
...

-t

i

1,.;

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS.

TECHNICAL NOTE

NO ● 1018

METHODS FOR DETERMINATION AND COMPUTATION OF FLOW

OF A COMPRESSIBLE FLUID

By Stefan Bergman
Brown University

Langley Memorial Aeronautical Laboratory

Langley Field, Virginia

Washington

September 1946

PATTERNS
---- .

-.

--



~~liltll~miufll-:- ---
311760143388’19

-.. -.

NATIONAL ADVISORY COMMI!l!TEIJFOR AERONAUTICS

TEOHNICAL NOTE NO. 1018

METHODS FOR DETERMINATION AND COMPUTATION OF FLOW PATTERNS

OF A COMPRESSIBLEI FLUID

By Stefan Bergman

SUMMARY

A well-known method of generatin$ stream functions of an

incompressible fluid flow is that of taking the imaginary

part of an analytic function of a complex variable. In pre-

vious publications of the author this method was generalized

to the case of subsonic flows of a compressible fluid. I3’1O”W

patterns, which until the present, have proved impossible to
obtain by existing methods, were, however, obtained by this

procedure; for example, flows around an obstacle the boundary

of which is a closed curve, L as well as around nonsymmetric c

profiles. The procedure can be extended to the case of par? .
f. tially supersonic flows. As this method for obtaining flow ,

patterns of compressible fluid from analytic functions of a,, ‘.

compressible fluid requires rather lengthy computations, the

* present paper Is devoted to a detailed discussion of perforni-

ing these computations. The operations are divided into two

groups: namely, those which need only be carried out onc6-lZzid
for all and then can be tabulated (or put on master cards) ,
and those which have to be repeated in every individual case. , ‘
A detailed description is given concerning the performance-of” .
necessary computations on punch card machines. This descrip-

tion is illustrated by an example. ..

In the appendixes some theoretical questions, which to a

certain extent complete the results of NAOA Technical Note
I?oo 972,’are considered. For instance, in appendix 11, some
questions which arise in connection with the determination of
flow patterne around a nonsymmetric profile and the use of

linear integral equations for constructing flow patterns are

discussed.

‘The method of Von K&rm&n and !?Jsienyields a flow around

a closed curve. However, this method assumes a linear pres-
. SUre-SpeCifiC volume relation, i.e., that p = A +q/~ where

A and a are constant instead of the actual relation

P=
~Pk (adiabatic case) .
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In appendix 111 those alterations are indicated which are

necesea:ry in order that the operator which has been introduced
●

for. subsonic flow~ may be transformed into an operator which
generates stream functions of supersonic flows from two func-
tions of one real varl.able.

INTRODUCTION

The m’athematioal theory of steady two-dimensional flows

of an Incompressible fluid is based essentially on the fact

that a stream function of a flow of this kind can be obtained
by taking the imaginary part of a conveniently choson function

of one complex variable s = 9 + i log V, where v is the

speed (at t-he point) and 6 the angle which the velocity

veotor (at the point) forms with a fixed direction.z

The succees of this method in dealing with problems of

the theory of an incompressible fluid, seems to suggest the

possibil:lty of ge~eralizing this approach to the case of a
compress!lble fluid. An attempt, irI this direction, has been

made by the author in previous publications. To this end, in- 1

stead of log v, there is introduced A(M), a function of
the local, Mach number M.a Further, instead of taking the

.

Imaginary. part of an arbttrary analytic function (i.e., apply-
ing the clperator Im(SImaginary part of)) as in the case of

an incom~reseible fluid, it is neceseary to apply a general- &

ization of this procedure to obtain from f(O+ IA(M)) “the
desired stream function.

.“

..

‘The fntroductibn o-f”functions of the variable s (in-

stead of the customarily employed functions of x + ~Y, (xty)
being CartesIan coordinates in the plane) causes some d!.ffl-

culties of a mathematical nature; however, in contrast to the
latter method, the former, more complicated approach (often

called the hodograph method), admits of direct peneraliza tion
to the case of a compressible fluid. ...

. --.’>

2The function A(M) is real if M < 1, and purely im-
aginary if M>l. !!Jhus, E s 6 + IA(M) is a complex vari-

able in the subsonic case and a real variable in the su~er- .

sonic caeel. Note that in the body of the text

A(M) -ie= -i(e + iA(M)) is employed.
“

. -E-
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One of the advantages of this approach is that it mani-

fests a far-reaching analogy= with the caee of an incompress-m
ible fluid, and is capable of yielding flow yatterns which
have not been “obtained until the present - for example, flows

around a closed profile, and so forth.a This approach makes

it possible to determine a flow pattern corresponding to any

given function. In general, the actual construction o-f the

flow leads to a considerable amount of computation; conse-

quently; the use d“f,special computational devices such as the
differential analyzer, punoh oatids, and so forth, would seem
necessary as well as the preparation of certain tables which

are independent of the specific flow pattern, and therefore
need be prepared only once.

The most efficient means of accomplishing this is not at

all evident, and it IS necessary to analyza the needed”-~=ornp-u=
tations from this point of view. The present report has been

prepared in an effort to answer this question, especially as
regards punch card .maohines.3

This investigation, oonduoted at the Brown University,

was sponsored by and conducted with the financial assistance

of the National Advisory ~o”mmitt-e”e-for Aeronautics.

‘l’heauthor was assisted by Mr. Leonard Greenstone, whom’

M he would like to thank for his valuable aid.

●
DEISORIPTION OH’ MXTHOD

In the authorls previous report a new approach in the two-

dimensional theory of a compressible fluid wae developed.

‘This analogy often ~erves as ‘an indication of the proper
method for obtaining results in the theory of compressible

fluid which are similar to the case of an incompressible fluid.

‘In the only case of a ‘flow around a closed body which
has, heretofore been considered, Von K&rm&n and Tsien have as-

sumed a linear preseure-specific volume relation, p = A+IT/,
A, a being constant, ~inetead of the actual relation p = ap ,
k = 1.4, which is used in papers of the author.

.
3The author would like to point out that other devices,

in particular, the differential analyzer, are also of consid-

erable importance for many of the above computation. (See
. reference 1.)
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This method of attaak 5$ a general i~atiofl of a proced-
ure ordinarily employed in the theory of &a incompressible

fluid: namely~ the generating of stream functions of flows
from arlalytio functions of a oomplex variable.z

R’Cr the convenience of the read’er the general idea of

this method will be deeoribed in the following. The stream

function $ of an iticompressible fluid flow is a harmon.lo

funotion - that is, it satisfies Laplacets equation
—

fy+fi=o
(1)

axa .wa

x,y being Cartesian coordinates in the plane of the flow.

ConverslOly, every function which satisfies equation (1) may

be interpreted as a etream function of a’euitable flow, Thus,

If the :Lmaginary part of an analytlo function f(z) of the

conrnlex variable =X+iy ie taken, a etream function of
s ~>i;~sll)le flow ofzan incompressible ‘fluid is obtained. AS

no”rs’:-before, the method of generating tatream functions ~n .

thi~] simple form cannot be exte”hded to the case of a compre6s-

iLig fluid, since in the latter caee the partial differential
t3cIJ.aiiO!lwkich $(X,3”) ~atisfies is a very complicated non-
linear c~ne. This situation makes it neceseary to use an al-

ternate method, the co-called ‘Ihodograph method, ~~- that is,
to coneider the stream function ~ not as a funotion of s,

but as a function of the velocity vector.

If VI, Va, and (v,(l) denote t,he Cartesian and polar

coordinate, reepeotively, of the velocity vector ? ,,-that
,,

is, if -; = VL + iva = Ye f.e and if the stre~m funotion “~ ;

is considered as a function of (Vl,Va) or of (log v,LI), then

w is In each case a harmonic function of the given variab~es.
That is, if W(x,y) is transformed by means of the. substitu-
tion

.,

x= )X(vl,va ,

a(x’y) + o
“~ (2d

,.y = y(vl,v~),
. ..

‘In order to make possible this generalization”, it ii;’
however, necessary to consider the stream function in ,the so-

.

called “hodograph” plane (i.e., in the plane the Carteeian
coordinates of which are the components of the velocity vec-

tor) instead of considering it in the ‘Iphysicallt plkne (i.e.,
.

in the plane of the flow).

.-
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x = X(log Vlg), a(x, y)

y = y(log V,e),
#o (2b)

a((log V)le)

then the functions ~ obtained by the transformation (2a),

(2b) satisfy the equtition

in the first case and

aal$
+

&=O...

a(~Qg V)a aea

in the second case. (Note that these tils

(3a)

(3b)

are different

functions of their respective arguments; although the nota-

tion does not indicate this.)

By writing

b

w = Im[g(vz - i.va)] (4a)

8 or

@ = Im[h(log v - ie)] (4b)

if g and h are arbitrary functions of the complex vari-

able vi - iva, and log T - ie, respectively, then the

stream functions of possible flows of an incompressible fl-uid

are obtained.

Since the flow pattern In the physical plane is of pri-

mary interest, it is necesnary in this case, to carry out the
transition to the physical plane; that is, to determine ~

a8 a function of X,y.

‘It is this second method which, though more complicated
. than the first, has the adyantage of being capable of gener-

alization to the case of a compressible fluid flow for which
the equation of state, p = A + Crpk, holds (A, U, k are

. constants, p the pressure, and p the density}. In the
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equation of state f?r an adiabatic process A=O, however,
*

this additional constant does not entail any theoretical
difficulties,

●

An has been indicated previofiely, the stream function

of a cornpreee%ble fluid flew, considered a~ & fUnCtiOn Of

(X,y) - that is, in the physical plane - aatlafiee a n@nlin-
ear pnrtial difl’erential equation. If, however, ~ is con-

sidered in the hodograph or in the logarithmic plane (i<e.~

ELS a function of (vl,va) and of (log Vte)l respeotivel~~l
then $ satisfies, in each of these p3anes, a Linear partial

differential equation.

In order to simplify this equation it is expedient to

introduce, instead of log v, a new variable h,

[

- (1 - Ma)
1/2 a %/a i/h

A =1: log 1
(

1 +h(l - M )

)]
(5)

1 + (1 - Na)l/a 1 - h(~ - Ma)l/a

where —

:= [, - %(:: j$f’a

[1
X/a

h== I k>l:
k+l

and .-

here k is the ratio of specifio heats of
for air), and a. the velooity of sound at

— ----- —. . .-:.
.

the gag (k = 1.4

a stagnation

point, The. equation which @ satiefies then aosumes a par-
ticularly simple ferm: namely,l

-.

.____,
. ..- .4.

,... -.

&i)+N2k
aoa. .r..-a~

. .: --=.. . .. - --- -. :-= “’”-:”--

lIn tie” fo~lowlng, _instead of
d

A and Q the complex
variables z=.A.-t8, z=A+iQ will f~equently be ueed.
The derivatives with respect tO Z and Z have the follew-
ing meaning

.— ___.-
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where
. N=-

(k + 1)M4

8(i - Ma)3’a

(7)

In order to obtain a generalisation of the representation

(4b), the author in the previous report derived the follow-

ing result:
.—— -—

I’rom t e function
?

N (see (7)), certain other functions
H(2A], Q$m (2A), n = 1,2, . . ., m = 1,2, . . . were deter-

mined, and it is proved that the expression

*(X,6) = ‘m{H(2A)[g(z)

(where g(Z) ‘is an arbitrary analytic function a, an arbi-
trafy non-negative constant) is a solution of (6). Thus,
from aa arbitrary analytic function it ie possible to derive

* a function v[~(v), 91, which represents the stream function
of a possible (subsonic) flow of a compressible fluid.~ l?or-

mula (8) oan also be written in another form which is suit-
able for certain purposes: namely,

s .-—

.--.. -,=.. .=_ _

‘I”t has been provgd, subsequently, that it is possible :
to interchange the summation and the passage to the limit in

equation (8) to obtain

‘(’1’) “ ‘“F(2A) [g(z) + Y -Q(n)w/ r“($’”~ ● “’J}(”)

n=l “
o

However, as it is desired to make no reference to unpublished
results, all the computations in this report are presented In

such fashion that the use of (8) instead of (8a) entails no
additional computation; equation (8) Is almost always employed

throughout the following..

2Formula (8) can be considered as a direct generaliza-
tion of (4b), since by choosing H = 1, Q~n) = O, for all

.
n and m, and z = log v - ie, (8) becomes (4b).

-—-. . -
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I$(A, B)”= Im
{’(2’) [f+”~(z(’ ; ‘a))Jl

-1

,.

r

+1
+ lim nm(A, t) f

(

2(1 - t2}

)

dt

1

1
(9?

m+ai .
“t=-l

2
J/ J

m

“~Em(A, t) = 1-1” tan Q@ (2A - ,2a)

n= 1

where f(Z) is again an arbitrary analytic function of Z.%

It should be emphasized that the functions H(2A),

Q(n)(2A) are independent of the function g, and hence oncem

computed. (for a given value of k) may be employed in all
other stream commutations without change.

_-—
,. .. ==

,.
Once “$(x, e)’’(corresp”otidfng’to a give~ function g) has

. .

been computed, the transition to the physical plane - that 5.s,
the determination of the corresponding flow pattern in the

physical plane A “does not ihvolve an~’theoretical difficulty.
i...,. ‘,

v

-.
—

—.

Two-problems lmm~~i”b%ely arise” in connection-with th~-s

method o:~ attack, .,...: ;.,”... ,t
M

I. How to determine, function. g, in (8),
tain,

SO as to ob-
in the physlcal~pla~e, @ flow, around a giv9n ,obstacle

or In a channel whof.$,,$gundqky ti$~vqe.aq?j:~$v$u. ., , “,. .... –
-... .....

,,
.’? . ,..

.
,. .,. .-
-, .“,..

. ;.“%)L.’:....-?-8. ..-,,, ...
..,.. , -.

., ... . ,,.,”,. f..,,, ,
,:,,

., . F.“:, “....,..,->--- .*. ”

‘Function f(z) is “coiinectied’wi-$li’;g(Z)’ by the”follow- ‘
ing relation:

,. ..
. .- !’.’ , ..,, :’.....
!’ ,.7!,.:..:, -... .... ... 1.!, .,

IT/a
..” . .

f(z) = :

f

.

dg(2Z sin= ‘) :d$:+ g(o),.Z Bin 4

d(Z sins $) Y ‘ ~
“o .

..::...---- ..: .
.. .-



NACA TN NO. 1018 9

u

II. Assume that g(z) is known,l to develop a procedure

which would permit the determination of the corresponding
●

flow pattern in the physical plane with the minimum of compu-
tation. Naturally, the flow ptitterns in which the ae??odynam-
icist is primarily interested are partially supersonta ones.

Since the subsonic case serves as a basis for further devel-
opment, as outlined in reference 3,2 the author will limit

himself in the present report primarily to this case.3

Although problem II does not entail any theoretical dif-
ficulty, it does involve a very considerable amount of nuner-

ical computations for applications, as can be seen from the
example described in reference 4, section 3, a fact which rep-

resents a serious obstacle for the application of the method.
. ...,..

Since the iietermination of various flow patt,e-rns is one
.=----

of the purposes of the theory, the alove-described situation
suggests two possikble modifications of the procedure for gen-
erating flow patterns. ~

1. The modification of the method so that a substantial

part of the computation is independent of the particular
choice .of g; thus these computations can be carried out and

tabulated once and for all.4

b

‘It may be remarked here that often a first approxima-

tion to the desired flow pattern of a com reseible fluid is

obtained by substituting for g(z) in (87 that analytic
4

function the imaginary part G(log V,8) s Xm g(lOg v - ie)
of which gives the desired flow pattern in the phyeical plane

for an incompressible fluid. The corrections which are neces-

sary in obtaining a better approximation, as well as other
methods of determining g(z),

(See. also reference 2.)
will be discuseed in future re-

ports.

‘In sec.

,.

16 of reference 3 p procedure is described which
makes it possible to generali~e this method to the case, of

partially supersonic flows.

