
Advances in Computing 2012, 2(4): 42-53

DOI: 10.5923/j.ac.20120204.01

Methods for Division of Road Traffic Networks Focused

on Load-Balancing

Tomas Potuzak

Department of Computer Science and Engineering, University of West Bohemia, Plzen, 306 14, Czech Republic

Abstract The road traffic simulat ion is an important tool for analysis and control of road traffic networks. In order to be

able to simulate very large traffic networks in a reasonable time, it is possible to use a d istributed computing environment.

There, the combined power of multiple interconnected computers is utilized. During the adaptation of the simulat ion for the

distributed environment, it is necessary to divide the traffic network into sub-networks, which are then simulated on par-

ticular nodes of the distributed computer. The load-balancing of the sub-networks and the communication between them are

two key issues. In this paper, we compare the methods for traffic network division, which we developed. The methods are

focused on load-balancing and consist of two steps – assigning of weights to the traffic lanes and the marking of traffic lanes,

which shall be div ided. For the first step, traffic simulat ions of different level of detail are utilized. For the second step, a

modified breadth-first search algorithm or a genetic algorithm are utilized. The methods were thoroughly tested for their

performance. Their description and the results of the tests are the main contributions of this paper.

Keywords Traffic Network Division, Macroscopic Simulat ion, Microscopic Simulation, Mesoscopic Simulation, Ge-

netic Algorithm, Breadth-first Search

1. Introduction

The road traffic simulation is an important tool for analy-

sis and control of road traffic networks. However, a detailed

simulation of very large networks (e.g. an entire city and

larger) is still problematic due the computational and time

requirements. In o rder to be able to simulate these networks

in a reasonable time, the simulation can be adapted for dis-

tributed computing environment where combined power of

multip le interconnected computers is utilized. During the

adaptation of the simulation, it is necessary to divide the

traffic network into sub-networks, which are then simulated

on particular computers (nodes) of the distributed computer.

The load-balancing of the sub-networks and the communi-

cation among them are two key issues of the distributed

road traffic simulation.

In this paper, the performance of several methods for

road traffic network division, which we developed, is com-

pared. All the methods are focused on load balancing of the

sub-networks and can be divided into two steps – assigning

weights to the traffic lanes and their marking for d ivision.

The description of various approaches to these two steps,

their combination and testing are the main contribution of

this paper.

* Corresponding author:

tpotuzak@kiv.zcu.cz (Tomas Potuzak)

Published online at http://journal.sapub.org/ac

Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

2. Distributed Road Traffic Simulation

The methods for traffic network division, which we de-

veloped, are intended for distributed discrete microscopic

simulation of road traffic. Generally, the methods utilize

various types of less-detailed simulation for assigning of the

weights to the traffic lanes. For better understanding, the

key aspects and issues of the road traffic simulat ion are

described in following sections.

2.1. Simulation Types

There are several types of road traffic simulation, which

can be divided based on the level of detail as microscopic,

mesoscopic, and macroscopic simulation.

In a microscopic simulation, every single vehicle is con-

sidered with its own position, direction, speed, and accel-

eration. The vast majority of microscopic simulators use the

time-stepped time-flow mechanism. This means that the

entire simulation time is subdivided into sequence of

equally-sized time steps. In each time step, the entire simu-

lation state (i.e. positions of the vehicles) is recomputed[1].

The steps are usually one second long[2],[3]. The utilization

of the time-stepped time-flow mechanism is relat ively un-

usual from the point of view of a general d iscrete simulation,

in which an event-driven time-flow mechanis m (d ivision of

simulation time into sequence of time-stamped events) is

usually employed. Due to high detail, the microscopic

43 Advances in Computing 2012, 2(4): 42-53

simulations are very computation-intensive, especially for

large traffic networks.

The opposite side of the traffic simulation spectrum is

represented by the macroscopic simulation, which deals

only with aggregate traffic flows in particular roads or traf-

fic lanes. The traffic flows are usually described by set of

periodically recalcu lated parameters (e.g. mean speed and

traffic density). These models are the oldest ones[4] and

exist in many variat ions. Because there are no indiv idual

vehicles, the macroscopic models are far less computa-

tion-consuming than their microscopic counterparts.

The mesoscopic simulation fills the gap between the

macroscopic and macroscopic simulat ions. There is a num-

ber of various traffic models, which falls in the realm of

mesoscopic simulat ion, such as gas kinetic models[5] or

queuing networks[6]. Both time-flow mechanis ms are

commonly used. Characteristics common to the majority of

mesoscopic simulat ions are the description of traffic entities

at high and their interactions at low level of detail[7]. Hence,

a mesoscopic simulat ion can be much faster then a micro-

scopic simulation, although individual vehicles often exist

in the simulation in some form.

2.2. Simulation Decomposition

The division of the simulated traffic network into

sub-networks represents a spatial decomposition of the

simulation. Using this approach, the entire traffic network is

divided into required number of parts (traffic sub-networks),

which are then simulated by simulation processes running

on the particular nodes of the distributed computer. It is the

most common approach in the field of road traffic simula-

tion. However, there are also other approaches, such as task

parallelization and temporal decomposition. Their use in

the field of traffic simulation is rare, but some examples can

be found.

The task parallelizat ion divides the simulation program

into modules, which are then running on the particular

nodes of the distributed computer. In order to maximize the

efficiency of the distributed simulation, each module should

consume similar amount of computational power[8]. How-

ever, this is problemat ic in the field of traffic simulat ion,

because the major part of the computational power is con-

sumed by the movement of the vehicles and collection of

the statistical data. Hence, the task parallelization is used

only in special cases of road traffic simulation (e.g. in [9]).

