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Abstract  The road traffic  simulat ion is an important tool for analysis and control of road traffic networks. In  order to be 

able to simulate very  large traffic  networks in  a reasonable time, it is possible to use a d istributed computing environment. 

There, the combined power of multiple  interconnected computers is utilized. During the adaptation of the simulat ion for the 

distributed environment, it is necessary to divide the traffic network into sub-networks, which are then simulated on par-

ticular nodes of the distributed computer. The load-balancing of the sub-networks and the communication between them are 

two key issues. In this paper, we compare the methods for traffic network division, which we developed. The methods are 

focused on load-balancing and consist of two steps – assigning of weights to the traffic lanes and the marking of traffic lanes, 

which shall be div ided. For the first step, traffic simulat ions of different level of detail are utilized. For the second step, a 

modified breadth-first search algorithm or a genetic algorithm are utilized. The methods were thoroughly tested for their 

performance. Their description and the results of the tests are the main contributions of this paper. 

Keywords  Traffic Network Division, Macroscopic Simulat ion, Microscopic Simulation, Mesoscopic Simulation, Ge-

netic Algorithm, Breadth-first Search 

1. Introduction 

The road traffic  simulation is an important tool for analy-

sis and control of road traffic networks. However, a detailed 

simulation of very large networks (e.g. an entire  city and 

larger) is still problematic due the computational and time 

requirements. In o rder to be able  to simulate these networks 

in a reasonable time, the simulation can be adapted for dis-

tributed computing environment where combined power of 

multip le interconnected computers is utilized. During the 

adaptation of the simulation, it  is necessary to divide the 

traffic network into sub-networks, which  are then simulated 

on particular computers (nodes) of the distributed computer. 

The load-balancing of the sub-networks and the communi-

cation among them are two key issues of the distributed 

road traffic simulation. 

In this paper, the performance of several methods for 

road traffic network division, which we developed, is com-

pared. All the methods are focused on load balancing of the 

sub-networks and can be divided into two steps – assigning 

weights to the traffic lanes and their marking for d ivision. 

The description of various approaches to these two steps, 

their combination and testing are the main contribution of 

this paper. 
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2. Distributed Road Traffic Simulation 

The methods for traffic network division, which we de-

veloped, are intended for distributed discrete microscopic 

simulation of road traffic. Generally, the methods utilize 

various types of less-detailed simulation for assigning of the 

weights to the traffic lanes. For better understanding, the 

key aspects and issues of the road traffic  simulat ion are 

described in following sections. 

2.1. Simulation Types 

There are several types of road traffic simulation, which 

can be divided based on the level of detail as microscopic, 

mesoscopic, and macroscopic simulation. 

In a microscopic simulation, every single vehicle is con-

sidered with its own position, direction, speed, and accel-

eration. The vast majority of microscopic simulators use the 

time-stepped time-flow mechanism. This means that the 

entire simulation time is subdivided into sequence of 

equally-sized time steps. In each time step, the entire simu-

lation state (i.e. positions of the vehicles) is recomputed[1]. 

The steps are usually one second long[2],[3]. The utilization 

of the time-stepped time-flow mechanism is relat ively un-

usual from the point of view of a  general d iscrete simulation, 

in which an event-driven time-flow mechanis m (d ivision of 

simulation time into sequence of time-stamped events) is 

usually employed. Due to high detail, the microscopic 
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simulations are very computation-intensive, especially for 

large traffic networks. 

The opposite side of the traffic simulation spectrum is 

represented by the macroscopic simulation, which deals 

only with aggregate traffic flows in particular roads or traf-

fic lanes. The traffic flows are usually described by set of 

periodically recalcu lated parameters (e.g. mean speed and 

traffic density). These models are the oldest ones[4] and 

exist in many  variat ions. Because there are no indiv idual 

vehicles, the macroscopic models are far less computa-

tion-consuming than their microscopic counterparts. 

The mesoscopic simulation fills the gap between the 

macroscopic and macroscopic simulat ions. There is a num-

ber of various traffic  models, which  falls in the realm of 

mesoscopic simulat ion, such as gas kinetic  models[5] or 

queuing networks[6]. Both time-flow mechanis ms are 

commonly used. Characteristics common to the majority of 

mesoscopic simulat ions are the description of traffic entities 

at high and their interactions at low level of detail[7]. Hence, 

a mesoscopic simulat ion can be much faster then a micro-

scopic simulation, although individual vehicles often exist 

in the simulation in some form. 

2.2. Simulation Decomposition 

The division of the simulated traffic network into 

sub-networks represents a spatial decomposition of the 

simulation. Using this approach, the entire traffic network is 

divided into required number of parts (traffic sub-networks), 

which are then simulated by simulation processes running 

on the particular nodes of the distributed computer. It is the 

most common approach in  the field of road traffic simula-

tion. However, there are also other approaches, such as task 

parallelization and temporal decomposition. Their use in 

the field of traffic simulation is rare, but some examples can 

be found. 