3The author intends in a succeeding report to coneid.er

analogous questions for the case of a mixed flow in the light
of methods described in sec. 17 of reference 3.

.—

4The need of tabulating various functions which appear.
in the theory of compressible flui&s has been emphasized by

some authors. (See, for example, Garrick and Kaplan (refer-

“ ence 5), where the Chaplygin solutions have been tabulated.)
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“

The rearrangement of the remaining computations

(whic~’must be Pepeated in every particular case) in such a
ferm that they can be carfied out with a minimum amount of

.

labor using a punch card matiine,a
.-~..

‘lhe main purp~Be of the preeent report is the develop-

ment of a method of determiningthe flow patterns according

to requirements 1 and 2,

In four additional notes certain problems considered in

referenc~ 3 are developed further; these are of a more theo-

retical nature.

In a“ppendix II, the author shows that by employing re-

sults o“btained from a consideration of the elngularitiee of
the solutions of (8) and applying the theory of linear inte-

gral equations, it ia possible to detormlne a flow for a

given hodograph. In certain casesj solutions of this kind
can be considered a~ a first approximation to the solution

of bounc~ary value problems.
.-

In appendix III methods are given for the construction
of purel,y supersonic flows, whtoh methods employ various inte-
gral operator representations.

The derivation of the complex potential for a Joukowski .

profile is gi~en”in appendix IV,,.while appendix I ie devoted

to the question af determining the Qkn), and L&n). :

,., k

,. ,- ,
,,. -“ .,.. ..,,

. .-
,..’”.. ,, J<. . ‘

The following list of nitation is to serve the aoublq ~

purpose of being both an index of symbols used !n the preBent
report and a collection of some of.the formulas, used in pre-

vious reports, to which reference is made In the text; how-
ever, no claim to completeness ie made ia this respect.

..

-.

‘;has been emphasized by Kraft and Dibblet certain ●

aspects cjf this theory may In successfully treated by use of

the differential analyzer. (See reference 1.)
.
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s. [“ ~(k-l)va

1

1/2
= aoa - speed of 80und (reference 3sequa. “

2 tion (28))

a. speed of sound at a stagnation point

an coefficients in the series expansion of T in powers of
X (formula (45) )

bn coefficten~s in the series expanston of T
-1

in powers
of x (formula (46))

e base of Naperian logarithms..

exp(x) = e=

f~,f~ arbitrary twice continuously differentiable functions

of their arguments
.

g(z) an analytic function of

d
J-l)(Z) = dg(z) = dg(0) (Z)

dZ dZ

Jo)(z) = g(z)

the complex variable Z

g(n)(Z) nth iterated integral of g(Z) (formula (10))
.- .. —

I/a

(1)

--.—----- .

h=% s for k>l

k constant in the equation of state p = A + Cpk: The
ratio of specific heats at constant pressure to con-
stant volume; k = 1.4 for alr
(22))

(reference 3,formu~a

.

2(H) ‘(*Y’’-M’(H’) ‘(#s ‘reference 39 ‘ormu’a (45))

.
.
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P p:ressure
.“-

Plj p::essure at”a etagnatfon point

schllcht - univalent

v magnitude of the velooi.ty veotor v; occaelonally, the

reduced speed v~ao

4 +
v velocity vector; that ie, * = vei8

‘2*V2 Oartesian components of Y; that is, ~ = Vz + iva

(x,y) Cartesfan coordinates in the physical plane

x=e
a~

note that in reference 3, X = eah

()
I.-h l/h

x?%= x
Tx

A constant In the equation of 6tate p s A +~p k (refer-
ence 3, forieula (22))

~ = ~(k+l)M4(M2-&”a (formula (67))

An coefficients in the ~eries expansion of T in power8 of

xl (formula (45))

An,m oosfficiente in the eeriee expaneion of

L,

g(z) a8 a
funotion of of the fractional powers of t
(formula (17) )

+
An,m = m~~x(~n,m$())j An,m = max(-An,mlO)

3n coefficients in the eeries expansion of T-z

(formula (46))

in powers

Of xl

cn,m coefficients in the seriee expaneion of

t,

g(z) as a
function of

(formula (17))

of the integral powers of t

. .

4

.
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~=.,~#l*,~a* (See appendix 111, sec. 3); (reference 3,
.

., theorem (53). ) Note that in refer ance 3

~+~ .

r
..

N* = exp ( Nd(T+C)) E, differing fro!n
\
.

-m

the usage here.

F ‘-(5C + ‘2) = ,:;;::;3 [-’’’)M4M4 - 4(3-2k)M’ + ‘j ;

(formula (42)); (reference 3, formula (71))

3’m(2A) polynomial approximation of mth degree in xl to ~

G operation a computation which, since it is independent of

the flow, can be computed and tabulated once—
and for all

~+ ~

H
(f

= exp -
1 r

Nd~+~) =

1

1

(1-M2)”4 l+~(k-l)M2 1
-m

- - .-. _

l/a(k-1)

●

for the subsonic case (reference 3, formula (111)); and ‘-

.E+’n
<

H = exp
y

A(s)ds
)

for the supersonic case; (formula (68));

. — —

in this sensa H is used only in the series expansion

of ~, as formula (8)’

,f

v

H= & dv (formula (52)); (referance ~, formula (42)); in
v this sense H. is used as an i.nde~endent vari-

0 able. .

1m“ imaginary part of . ;:

.,

( )
1 afi + ~ + N ?!k (formula (6)); (reference 3,%($) = ~ ~A2

. a02 ah formula’) ““

.
(2n)!

2nn !
H(2@n)(2h) (formula (22))
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.

M lolsal Mach number; M=v/a=i

m

(formula (6)); (reference ~, 2ormula (61))

(k+l) M4
N=-————

8
(formula (7)); (reference 3, formula (47))

(1#)3’~

*A

Q(%) = -4

/

W dh (formulas (49) and (8}); (reference 3, for-

. mula (107))

(a) “g ;m+ :

()
k =3 #’)a (formulas (49) and (8)); (reference 3,

formula (108))

Q(n) functions, independent of the flow, which occur In the
series expansion of v (See formulas (49) and (8);

referenoe 3, formula (84).)

~(n) ~(n) oomputed employing 3’M instead of R’ (See
@

m }

etc.)

~(o)
=H~ ~v (formula (23)); (referenoe 3, formula (114), ff)

R(n) funcf;ions, independent of the flew, which eecur in the
s{~~les expansion of ~ (formula (23)): (reference 3,
f~rinnla (114), ff)

~(n) ~(n)
Ill

ccmputed employing Fm instead of F

lie real part of

S operation a oomputaticn which must be repeated for each

individual flow pattern to be computed

5=1-T (formula (44)); note in reference 3, formula (161),
s iU used for 1 - T.

g(a), that i8, g(n) = s(n) .+ ~g(n)S(n) real, part cf

T(n) imaginary part of ~(n)
. .-
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. Tm ~olynomial approximation of the mth degree in xl to T

L,

w*(A, e; Ace); a fundamental solution of formula (6),

possessing logarithmic singularity,

~~ g(o) = A(o) + ie(o). (See also

reference 3, section 13.)

X(p)(v,e) (See formula (35).)
m

y(p)(v,g) (See formula (35).)
m

~Pp+l ,aap real and imaginary part , respectively, of the —

coefficients of Z(P7in the power series expan-. .

sion of g(Z); that is, g(z) = 2( aap+z

p=o
+ ia 2p

)z(p) (See formula (36). )

+ .-

an = max(an,O), ct~ = max(-~,b)

.
.

B(M) = - ‘tan-l~~ . 2 tan-l
1 h

(h=)] (formula (65) )

d

c= z + log 2 (formula (16}). In the appendixes ~ =.A - .i9.

n= -9 + P(M) (formula (64))

e angle which ~> makes wt.th the real axis
-—.— __..._. . ..

6(O),Q(1), . . . values of G at mesh points for a lilattice~t
computation (See sec. 2.)

A= .; log [(~-- ~+h~=- “h ~formula (5)) :)(
1 +J53F 1 - hJIIF

)] (reference;3,
formula (48))

A. A corresponding to the maximum Mach number of a flow in D=
.

+JJd, . . . values of A at mesh points for a “latticel~

. computation (See sec. 2.)
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t = e + P(M) (formula (64))

[

density; p = p. 1 - * V8

1

z/k-l
(reference 3, for-

2a. - mula (25))

modulus of ~; that is, ~ = pei~ (formula (19) ff)

density at a stagnation point

constant in the equation of state: p = A+opk (refer-
ence 3, formula (22))

potential function

argument of ~; that 1s, C = pei~ (formula (19) ff)

stream function

~+ g

= exp
y

lid(~+~)~ ~, for the subsonic case (formula
(41)); (reference 3, formula.

‘m g+q
(69)); and

= exp
(f )

A(s)ds ~ for the supersonic case

(68))
(formula

.

Lapl,ace operato”r
y:+~=’(fi)

&J(x, y) = -

Z=?i-i, e

z= A+i8

f

A = ‘fi~ dH that is, # =~~ (reference 3, formula

(46)); (See sec. 5.)
?)

AE=all
?JH

—

~(n) (Se,> fornula (33) ff. )

.

-—

* (Set) sec. 5 of appendix 111.)
.

.

...
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Remark: Observe that. quite, frequently functions will be con-——
sidered in different. planes although the notation my not, in

general, indicate this. Thus, given f(xiy), let

,. . .

x= X(X1,X2),

.-

a%;;)+o ,’ “
Y = y(zl,xa), ..

and obtain f(x(xl,xa), y(xl,xa)) = fl(xl,x=). The super-

script will be omitted and only f(xl,xa) ,. written, since the

meaning will be clear from the context. —.

. . . ,.

ANALYSIS
,, ..”

1. An Outline of the Method to be Developed iri: . “
., .-,-:”

,, the Present Report
..-

.“

.,

A method of determining the stream ,function (in the.,..

physical plane) corresponding to a given function g, the

basis of which method is equation (8), “was g~ven in section

3 of reference 4, to~ether w~th a numerical example. An out-

line of this method has been given.in t.ae Introduction- .

However, a good deal of numerical work is e~talled by

“this approach, and the amount of labor involved increases con-

siderably for a flow the maximum velocity of which is close”
to the velocity of soun”d. “For this reason, a modi.ficatfon of

“i”hemethod which would cut down the amount of .c.ompu.tationiS

d’e”sirable. A description of the p.ropo~ed .modifiqat~on fol-

lows:

,.
The domain, D (in the (A, G)-plane) , in which the furiC-

tion g(z) is to be considered, can. be divided into two dis-

tinct parts DI and Da, defined as the subdomains In which

AO<A<O and A < Ao, respectively. (See fig. 1.) The

number A. is a preassigned number which can he altered to
.

suit the casez although, in general, it will lie somewhere;” “-
..

. .,’ ,,

lThe choice of A. w&ll, depend up-on the condition in

each case; for the most part, A. must be larger, than the “-”

maxiinal A coordinate of the regular points”of g(Z) in D.
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between A = -0,4 and h = ,-0.1, corresponding to local
Mach. numbers M = 0.65 and M = 0.85, respectively (M as
defined, in equation (5)).

In D~ the argument A varies over values which are

near zero, an% aa a consequence the serie~ (8) will converge
very slowly, necessitating’ taking into account a great num.
ber of terms in order to obtain a reasonable degree of accu-

racy. On the other hand, g of equation (8) and therefore
f is regular in Di and can be represented there by a

series ilevelopmen.tfll. ‘: -- — ,.

In the domain Da the values of A are much smaller

and therefore only a smaller number of terms of equ~ti-on-(8~
need be taken into account. On the other hand, in Da the

behavior of g may be considerably more complex; for exam-
ple, g may have singularities and be many-valued. There-

fore , it will be assuued that g is given by ite numerical
values on a sufficiently fine lattice, or by a number of

series, each of which converges tn some subdomain of Da.

In Di the function g can be represented by a power

series development and since the operator (8) is linear it
is hence possible to prepare tables once and for all, which

will facilitate, to a very large extent, the determination

of the flow pattern (in the physical plane). This will be

explained in detail in section 4.

In order to determine the flow in the domain correspond-

ing to D~, the procedure of section 3 of reference 4 may be

applied. Since the computations are rather extensive, It is
expedient to employ mechanical devices. This requires a cer-
tain modification of the above proceduz.el. which .rnodicic.a.+$o%.

will be described in section 2. Thus, two methods for deter-
mining the flow corresponding to a given g(z) will be de-
scribed in sections”2 and 3. Both methods employ punch card

machine5; in afidition, the second method presupposes that the
computor has certain tables available whtch are independent

of the particular flow and hence c-an be computed once and

for all. --’ -= — —

—

Remark: The divis_!_o.nof D_ into two subdomains D1 and D=

is not neoessarilr to’take place along the line h = ~o.

It will often be more convenient to subdivide D as

101?,”if more convenient, by a polynomi~l ”appr”ox~rn~t~o“n;

.

.

.

c
—.

—

—
.—
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.

indicated in figure 2, so that the tables which have been

. prepared may be used for the largest feasible part of the

domain D.

Remark: In order to emphasize the character of a computa~

tion which is being performed - that 3s, wheth,er it is ,one .

of that large class which need be computed and tabulated
only once since they are independent of the particular f}.ow~

or whether the computation involved holds good only for an
individual flow - to every description of a computation will

be added the characterization H(G operation)” or ““CS opera-” ~j

tion)it according to its membership in the former or latter .
class of operations.

2. Description of the First Method for the Construction of ..’
.

the Stream Z’unction of a Compressible Fluid Flow by’

—

Use of Punch Oard Machines

In this section the computation of a subsonic compress-

ible flow by means of punch card machines will be described.
This Trocedure is a modification of the method of section 3

of reference 4.1
.

As indtcated in that report, the progedure was divided
into three separate stages.

.

I. Computation of the integrals

,’ g(n)(z)
‘f. - f-’g’zn’dzn “n-’ ● - ● “1 “0)”

o

Q(o)
and the derivative

d’
. .

g(o)(z) = g(z), z s x- ie,where is an analytic

function

11. Construction of the flow In the (h, G)-plane - that is,
evaluation of expression (8)

.

lIn sec. 2 of reference 4, it was assumed that only an

. ordinary computfng machine was to be used i.n performing the

operations described there.
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.

III. Transition from the logarithmic plane to the phys-

ical plane

Step I.- Three different methods of evaluation’ of

g(n) (=, n= O,, l, 2, . . . and of (dg(0)(Z)/dZ) will be

given in the following; two of-these methods employ punch

card machines; the third uses graphleal means.

The first method is to be applied if the real and imag-

inary parts of g(z) are

7

iven n~mertcally on a sufficiently

dense s.9t of points ~Ak,ek of the lattice.

Th(g second method can be used when the function g(o)(z)
is given analytically and can be represented in the whole region

ccnmemeci by-sevek~l Series developmental around Conveniently
chosen points.

The third method is much less exact; it can be used in

order to check the results obtained by one of the above-
described methods.

‘z

~(n+l )(z) s r g(n)(Zl)d Zz (11)

‘o

may be written in the form

(X,6)

..10
where

g(n) = s(n) + iT(n) a

(12)

(See eouation (20) of refsrence 4,) The right-hand side of

equation (12) may then be replaced by the approxi.mating sum

(13).
.

‘These series developments are not necessarily ~
series s:lnce g can have singularities in Da, I.e., branch

points, poles, etc.

‘Obwerve that

Y

(n), ~(~)
of sec. 3 of reference 4 are

replaced by S(n), ~ n),
respectively.

—

.
—

.



NAfJA TN N(I. 1018

~(n+l)(z) = 2 [“”~(n) ~ ~“-”(k-l)Ah,6

k=l
o}~ + i : ,(n)[~o -:-”

+ (k-l)AA,90 jAh + $,(”)[ ‘k=:-- - ]Ao,eo + (k-l)AO AEI

=

i y S(:)[
1

Ao,Oo + (k-l)A6 A8 “(13).
L

k%
A.

..