The temporal decomposition divides the simulat ion time

into intervals, which are then simulated by the simulation

processes on particular nodes of the distributed computer.

So, each process simulates entire simulation (i.e. entire traf-

fic network in case of road traffic simulation) but only for

one time interval. The main d isadvantage of this approach is

that the states on the boundaries of the intervals may not

match, especially in case of road traffic simulation, whose

states are very complex. Nevertheless, an attempt to bring

the temporal decomposition to the field of road traffic

simulation can be found in[10].

2.3. Inter-process Communication

In the reminder of the text, only the spatial decomposi-

tion (i.e. div ision of traffic network into required number of

sub-networks) will be considered.

Although the traffic network is divided, the resulting

sub-networks should remain interconnected by set of traffic

lanes. However each sub-network is restricted by the proc-

ess, which performs its simulat ion. To ensure passing of

vehicles in the connecting lanes, the processes must com-

municate each other[11]. So, the vehicles are transferred in

the form of messages among the simulation processes[12].

In order to maintain the consistency of the simulation, all

processes must perform the same t ime step at the same

moment. Otherwise a causality erro r (i.e . arrival of a vehicle

in an incorrect time step) can occur[1]. This is ensured by

synchronization of the processes, which requires additional

messages to be sent. Both the transfer of vehicles and the

synchronization of the simulat ion are ensured by a commu-

nication protocol.

2.4. Microscopic Road Traffic Simulator for Testing

The developed methods for division of road traffic net-

work, which will be described later in the text (see Section

4 and Section 5), were tested using the Distributed Urban

Traffic Simulator (DUTS) developed at Department of

Computer Science and Engineering of University of West

Bohemia (DSCE UWB).

The DUTS system is a discrete microscopic time step

simulator of urban traffic, which is able to be preformed on

a single-processor or on a distributed computer[11].

3. Traffic Network Division Approaches

Now, as we d iscussed the issues of the distributed road

traffic simulation, we can focus on the division of the road

traffic network. The div ision method should consider two

issues – the resulting load of the sub-networks and the re-

sulting inter-process communication. The load-balancing of

the sub-networks is important for similar speed of the

simulation processes, because the slowest process slows

down the entire simulation (due to the synchronization).

The minimal inter-process communicat ion is important,

because it is much slower than the reminder of the simula-

tion’s computations. Hence, an intensive inter-process

communicat ion can significantly affect the resulting per-

formance of the distributed simulation[13].

The existing approaches to the traffic network d ivision

are usually focused on first or second issue, but can be also

focused on both or neither. The issues are usually not con-

sidered during the traffic network division if the implemen-

tation of the d istributed simulator is focused on solving of

other issues, such as in[14]. However, a convenient traffic

network div ision can significantly influence the resulting

speed of the distributed road traffic simulation (see Section

6.2)

 Tomas Potuzak: Methods for Division of Road Traffic Networks Focused on Load-Balancing 44

The examples of t raffic network d ivision are described in

following sections.

3.1. Division into Equally-sized Rectangular Pieces

The division into geographically equally-sized pieces is

the easiest solution, which neglect any optimizat ion. An

example o f this approach can be found in the ParamGrid

simulator[15], where the traffic network is divided into grid

of rectangular p ieces. This allows the simulation to be

watched on a grid of displays. Each display is connected to

one node of the distributed computer[15]. So, with proper

hardware equipment, it is possible to watch the simulation

of large areas online.

The main disadvantage of this approach is that the densi-

ties of traffic lanes in particular rectangular pieces and traf-

fic density in the lanes are not considered[12]. Hence, the

number of vehicles in various rectangular pieces can be

very different, which can lead to slow down of the simula-

tion. Also, the number of div ided traffic lanes is not consid-

ered. This can lead to a very intensive inter-process com-

municat ion[13]. Nevertheless, this approach is utilizable for

traffic networks where the traffic lane density and traffic

densities in the lanes are more o r less uniform[12].

3.2. Minimization of Neighbours Count

A more advanced approach can be found in the TRA N-

SIMS simulator[2]. Th is approach is focused on minimiza-

tion of the neighbours count and divided traffic lanes count

using graph partitioning methods (e.g. orthogo- nal recur-

sive bisection). Nevertheless, the load-balancing of the re-

sulting sub-networks is also partially considered, since the

traffic network is divided into sub-networks of similar size.

This size is calculated as the accumulat ive length of the

lanes in the sub-networks[2].

The size of the traffic network, as defined in this method,

can be problematic, because the traffic densities in the lanes

are neglected. So, if there were very different traffic densi-

ties in various traffic lanes, the numbers of vehicles in the

resulting sub-networks would be unbalanced[11]. This

would lead to different speeds of the simulation processes

and thus to slow down of the entire d istributed simulat ion.

3.3. Load-balancing of Sub-networks during Division

The issue mentioned in prev ious section is solved in the

UMTSS simulator[16]. Similar to the TRANSIMS simula-

tor, a recursive bisection method is used for traffic network

division. However, besides the length of the traffic lanes,

the vehicle density in the lanes is also considered. The in-

formation of the vehicle density in the traffic lanes is esti-

mated using the drivers’ route choice decision and the ori-

gin-destination matrix[16].

Another approach, which is focused on load-balancing of

the resulting traffic sub-networks, can be found in the vsim

simulator[3]. There, the division is performed using the

numbers of vehicles moving within the part icular traffic

lanes of the divided traffic network. These weights of the

traffic lanes are collected during one sequential simulation

run[3]. This enables a division into load-balanced

sub-networks for d istributed simulat ion runs. It is a static

load-balancing, since it is performed only once.

The main problem of this approach is the collection of

the numbers of vehicles. If the simulation is intended to be

distributed (the very reason for the division of traffic net-

work), its sequential simulation run can be difficult to per-

form due to memory and time requirements[11]. Also, the

number of div ided traffic lanes is not considered during the

traffic network div ision.

