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Abstract. Motivated by the problem of setting prediction intervals in time series anal-
ysis, we suggest two new methods for conditional distribution estimation. The first is
based on locally fitting a logistic model, and is in the spirit of recent work on locally
parametric techniques in density estimation. It produces distribution estimators that
may be of arbitrarily high order, but nevertheless always lie between 0 and 1. The sec-
ond method involves an adjusted form of the Nadaraya-Watson estimator. It preserves
the bias and variance properties of a class of second-order estimators introduced by Yu
and Jones (1997), but has the added advantage of always being a distribution itself. Our
methods also have application outside the time series setting, for example to quantile
estimation for independent data. This problem motivated Yu and Jones’ work.
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1 Introduction

In a variety of statistical problems, estimation of a conditional distribution function is
a key aspect of inference. Consider, for example, estimation of the quantile function
of Y given X, using a sample of independent data pairs {(X1,Y1),..., (Xan, Ya)}. This
problem has recently been tackled by Yu and Jones (1997) via an ingenious application
of the ‘double kernel,’ local linear approach of Fan, Yao and Tong {1996). A technique
alternative to that of Yu and Jones wbuld be to employ the Nadaraya-Watson estimator,
although it would suffer the excessive bias problems inherent in that approach; see for
example Chu and Marron (1991) and Fan (1993).

Another application of conditional distribution estimation, this time involving de-
pendent data, is construction of prediction intervals for the next value in a stationary
time series {Y1, ..., Y, }. If the time series is Markovian then we may solve the prediction
problem by estimating the distribution of Yj,; conditional on Y; = z, and applying the
result in the case z = Y,. More generally, we might wish to estimate the distribution of
Y;;1 given a small section of the recent past, such as (Y}, Yi_,) = (1, z2). Both problems

may be solved using methods such as those suggested by Yu and Jones (1997).

While local linear methods of the Yu and Jones type are attractive from the viewpoint
of mathematical efficiency (see e.g. Fan 1993), they have the disadvantage of producing
distribution-function estimators that are not constrained either to lie between 0 and
1 or to be monotone increasing. In both these respects, Nadaraya-Watson methods
are superior, despite their rather large bias. Moreover, if one passes to higher-order
generalisations of the Yu and Jones approach, such as methods based on local polynomial
techniques (see e.g. Fan and Gijbels 1996), then the ‘non-distribution properties’ from

which they suffer become even more of a problem.

In the present paper we suggest two new techniques that largely overcome these
difficulties. The first, local logistic distribution estimation, produces estimators of arbi-
trarily high order which always lie strictly between 0 and 1. In spirit, this approach is
related to recently-introduced local parametric methods for density estimation; see for
example Copas (1995), Simonoff (1996, Section 3.4), Hjort and Jones (1997) and Loader
(1997). Our second method is an ‘adjusted’ version of the Nadaraya-Watson estimator.

It is designed to reproduce the superior bias properties of local linear methods, while



preserving the property that the Nadaraya-Watson estimator is always a distribution
function. It is based on weighted, or biased, bootstrap methods; see Barbe and Bertail
(1995) and Hall and Presnell (1997).

Although our interest in conditional distribution estimation was motivated by the
problem of prediction from time series data, we shall introduce our methods in a more
general setting which admits time series modelling as a special case. Qur theoretical

results, too, will focus on the general context.

The paper is organised as follows. In Section 2 we introduce our methods for estima-
tion of a conditional distribution. A bootstrap scheme for choosing bandwidths is also
given. Numerical examples involving both simulated models and real-data applications
are reported in Section 3. A case study with a multivariate predictor is included there.
Section 4 describes convergence rates as well as asymptotic distribution properties of the

proposed estimators. All technical arguments are given in the Appendix.

2 Methodology

We assume that data are available in the form of a strictly stationary stochastic process
{(Y;, X;)}, where Y] is a scalar and Xj is a d-dimensional vector. Naturally, this includes
the case where the pairs (X, Y;) are independent and identically distributed. We wish
to estimate the conditional distribution function w(y|z) = P(Y; < y|X; = z). In the
time series context, X; typically denotes a vector of lagged values of Y;, in which case
7(.|%) is the predictive distribution of ¥; given X; = z. If we write Z; = I(Y; < y) then
E(Z|X; = z) = n(y|z), and so our estimation problem may be viewed as regression of
Z; on X;.

To simplify discussion we introduce our methods and develop theory only in the case

where X is a scalar (i.e. d =1). The multivariate case will be illustrated in Section 3.