(See (21) of reference-4.)- The terms AA,Afl denote’ ”ttie‘:

,_

directed distances between the meskes of the lattice (see

fig 3) ; that is, they are positive if t_he integration pro-

ceeds in a positive direction, otherwise negati”ve.

As indicated above, the (approximate) integration

-(A*El)

,,.

/ ‘-
.

is to be carried at ftrst fro-m “(0,0) to (xoO) al”ong

, (0,0)

e =0 (or if more convenient from (0,6) to (A,8) along E = Es),

and then from (A,O) to (A, ~) along }, = constant.

.
h.. (All computations of A are (S operations). ) The

‘3

1.~~”) ‘h. + (k-l)A~,eo AA? S . ,. . ..
sums

L 1

—.
= 1,2,3, can be

k=l .-..: ;. L---=.-.:=

computed on punch card machines by the following procedure.

Every numberl @o)[Ao + (k-l)A,eo][, k =,1,2, . . .,n,” 3s

to be punched, say iti columns 1 to 6, into a single card of
a set N1. With every entry on this card an extra column c1

~ (say, CO1. 7) is employed in which a number, say 1, is ~unched

if S(0)[Ao + (k-l)AA,eo ] is negative, and nothing is punched

if the above number is positive. Then the cards are set for

I
S(0)[Ao + (k-l)A&eQ]pr~gressive totaling;

I will be added

if nothing is punched in the column cl and subtracted if 1

is punched in this _column. The machine stops after each ‘&ddi- “–
.——

.
tion (or subtraction) pu-n-ches the- a-biolute”%alue of the pro-,
gressive total, in a new card sk, k =1,2, . . ., n, say in

.
‘The symbol “1 ~’1indfcate~ that sign of S(o) has to

be disregarded.
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columns 1 to 6, and in an extra column Ca* punches 1 if

the tots,”lis negatfve ~nd nothing If it la positive,

Now the absolute value of AA is punched in an extra
oard M and, as before, 1 is entered in an extra column, C3

if AA is negative, and pothing if it is positive. Now,

in a multiplying machine every number on the card sk is

multip~ied with the number of M. In order to obtain the
right sign, an extra column, CA, is provided in the new.
card . If the columns Os and C3, are both empty or both

havo 1 punched, then tbe machine will punch nothing into the
column c~ . If, however, in one of the columns Ca (or C3)

the number 1 is punched and the other column, C3 (or Oa),

is empty, the machine will punck,l in column a4.
..:.

The obtained results then have to be printed. In anal-

ogous manner the remaining sums are to be evaluated.

The obtafned Oarcls can then be used for evaluation of

S(l) and T(i), and so forth.
.- ---- - .. . —

. . —.

Remarks: Cleariy,””~“he approximate eummation can replace the

integration, only if the integrand is uniformly oontinuoqs.
.

Since, ir~ general, the integrand has elngularlties, it is

necessary to replaoe the approximate summation in the neigh-

borhood clf these points by the exact formula. This cnn be .

done, for instance, using series developments around the con-

sidered singularity, (for details, see method B) or by other

methods. ..-

The derivatives of first order, tlg(0)/dZ = dg(0)/dA,

may be obtained by replacing differentials by finite differ-

ences. (See method C.)

B. A method, emnloying the example
-. -- .=

[
g(z) = : (1 -

aezp + (l

- 2*2)-212
1.

(14)

considered in reference 4, which may be successfully applied “: ●

when g(z) is given by series developments, wil_l _now b-e. ._ _ “ ...
desoribed, .._.

.
Xemark: IIf the function g(z) ia given in an analytic foxm,
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then it is always possible to repreeent It by finitely many
. series develop ments.1

-.

In the case of the function given by the right-hand eide

of equation (14), the series given in reference 4, equation

~;:)hm~y ke used in order t~ repre~ent g in-thedornain
-0.691.

Another series development of equation (14) which is

more suitable for the present purposes can be o%tained in

the following manner.
:_.

The above function g(Z) posses8es singularities

(branch points of the second order) at the Points 1.

z = -log 2 + iltl-r,K = o, *1, *2, . , . (15)

only. By classical results of the theory
~~9~ ‘uncti Ons

g(z),

can be expanded in series in po’.vers of

t = z + log 2 (16)

which series will converge for IL 1 < 2m and therefore will’-
repreeent g in a large part of thedomain, _D2 + Da, “- .

.
Wh ich. is of intereet.a A formal computa.tion .yields

*

g
~ g(o)

[

= * (1 - e~)l/2 ‘ ‘“s1=‘.T.‘Qrn’rn-’”+(1-0)

03 n=o

g(-l) _ dg(o) = dg(o)
i

7

m-3/z3
=

dZ d~ -__l-”m L

-1

(17)
m= o

g(n) r m A
= i

LY __ n$m !
n+m-~/a]+ i Y Crirn ;rn.- -

_

n=o ‘N=O

1A derivation of the analytic expression for the complex

Totential in.the hodograph piane for aflow of an incompress-
ible fluid around a Joukowski profile is give~-i.n appendl-x” I~.

. By using this formula together with classical results of the
theory of functions, the series developments for the above
caee can be derived.

—

aNote that in example under. consideration ~ is deter-
mined not merely in Da, but also in DI by the method de.

scribed, in the preeent eection.
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*

The values of An, m and On~m are given in table8 5 and 6,

respectively.
.
—

By ‘wr”lting

~(n) = s(n) + iT (n), n =-1,0,1,2,. . . (18)

there is obtained -.

The evaluation of the S(n) and T(n) on a punch card ma-

chine pzboceeda as follows:

The, values of pk/a, k = *1, *2, =3, , . ● , p@ = 0,1, .

0.2, * . ,, of COB
()

$q , and of
()

sin ~p k=~l,~2, ...IJI.

‘T = 0°, 30°, 60°, . 330° can ea~ily be computed (see .

table~ 7 and 8) and ~n~~red on three sets of punch cards A,

B, C, respectively (G operation). By using Bet A, two new

sets, D and E are then prepared (the following are all

~; oj~rat ions)), On every punch card of the set D the values
~ mpn+m-l/a and of C+ m.n,mp for a fixed n
1

and fixed p

are eniered, eay A~-–OPn-l/a-
$

are punched in columne 1 to 6,

A+ ~n+l/2
in columns 7 to 12, A+

n,l
~n+3/2 in columns 13 to

n,a

18, and so forth, Here A~,m denotes An,m if An,m ig

positive, and O if An,m
“+

is zero or negative; Cn ~, has an

analogous meaning. In a similar manner A~,mp
n+m-ii 2

and of

c- mn,mP are entered on the cards of set 1. ‘(Again A~, m = O

if An,m > 0, and equals -An,m if An,’m ~ C); t“he same holds”
.

, .) By using the sets C and D,for C; II

.
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P’

I A+ [( J’1+y“:,mPm sinmp -(20) - ‘-

n+m-1/a sin , n+m-1
n,mp

m=o m=o

is evaluated, and by using the sets C and E there may be

computed

? A-
n+m- 1/2 sin

~ n,mp [~+m-~)] + ~’ O~$mpm Sin mcp ‘-(-i;—..
m=o

By subtracting (20) from (21) @ ‘:: o~~aine~ - ‘* Similarly,

T(n) can be determined. By interpolation, the values of

S(n)(A,9) and T(n)(A,@) mey be determined at intermediate

points. [Note that peiT’ = (A - i6) + log 2, which yields

the relation between (p,cp) and (h,6). Alternately, the ex-

pressions (19) may be evaluated by a.lding on cards of the

sets B and C an extra column, say, ccl,umn 7, in which

nothing is punched if the corres-poniir,g sine or co~ine is

positive and, Gay, 1 is punched if.it is negative. In col-

umns 1 to 6 the abso lute value of the sine or cosine is en-
tered.

Analogously, on cards of the set D an additional column
.

is mrovided in which 1 or nothing is punched according to the

sign of An,m or Cn,m. The aotual multiplication of the

two factors proceeds similarly to that of method A.
● .-

Since in the future it will be necessary to have values

of S(n) and T(n) along lines A = constant , these val-

ues for various values of 0 and for A = -0.02, -0.OFj ““-
...—

-0.10, and so forth, were computed.1 (See table 9.)

(3. The method descri3ed below i. essentially the same

as that deecrtbed in u,ethod A; however, now, instead of punch
card methods, graphical means are eu~~oyed.

On millimeter paper the values of S(o)(h,e) and

T(0)(A,6) at first for some fixed values of A, say, for

A= -0.02, -0.06, and so forth, and then for some fixed val-
ues of are drawn. (All operations of C are (S opera-

- tions).)e’ (See figs. 8 to 15,)

‘A portion of these values had already been computed

- (much less exactly) and presented in table I
t?

r reference 4,
where the symbol Tn was used instead of T n .
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(T+ so(b), TeIf s@, T~
(o)

s,re replaced by

(AS(o) /AA), (AT(d) /A~), (AS(o)/A8), (AT(6) /Ae), respectively,

approximate values for Wl and ~e ara obta~ned. (See

table 10.) An integraph maynbe used to determ!ne

~ (~)(x,e)d~,~

f I [
#’)(A,6)d~,,,j T S(0)(h,8)de! T(c)(A,13)d6, and

,
90 forth (approX. ), and FO obtain, using equation (12),

~(1)(~) = S(Z)(~,~) + iT(l)(~,e), fj~m~~ar~y, ~(n)(~),

n= 2, U, . ● . can be computed.

.S.ti.i:a.- The second stage of the rest-hodis then to ob-

tain the ~al.ues of tno ~tr~am fnnction and its doriratives

in the (h,6)-plane - that 1s, to evaluate the expressions

‘1+2A)T (+ A,8) + , . . 1
j/(A,e) = L(0)(2A)T~0)(h,0) + L

+ L(n) (~)#~

1
(A) +...’

L(6)(2h) = H(2h), L(~)(2A) = ~ HA,”. , . (22)

L(n)(2~) = ~ HA

2nn ! J
‘b)(2A)Im gz + &~(2A)T(’0)(A, @) + , , ●$V(h,o) :XR

* B(n)(2~)T (n-l) (h,6) + . , . (23)

Il#j@,e) =1
Lee gz + LW2A)S(OJ{A,Q) + . . ●

+ L(n)(~A)S(n-l )(A,6) + . . . (24)

lSince it is assumed in this case that the speed at
every point of Da is conslderakly smaller than that of

sound , the ,exuression (“8”)i’s replaced here by

.

.

4 ‘x:’”’=‘m‘(2!) k’(z)+j -Q(n)(2~)’Jn)w]“.— ,,,
n=l .

,,, .;
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8ee equations (30), .(31), and (33) df ~e,ferenbe 4. Since
.

the L(S) (2A), s = 0,1 ,2,. . . are independent of g, they

oaa be entered oa master cards once and for al~t for dif~e~- “

ent values of s and dffferent values of A;. that is, they

are (G operations). Fer i.nstan o
?

on master card No. 1 in

columns 1 to 6, the value of L 0~(2A) for a fixed value. ~,,,,

is entere~ while nothing is yunched in o’,elum”n7
:7 =M “

is positive; in columns 8 to 14 the absolute ‘value

of L(1)(2A) is entered, and in column 15 the number 1 is

punched, If L(1) is nagative$ and” so forth. Similarly, :on

master aard I?o. 2 the cm?reeponding valuesef L(s)(2~(~))

are punched, and se forth.

The rornainder’ of step 11 c“~~sists-of (
?7

perat~~s.).

Tram prevtous computat o s the values o
17 7

T x (~, )
P

K=o,

1,2,. ● . for A = ho and e= 9(O , @, e ~J, and se

f~rth, fpr A = X(”x), g = 9(0), ~(1)8’ e(a), and :se ‘~orhh,

are obtaine’d: both “s-eta of carde, ,that La, the L(s) and

T(s) are than put into “the multiplier, whi~h.then-y’i-elds -t’he

.

*

values ei” (22) fern-t.he set of p~ln-ts ‘(~(o”), g(o)), “ ““

(~(o), J.l)),,v (~(l), ~(o~), (~(l),,e(l)”),o .. .,

~A”(2)
, &’)), (;(~~, fl(l)),. . . And *V -~md--~e ‘may-be -

ebtainea in sfmilar’ “fae%iea. The.va~ue6 _of *, *V9 *e eb- .-

tained for tihe uasu>ntler--.eons~eration a+re.--glnn in tables’.

11 and 12.
.—

1? w ,’-

?)he--valuaw- o -~~(o.}, @d),”K= 0.,1.,2,. ● ● ,

WV(A(J , e K )S $e(~
(Of, ~{K)) a

re plot’ted on. graph paper- .

along the ab~eiss.a fi.-which. the values of e are given.. 3y -,.
using this diagram, the-values of 0 cazi be determirie~oi ““”-:-“-

which *(A(o), e) a..c~~~ants,.say, o A ().1, 4.2, -d s~
—

farth. .The values of *v(-A~:)’, e)‘and Of We(h(e), 6)” - .

corresponding to ~~(o>, (3)= oonstant may then be dete~-
mined. This procedure b themrepeated for different ~aluem.
of A..

See table. 13”and -figure 13. ‘ .+_ .-—-

Stem III.- To- ever~value
@ ~

= 0,1, 2.. . ..,-the.

values of e(KT) were determined. fe~w hioh.
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.-
- j+) , @T)) = T = =on*tant

(?5)
—-. . . . ---- .——

es well ae kho cor.$”espondlng values of
$A(A ,6) and *6 rA ,~)”.

Tablp8 .(or_ftgure8) of ““va, I.- M;, ~~ AA
can be

pva G’
prepared, which, since these quantities are functions of A
alone, have to be computed only once, that is, thej are (G

operations). — -- — —

—7=- .-, . ,— -.
——

The image of a- Stri”amline (25) in the physical plane is

given by

[

,.
v

x = x(v) = -rp.Cos 6 !/;(1 - M8) + Val# 1
pva 6

v

“!-
0

v

r

“[
Y(v) = - f’o ‘in 6

Vg(l -
Y :=

Ma) -t-VaIJva 1
–d.v

“o
pva 06

(See equation (19) o.f refererice 4.)
— —-. . .

‘-- 1

(26)

The integrals (26) will be approqi.mated _by the sums

S=2

x = X(vl) = ‘YAxB( T“)
L_.
g=o

El=l

1.

(27)

Y= Y(VJ =
.1.. --- F-.

AyB(T), 1 = 1,z,3,. .
---- -—- -.— .- — _——* _=~-.- =_.,_:=. _

P.

[

(sT)2
Qy8 = ___ +8 (l– MBQ

Psvf)=
) + VE+T)2 Sinp Iv

1
-—

!Je

‘- I

(sT) *VS

.-

Avs = v
s+]. - ~s

—

.

.

●

.
—

(28) .

.
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.

The remainder of step III consists of (S operations).
.

By using tables for squares and the reciprocal, the values
.- - .—-...

of *g($TJas wT(*T)a
and ‘*

are determined, together

.

with the previously described tables for >, 1 - Ma, and
pvs

SO forth. The quantity

is determined with the use o
{

punch cards
(

Equation (29) is

then multiplied by coe g“(sT and sin 6 sT) to yield the

first and second terms of equations (28), respectively.

.

Since the cosine and sine may vary in sign, an extra.,
column must be provided with each teri~ of the product as de-”

scribed previously. Che cares ui’e pu”i :n the multiplier

which is set for ~ro~J .es~i”{.zto~:<li.,~i tLa valu~~ (27),

which correspond to 125) taen resulting.
..- .....—

.—

3. Description of the Second Method for the Construction of

a Compreasi.blc Fluid Fi~w —

(.%l)!L(0)(2A) = H(2A), L$)(2~~) = ~~11 H(2A)Q&)(2A)
n!

,
<,

‘lA method for determining the I,m(n) is given in appen-
dix I.
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.

-4s indicated in reference 3, sect3.ons 9 and 15 (sei3 also

appendtx I of the present paper), if A !.s considered only
.