3.4. Load-balancing of Sub-networks during Simulation

A different approach to load-balancing of the

sub-networks is to perform the traffic network div ision re-

peatedly directly during the simulat ion run rather than prior

it. So, the div ision can be adapted based on the current load

of the particular traffic sub-networks.

This dynamic load-balancing is utilized for example

in[17]. There, the simulat ion run is div ided into time inter-

vals. The simulation is controlled by a master process and

performed by the working processes. At the beginning of

every time interval, the traffic network is divided using the

prediction of the load of the particu lar traffic crossroads

based on the load in the previous time interval. This divi-

sion is performed sequentially by the master process and the

resulting sub-networks are assigned to the working proc-

esses[17]. So, in every time interval, the traffic

sub-networks are load-balanced.

4. Methods for Weights Assigning

Although the dynamic load-balancing of the traffic

sub-networks ensures optimal d ivision during the entire

simulation run (see Section 3.4), it has also a non-negligib le

overhead. This overhead is caused by the repeated traffic

network div ision directly during the simulation run. This

means not only additional computations performed usually

sequentially by a central master process[17], but also addi-

tional inter-process communication, since the updates of the

traffic network division must be delivered to the part icular

simulation processes.

For the reasons mentioned in previous paragraph, we

have decided to focus on static load-balancing of the result-

ing traffic sub-networks. The traffic network division

method used in the vsim simulator (see Section 3.3) has an

issue regarding the difficult co llect ion of the numbers of

vehicles in traffic lanes. However, it offers a good

load-balancing of the resulting traffic sub-networks, be-

cause the division is based on the data acquired directly

from the simulation. Hence, it served as an inspiration for

the traffic network d ivision methods, which we developed.

Their general idea is to use a less-detailed simulation for

assigning of the weights to the traffic lanes in a reasonable

time. Using these weights, the traffic network can be di-

vided into load-balanced sub-networks.

45 Advances in Computing 2012, 2(4): 42-53

So, the process of traffic network d ivision consists of two

separate phases – the assigning of the weights to the traffic

lanes (WA) and the marking of traffic lanes, which will be

eventually div ided (MTL). Orig inally, we developed three

methods for traffic network div ision where each method

utilized a different simulat ion for assigning of the weights

and a different algorithm for marking of traffic lanes.

However, since the two phases are separate, the methods

were reconstructed and it is now possible to select the first

and the second phase separately and combine various ap-

proaches.

Three methods for assigning of the weights to the traffic

lanes are described in the reminder of this section. Two

methods for marking of traffic lanes are described in Sec-

tion 5. All methods are implemented in the DUTS Editor, a

system for design and division of traffic networks for the

DUTS system. Similar to the DUTS system, the DUTS

Editor was developed at DSCE UWB.

4.1. Macroscopic-simulation-based Weights Assigning

The Macroscopic-simulat ion-based weights assigning

(MaSBWA) method utilizes a macroscopic simulation. The

vehicle density of the traffic flows in particu lar traffic lanes

are used for calculation of the traffic lanes’ weights. The

macroscopic simulation utilized in the MaSBWA method is

inspired by the macro-JUTS model designed for the hybrid

traffic model of the JUTS (Java Urban Traffic Simulator)

system[18], which was also developed at DSCE UWB.

In the simulation, each traffic lane is divided into small

segments (S) of the same size (Δx). Each segment has its

own parameters of the traffic flow – the mean speed (v) and

the vehicle density (ρ). The parameters of each segment are

recalculated once per time step, whose length is preset to 2

seconds of the simulation time. The parameters of each

segment are calcu lated using the parameters of the preced-

ing segment (see Figure 1)[11].

Figure 1. Traffic lane in the macroscopic simulation

The crossroads are constructed as probabilistic d ivision

segments, no crossroad dynamic is simulated. Each cross-

road consists of set of entries (E) and set of exits (X) con-

nected to incoming (I) and outgoing (O) traffic lanes, re-

spectively. The values of the parameters of the entries are

calculated based on the parameters of the last segment of

the lane, which is connected to the entry. The values of the

parameters of the exits are calculated based on the values of

the corresponding entries and the branching probabilities (p)

(see Figure 2)[11]. If there are traffic lights, only the entries

with green period are considered.

Figure 2. Traffic crossroad in the macroscopic simulation

The parameters of traffic flows incoming to the simulated

area are generated using generators, which can produce

deterministic traffic flows or stochastic traffic flows with

exponential distribution. Depending on the flows, the entire

simulation can be either deterministic o r stochastic with

exponential distribution[11].

Using the macroscopic simulation, each traffic lane can

be assigned by a weight, which is calculated as the average

sum of vehicle densities in all segments of the lane. The

weight wi of the ith lane can be calculated as:

, (1)

where R is the number of simulat ion runs, N is the number

of steps of one simulation run, ni is the number of segments

of the ith lane and ρijkl is the vehicle density in the jth seg-

ment of the ith lane in the k th time step of the lth run.

If the simulation is deterministic, one simulation run is

sufficient fo r calculation of the weights, since all simulation

runs are identical. If the simulation is stochastic, several

simulation runs are required to ensure fidelity of the calcu-

lated weights. Nevertheless, it has been determined that the

deterministic simulation gives the same or even better re-

sults than the stochastic simulat ion. Contemporary, it is

much faster[19]. Hence, the determin istic simulat ion is used

in the MaSBWA method. For more detailed description,

see[11].

4.2. Mesoscopic-simulation-based Weights Assigning

The Mesoscopic-simulation-based weights assigning

(MeSBWA) method utilizes a mesoscopic simulat ion,

which is based on a simple Nagel-Schreckenberg’s cellular

automaton for freeway traffic[20].