The task parallelizat ion divides the simulation program 

into modules, which are then running on the particular 

nodes of the distributed computer. In order to maximize the 

efficiency of the distributed simulation, each module  should 

consume similar amount of computational power[8]. How-

ever, this is problemat ic in the field of traffic  simulat ion, 

because the major part of the computational power is con-

sumed by the movement of the vehicles and collection of 

the statistical data. Hence, the task parallelization is used 

only in special cases of road traffic simulation (e.g. in [9]). 

The temporal decomposition divides the simulat ion time 

into intervals, which are then simulated by the simulation 

processes on particular nodes of the distributed computer. 

So, each process simulates entire simulation (i.e. entire  traf-

fic network in case of road traffic simulation) but only for 

one time interval. The main d isadvantage of this approach is 

that the states on the boundaries of the intervals may not 

match, especially in case of road traffic simulation, whose 

states are very complex. Nevertheless, an attempt to bring 

the temporal decomposition to the field  of road traffic 

simulation can be found in[10]. 

2.3. Inter-process Communication 

In the reminder of the text, only the spatial decomposi-

tion (i.e. div ision of traffic  network into required number of 

sub-networks) will be considered.  

Although the traffic network is divided, the resulting 

sub-networks should remain interconnected by set of traffic 

lanes. However each sub-network is restricted by the proc-

ess, which performs its simulat ion. To ensure passing of 

vehicles in the connecting lanes, the processes must com-

municate each other[11]. So, the vehicles are transferred in 

the form of messages among the simulation processes[12]. 

In order to maintain the consistency of the simulation, all 

processes must perform the same t ime step at the same 

moment. Otherwise a causality erro r (i.e . arrival of a vehicle 

in an  incorrect  time step) can occur[1]. This is ensured by 

synchronization of the processes, which requires additional 

messages to be sent. Both the transfer of vehicles and the 

synchronization of the simulat ion are ensured by a commu-

nication protocol. 

2.4. Microscopic Road Traffic Simulator for Testing 

The developed methods for division of road traffic net-

work, which will be described later in the text (see Section 

4 and Section 5), were tested using the Distributed Urban 

Traffic Simulator (DUTS) developed at Department of 

Computer Science and Engineering of University of West 

Bohemia (DSCE UWB). 

The DUTS system is a discrete microscopic time step 

simulator of urban traffic, which is able to be preformed on 

a single-processor or on a distributed computer[11]. 

3. Traffic Network Division Approaches 

Now, as we d iscussed the issues of the distributed road 

traffic simulation, we can focus on the division of the road 

traffic network. The div ision method should consider two 

issues – the resulting load of the sub-networks and the re-

sulting inter-process communication. The load-balancing of 

the sub-networks is important for similar speed of the 

simulation processes, because the slowest process slows 

down the entire simulation (due to the synchronization). 

The minimal inter-process communicat ion is important, 

because it is much slower than the reminder of the simula-

tion’s computations. Hence, an intensive inter-process 

communicat ion can significantly affect the resulting per-

formance of the distributed simulation[13]. 

The existing approaches to the traffic  network d ivision 

are usually focused on first or second issue, but can be also 

focused on both or neither. The issues are usually not con-

sidered during the traffic network division if the implemen-

tation of the d istributed simulator is focused on solving of 

other issues, such as in[14]. However, a convenient traffic 

network div ision can significantly influence the resulting 

speed of the distributed road traffic simulation (see Section 

6.2) 
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The examples of t raffic  network d ivision are described in  

following sections. 

3.1. Division into Equally-sized Rectangular Pieces 

The division into geographically equally-sized pieces is 

the easiest solution, which  neglect any optimizat ion. An 

example o f this approach can be found in the ParamGrid 

simulator[15], where the traffic  network is divided into grid 

of rectangular p ieces. This allows the simulation to be 

watched on a grid of displays. Each display is connected to 

one node of the distributed computer[15]. So, with proper 

hardware equipment, it is possible to watch the simulation 

of large areas online. 

The main disadvantage of this approach is that the densi-

ties of traffic lanes in particular rectangular pieces and traf-

fic density in the lanes are not considered[12]. Hence, the 

number of vehicles in various rectangular pieces can be 

very different, which can lead to slow down of the simula-

tion. Also, the number of div ided traffic  lanes is not consid-

ered. This can lead to a very intensive inter-process com-

municat ion[13]. Nevertheless, this approach is utilizable for 

traffic networks where the traffic lane density and traffic 

densities in the lanes are more o r less uniform[12]. 

3.2. Minimization of Neighbours Count 

A more advanced approach can be found in the TRA N-

SIMS simulator[2]. Th is approach is focused on minimiza-

tion of the neighbours count and divided traffic lanes count 

using graph partitioning methods (e.g. orthogo- nal recur-

sive bisection). Nevertheless, the load-balancing of the re-

sulting sub-networks is also partially considered, since the 

traffic network is divided into sub-networks of similar size. 

This size is calculated as the accumulat ive length of the 

lanes in the sub-networks[2]. 

The size of the traffic  network, as defined in this method, 

can be problematic, because the traffic  densities in the lanes 

are neglected. So, if there were very different traffic densi-

ties in various traffic  lanes, the numbers of vehicles in the 

resulting sub-networks would be unbalanced[11]. This 

would lead to different speeds of the simulation processes 

and thus to slow down of the entire d istributed simulat ion. 