In a range ~ g ~~ < 0, where A. is e fixed negative num-

ber, then a fixed m can be determined so that equation (6)

can be replaced byl

(31)

The solctions of--(sl) are given by

co

{

-( ’3)(2 ~)g(z) +
I)m(A, EI) = Im,L I L&)(2 A)g(n-)(Z)~

-J
(32)

:-
n=l

In the following it will be assuned that AQ i~ a very

small number, say A. = -0.01 (i.e., that the flows with

local Mach number = MO = 0,99 can be considered). Then m

will be a very large ~t fixed number.

Remark: In order to avoid confusion, all quantities which

depend on m will have a subscript m; however, it ie nece6-

sary to “bear in mind that in this section m is a very large .

but fixed quantity, which remains unchanged in all considera-
tions of this section.

As :lndicated in sectfon 1, in this method, certain tables
.

can be employed which are independent of the flow and which, ‘

therefore, can be computed once and for all, and used in all
SUb6eqU911t Computations.

lSirlce N does not satisfy the hypothesis of theorem (8@,

equation (6) was renlaced by eouatioa (31), where Iim does

8atiefy the conditions of the above theorem and differs only

slightly from N for values of h smaller than A. < 0.

And A. can be taken as near zero as desired.

In appendix I a method Is given for determining Mm for

a given ho with any prescribed degree of accuracy.

Note that instead of J(WAA + $86 ) + N*$A = O in appen-
4

tiix I, the equation. ~ (~;A +*;e) +1’m$* = O is empl~yed.
4

.

.

This last equation is obtained from (31) 3Y means of the

transformation (41).
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A. De script ion of Two Kinds of Tables
-r=

e

,ich

1. If a sufficiently 1

comput ed, (the functions ~m

correspond to g(Z) = Zp:

number of thel .
L$n )

V,g) + iy.m(=P+l J(vse)

is,

ar

whT
ar e
ap (

that

(v,

(
Ld

z

e) 4

‘)(2

.A

(:V,e

+1

A

)

).

i

H(

.,.

gi

2A)ZP

(p+n

veh by

=

,s

,.. . ..-

) (G operation.) (33)

(5), may be deier-

m

T’-!-.

&
wh ere

mined .

A)

Remark:

A = log

In

v,

the

H(2

c

A)

ase of an incom ressible flu

1, L@”(2i) = o, n= and

id,

= 1,

where

2S.* the.

corresponding fu.nct.ions are —

(log P - iby
“(34.: .,

J2p+l
Im (log ie)~-lv

,.

tion

0.1,,.

(34):is a soluti

. is a solution

—

on

;0f

e

..-

Of (3),

.(31),

very

Analogously, as

every function

and since for A

one of these fun

of

.

.nc

=

Nm

sa

practica~ly equals

“solution= of (6).

2. ‘1

real

fu

s

.nction

are d.et

Jj

ermi

‘(V,6),
ned:

0$ 1“b=‘o

fu

every

,n”ction

P .

I
two

,.’.

.-

.:.”

..

appendix 1.
.

.

?Sxactly

how~ve”r, does

exa’et,’”’solution
..

.,

spea

not

of

king:
differ

(6).

An” approxima

essentially

.te 80

from-

-.

luti

the

,1

on of (6). It,

corresponding

,. —

,.
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x(%,(l)
m =,(’:’;’);{[-”-‘:: ‘O’‘ -

(35)

.. . . .- —.—

Remark: Since the above integrands are complete differentials,

the values of the inte rals are independent of the path of in-

7tegrat!on (G operation .

Remark: In the case of an incompressible fluid, there is Db-

tained for the corresponding functions @ , Y(p) the ex-

pressions:

(P-1) g~~ (p - 1)0~(ap)
= (p.- 1)-1 pv

~(ap}
( )

(
= (p - 1)-2 pv@l) Cos (p - l)e

)
~(ap+z)

s (p .- @ Pv(p-’) COS ((P - l)e)

Yblp+l)
(

= (p - 1)-1 Pv(p-’) sin (P - 1)8
.).

In the following it is aaeumed that the above-described

functionlj, x$p~(v,e) and X$p)(v, e) Y~p)(v, @) are computed

for a sufficiently large number of values of p and tabulated

for a large number of values of (V,e).

. .

.

B. Determination of F1OW Using the Above-Described Tables

St= I: Determination of streamline—— $m(v,6) = constant *

in the hcdograph plane: According to t4e assumption of sec-

tion 1, the function l%(z) can be represented in the ‘domain .

D in which it will he considered in this sectfan, in the

f~lm of a power series

.-
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.

.

m

g(z) = ‘F ((X + ~a2p)zP (36)
- ap+l

p= o

where ap are real constants. For 8 sufficiently largej .

the pewer series (36) can be replaced in D1 by the poly-

nomial
s—“

1 (UIap+l + ia2p )Zp (37)

p=o

By substituting (37) into (30) and by observing (33), there

is obtained for the stream function wm ‘ corresponding to
(37)

Cn s

lJm(V,f3)= Im
{1

L(p)(2h)
m I

n= o
9

p=o

= Im
[1

(aap+l +ia ap )

s
p=o

(%P+%3P”+L ) -

~n+p

)}
(n+l). ..(n+p)

(2P)+i&P’+1)
(% )]

p=o p=o
-—-—. .,, ... .

Since, as a rule, it is neces”iary to determine the values of

xm(v,e) at many points, it is convenient to use punch cards.

I’orevery point (V,e) a master -car? is prepared, and In
this, in columns 1 to 6,the value of x~o) at the consid-

ered point (v,O) is entered and in general, in column,s

+) (G operations).6p+l to 6(p+l) the value of

,,

Since am can be positive and negativ~~- (38) will be

Bach of the sums in the right-hand expresqi~n of (3’3) can be

easily evaluated fsz a IL7-$G nnr.ber sf “~.~i~t~ Gsla,; piln~li-‘-–
.. -----

,
card machir.es (S ~.~.~racic~s).. m..n3 c*Lrvog-=-~m(-r,6) = constant

can then be deiormine.1 by i~Lterpol&tiOn.

la+ =
—.

max(a,O), a- = max(-a,O)
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Stem II. - l?raneition to the ph~~lcul nlane, - TO every

point7v,9 ) of the h~dograph plane there corresponds a POint

(x,y) of the physical plans, whioh is obtained by writing

See reference 3, equation (136); alse equattone (35) and (38)
of thie paper.

Let Wm(V,6) = o = constant be a Streamline (in the

hodogra~lh plane). I?o every value of v on Vm(v, e) = c,

there corresponds a value> of ~, t3:Ly 6(V), which can be
eaei,ly determined by Interpolation or directly from the dia-

gram for the $m(v,@).= conetant,

By interpolation (and t e use of kh
? ?1

ab100 &e8cribed
underII) the values of X$P (V, e(v)), ~mp (v,6(v)) are de-

termined. Substituting these valuee Into (40) gives

the coordinates (x$y) ~f the streamline $~=c in the phys- “’

ical plane (S operatiofi8).

Remark: Clearly, in ~rde~ to apply this method, it %8 suffi-
cient that the function g(~) can be aaproxlmated in the
domain under consideration by a polynomial

s

Js)

1[ +,(3(6) ZF1
2P+1J

ps~ 2P

.

.—

.

.

.

On the other hand, by Ruagels theorem, ~n a“nalytic function

can be approximated by a polynomial tn every uimply covered , .

‘or several valuea, Oay, 91, 02, . . ., en.
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and simply connected domain. Because of this fact, the
. method described in this section may be applied not only

when D1 is some region which lies inside of the circle of

convergence of (36) but for a much larger, class of domains.
.

CONCLUDING REMARKS

A method of obtaining a subsonic flow pattern of a com.-

pressihle fluid from a ~iven anal yttc function g(Z) is de-

scribed in this repqrt. The amount of” time and labor needed

for this method is reasonably small once certain tables have”

leen prepared.2 These tables are completely independent of

the flow, and. consequently onc”e prepared, the-problem of de-

termining the flow pattern may be regarded as solved., riot

only from a theoretical but from a practical point of ‘vie”#as
well.

The present method yields only subsonic flow patteg.ns,3
but by combining these with those described in section 17 of

reference 3, it will then be possfble to”-const-ruct’rnix&d.,
(i.e., partially supersonic) flow patterns, from a given

function g(z).
.

~The method described i.n this report”, “and references 8,

2, and 3, is a generalization of the determination of flow
. patterns of an incompressible fluid from the ~“omplex p-otenfi~al -

g(~) s CP(I.Ogv,e)+ i*(3.0g ~,e)~ s log v .- te, which pote”n--
tial is given in the logarithmic plane.”

Assuming that the necessary auxiliary tables have been

yrepared and that punch card machines, are available, the

amount of.labor needed in determining the pattern of a sub-

sonic flow corresponding to a given function g(Z) will only
slightly exceed that needed for determining the flow

7“

attern
of an incompressible fluid from”a given g(lug v -,i~ .

2’The author ‘would like to emphasize that the tables of
sec. 9 of reference 3, and those of the present report (the
former are only an approximation to those of appendix I) serve

merely to illustrate the procedure. The functions are com-~
——

. puted for comparatively few values of the arguments, an~ hence
by using them it iS possible to obtain only a rather inaccu~

rate picture of the flow pattern.

.

3Note that a similar meth~d can be developed for purely

supersonic flows. See appendix 111.



A ‘,method for determining “various flow patterns is’, of

course, only the init’ial step in the fitudy of compressible

fluid flows, since the aerodynamicist is, in the main, inter-
ested” in determining the influence of different factors euch

as the shape of the profile, the maximum Mach number, and so

forth, on the flow p~ttern.

,.

“

By the choice of suitable functions for g, i.t should

be possible to obtain ’mariy’cases of flows which are of con-
siderable practical interest and value “in studying various.

phenomena in the theory of compressible fluids.x

Remark: As has been e~phasized in the Introduction, it ia
.,-

frequently af considerable importance to solve the ‘Idirect!’.

problem determining the flow in the physical plane arourid a

profile, which flow behav’es i:] a prescribed fashion at in-

finity (i.e., far from the profile). Although fn many in-
~tancee tt i6 p~asible s to determtrze the function g(z) so ~
there i~; obtained a flaw around a profile approximating the

given one, it seems Losiraljle to have a method of solvin~,the
‘tdirectfiDrobl.em, and to determine when eolutioris to this
‘Idire,titll~roblem do or Qo ?aot exist. ‘l’heauthor hapes to re-
turn to this’ question in a future report,

.
Brown University,

Pr~videnoe, 30 I,, September 6, 1945, ...

.—.
.-

-.

.:. - . -—-
. .

~. ‘.

‘As has been indicated previou~ly, the axampl’en o>tained.
which correspond to the Chaplygin ~olqtions ca~not, Ln
general, yield the entire flow pattera (i,n.the physical ”plane)

around a closed profile. An exception, to ,thls has been the,,
work of lk&rm&,n-Tsie’n(references 6“,. 7) but in order to ac-
complish t,kis they have substituteti for the true adiabatic

pressure - ,s~ecific volume relation, a linear approximation

to it. ---- “-- ““ - - ““”- “’ “’--” L “--”:‘“

. .

20nce a sufficientl,v large numbe~ of flows corresponding
to various funotio’ns g have be~n “cataloged. II

.-

—.-

.-
.-

-.

.
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.

APPIINIIIX I

~(n)
THE DETERMINATION OF THE ~

Jn)
AND ~

The operator (8) (see also sees. 9 to 11 of reference 3)

was obtained in the followlng manner: As was proved In refer-

ence 3, the function v(A,9) satisfies-equation (6) where:,,H”

is given by (7); A and M are connected by relation (5).::

3very solution V of (6) can be written in the form

where H is given by (reference 3, (111)) and

the equatio~

,,

F(2A) = - $
[

5(1 + k) 12k ,_ + 2(3k - 7)

(1 - Ma)3 - (1 - Ma).= l.-M=,

(41)

** satisfiee

(42)

+4(lc + 2) - (3k- 1)(1 - M=)](43)
J... . . ... . ,,.

.
In order to determine ‘.~~), ~~~t ‘i; 2’ecOsOar”~ to c~~p~te ‘P”~”n
as “a function of ~ fron (5’)an~-’t~eb”stibstltute into (43).

The obtained function becomes infinite for A = O (i.e.,

for M= 1), which causes certain difficulties. On the other
hand;, since only the subsonic case is considered hers, end
since a small modification- of t,he function I?(a) yraoti-
cally does not change (in the subsonic region) tht},~Glution 6f
the equationl, it is expedient to approximate in the
range -m ~ ~ < lo, \Ao[ sufficiently small, by a f~lact~t)n

which remains fln:te at A = O, fcr in~te-nce,by a p~l.yn-i;~-”
—

Fm of the m-
?

As was pr3-7ad_in refz~cnce 3,
T= (1 - M2)1 g ‘egrae ‘n ‘2A”ce.n be tisveloped in a series in “eaP.;.!.~knely~”——

13y using the thepry .of $ntegral equations, it ie pr.ssiT-
ble to ,prove the foll,owi’ng thueor’eiq.Let B be a giv.:a -_” :

hounded domain i,n whit<’ A ~ k,~,’A. ‘< (~ an”~ ~in.~~hi~!l Tin-”.

differs frod Y by a ‘s~fiic’ie~~ly sm.~11”am”ount. TO Bier”y– -
solution of $+(A,G) .’o.fl/4&$ + ~n~$ = 0- a s.~lut’i~n .

. w“t~, 6) o’f +/4A@ +.rF}~ = O can b.e so-dete~minet that
]~(x, 6):- *:(A,6)! ‘4(~,e),~3, and ~ is .a given, small ~osi-
tive number.

. ,.
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S=l-T=XZ+
a

L(2k + l)x1 + . . .
4,

(44)

—

(
~(k + l)?ia - (k - 1)1/= ~

XL=2
)

~ah

‘(k + @a + (k - #/a

This series converges for .m<A <(). Substituting k = 1.4
into (44) yields

and

OJ m

T=
~ Anxln = I an x

n
(45)

—

-----
m m

-1
T. I Bnxln =z bnxn (46)

n=o n=o

xl = 0.239 eaA

x= @ A

.

Tho values of An, an, Bnf bn are given in table 1,

Sinoe (45) and (46) converge for ~< A < o; for ~ < A <~v .

where A~ < 0 is a fixed quantity, it is possible to approx-
imate (45) and (46) by polynomials

(4?)

n=l
and m

(T-’)m = )’ bneanx

n~l
(48)

By substituting these polyn~mials into (43) Instead of
&

and (1 - Ma )$,
respectively, polynomials of approximation,

Pm(2~) in esA, are obtained. Clearly, if a given degree
of accuracy is required, m will increase as A.

●

appr~aches
o. By plotting T, l/T, Tm and (l/T)m fur a given m and

—

—

comparing the corre~ponding values, the vpper bound ~. of .

the values of A for which 1~m(2A) - ~(2h)/ is sufficiently

small, mi~y be determined,
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TABLE 1

n -An -an Bn bn

o -1 -1 1 1

1 1 .2392 1 .2392

2 1.9 .1087 2.9 .1659

3 4.81 .0658

I

9.61 .1315

4 13,939 .0456 33.869 .1108

5 43.68 .0342 123.696 .0968

6 144.02 .0270 t 462.39 .0865

7 492.11 .0220 .0786

8 .G185
I

I

.0724

9 .0158 .0672

10 .0138 .0629

For instance, in the case under consideration where

m= 10, the values of T and Z’m are given in table 2 and

pl~tted in figure 16. AS can be seen from figure 16, ““--”-

A < A. = -0.11 ~i.e., M = 0.75), F 1R(2~) is Practically ‘“

equal to F(2A). If a good approximation is desired for

bigger values of A, more coeffi.clentsz an ~ bn must be com-

puted. In order to check the obtained values of an, as

function of n, see figure 17.