In the simulation, each traffic lane consists of

equally-sized traffic cells. The cells are 7.5 meter long and

can be either empty or occupied by a single vehicle[20].

Each vehicle is represented as an integer value expressing

its current speed (see Figure 3).

1 1 1

inR N

ijkl

l k j
iw

R N


  






 Tomas Potuzak: Methods for Division of Road Traffic Networks Focused on Load-Balancing 46

Figure 3. Traffic lane in the mesoscopic simulation

The speeds of the vehicles are expressed in cells per time

step (c/ts). They are recalculated and the vehicles’ positions

accordingly shifted once per time step using four basic rules

– acceleration, deceleration, randomization, and movement.

The first three rules ensure the accelerat ion of the vehicle to

the maximal speed, the deceleration if there is an obstacle in

the way (e.g. a slower vehicle), and a random deceleration

in order to simulate the natural fluctuation of the speed. The

last rule only shifts the vehicles in the lane accordingly[19].

The crossroads are constructed as routers of vehicles

from the incoming to the target outgoing traffic lanes. The

target traffic lane for a vehicle is determined using the pos-

sible travel d irection, branching probability, and

pseudo-random number generators. The passing of the ve-

hicles through the crossroad is not modelled. However, the

right of way and the information about the main road are

used for ordering of the vehicles. Moreover, the vehicles are

not allowed to pass the crossroad until there is a free cell in

the target outgoing traffic lane (see Figure 4)[19]. Traffic

lights are also modelled if necessary.

Figure 4. Traffic crossroad in the mesoscopic simulation

The vehicles incoming to the simulated area are gener-

ated using generators, which produce stochastic traffic

flows with exponential distribution. So, the entire simula-

tion is stochastic[19]. Unlike the MaSBWA method, a de-

termin istic version is not implemented.

Using the mesoscopic simulat ion, each traffic lane is as-

signed by a weight calculated as the mean number of vehi-

cles moving within the lane during the simulat ion run. The

weight wi of the ith lane can be calculated as:

, (2)

where R is the number of simulat ion runs, N is the number

of steps of one simulation run, and Vijk is the number of

vehicles in ith traffic lane in jth time step of the k th simula-

tion run.

Due to the stochastic nature of the MeSBWA simulation,

it is necessary to perform several simulation runs to ensure

fidelity of the calculated weights. Based on the performed

tests, it has been determined that the utilization of ten simu-

lation runs offers sufficient fidelity fo r the traffic network

division purposes. For more details, see[19].

4.3. Microscopic-simulation-based Weights Assigning

The Microscopic-simulation-based weights assigning

(MiSBWA) method utilizes directly the microscopic simu-

lation of the DUTS system. So, the microscopic simulation

is not implemented in the DUTS Editor. Instead, the statis-

tics of the number of vehicles moving within the traffic

lanes in a simulation run are stored to a XML file, which

can be then loaded by the DUTS Editor as the data source

for the MiSBWA method. Hence, this method is very simi-

lar to the method used in the vsim simulator[3] (see Section

3.3).

Using the data from the microscopic simulation, the

weights are calculated similar to the MeSBWA method (the

same equation is used – see Equation (2)). A lso, it is neces-

sary to perform several simulation runs to guarantee the

fidelity of the calcu lated weights. Again, similar to the

MeSBWA method, ten simulation runs are commonly used.

For more information, see[21].

5. Methods for Traffic Lanes Marking

Now, as we briefly described the methods for assigning

weights to traffic lanes, we can proceed with the methods

for marking of traffic lanes, which shall be divided. We

have developed two methods, which employ a modified

breadth-first search or a genetic algorithm.

The input of both methods is the traffic network with

traffic lanes assigned by weights using any of the weight

assigning methods (see Section 4). Both methods are de-

scribed in following sections.

5.1. Modified Breadth-First Search

The Modified breath-first search marking of traffic lanes

(MBFSMTL) method employs a modification of a standard

breadth-first searching algorithm for graph exploration[22]

for division of the road traffic network. Its primary objec-

tive is to create load-balanced sub-networks. However, the

number of divided traffic lanes is also considered.

The MBFSMTL method starts with the calculat ion of the

sum of all weights of the traffic lanes (total weight). Based

on this total weight and the required number of

sub-networks, the total weight per sub-network can be eas-

ily calcu lated. With these two values, it is possible to pro-

ceed with modified breadth-first searching of the traffic

network, which is considered as a weighted graph for this

purpose. The crossroads are the nodes and the sets of lanes

connecting the neighbouring crossroads are the weighted

edges (see Figure 5)[11].

1 1

R N

ijk

k j
i

V

w
R N

 






47 Advances in Computing 2012, 2(4): 42-53

Figure 5. Traffic network as weighted graph

At the beginning, a crossroad is selected as the starting

node of the breadth-first search algorithm. This crossroad is

assigned by the current sub-network ID, which is zero at

this point. As the breadth-first search is performed, more

and more nodes are becoming exp lored and assigned by the

current sub-network ID. A lso, the weights of all lanes

neighbouring to the explored crossroad are added to the

current sub-network’s current weight. When this value

reaches the total weight per sub-network, the current

sub-network ID is incremented and the current

sub-network’s current weight is set to zero. This repeats

until all crossroads are exp lored.

Once all crossroads are assigned by the sub-network IDs,

the marking of t raffic lanes is easy. It is sufficient to mark

the lanes connecting crossroads with different IDs[11]. The

entire algorithm is described using pseudocode in Figure 6.