3.3. Load-balancing of Sub-networks during Division 

The issue mentioned in prev ious section is solved in the 

UMTSS simulator[16]. Similar to the TRANSIMS simula-

tor, a recursive bisection method is used for traffic network 

division. However, besides the length of the traffic  lanes, 

the vehicle density in  the lanes is also considered. The in-

formation of the vehicle density in  the traffic  lanes is esti-

mated using the drivers’ route choice decision and the ori-

gin-destination matrix[16]. 

Another approach, which is focused on load-balancing of 

the resulting traffic sub-networks, can be found in the vsim 

simulator[3]. There, the division is performed using the 

numbers of vehicles moving within the part icular traffic 

lanes of the divided traffic network. These weights of the 

traffic lanes are collected during one sequential simulation 

run[3]. This enables a division into load-balanced 

sub-networks for d istributed simulat ion runs. It is a static 

load-balancing, since it is performed only once. 

The main problem of this approach is the collection of 

the numbers of vehicles. If the simulation is intended to be 

distributed (the very reason for the division of traffic net-

work), its sequential simulation run can be difficult to per-

form due to memory and time requirements[11]. Also, the 

number of div ided traffic lanes is not considered during the 

traffic network div ision. 

3.4. Load-balancing of Sub-networks during Simulation 

A different approach to load-balancing of the 

sub-networks is to perform the traffic network div ision re-

peatedly directly during the simulat ion run rather than prior 

it. So, the div ision can be adapted based on the current load 

of the particular traffic sub-networks.  

This dynamic load-balancing is utilized for example  

in[17]. There, the simulat ion run is div ided into time inter-

vals. The simulation is controlled by a master process and 

performed by the working processes. At the beginning of 

every time interval, the traffic  network is divided using the 

prediction of the load of the particu lar traffic crossroads 

based on the load in the previous time interval. This divi-

sion is performed sequentially by the master process and the 

resulting sub-networks are assigned to the working proc-

esses[17]. So, in  every time interval, the traffic 

sub-networks are load-balanced.   

4. Methods for Weights Assigning 

Although the dynamic load-balancing of the traffic  

sub-networks ensures optimal d ivision during the entire 

simulation run (see Section 3.4), it has also a non-negligib le 

overhead. This overhead is caused by the repeated traffic 

network div ision directly during the simulation run. This 

means not only additional computations performed usually 

sequentially by a central master process[17], but also addi-

tional inter-process communication, since the updates of the 

traffic network division must be delivered to the part icular 

simulation processes.  

For the reasons mentioned in previous paragraph, we 

have decided to focus on static load-balancing of the result-

ing traffic  sub-networks. The traffic network division 

method used in the vsim simulator (see Section 3.3) has an 

issue regarding the difficult co llect ion of the numbers of 

vehicles in traffic lanes. However, it offers a good 

load-balancing of the resulting traffic sub-networks, be-

cause the division is based on the data acquired directly 

from the simulation. Hence, it served as an inspiration for 

the traffic network d ivision methods, which we developed. 

Their general idea is to use a less-detailed simulation for 

assigning of the weights to the traffic lanes in a reasonable 

time. Using these weights, the traffic network can be di-

vided into load-balanced sub-networks. 
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So, the process of traffic network d ivision consists of two 

separate phases – the assigning of the weights to the traffic 

lanes (WA) and the marking of traffic  lanes, which will be 

eventually div ided (MTL). Orig inally, we developed three 

methods for traffic  network div ision where each method 

utilized a different simulat ion for assigning of the weights 

and a different algorithm for marking of traffic lanes. 

However, since the two phases are separate, the methods 

were reconstructed and it is now possible to select the first 

and the second phase separately and combine various ap-

proaches. 

Three methods for assigning of the weights to the traffic  

lanes are described in the reminder of this section. Two 

methods for marking of traffic lanes are described in Sec-

tion 5. All methods are implemented in the DUTS Editor, a 

system for design and division of traffic networks for the 

DUTS system. Similar to the DUTS system, the DUTS 

Editor was developed at DSCE UWB. 

4.1. Macroscopic-simulation-based Weights Assigning 

The Macroscopic-simulat ion-based weights assigning 

(MaSBWA) method utilizes a macroscopic simulation. The 

vehicle density of the traffic  flows in  particu lar traffic  lanes 

are used for calculation of the traffic  lanes’ weights. The 

macroscopic simulation utilized in the MaSBWA method is 

inspired by the macro-JUTS model designed for the hybrid 

traffic model of the JUTS (Java Urban Traffic Simulator) 

system[18], which was also developed at DSCE UWB. 

In the simulation, each traffic lane is divided into small 

segments (S) of the same size (Δx). Each segment has its 

own parameters of the traffic  flow – the mean  speed (v) and 

the vehicle density (ρ). The parameters of each segment are 

recalculated once per time step, whose length is preset to 2 

seconds of the simulation time. The parameters of each 

segment are calcu lated using the parameters of the preced-

ing segment (see Figure 1)[11]. 