‘n)(2A) of the operators which yiOld _____The coefficients Qm

solutions of the equation @~~ + ‘m*=U can be obtained in

the same way as derived in reference 3, from which reference

the results are obtained
—.

‘It may be remarked that other method-s of “obtainin-g ap-

proximating polynomials for F exist . These will not be .

. investigated in the present report, despite the fact that

they merit considerable attentian.
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-2A

0.0160
0●01?5
0.0230
0.0265
0.03C0

0.0335
0.0370
0.0405
0●0440
0.0475

0,0510
0.0545
0.0580
0.0615
0.0650

0.068:5
0.0720
0.075!5
o●0790
0.082!5

O. 086(1

0.089!!

o●0930
0.0965’
0● 1000

0.1035
0.107CI
0.1105
0.13.4.CI
0.U75

0. K21C’
0.3.245
0.128c
0.1315
0.1350

0.1385’:
O.l@o
0.I.455
0,1490
0.1525

0.1560
0● 1595
0.163cI
0.1665

Table 2 NACA TN NO. 1018

The values of T, M$ and TIO

T
10

0943644
0.zA208
0.4475$
0.4.5300
0.45835

c&6&~

0:47385
0.4W385
0.48377

0.48$61
0.4933$
0.49$07
0.50268
0.50723

0.51170
0,51610
0.52033
0.52471
0.52892

0.53306
om53714
0.49225
0.49790
0.54902

0.55287
0.53639
0.56040
0.56408
0.56771

0● 571.29
0.57481
0.57829
0.58172 “
o.58511

0.58U

0.59173
0.59498
0.59818
0.60134

0.6CU6
o.6075fi
0.61054
0,61357

0.300
0.320
0.336
0.350
0.365

0.380

0.390
0.401
0.412
0.421

0.430
0.439
0*4JX
0.455
0,463

0.470
0.L77
0.$4
0.491
0.497

0.502

0,507
0.51.2
0.520
0.525

0.530
0.535
0.540
0.545
0.550

0.554
0.559
0.563
0.567
0● 571

0,575
0●579
0.583
0.587
0● 591

0.594
0.598
0.6Q1
0.604

v1- =M

0.954
0.947
0.942
0.937
0.931

0.925
0.921
0.916
0.911
0.907

0.903
0.898
0.894
0,890

0● 886

0.883
0●%79
0.875
0.871
0,86$

0.865
0.862
0.859
0.854
0.851

0,848
0.845
0.842
0.83$
0.835

0.832
0.829
0.826
0.$23
0.821

0.81f3
O.afi
0.81.2
0.810
0.806

o*$04
0.$01
0.799
0.797

.
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APPENDIX II

. .

THE EQUATION (IN THE CANONICAL FORM) FOR TEE POTENTIAL FU:~CTION

AN APPLICATION OF INTJGRAL EQUATIONS T O T’H3

TH~ORY OF COMPRESSIBLE FLUIDS

. 1. In section 6 of reference 8 and section 7 cf refer- ‘
ence 3 the equation (in canonical forml) for. the stream func-

tion hes been derived. See equation (6.6) of reference 8 or

(46) of reference 3..

There are instances, however, where it is more conven-

ient to operate with the potent:al function ~ rather than

with the stream function $.

In this section the oanonical fbrm of the equation for
@ wtll be derived.

——.

lBy introducing suitable new variables 5 = 5(x,Y),
—.

m’= n(~sY), every equation L(w) ~ a~xx,+, Bb@xy+ C+yy + dox–

+ evy +gw=o of elliptic type can be reduced to the form

$~~ + ~uv + ~~~ + B@n + C* = O, co-called ‘(canonical form of

equation ll.it (See reference s.)
.

In the case considered in the present section x = H,

Y= e, and E =A,q=g.
.



*

42

—.—

.N.ACATN No. 1018 . .

Functions @ and II satisfy the system of equat ione
.