Figure 6. Pseudocode of the MBFSMTL algorithm

5.2. Genetic Algorithm

The Genetic algorithm marking of traffic lanes (GAMTL)

method employs a standard genetic algorithm[23] for a

multi-objective division of the traffic network. The two

objectives are the minimal number of divided traffic lanes

and the load-balancing of the sub-networks.

Genetic algorithms are generally convenient for the

multi-objective optimizat ion problems[24]. They mimic the

natural genetic evolution and selection in nature. This

means that a single solution of a problem (an individual) is

represented as a vector of boolean or integer values. An

initial set of the indiv iduals (initial population) is most of-

ten randomly generated. The individuals are then crossed

and mutated in order to produce a new population. A fitness

function is then calculated for each individual and the indi-

viduals with best fitness are selected to be parents of the

next population[25]. The entire p rocess repeats until a stop

condition is fulfilled or a preset number of iteration is

reached[25].

The GAMTL method assigns the crossroads to the par-

ticular sub-networks, similar to the MBFSMTL method (see

previous section). Hence, an individual is represented by a

vector of integers with length corresponding to the total

number of crossroads (K). Each integer then represents the

assigning of the corresponding crossroad to the sub-network

and the maximal value at any index of the vector corre-

sponds to the number of required sub-networks (M) (see

Figure 7).

Figure 7. Representation of an individual

The in itial population is randomly generated, which

means that, in each individual, the crossroads are randomly

assigned to particular traffic sub-networks. Using the fitness

function, crossover, and mutation, the assignment of the

crossroads in the individuals changes toward a solution

where the sub-networks are load-balanced (based on the

weights of the traffic lanes) and the number of divided traf-

fic lanes is min imal[26].

The fitness function is used for objective assessment of

each individual. It consists of two parts – the equability,

which represents the load-balancing of the sub-networks,

and the compactness, which represents the min imal number

of traffic lanes.

The equability of an indiv idual can be calcu lated using

the total weights of the particular sub-networks as:

, (3)

where E is the equability of an indiv idual, is the

mean total weight of one sub-network, wSi is the total

weight of the ith sub-network, and M is the number of

sub-networks. The total weight of the ith sub-network wSi

can be calculated using the weights of the traffic lanes and

the assignment of the crossroads to the sub-networks from

the individual, for which the equability is calcu lated. The

algorithm is described in Figure 8 using presudocode.

11

M
Si S

i S

w w

w
E

M





 



Sw

 Tomas Potuzak: Methods for Division of Road Traffic Networks Focused on Load-Balancing 48

Figure 8. Calculations of the sub-networks’ total weights

The compactness of an indiv idual can be calculated as

the ratio of the number of undivided traffic lanes and the

total number of traffic lanes. So, it can be expresses as:

, (4)

where C is the compactness, LD is the number of d ivided

lanes, and L is the total number of lanes.

The equability tends to prefer divisions into

load-balanced sub-networks regardless the number of di-

vided traffic lanes. On the contrary, the compactness tends

to prefer divisions with minimal number of div ided traffic

lanes. Because the requirements for the traffic network di-

vision can be different in d ifferent situations, it is possible

to set ratio of the equability and the compactness in the fit-

ness function prior to the traffic network d ivision[26]. So,

the fitness function can be calculated as:

, (5)

where F is the fitness function of an indiv idual, E is the

equability, C is the compactness, and rE is the ratio of the

equability in the fitness function, which can be set in range

<0, 1>.

The fitness function is applied on all individuals from the

initial population and several individuals with best fitness

are selected to be “parents” of the next generation. The size

of the population is set to 90 individuals and the number of

selected best individual is set to 10. These numbers have

been selected based on preliminary tests and can be easily

modified.

The next generation is created from the selected indi-

viduals using crossover and mutation. First, the crossover is

applied to all possible pairs (combinations) of the individu-

als. Each pair produces two descendants, so each descen-

dant has two parents. First descendant receives all integers

of even indices from the first parent’s vector and all inte-

gers of odd indices from the second parent’s vector. The

second descendant receives all remaining integers from

both parents (see Figure 9). This ensures that all informa-

tion incorporated in both parents is passed to the descen-

dants.

Figure 9. Crossover of two individuals

After both descendants are created, the mutation is ap-

plied to both of them. The mutation is performed by chang-

ing the random number of integers to a random value re-

stricted by the sub-networks count. The maximal number of

mutation per individual can be set prior the traffic network

division.

The entire process of creating of new generations repeats,

until a preset number of generations is reached. The result

of the finished genetic algorithm is the assigning of the

crossroads with ID of the sub-network, similar to the

MBFSMTL method. Again, the traffic lanes connecting

crossroads with different IDs are marked to be divided. For

more in formation, see[26].

6. Tests and Results

The described methods and their combinations were

thoroughly tested. Two sets of tests were performed. The

first set of tests was focused on the speed of the methods

(see Section 6.1). The second set of tests was focused on the

quality of division, which the methods offer. It was evalu-

ated using the speed of the resulting distributed simulation

(see Section 6.2).

6.1. Computational Speed of the Methods

The speed of the described methods have been tested on a

standard desktop computer (CPU Intel Core 2 Duo 2.1 GHz,

4 GB RAM, Windows XP SP3). The reason is that the

methods are incorporated in a software tool for creation and

division of traffic network (DUTS Editor), which is oper-

ated on standard desktop computers.

Figure 10. Network 1 for testing – irregular

Four different traffic networks were used for testing. First

network was an irregular traffic network with 55 crossroads

inspired by Bory district of Pilsen city (see Figure 10). The

three other networks were regular square grids of 64, 256,

and 1024 crossroads, respectively (see Figure 11). The

L

LL
C D


  CrErF EE  1

49 Advances in Computing 2012, 2(4): 42-53

length of each traffic lane (between two crossroads) in all

regular networks was set to 300 meters, so the total lengths

of the lanes in regular networks were 86 400 meters, 326

400 meters, and 1 267 200 meters, respectively.