 

Figure 1.  Traffic lane in the macroscopic simulation 

The crossroads are constructed as probabilistic d ivision 

segments, no crossroad dynamic is simulated. Each cross-

road consists of set of entries (E) and set of exits (X) con-

nected to incoming (I) and outgoing (O) traffic lanes, re-

spectively. The values of the parameters of the entries are 

calculated based on the parameters of the last segment of 

the lane, which is connected to the entry. The values of the 

parameters of the exits are calculated based on the values of 

the corresponding entries and the branching probabilities (p) 

(see Figure 2)[11]. If there are traffic  lights, only the entries 

with green period are considered. 

 

Figure 2.  Traffic crossroad in the macroscopic simulation 

The parameters of traffic  flows incoming to the simulated 

area are generated using generators, which can produce 

deterministic traffic flows or stochastic traffic flows with 

exponential distribution. Depending on the flows, the entire 

simulation can be either deterministic o r stochastic with 

exponential distribution[11]. 

Using the macroscopic simulation, each traffic lane can 

be assigned by a weight, which is calculated as the average 

sum of vehicle  densities in all segments of the lane. The 

weight wi of the ith lane can be calculated as: 

,              (1) 

where R is the number of simulat ion runs, N is the number 

of steps of one simulation run, ni is the number of segments 

of the ith lane and ρijkl is the vehicle density in the jth seg-

ment of the ith lane in the k th time step of the lth run. 

If the simulation is deterministic, one simulation run is 

sufficient fo r calculation of the weights, since all simulation 

runs are identical. If the simulation is stochastic, several 

simulation runs are required to ensure fidelity of the calcu- 

lated weights. Nevertheless, it has been determined that the 

deterministic simulation gives the same or even better re-

sults than the stochastic simulat ion. Contemporary, it is 

much faster[19]. Hence, the determin istic simulat ion is used 

in the MaSBWA method. For more detailed description, 

see[11]. 

4.2. Mesoscopic-simulation-based Weights Assigning 

The Mesoscopic-simulation-based weights assigning 

(MeSBWA) method utilizes a mesoscopic simulat ion, 

which is based on a simple Nagel-Schreckenberg’s cellular 

automaton for freeway traffic[20]. 

In the simulation, each  traffic  lane consists of 

equally-sized traffic cells. The cells are 7.5 meter long and 

can be either empty or occupied by a single vehicle[20]. 

Each vehicle is represented as an integer value expressing 

its current speed (see Figure 3). 
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Figure 3.  Traffic lane in the mesoscopic simulation 

The speeds of the vehicles are expressed in cells per time 

step (c/ts). They are recalculated and the vehicles’ positions 

accordingly shifted once per time step using four basic rules 

– acceleration, deceleration, randomization, and movement. 

The first three rules ensure the accelerat ion of the vehicle to 

the maximal speed, the deceleration if there is an obstacle in 

the way (e.g. a  slower vehicle), and a random deceleration 

in order to simulate the natural fluctuation of the speed. The 

last rule only shifts the vehicles in the lane accordingly[19]. 

The crossroads are constructed as routers of vehicles 

from the incoming to the target outgoing traffic lanes. The 

target traffic lane for a vehicle is determined using the pos-

sible travel d irection, branching probability, and 

pseudo-random number generators. The passing of the ve-

hicles through the crossroad is not modelled. However, the 

right of way and the information about the main road are 

used for ordering of the vehicles. Moreover, the vehicles are 

not allowed to pass the crossroad until there is a free cell in 

the target outgoing traffic lane (see Figure 4)[19]. Traffic 

lights are also modelled if necessary. 

 

Figure 4.  Traffic crossroad in the mesoscopic simulation 

The vehicles incoming to the simulated area are gener-

ated using generators, which produce stochastic traffic 

flows with exponential distribution. So, the entire simula-

tion is stochastic[19]. Unlike the MaSBWA method, a de-

termin istic version is not implemented. 

Using the mesoscopic simulat ion, each traffic  lane is as-

signed by a weight calculated as the mean number of vehi-

cles moving within the lane during the simulat ion run. The 

weight wi of the ith lane can be calculated as: 

,              (2) 

where R is the number of simulat ion runs, N is the number 

of steps of one simulation run, and Vijk is the number of 

vehicles in ith traffic lane in jth time step of the k th simula-

tion run. 

Due to the stochastic nature of the MeSBWA simulation, 

it is necessary to perform several simulation runs to ensure 

fidelity of the calculated weights. Based on the performed 

tests, it has been determined that the utilization of ten simu-

lation runs offers sufficient fidelity fo r the traffic network 

division purposes. For more details, see[19]. 

4.3. Microscopic-simulation-based Weights Assigning 

The Microscopic-simulation-based weights assigning 

(MiSBWA) method utilizes directly the microscopic simu-

lation of the DUTS system. So, the microscopic simulation 

is not implemented in the DUTS Editor. Instead, the statis-

tics of the number of vehicles moving within the traffic 

lanes in a simulation run are stored to a XML file, which 

can be then loaded by the DUTS Editor as the data source 

for the MiSBWA method. Hence, this method is very simi-

lar to the method used in the vsim simulator[3] (see Section 

3.3). 