(a4jae) -= (w/w), 2(H)(a$/a@) = -(a@/~H) (50)

~~~~a~~on ‘6*21) ‘f reference 8 and equation (30) Of refer-

where

(dH(v)/dv) = p/V, I(H) = (1 - Ma)/p2 (s1)

[equations (6.1), (8.18) of reference ~;. bquations (42),

(43) of :reference 3J,

If, now, the new variable ‘A, given by

4 *
(dA/dH’) = (1 -“~2) /p, that is, (dA/dv) = (1 - M2) /v (52)

E6~quation. (6,4) of reference B and equation (48) of reference

31, is introduced (50) becones

Differentiating the first equation (53) with respect- to e .

and the second with respect to A yields

Replacing the first term of the second equation Of (54) by

% E and. t~ by -P(1 - Ma)-+@A (see (53fi yields

@P~l + %x - P(1 - Ma) “~d(p-’(l -
*

1Ma) )/dA @A = O (55)
L d

Now, by the second relation of (52)

p(l - Ma)-i ~d(p-i(l - M%/dA
L 1

= p~(l - Ma)-%/p)~d(p% - @)4)/dv 1 = 4N
.

.

L.

(k + 1)M4 (l ~a)y3/a=-
2

(56)
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[equation (6.6) and errata of reference 8, or equatibn (47)
. of reference 3]. Thus, the-equation for 0 ‘becomes ““

,..,; . . . .

. . . . t s A(V) - ie “.
. .. . . -—- -

2, A ca~e in which it i.s moreadvantageous ‘to’c~nsider

@ ‘.kather than $ is the following:

,.!
.= .,.

In sect’ion 7 of reference ~ and in section 13 of rb”f-er-:

‘“”~ence3 singularities of functions sat~sfyiug equation (6) .

were considered. As was indicate$ th$re, a,,flow with.a.

llvortex-liketll singularity at .(A ,,e ) .is obtained if’ for -
the,stream function, the so-called fuxidamental solution ‘-

. -+ - -— — _—.-
,.. -- . .

I ,. .-
.,

.:.- ..,---

[equation (7;1) of reference 8; equation (119)’”of referenc6”-3j
— >= *. T—

. ,, c =A-59, ~=A+ie” . , .-’ ...,:
,’ ..-

is taken. ..—. __r_,.
. ,.

AS was explained ,i~ sei~ion 14 of referentip 3, it is”~m~

portant (in connection irith the “transition to the physical “

plane) to have (working in the A,e=plane) singularities the,>
derivatives of which with respect to h ‘and. tO ‘e are .

single-valued functions of A and: e.
.,

,.’.....-
,.= _-.-. .-...-

‘Thepoint, $0) -corresponils to the pdint Z“=-S-” of the.
physical”plane, and if for the potential function, o, a ~ .“:
fundamental solution: k. ,..:—

A*(~,~I ~(o),~rm) log ~t - ~“! + B*(~,~; $o),~m~) (59)
., . ..,. ‘:-. :_.

of (57) is taken, a flow with a “source-like!} singularity 1$

obtained. (~?wrebsiqn(s?) and,.there;o;e, its derivatives are
s~n~le-vazu,ed .furictions ‘of A arid .. ... — “’ .-.<-.——-..:.. L: ...-. . .. &-.–--–.+

lThe names l!vortex-lfke”’!.~nd ‘Isourde-likelt are used ‘b~-
cause in the caee of an incompressible fluid (and”in the phY$-

. @,Plane)., Inthe case of q vortex .t,hes$ream,functian is

given by m log ‘la”- ZOl, “arid.in the ccise“of a source the po-
tential function is given by Q= m log {z - z“l, m ‘being’s

real constant. (See reference 10, pp. 19P ~nd 320. )

-. ,—
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A single-valued solu i n of (57), which 5.s Infinite of

the first order at c ~~o! may be obtained by taking the “

derivative with respec~ to 6 of (59).

3. A problem of considerable interest 18 that of deter-

mlnirig a flow of a compressible fluid around a given profile,

or at least around a profile the shape of which approximates

the given profile. Since, In many instances, by reasoning

from the incompressible case, the approximate image in the

hodogra:yh or (A,13)-plane is knowni, it Is possible to con-
sider, :lnstead of the above prOb16m, the question of deter-

mining a flow for a given hodocrap h, and the behavior at the

point o:fjhe hodograph corresponding to z = U.a la prescribed.

Clearly, Instead of the Image in the hodograph plane the image

In the (A,8)-plane may be used. ‘ If the results of section 7

of reference 8, section 13 of reference 3, and those of sec-
tion 2 of thie appendix are employed, it is possible to deter-

mine a function V2(A,6) satisfying (6), which possesses

the required behavior at % = m. Naturally, Wl(A, f3) for

the point3 (~m,em) must have,a singularity which satisfies

the cond,ltions indicated in section 14 of reference 3, in or-

der that the flow in the physical plane will be a flow aroun&
a Clo sedi curve. (Se~~(;;e;articular, equati’on (145) of refer-

ence 3.) Function is as yet, not the requfred

stream function, since it does not assume constant values on

the boundary of the domain. In order to determine thfs func-

tion, it fs neceesary to find a solution ~a(A,Q)_ of (6)

which is regular in the domain Hl, and whtch assumes,

on the boundary hi of Iil’, the ‘val_u@s4

‘The image in the logarithmic plane of an incompressible.

fluid flow around a profile P is often used as a first ap-

proximation of the image in the he-plane ‘of the flow of a
compressible fluid around a profile similar to P. See figs.

4, 5, and 6, where the boundaries (and some streamlines) of a
flow around a Joukowski profile in the physical, hodograph
and (pseudo-) logarithmic plane, respectively, are given.

.

.

—
.

2The coordinate s refers to the physical plane.

‘The point (hm,Qm) correspond to the point z = - of
the physical plane. ,. .

4Si:~ce the domain H1 extends to infinity and, In gen-
eral, is.multiply covered, It is necessary to alter somewhat
the method of attack to be described, by mapping Ei

.

conform- .
ally on a finite and Schlicht domain.

For the “sake,of brevity this step will be omitted in thd
.

following. . .
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*2(~#J = -+@h,eh) (60)
.

(~~teh) being an arbitr~ry point of hz.

Function ~2(A,8) can be determined using the theory of

integral equations. (See footnote 8, p. 281 of reference 2.)

Indeed, let t3(A,e) be that harmonic function which assumes

the prescribed values on hl , then
,.

satisfies the equation

(61)

and vanishes on the boundary hl.

By employing classical results o~ can be obtained as
the solution of the integral equation:

.

[
$4(*,8) = & - if4(~1yeJd~1 del + if5

1
1

J
(62)

. aq
WE = -2’rr .& G dhl dO1

.. *N ah= — —

where G= G(A,e; AI,&f is Green Is function (of Laplacels
equation) with respect to the domain El. — _—- —. —

---
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.

A METHOD FOR DETERMINATION 01’ STREAM FUNCTIONS OR’

PURELY SUPERSONIC FLOWS

. . .=

1. As indicated in reference 8, section 10 nn~ reference

3, section 16, the approaoh developed in tkese papers makes

it possible to construct mixed (1.e,, partially subsonic and

—.

partially supersonic) flows by use of the following procedure:

In preceding papers two methods have been described

(one given by ChaplyEin, the other by the ~uthorl), which

yield certain types of particular solutions $V$ the stream

functfon of a compressible fluid flow. (See sec. 8 (8.3),

(8.6), (8.22) of reference 8 and sec. 2 of reference 2.) The

Wv represent stream functions of flows, which, in general,

include subsonic and supersonic fegions.

As wae pointed out in detail in reference 2, section 3

and in the introduction of reference 3, the flow patterns

generaj;ed by the $V mentioned above or a linear combination
— —

of them x~v$; ? are of rather special oharaoter. In partic- .

ular, the floti -patterns with stream function xa~w~ , canno-t

(in general) represent an entire flow around a cioeed body.
.

Frequently, in the theory of analytic functions of a com-
plex V&riable in a similar situation (i.e., when one expres-

sion of a certain kind - e.g., power serfes - does not- repre-
sent the function, ~ay, f, in the entire domain 3 in which
the fur,ction has to be considered), the procedure employed is
to deccmpose nB into smaller regione, say, into BK , K=l,

2s*~*l n,
T
‘ BK = En (see fig. 7) such that it is possi-

K%l

ble to find in every region BK, another analytic expression,

—

Bay, fK# whioh represents f in that region. Genoralizi,ng
—. —

‘Bers and Gelbart, in referencell, ohtalne~ the same
solutions independently of the author. They denote the func-

tions 9V+ i$v as .Z-monogenic functions.
.

Here l?L, IS

the potential funotion which corresponds to the stream func-

t$on $’~*
...

.

L

.-
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.

this method of representation of a function of a complex vari-

able, the author described in eection 10 of reference 8 and
. in section 77 of reference 3 a method for representing the

stream function and in a similar manner; that is, in deco~pos-

ing the domain B into parts BK, and representing Q in

every BK by gnother anal~tic~ expression.

In order to apply this methodl a representation for a

purely supersonic fiow is frequently required.

A. method for generating purely supersonic flows, Com-

pletely analogous to that developed for the subsonic case,

will be given in this appendix.

2. The equation

()s(y) = “$ 2 (1 - M2) ~*+a%J=o ~
ae= tIHa

(63)

(equations (43) and (6.2) of references 3 and 3, r,esp?ctiv.el.y)

serves once more as the starting point for-the followin-g @on-

slderations .

In order to write the equation for w in the ~~ajonical
fornlla, it i.s.necessary to introduce new variables , .

E = Q +@(M), ~=-(3+f3(M) (64)
.

where .

f

$(M) = ;2” r, P-lpo(h - l)~dH =’: v-a(Ma -

-1

l)~dva .

*J

[

4~ tan-l(h”(Ma - 1) ) - tan-~(Ma - 1)
i=

1
(65)

h
P I

Jh = ~; :,
J

.,
k>l

‘It may be noted that purel~ersonic flow patterns can

occur upon considering flows in channels or around a “body with
a cuep, in which case the flow has no etagnatton point.

aSince in the supersonic case. M>l, ‘equation (63) is

. of hyperbolic type. By introducing suitable variables g.,.m
every equation of hyperbolic type can be tran”sf-or’med’i.unto%he

‘o-called canonical form %1 + ‘*E + ‘% + C* = ‘“ ‘ ‘ “ ‘:”
.
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.

Mquaticln (63) then becomes

W[q + ~($g + vq~=o.

where
.

A=
-3/a

~(k + 1) M4(M2 - 1)
8

The functio”n
(tw)

*“
= H*, H = “exp

r

A(s)ds

1

satisfies the equation

%-l - ‘W* = 0’ r = ‘a + ‘dA’ds)’ *

=g+q

(66) --..

(67)
-—

J,68)

-—

(69) - ‘“

3. By use of considerations similar to those developed

in references B and 3, the following theorems can be derived:

Thqorem ~.- Suppose that Fm is a function which po8-

sesses n continuous first derivative. Let. E~(~,~,t.) and

E;(f,~,t) be solutions of

and

respectZ.V31Y0

Let El and 11~ possess continuous second derivatives,

and let (d~~/dc)/Tlt and (~E~/aTl)/fti be finite for t = O. ___ _—

Then +

U(g)n) = fl $(t,n,t)fl(:~(l - ta))
.
-1

(
+ E; ~,~,t)fa ~,~(1 - ta))](l - C@ Lt (72)

,- . . . . ----- —-

where f~~s“K = 1, ‘“2. are two arbttrary, twice ccat’!ncoualy

.

..
.

differentiable functions of their respective arguments, is a

solution of the equation



.

..
.,’ . . .

*

(73)

!l?heproof of this theorem is given in reference 12, sec.ti.on2.

Theorem II.- Let Fro(S) possess derivatives of all or-

~~d’er.s in. the interval $.OS” P 5 $1s ()<po<~l~=. If a

constant c exists such that the inequalities

obtain, then there exist solutions El(t, Tl,t) and Ea(~, Tl,t)

of (70) and (71), respectively, satisfying the conditions of

theorem 1.

By substituting the functions E:, K. 1,2 into (72)

for the EK, there is obtained a representation for sOluti OnS

of equation

in t“srms of two arbitrary, twice differentiable func%tons.

.

,... 4. There’ exist var”ious other integral representations of

solutions of (69) in terms of two arbitrary functions of one-
variable . One such representation, differing from that given

in the preceding section, will be discussed here.
.

Let R(f,n;~*,n*) denote the Riemann functions of equa-

t$ms (69). (see reference .9.,p. 22) - that is, a function
of the four real variables E,V, E*,V*, which satisfiee equa-

tion (69) for every fixed (~*,7]*), and which further has the

properties that.
-1

‘ (?6)
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●

This function (for (69)) may be. represented In the form

*

fq

f~
~(5, n;’5”*-,~*) = ‘1”-=’ F(~#lI)dt3 “d~a

f “;’T
“g*t *

“LF(&a,~~)d~l+ r~ L(-r(g~,vl)1 d~l d~a dlla - . , .(7-7)

‘E* Iq!,
.

“k*

(See re:~erence 8, sec. 7.)

,0)

... .——

The classical theory of partial differential equations of

hyperbolic type yields the following results: .

Let fK(K = 1, 2) be any two arbitrary differentiable

functions of one real variable, and if u satisfies the dif-

ferential equations u ~q + Fu = O, then

f

t

u(~,~) = u(o,O)R(E,~;o,O) + R(~;V;~*, O)fl(&)d~*
,,

*
o

f

T’,

+ R(t,~; O,~*)fa(?l*)d?l* (78)

‘o

(R iS, Df course, the Riemann function associated vith the
differential equations satisfied by u.)

Remark; A representation of the form (78) f.s R:’s- ,.,~;.~flfor

the subsonic region.

.
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. Indeed, suppose that ~ is replaced by ~ = A - i.e, TI by

. ~= A + i~, ~“ by ~“, TI* by ~“, in (77), this trans-
formed expression wfll not differ essentially from the func-

tion x(~,n introduced in (7.4), of reference 8’.

If the coaplex variable ~,~ instead of A,6, is used, the

equation for the function w“ , in the subsonic case,- assuti<s””

the form-

(equation (86) of reference 3)
.-

a new representation for +* in terms, of two arbitrary ana-

lytic functions hl, ha of ~ complex variable may then be

(R is*the ?liemann function of the differential equation ““

.-

. for *“.) —

5. It j.s of considerable interest to show ” that both (8) and

(72) are different forms of the same operator, the former ob-.
taining in the same subsonic case while the latter holds in

the supersonic case. In order to derive this conclusion, it

is necessary to develop further the method of attack initiated
in sections 6 and 8 of reference 3. The following result is

a slight generalization of theorem (53) of reference 3.
. .

Let El be a solution of

.

.

lNote that l’L iE a function of H alone and that

AH +4, AH~ =~a Indeed, AH2 = L(H) = poap-a(l - ?42)
P

“and fi7E) = A(M). (See sec. 8 of reference 31)

-- —
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which possesses the property that

(
1 al + ~e AHaA/!==.—
AH aH ) t(A+ i6) +

is continuous at t = O, at A = o,

P
+1

r-

ITACA ‘IN No. 1018 ,..

.--- —-.

~ld - t2”AHH
(81)

2t(A + i(3)

~ndate=o, then

y(H, e) =
J

1El(H, e,t)f *(A(H) + i9)(I - ts) —

1 ‘E

(82)
.

-1 .-

where f fs an arbitrary, t~,ice differentiable function of

one variable will be a solution of