Figure 11. Network 2, 3, and 4 for testing – regular

Both methods for weight assigning (MaSBWA, MeS-

BWA, and MiSBWA) and methods for marking of traffic

lanes (MBFSMTL and GAMTL) were tested separately.

The reason is that the methods for weight assigning were

tested solely for the dependency on the size of the traffic

network, but the methods for marking of traffic lanes were

tested also for dependency on the number of required traffic

sub-networks. The number of required traffic networks

cannot influence the speed of the methods for weights as-

signing, since this informat ion is not used by the methods at

all. On the other hand, both methods for marking of traffic

lanes must use the required number of sub-networks and

therefore can be affected by it.

The resulting speeds of the methods for weights assign-

ing depending on the size of the traffic network are depicted

in Figure 12. The results are also summarized in Table 1.

The methods for marking of traffic lanes were, besides the

dependency on the size of the traffic network, also tested

for dependency on the number of sub-networks. Both de-

pendencies of the resulting speeds of the methods are de-

picted in Figure 13. The results are also summarized in Ta-

ble 2.

Figure 12. Computation time of the WA methods

For both methods for weights assigning and methods for

marking of traffic lanes, the speed is measured as the mean

computation time of each method calcu lated from ten at-

tempts.

Figure 13. Computation time of the MBFSMTL and GAMTL methods

As can be seen in Figure 12 and Table 1, the fastest

method for weights assigning is the MaSBWA, which was

able to assign weights even for the largest traffic network

under 6000 ms. The reason is that the MaSBWA is the only

tested method, which utilizes a single simulation run fo r the

weights assigning. The remaining two methods require sev-

eral simulation runs to be performed to ensure the fidelity of

the collected weights. As could be expected, the slowest

 Tomas Potuzak: Methods for Division of Road Traffic Networks Focused on Load-Balancing 50

method is the MiSBWA due to the ext reme t ime require-

ments of ten simulation runs of the microscopic simulat ion.

Moreover, the simulation memory requirements were at

very limits of the 32 bit operating system. So, for even lar-

ger traffic networks, the utilization of the MiSBWA method

would be impract ical. The microscopic simulat ion was per-

formed direct ly in the DUTS system instead of the DUTS

Editor (see Section 4.3), but the required time was added to

the total computation time of the MiSBWA method.

Table 1. Computation Time of the WA Methods

Crossroads

count

Computation time[ms]

MaSBWA MeSBWA MiSBWA

55 237 1278 7003

64 268 2709 8653

256 1547 8633 31759

1024 5936 45578 118928

The computation time of the MBFSMTL method de-

pends on the size of the divided traffic network (see Figure

13 (MBFSMTL) and Table 2). It can be also observed that

it also depends on the number of resulting sub-networks,

especially for larger networks. The h ighest time was re-

quired for marking o f traffic lanes of network with 1024

crossroads divided into 8 sub-networks (91231 ms). The

lowest time (38 ms) was achieved for the smallest network

(55 crossroads) divided into four sub-networks.

Table 2. Computation Time of the MTL Methods

 Computation time[ms]

MTL
Crossroads

count

2 sub-

networks

4 sub-

networks

8 sub-

networks

M
B

F
S

55 47 38 56

64 48 56 113

256 978 1426 3300

1024 52990 60662 91231

G
A

55 9069 9187 9250

64 10121 10355 10476

256 42508 42144 42552

1024 180934 185757 184951

Figure 14. MBFSMTL and GAMTL comparison for 8 sub-networks

The computation time of the GAMTL method also de-

pends on the size of the divided t raffic network. However,

based on the performed tests, it is not influenced by the

number o f resulting sub-networks (see Figure 13 (GAMTL)

and Table 2). The methods is generally slower than the

MBFSMTL (see comparison of the methods for 8 resulting

sub-networks in Figure 14), but the increase of its computa-

tion time with increasing size o f the traffic network is

slower than that of the MBFSMTL (see Figure 14 and note

the logarithmic scale for the MBFSMTL and linear scale for

the GAMTL in Figure 13). A lso, as it was mentioned above,

the MBFSMTL method is dependent on the number of

sub-networks.

6.2. Quality of Division of the Methods

Table 3. Simulation Time of the Distributed Road Traffic Simulation

Sub-networks

count

Crossroads

count

Simulation time[ms]

MBFSMTL GAMTL

M
aS

B
W

A

2

55 12917 10483

64 13837 11099

256 43968 39142

1024 138915 132705

4

55 10359 8506

64 11468 9041

256 32192 26608

1024 92493 88293

8

55 11203 9933

64 13560 11626

256 27073 23407

1024 74280 70541

M
eS

B
W

A

2

55 11973 11401

64 13410 11103

256 39700 31459

1024 140516 133255

4

55 10334 8611

64 11448 8975

256 30919 26439

1024 92953 87927

8

55 11301 9663

64 13759 11311

256 26547 22594

1024 73372 71287

M
iS

B
W

A

2

55 13519 11264

64 13445 10996

256 41874 37800

1024 138895 131604

4

55 10815 8892

64 11539 8898

256 31013 26062

1024 93422 87987

8

55 11573 10305

64 13888 11073

256 26129 23157

1024 72867 69419

The quality of division of the described methods was

tested using the DUTS simulation system on a cluster called

Hydra, which is availab le at DSCE UW B. The cluster con-

1

10

100

1000

10000

100000

1000000

55 64 256 1024

Crossroads count

T
im

e
 [

m
s

]

MBFSMTL GAMTL

51 Advances in Computing 2012, 2(4): 42-53

sists of ten working nodes. Each node incorporates one

CPU Intel Xeon 3.2 GHz, 2 GB of RAM, and 80 GB of

hard disk space. The nodes are interconnected with 1 Gbit

Ethernet. All nodes are equipped by Debian 5.0.1 operating

system.