2.1 Local logistic methods

For fixed y, write P(x) = m(y|z) and assume that P has r — 1 continuous derivatives. A
generalised local logistic model for P(z) has the form L{z,0) = A(z,6)/{1 + A(z,6)},



where A(-,#) denotes a nonnegative function which depends on a vector of parameters
8 = (6y,...,0,) that ‘represent’ the values of P(z), PM(x),..., P"~U(z). Here, ‘repre-

sent’ means that, for each sequence w; € (0,1),ws,...,w, denoting potential values of
P(z), PU(x),..., P"Y{(z), respectively, there exist 0;,...,8, such that
A(u, 8)
ik St B S - . ! -1 _ -1 _ 1
TTow) witwu—z)+ ...+ () w(u—z) " +o(Ju—z7)

as v — z. Arguably the simplest function A with which to work is A(u,8) = eP®f),
where p(u,0) = 6 + fhu + ... + 64" is a polynomial of degree r — 1. Fitting this
model locally to indicator-function data leads to an estimator # (y|z) = L(0, émy), where
(isy denotes the minimiser of

R(0;z,y) = 3 {I(Y; S y) — L(X; — 2,0) Kn(X; — =), (2.1)

i=1

K is a kernel function, K,(-) = h™'K(-/h), and h > 0 is a bandwidth. We call this
approach local logistic distribution estimation. Depending on bandwidth choice, it also
furnishes consistent estimators of the derivatives 7 (y|z) = (8/8z)¢ 7(y|z), in the form
#0(y|z) = LD(0,8,,) fori=1,...,7—1, where L (z,8) = (8/0z)* L(x, ). In practice,
émy may be computed using the ‘downhill simplex’ algorithm (see Section 10.4 in Press
et al. 1992).

We expect the estimator #(y|z) to have bias of order h™ and variance of order (nh)~!,
under an asymptotic scheme where & = h(n) — 0 and nh — o0 as n — oo. A more

detailed account of this property will be given in Section 4.

It is possible to fit the logistic model by matrix-weighted least-squares in place of the
criterion at (2.1), reflecting the dependence structure of the process {X;}. However, if
the process is weakly dependent (e.g. absolutely regular, as assumed in Section 4), this

has only a second-order effect on performance.

2.2 Adjusted Nadaraya-Watson estimator

Let p; = pi(z), for 1 <4 < n, denote weights (functions of the data X3, ..., X, as well
as of z) with the property that each p; > 0, 3, p; = 1 and

n

Y pile) (X; — z) Ka(X; — 3) = 0. (2.2)

i=1



Of course, p;’s satisfying these conditions are not uniquely defined, and we specify them

concisely by asking that []; p; be as large as possible subject to the constraints. Define

ic1 {(Y; < y) pi(s) Ku(Xi — 1)
i1 pi(x) Kp(X; — x)

Note particularly that 0 < #(y|z) < 1 and % is monotone in y. We shall show in Section

(yle) = (2-3)

4 that 7 is first-order equivalent to a local linear estimator, which does not enjoy either

of these properties.

Another way of viewing the biased bootstrap estimator 7 is as a local linear estimator
in which the weights for the least-squares step are taken to be p;(x) Kp(X; — x), rather
than simply K(X; — z), for 1 < ¢ < n. To appreciate why this is so, we refer to the
definition of general local linear estimators given by Fan and Gijbels (1996, p. 20), and
note that in view of (2.2), with the suggested change of weights, their estimator #ig

reduces to
" n

(@) = { L w1 <)} /{3 wita)},

i=1 i=1

where N
wi(z) = pi(z) Kn(X; — z) Y pi(2) (2 — X;)° Ku(z - X).
i=1
Therefore, 7y = T{y|z).

Computation of the p;’s is simplified by the fact that
pz(:r) = n“l{l + A (£E - Xz) Kh(X,, — :L‘)}_l )

where A (a function of the data and of z) is uniquely defined by (2.2). It is easily

computed using a Newton-Raphson argument.

2.3 'Bandwidth choice

Particularly in the time series case, deriving asymptotically optimal bandwidths for ei-
ther the local logistic or biased bootstrap methods is a tedious matter. Using plug-in
methods requires explicit estimation of complex functions using dependent data; using
the bootstrap calls for selection of subsidiary smoothing parameters and resampling of
time-series data; and using cross-validation demands selection of the amount of data that
are left out. Such éomplexity is arguably not justified, not least because the target func-

tion P(x) = m(y|z) is often approximately monotone and so has only limited opportunity

4



for complex behaviour. For example, P is exactly monotone if the joint distribution of
(X, Y;) is normal.
Instead, we suggest an approximate parametric method, as follows. We fit a para-

metric model

Yi=ag+ @ X;+ ...+ apXF + oe,

where ¢; is standard normal, ay,...,ax, ¢ are estimated from the data, and & is deter-
mined by AIC. We form a parametric estimator #(y|x) based on the model. By Monte
Carlo simulation from the model, we compute a bootstrap version of {¥7*,...,Y,’} based
on given observations {X;,...,X,}, and thence a bootstrap version #}(y|z) = #*(y]x)
of #(y|x), derived from (2.1) with {(X;,Yi)} replaced by {(X;, ¥;*)}. The bootstrap

estimator of the absolute deviation error of #(y|z) is

M(h;z,y) = E[[#3(yl2) ~ %(yl2)] [{(X: Y2)}] -

Choose h = h{z,y) to minimise M(h;z,y). Sometimes we use the z-dependent band-

width A(z) which minimises

M(hiz) = [ M(ba,y) i(yls) dy. (2.4)

The above approach can also be applied to choosing h for estimating 7 (y|z).