Using the data from the microscopic simulation, the 

weights are calculated similar to the MeSBWA method (the 

same equation is used – see Equation (2)). A lso, it  is neces-

sary to perform several simulation runs to guarantee the 

fidelity of the calcu lated weights. Again, similar to the 

MeSBWA method, ten simulation runs are commonly  used. 

For more information, see[21]. 

5. Methods for Traffic Lanes Marking 

Now, as we briefly described the methods for assigning 

weights to traffic lanes, we can proceed with the methods 

for marking of traffic  lanes, which shall be divided. We 

have developed two methods, which employ a modified 

breadth-first search or a genetic algorithm. 

The input of both methods is the traffic  network with 

traffic lanes assigned by weights using any of the weight 

assigning methods (see Section 4). Both methods are de-

scribed in following sections. 

5.1. Modified Breadth-First Search 

The Modified breath-first search marking of traffic lanes 

(MBFSMTL) method employs a modification of a standard 

breadth-first searching algorithm for graph exploration[22] 

for division of the road traffic network. Its primary objec-

tive is to create load-balanced sub-networks. However, the 

number of divided traffic lanes is also considered. 

The MBFSMTL method starts with the calculat ion of the 

sum of all weights of the traffic lanes (total weight). Based 

on this total weight and the required number of 

sub-networks, the total weight per sub-network  can be eas-

ily  calcu lated. With these two values, it is possible to pro-

ceed with modified breadth-first searching of the traffic 

network, which is considered as a weighted graph for this 

purpose. The crossroads are the nodes and the sets of lanes 

connecting the neighbouring crossroads are the weighted 

edges (see Figure 5)[11]. 
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Figure 5.  Traffic network as weighted graph 

At the beginning, a crossroad is selected as the starting 

node of the breadth-first search algorithm. This crossroad is 

assigned by the current sub-network ID, which is zero at 

this point. As the breadth-first search is performed, more 

and more nodes are becoming exp lored and assigned by the 

current sub-network ID. A lso, the weights of all lanes 

neighbouring to the explored  crossroad are added to the 

current sub-network’s current weight. When this value 

reaches the total weight per sub-network, the current 

sub-network ID is incremented and the current 

sub-network’s current weight is set to zero. This repeats 

until all crossroads are exp lored.  

Once all crossroads are assigned by the sub-network IDs, 

the marking of t raffic lanes is easy. It is sufficient to mark 

the lanes connecting crossroads with different IDs[11]. The 

entire algorithm is described using pseudocode in Figure 6. 

 

Figure 6.  Pseudocode of the MBFSMTL algorithm 

5.2. Genetic  Algorithm 

The Genetic algorithm marking of traffic lanes (GAMTL) 

method employs a standard genetic algorithm[23] for a 

multi-objective division of the traffic network. The two 

objectives are the minimal number of divided traffic lanes 

and the load-balancing of the sub-networks. 

Genetic algorithms are generally convenient for the 

multi-objective optimizat ion problems[24]. They mimic the 

natural genetic evolution and selection in nature. This 

means that a single solution of a problem (an individual) is 

represented as a vector of boolean or integer values. An 

initial set of the indiv iduals (initial population) is most of-

ten randomly  generated. The individuals are then crossed 

and mutated in order to produce a new population. A fitness 

function is then calculated for each individual and the indi-

viduals with best fitness are selected to be parents of the 

next population[25]. The entire p rocess repeats until a stop 

condition is fulfilled or a preset number of iteration is 

reached[25]. 

The GAMTL method assigns the crossroads to the par-

ticular sub-networks, similar to the MBFSMTL method (see 

previous section). Hence, an individual is represented by a 

vector of integers with length corresponding to the total 

number of crossroads (K). Each  integer then represents the 

assigning of the corresponding crossroad to the sub-network 

and the maximal value at any index of the vector corre-

sponds to the number of required sub-networks (M) (see 

Figure 7). 

 

Figure  7.  Representation of an individual 

The in itial population is randomly  generated, which 

means that, in each individual, the crossroads are randomly 

assigned to particular traffic  sub-networks. Using the fitness 

function, crossover, and mutation, the assignment of the 

crossroads in the individuals changes toward a solution 

where the sub-networks are load-balanced (based on the 

weights of the traffic lanes) and the number of divided traf-

fic lanes is min imal[26]. 

The fitness function is used for objective assessment of 

each individual. It consists of two parts – the equability, 

which represents the load-balancing of the sub-networks, 

and the compactness, which represents the min imal number 

of traffic lanes. 

The equability of an indiv idual can be calcu lated using 

the total weights of the particular sub-networks as: 

,             (3) 

where E is the equability of an indiv idual,  is the 

mean  total weight of one sub-network, wSi is the total 

weight of the ith sub-network, and M is the number of 

sub-networks. The total weight of the ith sub-network wSi 

can be calculated using the weights of the traffic lanes and 

the assignment of the crossroads to the sub-networks from 

the individual, for which the equability is calcu lated. The 

algorithm is described in Figure 8 using presudocode. 
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Figure 8.  Calculations of the sub-networks’ total weights 

The compactness of an indiv idual can be calculated as 

the ratio of the number of undivided traffic lanes and the 

total number of traffic lanes. So, it can be expresses as: 

,                 (4) 

where C is the compactness, LD is the number of d ivided 

lanes, and L is the total number of lanes. 