The tests were prepared as follows. The traffic networks

used in previous set of tests (see Section 6.1) were d ivided

by all six combinations of methods for weights assigning

and methods for traffic lanes marking. The networks were

divided into two, four, and eight sub-networks. These net-

works were then used for distributed microscopic simula-

tion of the DUTS system performed on the Hydra cluster

and the simulat ion times were measured. The results were

averaged from ten simulat ion runs and are depicted in Tab le

3.

Generally, the GAMTL method exhibits better quality of

division than the MBFSMTL method (see last two columns

of Table 3). This means that the distributed simulat ion of

road traffic using the traffic network div ision by the

GAMTL method is faster than using the division by the

MBFSMTL method. Hence, it is more convenient to use the

GAMTL method, although it is slower than the MBFSMTL

method (see Section 6.1).

Regarding the methods for weights assigning, it can be

observed that all methods exhib its similar quality of d ivi-

sion. This means that the selection of the method for

weights assigning has a negligible effect on the resulting

performance of the distributed simulat ion of road traffic.

The reason is that the methods assign more-or-less similar

weights to the traffic lanes[19], but are variously

time-consuming. Hence, it is convenient to utilize the

MaSBWA method, since it is the fasted method for weights

assigning, which has been tested.

Generally, the results show that, using a convenient divi-

sion of traffic networks, it is possible to achieve reduction

of the simulat ion time of the distributed simulat ion (up to

22 % in this case).

7. Future Work

In our future work, we will continue with research of ef-

ficient methods for division of traffic network fo r distrib-

uted simulation of road traffic. More specifically, we will

focus on several aspects of this issue, which are briefly de-

scribed in following sections.

7.1. Optimization of Designed Methods

The GAMTL method has several parameters, which in-

fluence the result and speed of the method. For example, it

is the number of indiv iduals in the generation, number of

selected individuals, number of mutation per individual,

number of generations, and so on. All of these parameters

were set manually based on the preliminary testing of the

method. However, this approach does not guarantee the

achievement of the optimal results.

For this reason, we plan to utilize a genetic algorithm for

optimization of the parameters of the GAMTL method. This

approach of “optimizing a genetic algorithm using a genetic

algorithm” is likely to be very time-consuming, since it is

necessary to perform entire run of the inner genetic algo-

rithm (i.e. the GAMTL method in this case) for calculation

of the fitness of one indiv idual o f the outer (i.e. optimizing)

genetic algorithm. However, since there is a possibility of

non-negligible improvement of the GAMTL method, this

approach is worth investigating.

The optimizat ion of the MBFSMTL method is also an

option. In order to find the best network div ision, the

method attempts to begin the breadth-first search from all

crossroads of the network and select the best one. This is a

time consuming process, which can be sped up by ignoring

of the potentially useless attempts. A heuristic analysis and

the knowledge of the traffic networks topology can be

helpful with this issue.

7.2. Adaptation for Heterogeneous Environment

The methods for div ision of traffic network presented in

this paper were designed for homogeneous clusters of

computers. However, many organizations has a significant

amount of computational power d istributed among hetero-

geneous (i.e. with different speeds) interconnected com-

puters (e.g. in computer labs at technical universities).

Hence, we will also focus on adaptation of the described

methods for the heterogeneous distributed environment.

The methods for weights assigning do not require a

modification, since they do not divide the traffic network,

but rather only prepare data for the methods for marking of

traffic lanes. However, the methods for marking of traffic

lanes (i.e. MBFSMTL and GAMTL) would require a slight

adaptation for this purpose. It is only necessary for the

methods not to divide the traffic network into equally com-

putation-consuming sub-networks, but adapt the size of

each sub-network fo r the speed of the node (computer), on

which the simulat ion of the sub-network will be performed.

For this purpose, it is necessary to know the speeds of all

nodes, which will be used for the distributed simulation. It

should be noted that the CPU frequency is not viable as a

measuring method, since there are other factors influencing

the speed of the node. Hence, the speed of each node will be

determined by series of the tests. These tests will uncover

how large the sub-network should be for each node in order

to ensure similar computation time of a simulation time step

for all nodes.

For initial testing, these tests will be performed manually.

However, remote automated testing of each node is planed

for the final version of this approach.

Once the speeds of particular nodes are determined, both

MBFSMTL and GAMTL methods can be adapted for het-

erogeneous division of traffic network by changing of the

total weight per sub-network (see Section 5.1) and by

changing of the fitness function (see Section 5.2), respec-

tively.

 Tomas Potuzak: Methods for Division of Road Traffic Networks Focused on Load-Balancing 52

8. Conclusions

In this paper, the performances of several methods for

division of road traffic networks were compared. Three

methods for weights assigning and two methods for traffic

lanes marking were combined into six various approaches

for complete division of traffic network into load-balanced

sub-networks. All methods were thoroughly tested for their

speed and quality of the traffic network div ision, which they

offer.

Considering the speed of the methods and the quality of

division, which they offer, the best combination is the

MaSBWA and the GAMTL methods together. As it was

observed during the testing, the selection of the method for

weights assigning has only a negligib le effect on the result-

ing performance of the distributed road traffic simulat ion.

Hence, it is convenient to use the fastest method, which is

the MaSBWA. Nevertheless, based on the performed tests,

the selection of the method for marking of traffic lanes in-

fluences the performance of the distributed road traffic

simulation significantly. Hence, it is convenient to use the

GAMTL method, which creates better division of traffic

network, although it is slower than the MBFSMTL method.

