 to m do
[2J P(yIx) = ClassProbEstirn(S);

[3] := argminP(jx)C(y,j);
yEY j=1

[3] endfor
Output: h(x) = ClassLearn(S); //the classifier trained on the relabeled data

MetaCost

The second algorithm presented here is Domingos' MetaCost [59] a cost-sensitive
learning algorithm that relies on accurate class-probability estimates on the training
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data to relabel it and then retrain the classifier to compute the output hypothesis.
MetaCost first computes class probability estimates on the training examples. Next
it relabels each training example with the optimal class (based on the estimation).
The algorithm outputs the hypothesis that is computed by a classification algorithm
that is trained on the relabeled data. The pseudo-code for MetaCost is given in
Table B.2.

In its original version, MetaCost used modified Bagging (as described in Sec-
tion B) as ClassProbEstim.