The equability tends to prefer divisions into 

load-balanced sub-networks regardless the number of di-

vided traffic lanes. On  the contrary, the compactness tends 

to prefer divisions with minimal number of div ided traffic 

lanes. Because the requirements for the traffic  network di-

vision can be different in d ifferent situations, it is possible 

to set ratio of the equability and the compactness in the fit-

ness function prior to the traffic network d ivision[26]. So, 

the fitness function can be calculated as: 

,          (5) 

where F  is the fitness function of an indiv idual, E  is the 

equability, C is the compactness, and rE is the ratio of the 

equability in the fitness function, which can be set in range 

<0, 1>. 

The fitness function is applied on all individuals from the 

initial population and several individuals with best fitness 

are selected to be “parents” of the next generation. The size 

of the population is set to 90 individuals and the number of 

selected best individual is set to 10. These numbers have 

been selected based on preliminary tests and can be easily 

modified. 

The next  generation is created from the selected indi-

viduals using crossover and mutation. First, the crossover is 

applied to all possible pairs (combinations) of the individu-

als. Each pair produces two descendants, so each descen-

dant has two parents. First descendant receives all integers 

of even indices from the first parent’s vector and all  inte-

gers of odd indices from the second parent’s vector. The 

second descendant receives all remaining  integers from 

both parents (see Figure 9). This ensures that all informa-

tion incorporated in both parents is passed to the descen-

dants. 

 

Figure 9.  Crossover of two individuals 

After both descendants are created, the mutation is ap-

plied to both of them. The mutation is performed by chang-

ing the random number of integers to a random value re-

stricted by the sub-networks count. The maximal number of 

mutation per individual can be set prior the traffic  network 

division. 

The entire process of creating of new generations repeats, 

until a  preset number of generations is reached. The result 

of the finished genetic algorithm is the assigning of the 

crossroads with ID of the sub-network, similar to the 

MBFSMTL method. Again, the traffic lanes connecting 

crossroads with different IDs are marked to be divided. For 

more in formation, see[26]. 

6. Tests and Results 

The described methods and their combinations were 

thoroughly tested. Two sets of tests were performed. The 

first set of tests was focused on the speed of the methods 

(see Section 6.1). The second set of tests was focused on the 

quality of division, which the methods offer. It  was evalu-

ated using the speed of the resulting distributed simulation 

(see Section 6.2). 

6.1. Computational Speed of the Methods 

The speed of the described methods have been tested on a 

standard desktop computer (CPU Intel Core 2 Duo 2.1 GHz, 

4 GB RAM, Windows XP SP3). The reason is that the 

methods are incorporated in a software  tool for creation and 

division of traffic network (DUTS Editor), which is oper-

ated on standard desktop computers. 

 

Figure 10.  Network 1 for testing – irregular 

Four different traffic networks were used for testing. First 

network was an irregular traffic network with 55 crossroads 

inspired by Bory district of Pilsen city (see Figure 10). The 

three other networks were regular square grids of 64, 256, 

and 1024 crossroads, respectively (see Figure 11). The 
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length of each traffic lane (between two crossroads) in all 

regular networks was set to 300 meters, so the total lengths 

of the lanes in regular networks were 86 400 meters, 326 

400 meters, and 1 267 200 meters, respectively. 

 

Figure 11.  Network 2, 3, and 4 for testing – regular 

Both methods for weight assigning (MaSBWA, MeS-

BWA, and MiSBWA) and methods for marking of traffic 

lanes (MBFSMTL and GAMTL) were tested separately. 

The reason is that the methods for weight assigning were 

tested solely for the dependency on the size of the traffic 

network, but the methods for marking of traffic  lanes were 

tested also for dependency on the number of required traffic 

sub-networks. The number of required traffic networks 

cannot influence the speed of the methods for weights as-

signing, since this informat ion is not used by the methods at 

all. On the other hand, both methods for marking of traffic 

lanes must use the required number of sub-networks and 

therefore can be affected by it. 

The resulting speeds of the methods for weights assign-

ing depending on the size of the traffic network are depicted 

in Figure 12. The results are also summarized in Table 1. 

The methods for marking of traffic  lanes were, besides the 

dependency on the size of the traffic network, also tested 

for dependency on the number of sub-networks. Both de-

pendencies of the resulting speeds of the methods are de-

picted in Figure 13. The results are also summarized in Ta-

ble 2. 

 

Figure 12.  Computation time of the WA methods 

For both methods for weights assigning and methods for 

marking of traffic lanes, the speed is measured as the mean 

computation time of each method calcu lated from ten at-

tempts. 

 

Figure 13.  Computation time of the MBFSMTL and GAMTL methods 

As can be seen in Figure 12 and Table  1, the fastest 

method for weights assigning is the MaSBWA, which was 

able to assign weights even for the largest traffic network 

under 6000 ms. The reason is that the MaSBWA is the only 

tested method, which utilizes a single simulation run fo r the 

weights assigning. The remaining two methods require sev-

eral simulation runs to be performed to ensure the fidelity of 

the collected weights. As could be expected, the slowest 
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method is the MiSBWA due to the ext reme t ime require-

ments of ten simulation runs of the microscopic simulat ion. 