The investigation of the speed of the distributed road

traffic simulat ion using divisions of traffic network by

various methods indicates that it is possible to speed up the

distributed traffic simulation using a convenient division of

the traffic network. Based on the performed tests, the dif-

ference of the computation times reached up to 22 %.

In our future work, we will continue with the research of

the methods for division of traffic network, as described in

previous section.

REFERENCES

[1] Fujimoto, R. M., 2000, Parallel and distributed simulation
systems, John Wiley & Sons, New York.

[2] Nagel, K. and Rickert, M., 2001, “Parallel implementation of
the TRANSIMS micro-simulation,” Parallel Computing,

27(12), 1611–1639.

[3] Gonnet, P. G., 2001, A queue-based distributed traffic mi-

cro-simulation, Tech. Rep.

[4] Lighill, M. H. and Whitman, G. B., 1955, “On kinematic

waves II: A theory of traffic flow on long crowded roads,”
Proceedings of the Royal Society of London, s. A, 229,
317–345, London.

[5] Nagatani, T., 1996, “Gas kinetic approach to two-dimensional
traffic flow,” J. Phys Soc Jap, 60(10), 3150–3152.

[6] Nizzard, L., 2002, Combining microscopic and mesoscopic
traffic simulators, Raport de stage d’option scientifique,
Ecole Polytechnique, Paris.

[7] Burghout, W., 2004, Hybrid microscopic-mesoscopic traffic
simulation, Doctoral thesis, Royal Institute of Technology,
Stockholm.

[8] Cetin, N., Burri, A., and Nagel, K., 2003, “A large-scale
agent-based traffic microsimulation based on queue model,”
Proceedings of 3rd Swiss Transport Research Conference,

Monte Veritas.

[9] Klein, U., Schulze, T., Strassburger, S., and Menzler, H.,

1998, “Distributed traffic simulation based on the high level
architecture,” Proceedings of Simulation Interoperability
Workshop, Orlando.

[10] Kiesling, T. and Lüthi, J., 2005, “Towards time-parallel road
traffic simulation,” Proceedings of the Workshop on Prin-

ciples of Advanced and Distributed Simulation, Monterey.

[11] Potuzak, T., 2010, “Division of traffic network for distributed

microscopic traffic simulation based on macroscopic simula-
tion,” Proceedings of the 7th EUROSIM Congress on Mod-
elling and Simulation, Vol. 2, Prague.

[12] Potuzak, T. and Herout, P., 2007, “Use of distributed traffic
simulation in the JUTS project,” Proceedings of EUROCON

2007, 2250–2255, Warsaw.

[13] Potuzak, T., 2009, Methods for reduction of interprocess
communication in distributed simulation of road traffic,
Doctoral thesis, University of West Bohemia, Pilsen.

[14] Jiang, B. and Zhang, H., 2009, “Realization of distributed
Traffic Simulation System with SCA and SDO”, The Second

International Conference on Future Information Technology
and Management Engineering, 222-225, Sanya.

[15] Klefstad, K., Zhang, Y., Lai, M., Jayakrishnan R., and La-
vanya, R., 2005, “A scalable, synchronized, and distributed
framework for large-scale microscopic traffic simulation,”

The 8th International IEEE Conference on Intelligent
Transportation Systems, Vienna.

[16] Wei, D., Chen, W., and Sun, X., 2010, “An improved road
network partition algorithm for parallel microscopic traffic
simulation”, 2010 International Conference on Mechanic

Automation and Control Engineering, 2777-2782, Wuhan.

[17] Gao, L., Juan, Z., Jing, P, 2008, “The design and implement

of parallel simulation algorithm of dynamic route solution for
traffic network”, 7th International Conference on System
Simulation and Scientific Computing, 230-234, Beijing.

[18] Hartman, D. and Herout, P., 2007, “Construction of a hybrid

traffic model based on JUTS cellular model,” Proceedings of
the 6th EUROSIM Congress on Modelling and Simulation,
Ljublanja.

[19] Potuzak, T., 2011, “Usability of macroscopic and mesoscopic
road traffic simulations in division of traffic network for dis-

tributed microscopic simulation,” CSSim 2011 – Conference
on Computer Modelling and Simulation, 94–101, Brno.

[20] Nagel K. and Schreckenberg, M., 1992, “A cellular automa-
ton model for freeway traffic,” Journal de Physique I, vol. 2,
2221–2229.

[21] Potuzak, T., 2011, “Comparison of road traffic network divi-
sion based on microscopic and macroscopic simulation,”

UKSim 2011 – UKSim 13th International conference on
Computer Modelling and Simulation, 409–414, Cambridge.

[22] Knuth, D. E., 1997, The art of computer programming vol. 1.
3rd edition. Addison-Wesley.

[23] Holland, J. H., 1975, Adaptation in natural and artificial

53 Advances in Computing 2012, 2(4): 42-53

systems, University of Michigan Press, Ann Arbor.

[24] Farshbaf, M. and Feizi-Darakhshi, M., 2009, “Mul-

ti-objective optimization of graph partitioning using genetic
algorithms,” 2009 Third International Conference on Ad-
vanced Engineering Computing and Applications in Sciences,

Sliema.

[25] Menouar, B., 2010, “Genetic algorithm encoding representa-

tions for graph partitioning problems,” 2010 International
Conference on Machine and Web Intelligence (ICMWI),
288–291, Algiers.

[26] Potuzak, T., 2011, “Utilization of a genetic algorithm in
division of road traffic network for distributed simulation,”

ECBS-EERC 2011 – 2011 Second Eastern European Re-
gional Conference on the Engineering of Computer Based
Systems, 151–152, Bratislava.