Tho proof of the above theorem follows step-by-step the
proof of theorem (53) of reference 3.

Denote by ~2(H,e,t) a solution of G$2)(A,-f3,t) =0

and obtain the following representation for solutions of (83)
.

in terms of two arbitrary, twice differentiable functions
f faII of one variable.

●

+1/-

W(H,6) =

[( [
MA(H) + i6)(I - tz)E1(H, @,t)fl z

. 1.
-1

+ E=(H,8,t)fa

[
$A(E) - i6)(I - ta)

1}
(84)

&

Por M<l, A(H) = A(M) (see equation (48) of reference 3)

is real and therefore ~ = A -i:, ~= A + If3 represent
conjugato complex variables. M>l,

?A be-)

L(H) = X(M

comes purely imaginary and therefore ~ = A + ie = i ,~ + e

= it and ~ = A- i$ = i($ - f3~= i; where ~ and’’l’l a~e

the real Tariable8 introduced in (64). It remains merely to

show that (80) can be written in the form (6) for M<l and
in the form (66) for M>l. Suppose first that MCI not-

ing that
‘Hg-A=”$=_=E

P

A
(80) can be written in the

form AH aH =’
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equation (85) can be replaced by

.

.

—.

Tfl?+_L i$ replaced ly Em and divided by a nonvanish-
4A~-=

ing factor, it is seen that (87) is essentially the ~ame as
equation (75) of reference 3.

llTote that
-1

t E;* of refsrence 3 should he corrected to

refer;nce 3: i.e., thn lat~er may be obtained from the former “
by replaclng (by~a~d~’hy~. -—
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M

1.00

1.01

1.02

1.03
1.04
1.05
1.06
1.07
1.o8
1.09
1.10
1.11
1.12
1.13
l.lr$
1.15
1.16
1.1’7
1.18
1*19
1.20
1.21
1,22
1.23
1.24
1.25
1.26
1.2?
1.28
1.29
1,30
1.31
1.32
1.33
1.34
1.35
1.36
1,37
1.38
1.39
1.40
1.41
1.42
1.,43
1,~
1.45
1.46

&

——

?.—

0.0000
0.0008
0.0020

0.0039

0.0061
0.3085
~,l~llo

0.0140

0.0169

0.0200
0.0235
0●0268
0.0304
0.0339
0.c1376
o.c@5
0.0455
0●0494
0.0535
0.05?7
0,0518
0.01563

0.0707
0.0’754
0.0’798
0,0[)45
0.0[187
0.0932
0.0981

0.1C127
0.1G75
0.1122$
0,1172
o*1220
0.1268
0.1319
0,1369
0.14.L7
0,1467
0,15:L9
0.1567
0.16:.9
0.1668
0,171.9
0.1772
0.181,9
0.1873
——

1!

P

Table 3

as a function

M

1.47
1.48
1.49
1*5O
1.60
1.70
1.80
1,90
2.00
2,10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3030
3.40
“3● 50
3.60
3.70
3*8O
3.90
4.00
4.10
A*2O
4.30
4.40
4.53
4.60
4.70
4.$0
4.90
5.00
5.10
5.20
5.30
5.40
5.50
5,60
5.70
5.80

P
0.1921

0● 1974
0.2026
0.2078
0.2590
0.3108
0.361G
0.4116
0.4602
0.5076
0.5535
0.5983
0.6413
0.6827
0.7229
0.7613
0●79~3
0,$340
0.8682
0.9013
0.9329
0.9637
0.9930
1.0213
1.0487
1.0748
1.1002
1.1243
1.l_481
1.1707
1.1926
1.2136
1.2339
1.2537
1.2724
1.290$
1.30$8
1.3257
1.3424
1.3585
1,3740
1.3891
1.4038
1.4179
1.4315
1.4451
1.4579

NAGA TN No.

of MII

M

5.90
6.00
6.10
6.2o
;*3J

::g

6:7o
6.80
6.90
7.00
7.10
7.20
7.30
7.,40
7.50
7s60
7.70
7.$0
7*9O
8.00
8.10
$*2O
8.30
8.40
$.50
8.6o
8.70
8.80
8.90
9.00
9*1O
9.20
9.30
9.40
9.50
9.60
9.70
9.80
9.90
10.00

1018

f

1.4703
1.4$27
1.494A
1.5061
1.5172
1.5279
1.5388
1.5491
1,5591
1.5689
1.5785
1.5877
1.5966
1.6054
1.6W3
1.6225
1.6308
I.6388
1.6466
1.6542
1.6617
1.6688
1.6761
1.6829
1.6898
1.6964
1.702$
1.7093
1.7155
1.7216
1.7276
1.7335
1.7391
1.7447
1.7502
1.7557
1.760$
1.7659
1*771O
1.7760
1.7809
1.7858

.

.

.

.

.
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For the case M> l,”’ a ‘similar procedure yields

.

[

a2E>*

(
“B

+2gt —-
)D

Eli F-— = 0 (88)

a~a~ 4AH 2

which up to a constant factor coincides with (70).

APPEI$DIX IV

THE COMPLEX POTENTIAL IN THE HODOGRAPH PLANE FOR

A JOUKOWSKI PROFILE

1. In connection with the second method for the determi-

~(n)(z) it is neoes~ary to have an ~nalYtic reP-
nation of

resentation for the complex potential (in the hodograph plane)

of an incompressible flow around varioue profiles.

l?his problem will be treated in the following for a symm-

etric Joukowski profile.

2. The function

+
% =~a+z*+71Z*, q>0 (89)

maps the circle lz*\ = ~ into the circle IZ+ - ~al = a(l+~).

The transformation

1

(

2
Z=—’ “z

)
++L (90)

2 ~+

;:;: IZ+ - Ila[= a(~ + n) intoa JOukOwskiprOfile= *here-
.

a2
(91)z = ~a + (1 + ~)Z* +

● . ‘ha + (1 + T))z*

maps lz*~ = a into a Joukowski profile. —
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Since the complex potential around ]E*t = ~ is

W( Z*) = (-V z~eia + —
),Z.::a “%’10’<

(92)

the complex potential w(z) = wEz* (z)] is obtained by sub-
stituting the function

(z - 2~a) -1-s $Z* = s = 3(%2 - 4a2) (93)

2(1. + ~) ‘

(which is the inverse to (91)) into (92).

w(z) = --’v

[

(z - 2~a + s)eia + 2aa(l + m)

2(1 + ?l) eia(z - 1
2~a + s) ,, ._ .

-g log z - 211a + s
(94)

211 2(1 + ~)a

Denoting by q the conjugate to the velocity vector .

gives . . . ...

q s ve-18=M= dw dz*.—
dz

.“””
.dz* liZ

[

ai?. ir I
-Veia + V

1[

+s+2
= .—

eimz*2 - 2Tr z* 1
(95)

2(1 + q)s

Tho aim of this appendix will be to represent Was a
functioIl of q. By writing

~,ia(z-2~a+~+” 2aa(l + ~) = r ~z,s)
(96)

2(1 + T]) eia~z 1
2?la + s)

z- Zqa+ s

-2(1 + ~)a = ra(z,s) (97) “

it is seen that rl and ra are rational functions of ~
and ,s,

.
where Z, S, and a are connected by the relat_io~

. . . . . . --



NACA TN NO. 1018

la

q=
_V (s + z)e

2(1 + l~)s

and

Introducing a new

gives

+V

5?

2(1 + ~)a=(s + z) ir s-kg.—
eia(z

2ma + 8)=s 21T (z - 2’qa + S) S(98).

ea = Z2 - 4aa (99)

variable t, defined by

‘=@+i)a

‘=ao-;)

and it is found that rl End ra become rational functions

, of t, wh3.ch will tie denoted by R1 and R2... A formal com-

putation yields

. .

Ill(t) = a
[

(t - ll)eia + (1 +~”)-”” -.

(1 + q) (t - 1~)eia
.

R2(t) = (t - o)

(1 +Tl)

t and q are connected by a relation

which is obtained by replacing in (98) s and z Iy
1 ‘-

()
1

()
a ,t~

and a t---
t “

respectively. R Ra,R3It are rational

functions of’t; Rl, Ra are so-called algebraic functions of q.

The determination of singular points of these ,func~ions

as well as determination of series development of .R1 and IFa
around these points can be achieved using classical methods of

.
theory of functions.

— ...—— . .——

l?he derivation of the corresponding developments of EJ
● and log R= as a function of Z = log q does not involve

additional essential difficulties.
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oTable 4

Ths valnssof S(0)md T(o)

(S o~eration)

men

T(o)

-%E8

-0.2270

-0.3735

-0.5649
-0.8524

-L$440

O.m

O.ooal

O.m

0=0.4

+

Jo) Jo)

-0.354 0. 39

-0.3955-0.03.39

M.5

~ m

O.oom

+0)

-0.0993
-o.1113

T(o)

0.0049

-0.0983

-o.2152

-o.35&.
-o.5a@
“-0.7491

-L0263

-0.9458

-o.3981

4.1737 T
Jo) +0)

-a.

-0.4685 h208

-0.5075-0.0462

-0.5573-0.1086

a.6188 -0.1624

-0.6911-002020

-0.7690-0.2219

-0.%39 -0.2196

-0.9198-0.201S

-om9517-0.1676

O.uxm

O.ofxm

O.(xm

O.cmo

O.moc

-o.lm

4.1599

-0.2147
-o.3312

-0.6377

-1.301.2

-1.4350

-1.2987

-0.24.86 -oJ@fJ -0.3509 --m&6
-0.2982-0.3005 -0.4074-0.2344
-0.379 -0.4303 -0.4895-0.3275

d-0.51 -0.5637 -0.6062-0.4069

-0.43634.O%U

-0.4943-0.1633

-o.5@3 -0.2372

-0.6%4 -0.2898

-&@& :.;%

-0:%9 -012580

-0.9943-0.2039

-1.o186-0.1539

%2
-1.7353

-1.3726

-0.7424 -0.6’523 -0.’7566 -0.4445

-1.0137-0.5906 -0.9102-o.4139

-1.1560-0.3995 -1.0164-o.32go

-1.lm -0.2397 -1.0628-0.23.45

.0]-1.22471o.cOOO -1.20 ?J-O.0914 -1.1: il-o.l&6 I -1.(m71-o.M17 -0.54

[

-A

o

0.1
0.2

().3

0.4

0.5

0.6

0.7

Q.a

0.9

1.0

=0.6 ;

T(o)

O.WO

0.;536

-0.0045

-0.0674

-0. I.016

-o.1347

-0.1536

-0.1577

-0.U90

-0.1323

-o.1120

e=o,7

s(o) ~(o)

-0.5643 0.1383

-0.%92 0.0832

-0.6259 0.0322

-0.6565-0.0139

-0.6985-0.0525

-0.74444.081.8

-o.7916--o.lcn7

4* S371.-0.1090

-o.m -o.1o80

-o.9110-0.1003

-0.9381-0.0887

G=(I.9

Jo) ~(o)

-0.6723 0.176s

-0.6859 0.1308

-0.7076 0.0889

-0.7328 0.0517

-o.7&3 o.0201

-0.7908-0.0057

-0.8223-0.0249

-o.8510-0.0377

-0.8788-0.W9

-0.90334.W74

-0.9243-0.044

1.0

Jo)

tmm
0.1483
O.lm?
0.0758

o.04(i2

o&?17

0.W25

O.oils

&0209

0.0265

4.0287

c

/Jo)

-o.n36

-0.72M

-0.7457

-0.7660

-0,788$

-o.8129

-0.8376

-o.8619

-0.8848

-0.9153

-0.9237

s(o)

-o.5c@

-0.5326

-o.5m

4.6099

-0,6617

-o.n92

-0.6966o.022i
-o.7310-c.o125
-0.7680-0.0397

4.E058 -0AM-$7

-0.8424 -0.0697

4).8759 -0.0736

4L$n@ -0.W720

-0.9286-0.0666

-4.7791

-0.8366

-0.8866

~LO.92c0

,4.9546
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Table 5
operation)’

.

(8

* %l,nl.

0 2’
I

3
I

4
I

5

-0.5 0,.62500

0.31250

I I
0.119797 0.024741 0.003871 0s00428[

I

-1 0,25 I0s179695.5 0.061852!5 0.0135485 0-019281
I I

1 -1 * 0s416667 I t0.047919 0.007069 0,000860
I

-0.6666 0.166667 I I0.013691 0.001571 0.000156
I

3“
I I0.003042 0.000286 0.000024

I
-0.26667

-Oo076190

0.047619

0.010582 0.000553 10.000044 10.000003 ]4

.

.

Table 6
(S operation)

1
3 4 5

0 0 o=

o 0 0

/

o 0 0

I [

2

00

02
I
-0.0817

I
+0 s5708

+0.2854

+0 .0951
I

o
I

o
*

4 I -0.0016 I +0.0124 -0.0409

.

●

.

r



Table 7: The Values of pk (LIoperation) UJ

~-3/2

Im3.oomo
19K m-,.—-

37.03704

15.62500

8.Cumo

4.62963

2.91545

1.95313

1.37174

l.m

0.75131

0.57870

0.45517

0.36443

0.29630

?
-1

loo.omm
ymm

11.JzLl.l

6.25co0

l@CQXl

.2.Trr78

2.Q4@2

1.56250

1.23457

MYxloQ

O.@&i

0.69444

0.59172

o.51mo

O’w

#2

lo.000!xl
5.m&x2
3.33333
2.543003
2.cxKm

1.66667
1.42857
1.25CC0
l.lnll
l.m

0.90%9

0.$3333

o.7@3

0.71429

0.66667

—

f

I-
1
J..

1.

1.

1.

1.

1.

1.
1.
1.

1.

1.

1.

1.

1.

7

~

ii

“u
0.

0.

0.

0.’

0.’

0.8

0.’
1.(

1.

1.,

1.,

1.,

1.

=

ZzEJ
j2

.
. -.-.-

U.w m U.w s

o.oo81 0.00243

M256 o.o1024

0.0625 0.03125

-

V3
O.ml

iLiXl@

0.000729

0.CX4.036

o.o15625

w+& :%_“
o.om219 0.0000M O:mxm

o.m1638 0.000655 o.aYo262

0.0U781.3 0.003906 o.(K)1953

+/:

0.003

CLiw

::%/

0.X?5

0.2M

0.343

O.’jlz

0.729

l.ceil

1.331

1.728

2.197

2.7U

3.375

=

L3/2

L2)l

))KL9

i)159

w

k
f

0..01
m m,

I
U.UJ$

0.09

0.16

0.25

0.36

0.49

0.64
0.81.

Loo

1.21

l.~

1.69

1.96

2.25

+

o:
0.I

0.(

0.1296O.m% 0.046656 o.027$)9#$0.01.6796O.O1OU78
0.2,$01 o.168m o.117649 ).082354 0.05%48 0.W354
0.4096 0.3276$3 0.262244 ).209715 0.167772 0.134218
0.6561 0.59049 0.531441 ).478237 0.430467 o.3m213 ‘

1.0000 l.cQooo lmmooo LCWMM l.oOoOal l.oaMxJ

1.44 1.61051 1.771561

2.v736 2.48832 2.985984

2.8561 3.71293 @26809

3.tM16 5.37%U 7.529536

5.-5 7.59375 11.390625

L948W7

!.583181

i.2?@52

).541350

1.085938 k
2.X3589 2.357W

4.29?817 5.159780

8.1573U/ .604.499

14.757891 .ffiLo47

25.&8906 &3359

—
I J

-_@-
0.(4)1

[

0. ID)328
u. 7)143

O.moool

o.0ooo31

0.0CQ70

0.M14748

0.0353.84

0.205891

Lmmoo

4.177248

15.4D7022

51.I.85893

155.568096

437.896560

‘r
f’5

0.(9)1

0.(6)1

O.mom

o.axllof

o.COom

-

#2 7

o.(13)1

o.(9)14
o.(7)478

o.mOoo3

O.anx%l

0.0W784

0.CW82

0.U3980

0.2LW768

UXOom

3.797498

x2.83%85

3%373%4

.1l.1.12@9

291.93KW

-

0.(7)205
Oaoolxn

0.0CQ2

o.000@8

0.003628

o.o19r73

0.085899

o.31m
lmocoo

2.85Y17

7.430xU

17.921604
40.495652
86.498086

O.tii)l (*) ~.te: @

nmbrislp?t-

rentheseeln-

dlcateethe
mmh!?r of ms

followingthe

deoild point.

‘i’hna,0.(7)205=

o.cnlxxm205.

o.i8)ti

0.(6)531

o.oo@317

0.-

0.0C2177

o.ol@@.

o.o&n9

0.282430

1.ow03

3.X38428

8.91@JM

23.298085

56.693W

1.29.7471.29

/
o.oim22

0.00UK%

o.m9@9

0.05496

0.254187

UmOCm

3.4w’n

lo.@m21

30.28751L

79.37L$77

19*.6ZOUV

O.mw

o.028241

0.107371

0.34867[
l.m

2.5937&

6.19173(

1.3.785W

28.%?5.46

.

.1

,’

,, *

:,

‘II
1:!!1 :lfi 1“ “ * I

.[,
II

.1. . !
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1 I

Pt-
‘~ sin /2

●m m

r .258819

60~ .500000

900 .707 m

120° .866025

1500 ,% 926

I.&YI*WO m

23.0: .96s 926

.864M

.%% .7cr7lcq

300” .500000

330° .258819

36cP ●OUJ Ooo

II
30 .258819

60°-.866025

: 90 ..707107

121Y .500m

150° .965926

~o .Ooo~

2100 -.W 926

2$00-.500 m

.707107

3000 .* 025

33 -.258819

, .

Table 8: The W&es of 00S ~q and sin #q (G operation)

.866025

.707107

.500 m

.258819

.000000

-.258819

.866025 .500 cui

l.cmo Cx)o ●m Ooo

.866 m5 -.!m m

.500 m -.866025

●oo Ooo -Lmo m .

-.5C0 Ooo -.W 025

1.000000

.7071.07

.Ocm CNKl

-.7crifm’

-1.OIX)m

-.7071.07

-.500 ~ 4%6025 -.5Q0 OaJ .000000

-.707107 -MQo Ooo .IY30m .707 Im

-.%6 025 -.866025 .!W (X)O 1,000 Ow

-.$6926 -.500000 Al&l 025 .7W7 lo7

-1.000 m .OcQ m loom cm .(XXI m

006 *

1.COO Ooc

.7U7 Io7

.Ooo Ooc

-.707 m

-1.000 Cm

-.707 lo?

.Ooo Oal

.7CY7lo7

1.OQO COO

.707107

.000000

-.707107

-L.cco m

.*2*

moo (KM

.866025

.864025

●oo Ooo

-S66 025

-.866025

.m m

4%6 025

●8fi6025

.cm Ooo

-.$66025

-.$& 025

.oao Ooo

I

+%-Ii%%
Moo Ooo

.000000

--1*OOOOi)o

.Ooo m
1*000 Oou

.(24)0000

-1.00Q Om

.000000

1.000 Ow

.000000

-1.ocm Ooo
Aim Ooc

.mo Ooo

-Moo cm
.Om m

l.m mm
.Ocw Ooo

-1.000 am
.000000

1.000000

.Ooo m

-1*000 Cm

●oo m

Lo(n) m
L

Em 7?!2 ma 7P!2

I
-.!Xclm -.866025

-.707I-07 .7W m

.866025 .500m

.258819 -.965926

-MX10 m .QX1 m

.258819 .965926

.866025 -.500 m

....707107 -.707 m

-.500 m .864025

.965926 .258819

.OcOOoo 1.000000

*

sin 49 Cos 4 q

.m Ooo 1.CU)O m

.866025 -.500000

-.866025 -*W Ooo

●000 Ooo 1*WX) m

.866025 -.500000

-.866025 -.500 ~

.000 m 1.000000

.866025 -.500000

-.866025 -.50Q m

.000 000 1.000 000

‘.866 025 -.500000

-.%6 025 -ml Ooo

.000000 l.om 000

-.5(X)Ooo .ji iloo
-1.CDO Ooo -.’?U7Ia7

-*F m. -.8(% 025

.500 m .258819

l.om m 1.000 CKxl

.5m m .258819

-.500.om -.866025

-1*CDO m -.’/m w

-.500000 .5CM Ooo

.500 m .9& 926

l.mo m .mo Ooo

sin 9#2 COO 9P/2

.000 m 1.OCKI Ooo

●’m’ 107 -.707 IO’/

-1.000 m .m m

.7(Y7I.(Y7 .707107

.0000OO Am m

-.7W7 107 .7073.0’7

l.om ml .cm Ooo

-.707 Im -.707 M’7

.mo Ooo 1.OUI (WO

.707 m’? -.707 m

-1.CX)O OLxl ..OCU)OOO

.m 1.07 .707107

.Ocn m asp m

.

I

●

m
Oa
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Table 9 (S operation) ‘ACA ‘N ‘0” 1018

Computationof the streamfunction(inthelogarithmic~lane)of a

-J

z

.06

.10

. 2Q

,30

,40

)60

con!

Q

x
.2

:2
.8

● 08

*30

● 34
.40
.50
.70
.90

,15
.35
● 50
.60
.70
●00

● 22

.40
● 70
.80

%

.30

.75.

.85
●95
.10
.20

*35
.60
.85
●93
.05
.30

.40
●45
.60
.75
.95
● 00
,15

‘eesibl

JO)

-
-.1945

-.3627
-.4970
-.6223

-●0840
-.2961
-.3147
-.3584
-.&&l
-.5640
-.6577

-.1621
-.3490
-*4593
-.52X$
-.5770
-.7085

-.2672
-.4311
-,6L45
-.6556
-.7324
-.’7664

“.4454
-.6934
-.7274
-.7602
-.7158
-.8317

-,5895
-.6962
-.7672
-.7883
-.8186
-.8764

-.762I.
-.765Ji
-.7808
-.8o28
..$38

$‘“.%9
-.8783

flow

.@

m

.0026
,● 0019
~.0172