Moreover, the simulation memory  requirements were at 

very limits of the 32 bit operating system. So, for even lar-

ger traffic  networks, the utilization of the MiSBWA method 

would be impract ical. The microscopic simulat ion was per-

formed direct ly in the DUTS system instead of the DUTS 

Editor (see Section 4.3), but the required time was added to 

the total computation time of the MiSBWA method. 

Table  1.  Computation Time of the WA Methods 

Crossroads 

count 

Computation time[ms] 

MaSBWA MeSBWA MiSBWA 

55 237 1278 7003 

64 268 2709 8653 

256 1547 8633 31759 

1024 5936 45578 118928 

The computation time of the MBFSMTL method de-

pends on the size of the divided traffic network (see Figure 

13 (MBFSMTL) and Table 2). It can be also observed that 

it also depends on the number of resulting sub-networks, 

especially for larger networks. The h ighest time was re-

quired for marking o f traffic  lanes of network with 1024 

crossroads divided into 8 sub-networks (91231 ms). The 

lowest time (38 ms) was achieved for the smallest network 

(55 crossroads) divided into four sub-networks. 

Table  2.  Computation Time of the MTL Methods 

    Computation time[ms] 

MTL 
Crossroads 

count 

2 sub- 

networks 

4 sub- 

networks 

8 sub- 

networks 

M
B

F
S
 

55 47 38 56 

64 48 56 113 

256 978 1426 3300 

1024 52990 60662 91231 

G
A

 

55 9069 9187 9250 

64 10121 10355 10476 

256 42508 42144 42552 

1024 180934 185757 184951 

 

Figure 14.  MBFSMTL and GAMTL comparison for 8 sub-networks 

The computation time of the GAMTL method also de-

pends on the size of the divided t raffic  network. However, 

based on the performed tests, it is not influenced by the 

number o f resulting sub-networks (see Figure 13 (GAMTL) 

and Table 2). The methods is generally  slower than the 

MBFSMTL (see comparison of the methods for 8 resulting 

sub-networks in  Figure 14), but the increase of its computa-

tion time with increasing size o f the traffic  network is 

slower than that of the MBFSMTL (see Figure 14 and note 

the logarithmic  scale for the MBFSMTL and linear scale for 

the GAMTL in Figure 13). A lso, as it was mentioned above, 

the MBFSMTL method is dependent on the number of 

sub-networks. 

6.2. Quality of Division of the Methods 

Table 3.  Simulation Time of the Distributed Road Traffic Simulation 

  
Sub-networks 

count 

Crossroads 

count 

Simulation time[ms] 

MBFSMTL GAMTL 

M
aS

B
W

A
 

2 

55 12917 10483 

64 13837 11099 

256 43968 39142 

1024 138915 132705 

4 

55 10359 8506 

64 11468 9041 

256 32192 26608 

1024 92493 88293 

8 

55 11203 9933 

64 13560 11626 

256 27073 23407 

1024 74280 70541 

M
eS

B
W

A
 

2 

55 11973 11401 

64 13410 11103 

256 39700 31459 

1024 140516 133255 

4 

55 10334 8611 

64 11448 8975 

256 30919 26439 

1024 92953 87927 

8 

55 11301 9663 

64 13759 11311 

256 26547 22594 

1024 73372 71287 

M
iS

B
W

A
 

2 

55 13519 11264 

64 13445 10996 

256 41874 37800 

1024 138895 131604 

4 

55 10815 8892 

64 11539 8898 

256 31013 26062 

1024 93422 87987 

8 

55 11573 10305 

64 13888 11073 

256 26129 23157 

1024 72867 69419 

The quality of division of the described methods was 

tested using the DUTS simulation system on a cluster called 

Hydra, which is availab le at DSCE UW B. The cluster con-
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sists of ten working nodes. Each node incorporates one 

CPU Intel Xeon 3.2 GHz, 2 GB of RAM, and 80 GB of 

hard disk space. The nodes are interconnected with 1 Gbit 

Ethernet. All nodes are equipped by Debian 5.0.1 operating 

system. 

The tests were prepared as follows. The traffic networks 

used in previous set of tests (see Section 6.1) were d ivided 

by all six combinations of methods for weights assigning 

and methods for traffic lanes marking. The networks were 

divided into two, four, and eight sub-networks. These net-

works were then used for distributed microscopic simula-

tion of the DUTS system performed on the Hydra cluster 

and the simulat ion times were measured. The results were 

averaged from ten simulat ion runs and are depicted in Tab le 

3. 

Generally, the GAMTL method exhibits better quality of 

division than the MBFSMTL method (see last two columns 

of Table 3). This means that the distributed simulat ion of 

road traffic using the traffic network div ision by the 

GAMTL method is faster than using the division by the 

MBFSMTL method. Hence, it is more convenient to use the 

GAMTL method, although it is slower than the MBFSMTL 

method (see Section 6.1). 

Regarding the methods for weights assigning, it can be 

observed that all methods exhib its similar quality of d ivi-

sion. This means that the selection of the method for 

weights assigning has a negligible effect on the resulting 

performance of the distributed simulat ion of road traffic. 

The reason is that the methods assign more-or-less similar 

weights to the traffic lanes[19], but are variously 

time-consuming. Hence, it  is convenient to utilize the  

MaSBWA method, since it  is the fasted method for weights 

assigning, which has been tested. 

Generally, the results show that, using a convenient divi-

sion of traffic networks, it is possible to achieve reduction 

of the simulat ion time of the distributed simulat ion (up to 

22 % in this case). 

7. Future Work 

In our future work, we will continue with research of ef-

ficient methods for division of traffic network fo r distrib-

uted simulation of road traffic. More specifically, we will 

focus on several aspects of this issue, which are briefly de-

scribed in following sections. 

7.1. Optimization of Designed Methods  

The GAMTL method has several parameters, which in-

fluence the result and speed of the method. For example, it 

is the number of indiv iduals in the generation, number of 

selected individuals, number of mutation per individual, 

number of generations, and so on. All of these parameters 

were set manually based on the preliminary testing of the 

method. However, this approach does not guarantee the 

achievement of the optimal results. 

For this reason, we plan to utilize a genetic algorithm for 

optimization of the parameters of the GAMTL method. This 

approach of “optimizing a genetic algorithm using a genetic 

algorithm” is likely to be very time-consuming, since it is 

necessary to perform entire run of the inner genetic algo-

rithm (i.e. the GAMTL method in this case) for calculation 

of the fitness of one indiv idual o f the outer (i.e. optimizing) 

genetic algorithm. However, since there is a possibility of 

non-negligible improvement of the GAMTL method, this 

approach is worth investigating. 

The optimizat ion of the MBFSMTL method is also an 

option. In order to find the best network div ision, the 

method attempts to begin the breadth-first search from all 

crossroads of the network and select the best one. This is a 

time consuming process, which can be sped up by ignoring 

of the potentially useless attempts. A heuristic analysis and 

the knowledge of the traffic networks topology can be 

helpful with this issue. 

7.2. Adaptation for Heterogeneous Environment 

The methods for div ision of traffic network presented in 

this paper were designed for homogeneous clusters of 

computers. However, many organizations has a significant 

amount of computational power d istributed among hetero-

geneous (i.e. with different speeds) interconnected com-

puters (e.g. in computer labs at technical universities). 

Hence, we will also focus on adaptation of the described 

methods for the heterogeneous distributed environment. 

The methods for weights assigning do not require a 

modification, since they do not divide the traffic network, 

but rather only prepare data for the methods for marking of 

traffic lanes. However, the methods for marking of traffic 

lanes (i.e. MBFSMTL and GAMTL) would require a slight 

adaptation for this purpose. It is only necessary for the 

methods not to divide the traffic network into equally com-

putation-consuming sub-networks, but adapt the size of 

each sub-network fo r the speed of the node (computer), on 

which the simulat ion of the sub-network will be performed. 

For this purpose, it  is necessary to know the speeds of all 

nodes, which will be used for the distributed simulation. It 

should be noted that the CPU frequency is not viable as a 

measuring method, since there are other factors influencing 

the speed of the node. Hence, the speed of each node will be 

determined by series of the tests. These tests will uncover 

how large the sub-network should be for each  node in order 

to ensure similar computation time of a simulation time step 

for all nodes. 

For initial testing, these tests will be performed manually. 

However, remote automated testing of each node is planed 

for the final version of this approach. 

Once the speeds of particular nodes are determined, both 

MBFSMTL and GAMTL methods can be adapted for het-

erogeneous division of traffic network by changing of the 

total weight per sub-network (see Section 5.1) and by 

changing of the fitness function (see Section 5.2), respec-

tively. 
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8. Conclusions 

In this paper, the performances of several methods for 

division of road traffic networks were compared. Three 

methods for weights assigning and two methods for traffic 

lanes marking were combined into six various approaches 

for complete  division of traffic network into load-balanced 

sub-networks. All methods were thoroughly tested for their 

speed and quality of the traffic network div ision, which they 

offer. 

Considering the speed of the methods and the quality of 

division, which they offer, the best combination is the 

MaSBWA and the GAMTL methods together. As it was 

observed during the testing, the selection of the method for 

weights assigning has only a negligib le effect on the result-

ing performance of the distributed road traffic simulat ion. 

Hence, it is convenient to use the fastest method, which  is 

the MaSBWA. Nevertheless, based on the performed tests, 

the selection of the method for marking of traffic  lanes in-

fluences the performance of the distributed road traffic 

simulation significantly. Hence, it is convenient to use the 

GAMTL method, which creates better division of traffic 

network, although it is slower than the MBFSMTL method. 

The investigation of the speed of the distributed road 

traffic simulat ion using divisions of traffic network by 

various methods indicates that it is possible to speed up the 

distributed traffic simulation using a convenient division of 

the traffic network. Based on the performed tests, the dif-

ference of the computation times reached up to 22 %. 

In our future work, we will continue with the research of 

the methods for division of traffic network, as described in 

previous section.  
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