,.1035

.0047
● 0142
.fa1312
.0094
.0096
.0054
‘.0322

.0148

.0275

.0282

.0246

.0178

.0179

.0458

.0706

.0802

.0722

.0553

.044.2

.1193
● 1791
.1791
.1757
.1666
.1578

.1873
92439
,2587
.2588
.2553
.2197

.3008

.31.49

.34ti

.3628

.371.4

.3718
,3694

merate

J2)

x

.0013

●O1O5

.0342

● 1764

,Oooo

.0033

,0058

● 0091

.0200

w;

-,0001

.0059

● 0194

.0338

.0539
,1507

-.0024

.0039

.0623

.0730

.U95
‘.1971

-.0143
,0422
.0726

.1102

.1814

.2388

-.0326
-.0128

● 0493
.0789
●1333
.2881

-.0653
-.0652
~.0532
-.024.0
.0434
.0653
.I.4.40

QQ&
J3)

-%m
● 0000
-.0001
-;0003
.OOQ3

●0000
-.0005
-●0001
-●0004.
-.0011
-.0043
-.0020

● Oo(lo

-.0006

-.0018

-.0030

-.004.4

-.0094

.0000
-.0017
-.0057
-.0093
-,OU
-.0301

.0005
-●0197
-● 0288
-;0396
-.0589
-.0740

●0019
‘.0085

-.0351
-,0469
-.0673
-.0926

#0074
.0055
-,0042
-..0227
-.0595
-.0709

-.1108

malyt~

J4)

m
.0001

-.0001
-*W
-.OQ34

.0000
● 0001
.0000

-●0001
-● 0002
-e0020
.Olcq

“.0000
-.0000
-.0003
-.0008
-.0016
-.0083

.0000
●0001

-.0010
-.0017
-.0059
-,0101

#0001
.0015
.Oou
.0006
-.0025
-.0065

● Ooo1
● 0021
.0049
.0057
.0054
-*0074

-.0001
,0005
.0036
.0072
.0133
●01.47
.0180

function I

.%

;m:

.2653

.2511

.2125

.09%

.2792

.2817

.2906

.2996

.2575

.1927

.2050

.3380

.3362

.3109

.2529
● 1993

}4119
.4701
.322.4
.2907
.2092
●1781

.9389

.3896

.32%4

.2648

.2132

.141.1

1.0839
.5829
.3458
.2980
.2416
.1639

1.0761
.9092
● 59X
.4250
.2869
.2623
,2045

,1$68
. 272s

.2573

.2006

.0999

. 283s

.2975
●3085
.3056
.2541
.1832

.2082

.3@4’

.3406

.3134

.2773

.1608

.4150

.4731
93549
.2842
.1908
.Isog

.6771

03593

●2959
.2411
c1722

.1334

.9059

● 545$

.3,240

.2737

,2109
.U22

.9U.7
● 5959
.4188
.2734

.1785

.

.

.

.

.

.
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-J

;80

1.00

1.20

I

A.L-@L
.50 -.9096
.70 -.8W+4
●90 -.8924
1.05 -.9090
1.10 -.9166
1.20 -.9323
1.40 -.9721

● 54 -.9729
.75 -.942$
1.00 -*9453
1.10 -.9538

L
1.20 _.9&4

1.35 -99933

.58 -;9925

.80 -.9726

1.05 -.9748

1.15 -.9830

1.22 -.9899
1,30 -1.0008

1.40 -1.0171

@)

.4958

.5258

.5407

.5448
● 5449
● 5445
.5401

● 6908
.7120
.7247
.7270
.7277
.7262

.8907

.9049

.9131

.9152

.9157

.9U9

.9159

Table 9 (Continued)

J@
-.1450
-.X238
-.0676
-.0020
.0236
.0832
.2281

-.2628
-.2373
::;:;$

-.04&6
.0611

-.4198
-.3869
-.2937
-.2405
-.1945
-.lfJJ
-.0653

A
.0233

-.0005
-.0453
-.0928
-.1129
-.1526
-.2515

,0602
.0246

-.0589
-● 1045
-.1578
-.2522

.1231
<0722
-.0397
-.100I.
-*U95
-.2090
-.2924

-&L
-.oo12

.0076
●021.2
● 0334
.0396
.0457
.0592

-.0075
.0093
.0426
.0586
.0756
.1020

-.0231
,0070
.0623
.0895
.1098
.1346
.1662

65

2)szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x

● 5409
.3759
.2666
,2089
.1916
.M48
,1242

.2251

.2156

.16x2

.1319
,1191
.0927

.0816

.1082

.0869

.0725

.0625<

.0508

.0357

*

.0425

.3753

.2625

.1999

.1819

.u96

.W59

.2292

.2211

.1685
● U59
.u6
.0949

.0892

.1230

.I.lo$
● 1000
.0919
.0822
.0699

(continued on next page)

Note: columns 1- ~, i.e. S(0), s(l) ~ were com~uted by means ofj..* a~

ties as described in method II; coklmn. 7 namely ,yA wa~

computed directly from the formula for the stream function, see refer-

ence 3.

.
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.

.
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Z

.06

●N

,20

.20

—

.k
4?0
.4a

.60

.80

:$

.34

●4O

●5O
.70

.93

L10

.35

.&l

.85

.93

..05

..30

.15

.35

.50

.60

.70

LOO

.22

.@

.70

.80

L(XJ

L1O—

*(O]

=af2!
~~:

.047(

.lou

.150:

:.057(

-.0125

.Ooot

.0195

.W

.0317

.139C

.1565

-.333fl

-.IXW

-.O1OC

.0152

.0476

.1650

-@893

-.0317

.0198

.0519

.0816

.1.488

-.1753

-.0923

.0604

.(%2(
,~:

●KM

.

~(l)

~

-.07%’3

-.1658

-.2627

-.CQ15

-.0443

-.0533

-.0719

-.120’4

-.2160

-am

-A@

.OI.23

-.1559

-.3397

-.4023

-.4978

-.7081

-.m73

-.0598

-.1218

-.1717

-.2282

-.I$?70

-.0091

-.0730

-.25’73

-.2984

-.&@2

-.5%

~(2)

m

=Q@X

.COoi

-.LM1O

-.0333

.mo2

.0mL8

-.0010

-.0034

.0050

.0080

.0020

-.0008

.o188

.0725

.1366

.1582

.1879

.2173

.0010

.0054

.0098

.o119

.0145

.OI.4’7

.0035

.Ow

.0326

.Q453

.0588

.(%31

Table 9 (Oontinued)

~(3)

=7XW
ml.----

.0012

:%

.Oooo1

● occo3

.CKn2

.0919

.0027

.@386

.0236

.0478

-.0248

-.o112

-.0074

-.0023

.0106

.2080

-.00002

.0C05

.0023

.ouJ1

.0091

.0376

-.00I.4

-.(XK%

.0095

.o127

.0347

.0513,

T(4)

-*oo14
ml-----

.CXx12

-:%%1)

.0000(4)

JW2

.0000(5)

.0000(2)

-.0001

-.0008

-.OQI.4

-.0070

.0006

.Ooo1

-*@053

-.cKM36

-.0156

-.0584

.Oom

.Ooo1

-.0001

-.0003

-.0008

-.0039

.0019

.c000(4)

-.0005

-. IX130

-.0075

-.0108

iT

*

:Z

●M63

1.0534

.8775

.W

.7930

.6840

.5382

.4319

.3602

.61%

.5370

.lJH.8

.4627

.4349

.3458

l::;$

.6’776

.5925

.5221

.3808

1.0753

.77@

.4738

.4250

.3485

.3204

~(o)

=m-lElf
. ml

.0484

.1025

.W

-.0579

-.o125

-.m

.0172

.Cbi82

.1048

486

.1720

-.2&k3

-.1017

.m45

.0284

.0573

.0970

-.W5

-.0312

.02W7

.0536

.0832

-w

-.1752

-.0901

-.m306

.0629

.1.1o2

.1272

~(l)

=mm
n-n-l

—. -“L

-.07’75

-.1659

-.2794

-.0022

-.0446

-.0574

-.0791

-.lm

-.22L$7

-.3508

-.5077

-.0329

-.1637

-.3401

-.@

-.4950

-.7031

-.0077

-.0600

-.1223

-.1721

-.2282

-.4270

-.0092

-.0734

-.2677

-.2986

-4395
-.514

,

. I

k T(2)

.OcQo

-.=x

---

-.ocbw

-.0206

-.0001

-.0029

-.0037

-.0052

-.0087

-.0195

-.037’7

-.o@o

-:OCW

-.0063

-.o123

-.o181

-.0252

-.0693

-.0035

-.0127

-.0384

-.0465

-.O&l

-.0740

T(3)

.Oooo
●GCGO

.Oo1o

.0051

.o163

.Oooo

.QO03

.Q

.0008

.0020

.0wt3

.0233

.0521.

.CMxlo

.Ca14

.CK139

.0067

.0341

-.ooal

-.0008

.0022

.(M52

.0156

.02tM

AK
L.0146
....

:%%

.6219

.5105

L0528

.W77

.8386

mg

:4%

.7482

.3921

.2979

.2823

.2637

.2338

L.0548

.8379

.6S29

.6001

.5343

.4047

LU744

.7783

.@3

.4,365

.3653

.3396



1

, .

.

0

:$
.85

.95

1.1o

1.20

.40

.45

.60

.75

.95
1.00

1.15

.50

.70

.$N
1.05

1.10

1.20

1.4’0

.54

.7’5

1.00

1.I.O

1.20

1.35

.58

.80

L.05

L.15

L.22

L.30

L.~0

J@)

-2$&6

+.0209

,+.0501

+.0855

+.@y35

-.3132

-.2639

-.1533

-.0777

-.0076
+.mxl

+.0406

-.1986

-.3.078

-.0/$46

-.0094
+.0007

+.o#g

+.c!@5

-.0619

+.0923

+.2105

+;2556

+.2995

+.3640

+.cr785

+.1662

+.2708

+.JK22

+.34i2

+.3733

+.41.33

Wrx,

-.mz .Olxl

..2681 :Om

-.3396 .~

-*4W .~
-.5320 l/@

-.6UA .likc

+.0168 .0291

~:g .0447
.0943

-.2552 .U75

-.4M0 .=

--4597 .23%
-* 5872 .2955

-.cIL63 A&79

-.1939 .1704
-.3&32 .277’5

-.5014 .3587
-.5463 .386$

-.6358 .4.4of5’

Q183 .5505

+.3863 -.5576

+.374’7-.71.01

+.3884 -.9227

+.@39 -1.0174

+..@& -1.IL75

+.~ -1.2776

+.4%3 -.7305

+.5U3 -.*
+.fi% -1.1099

+.5696-1.20Y3

+.5857-1.2717

+.fi%l-1.3535

+.635o -1.4595

.

Table 9 (Oonclukl)

$3) T(4)

-.0019 -.OI.08
-Jxu4 -.W39
+.~3 -.0056

+.o~ -.(K92
+.0358 -.0M9
+.@if% -.o~

-.om +.W19

-.0135 +.CW2

+.0224 +*oo15

+.0286 +.cKw#

+.0270 -.0075
+.~ -.o1o7

‘+.CXI!S-.0240

-.0297 +.W70

-.r)5’/l+.CQ97

-.0767 f@058

-.0817 -.oclQ

-.otw -.00W
-.0757 -.wL6

+3447 -.0596

-.0538 +.0168
-.~. +.0263

..lm +.0235
-.16$7 i-.ol57

-.1767 +.0033

-.1752 -.CQ55

-.0903 +.0338

-.1796 +.0564
-.215Q +.0621

-.29% +.0556

-.3110 +.0475

-.3215 +.0335

-.3322 +.olo2
*

al

2A

●9945
.3566

.3226

.2983

.2TL6

.2577

-W
.0717

.U4’7

J-$59
.1704
.1’747

.I.847

-.2726

4434
+.0581

+.1.m

+.I.HI

+.ly2

+.143

-.2o56
+.0015

+.lW

+.201D

+.2439

+.3LMl

-.0975

+.0375
+.l&5

+.2123

+.2436

+.2788

+.3220

*(O

-.2344
‘.0049
.0376

.m

.0952

.W

-.3198

-.2636

-.3-535
-.0786

-.olQ
+.0025

+.OW.

-.1985

-.lm

-.W49
-.ol~

=.cm8

+.0157

+.o@l

-.IXO

-mm

-.019b
-.0019

+.ctNY/

+.0171

-.0757

-.W
-.0213

-.o1o7

-.ow
+.00W

+.0106

#)

+.0153

-.2&32

-.3379

-.@
-.5273
-.6a82

+.01.39

-.02U

-.13’ZL

-.2556

:=

-.5872

-.0159

-.1939

-.3689
-.5020

-.5467
-.6362

-.81$7

-.0218

-.W

-.4525
-.5451

-..6

-Jw’4
-.2558

-.4945

-.5896
-.6563

-.7325

-.8283:

-T(2) I

I

+Alc4n

-.0517

---

-.I199

-.=45

-W39

J

, ,

AT*(3) ~T

-.0025 .9547

-.LXW .4002

.Ooyl .W

.o125 .3325

.0M2 .2998

●LWU .2P23

.0638

:g

.16%

-.2766

-.w36

+.cw63

.0820

●m
.I.019

.IMf

-.2693

-.W39

:%

mOf&

-.1764

-.08ca

-.oom

+.0M4

+.@

+.0315

+.a@4

I



NAOA” TN NO. 101868

Table 10

The values ofds
(0) #) ~(o)#~(o) *

TT’-TX’--2W ~

--L-A- I ~=Q*l I A=0,2 I -0.8 I h=o.4 I A=’(I*5

!0012.1 IO.GOI—--
0.11 0.13] 0.8 ] 0.15] 1.05 ]0.17] 1.501 0.46 ]1.5 I 0.7511.7 11.75] 3.0

0.2

0.3
0.4

0.5

0.2
I

0,9 0.33 1.07
0.2 0.9 0.33 0.9
0.8 0.65 0.4 0.70
0.33 0.7 0.42 0.65

0.46

0.46

0.5

0.51

1.24

0,9

0,75

0.59

0.6

0.6

0.6

0.6

1.4

0.9

0.8

0.53

1.2

1.0
0.85

0.67[

/

1.3 1.8

0.8 1.4

0,62 1.1

0,41 0.75

1.2

0,7

0.45

O*3

0.6
0.2
o.a
0.9

1.C

o.2a
0.23

0,18

0.14

001

0,6

0.55

0.5

0.44

0.42

0.35 0.56

0.29 0049

0.22 0.46

0018 0.40

0,14 0.S8!

0.53

0.43

0.42

0.56

0.35

0.s
0.37

0.38

0,33

0.?51

0.55
0.43
0.527
0.27:
0.25

0.365 0.6 0.23
O*31 0,46 0.248
0.31 0,3540.247
0.28 0,2860.228
0.28 0.2460,22

0.42

0.35

0.26

0,22

0.18

0,5
0.4
0.3
0.26
0.21

—
#

1.9 A 1.0
~T(())

(0)<‘&!3S
A> A> Ah

T
A> Q>

---- O.(3C
2,1 -2.3

2,5 -1,3
1.4 -0.5
0.9 -0.3
0.7 -0,17

4>

=KT
0,0
0.7
0.3
0066
0.56

1

0.0

r
0.00 —--

0.1 4.2 0.3

0.2 2.8 ‘- 0,0

0.3 1,6 4.1

0.4 0.95 0.05

0.5 008 “ 0.05

0.6 006 “O*1
0.7 0.5 0.18

0.8 0.38 ~0.18

0.9 0.3 0.17

1.0 0.24q 0.16

0,00*3,0
-3.2 -1.1

-1.8 0.05
-1.1 0,175

-o ● 333 0.43

-0.213 0.43

-0.103 0.333

-0.043 0.30
-0.003 0.29

0.057 0.23

0.08 0.115

T
0.00 1.0

-1.5 .7

-1.25 0.6

-0.85 0.05

-0.36 0.2

-0.25 0.3

-mm
-O*4

-0.7

-0.6

-0.4

-0.5

1
0.5 -0.03

O*4 0.0

0.35 0.02

0.27 0.10

0.24 0.10

0.416

0.35

0,32

0.25 1
-0.17 0.25

-0.08 0.25

-0.02 0.26

0.014 0.21

0.05 0.0

-0.25

-0.13

-0.05

-0.03

0,23 0.02

-.

..

.

..”

(S operation)

.—
.

-.. ...— .—
...- ..- .:. —

.—-. —
-.— -

. ----
,,.
.-



.

.

.

- .02

,06

- .10

- .20

- .30

- 940

●10
.20 ,

.30

.20

.30

.40

.30

.40
●45
.50

.40

.50
●55

:Z

.65

.70

.75

.$0

.70

.80
● $5
.95

--r--
-. OI..4
.006
.038

-.036
.003
.038

-●043
-.001

●017
.036

-.0$8
-.038
-.OI.4
.007

● .026

-.024
●001
.01$

.032

-.033.
-.001
.011
.032

4 .60

- .$0

-1.00

-1.20

-1.90

.90

.95
1.00
1.05

.90
1.05
1.10
1.20
1.40

1.00
1.05
1.10
1.15
1.20

1.10
1.20
1.30,
I.@

1.3
1.4
1.45
1.5

Table 12

The values of ~wv, ~’, we along the curve ~= O.

(S operation)

A

- .02

- .06
- .10.

- .20

- .30

- .40

- .50

- .60

- .80

-1.00

-1.20

-1.90

1.024
1.055
1.002

.852

.715

.528

.483

.418

.366

.254

.166

.067

1.085
,990
.845
.580
.410
.260
.208
.159

* .110
.061
.031
,006

-.018
-.003
.009
.020

-●040
-.004
.007
.025
.055

-.026
-.018
-.010
-.003
.004

-.034
-.004
.005
.013

-.0025

-.0002
,0010

.0020

YQ

.256

.377

.400

.431

.392

.286

.274

.269

.229
●134
.090
.023

.

.
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NACA TN NO...101.8..-....,..
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. ,

(8 ~~%t%n)

Q ELsa function of v/ti~for one quadrant of the curve *=O

vla~ M T A Q

● 707 .74523 .66681 -o●3.2091 .177

● 669~ .70111 .71305 -0.15905 I .307

.633 .66000 .753.27 -0.19962 .403

●557 ● 57513 .81.806 -0.30026 .582

*494 .50652 .86223 -0.40123 . .69$

.440 .44877 .$9365 -0.50296 .$05

● 395 .40131 .91594 -0.60065 .$85

.355 .35956 ●9331.2 -o#69930 .962

.288 .29042 .95690 -o● 89731 1.067

.234 .23529 .97193 ‘ -1.09784 1.168

.183 ,18362 .983Cxl -1.33821 1.245

.089 .08907 .99603 -2.052?7 1.406

,.-
,.

.

.... ... -=-,.-
. ..- . ,.-

.



NACA TN No. 1018 71

Table 14
(S operation}

.

The values of > X7 ~ y along the curve ~ = O, for one quadrant cf the
o Po

curve. The curve is symmetric with respect to.both the x and y axes.

.10

● 20

● 30

.40

.50
● 55

.60

.65

.70

.725

M

0.10010

0.20081
0.30274

0.40656
0.51299
0.56743

0.62284

0.67933

0.73704

0.76640

T

.9%9$

.97963
995307

.91362

.85839

.8234.2

.78235

.73383

.67585

.64236

-1.93676
-1.25082
-0.85821

-0.58907
-0.39083
-0.31062

-0, 2/$069

-0.1799

2-0.127 1

-0.10237

2--W
.055 .009
.080 .020

.103 ●034

.=3 .052

.131 .063

.13$
1

.077
.U6 .093
.152

I

.113

.156 .135

Table 15
(S operation)

.
-ao& ~The values of— ‘~ ~ alongthe curve ~= O for one quadrant of the
PO dv .

# curve.

*

●

M I V/a. I T
I

● %6 .725 .64284 -0●10477
,745 .707 ● 66707 -0.121U
Q701 .669 .71316 -0.15921

.660 .633 .75127 -d.19961
,575 .557 .$3J316 -0.30044
,507 ●494 .86195 -0.40029

.401 .395 .91668 -0.60128

.360 .355 .93295 -0,69820

.235 .234 .97200 -1.09880

.184 .183 .9$292 -1.3364$

.089 ‘ .089 .99603 -2.05277

‘aO d~

}0 dv

●99
1.29

1.48
1.69
1.82

1.95
2.19
2.65

2.75

2.80

-

5854
4.07

3.49
2.56
2.17

1.59
1.53
1.13
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Figs. 1.,2, 3

Figure 2
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. Figure 3
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NACA TN No. 1018 FigEI.4, 5
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.

z-plane, z = x + iy
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N

Figure 4.- Joukowski profile.
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5.- The hodograph of a flow around the profile in fig. 4.
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?igure M.- ?he valuaa of Ll(0)(-.2,0), f(o)(-.~,e).

l.i

1.2

1.0

.8

.6

.4

.a

o

m’

E

\

u
m

. ~

\

.

g

I-&

\

\

.

\

,089 .834 ●SM Al w mu ~ikl

lea .390 .39B .M .6s3 .V07

?5U66 . .57Ela 111 Mz

.99E03 “y~.ema”w .%@Y.nRw”w

.?4&3 E

,810’36 “W?&&&

.WYxl .’mwl .91W4 .- .Vlnn X&al

- y

rlgluw 13.- 0 ~ ~ fUOtiOn Of i for Kite) = o.
E



●

. , .

.160

.lao

.Oao

.040

0

.040

.Oao

.lao

.160

~@’ure 14.. The image of l(A, B) - 0 in tha@IyslodTIMW.
(The cmtour ofthe oompreosible flow obtalmd

f~m the fmtion g(Z) = l/El ~lao~)lfa + (P#)-lla],

?I-A+IFJ).

.

6

4

a

a

1

0

* .

J
I .aml am ! .AQ4 I &?S1.m

lm
-. lalll -mea -.KKW .Lwnal..L&E4

I



MAOA TliMO. 1018 rig8. 16,17

lT,TIO
,70 ,

.’

I

.60

.K1 /

TIQ
/A

0
/ .

/
/

/,

i40 / .
/

/‘
/

T /’ F.

,ao

4.
k“ .

,0
-A*H

1 .0300 .0600 .1000 .1360 -A

.

.

●

1

1 I I I 1>
.031 .886 .661 .821 M

PQ.lre 16.- The functions T and TIo.
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