In the event that we are working with time-series data (e.g. X; = Y;_,, for some
m > 1), we propose an alternative resampling scheme as follows. Assume that the
data {Y_,41,...,Yn} represent a segment of a Gaussian autoregression. Estimate its
parameters, and resample the segment {¥Y* .. ..., Y} from the parametric model. The
bootstrap estimator #}(y|z) is calculated using this segment, and then substituted into

the formula above for M (h; z,y).

3 Numerical properties

3.1 Simulation studies

We compared various estimators of the conditional distribution function #(.|.) through

two simulated models, one with independent observations and one with nonlinear time



series. The estimators concerned are the Nadaraya-Watson estimator (NW), the local
linear regression estimator (LL), the adjusted Nadaraya-Watson estimator (ANW), and
the local logistic estimators with r = 2 (LG-2) and r = 3 (LG-3) . For each simulated
sample, the performance of the estimator was evaluated in terms of Mean Absoclute
Deviation Error (MADE):

> Ime{wil®:) — m(ys|z:)| 1{0.001 < 7(ys|z:) < 0.999)

MADE =

where 7.(.|.) denotes an estimator of «(.|.), and {(z;,;)} are grid points which will be
specified later. We conducted the simulation in two stages. First, we calculated MADEs
for the various estimators over grid points evenly distributed across the whole sample

space. For each estimator, we used the optimal bandwidth defined by

hop(@) = [ hepl(,9) 7(yla) dy,

where hop(2, ¥) is the minimiser of the asymptotic mean squared error (up to first order) of
the estimator. This guarantees a fair comparison among different methods. Secondly, we
demonstrated the usefulness of the bootstrap scheme for choosing bandwidths proposed
in Section 2.3 by evaluating MADEs for some fixed values of z. We used the z-dependent
bandwidth f(z) which minimises (2.4). Throughout this section we used the Gaussian

kernel.

Example 1. Let us consider the simple model
Y; = 2sin(3.1416 X;) + ¢; ,

where {X;} and {¢;} are two independent sequences of independent random variables
having a common distribution with density 1 — |#| on [~1,1]. The true conditional
distribution function is plotted in Figure 1(a). For each of the 400 samples of size
n = 600 (one of them is depicted in Figure 1(b)), we calculated the MADEs with the
optimal bandwidth hy,(.) (which is of size n~'/® for LG-3, and n~*/5 for all the other
methods). We estimated w(y|z) on a regular grid defined by steps 0.067 and 0.054 in
z- and y-directions, respectively. The box-plots of MADIs are presented in Figure 1(c).
The variations of the MADEs for the NW, LL, ANW and LG-2 methods are more or less
the same, which reflects the fact that the (asymptotic) variances of those estimators are

the same. Overall, both ANW and LG-2 provide competitive performance relative to
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ya
00.20.40.608 1

ety
"“"g'

W)
N

L

iy iRy
,‘;”_‘““\'}.}\f ! ‘\\\\\\‘f"
";’0’0{‘3;3‘1\\\”
0'000‘0’%‘\\\\ {

.......

)

g
1)
)

*N:Of‘;‘ -

n,l,

(¢) MADEsS of estimators

Pt}
PELRE

El

=1

0.06 H '_E_'
0.05 A ﬁ
0.04 A ;
0.03 A

Nw

LL

ANW

LG-2

LG-3

{b} A sample of 600 observations

Figure 1: Simulation results for Example 1: estimating w(y|x) using optimal bandwidths.
(a) The true conditional distribution function z = w(y|z). (b) A typical sample of size
n = 600 used in estimation, together with the curve y = 2sin(3.1416 ). (¢) The bozplots
of MADEs for the Nadaraya-Watson estimate (NW), local linear regression estimate
(LL), adjusted NW estimate (ANW), local logistic estimate with r = 2 (LG-2), and local
logistic estimate with r =3 (LG-38).



(a) Difference of MADEs (b} Difference of bandwidths
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Figure 2: Simulation results for Example 1: estimating w(y|z) with bootstrap bandwidths.
(a) The bozplots of the MADEs based on h(x) minus the MADEs based on h(x). (b)
The bozplots of h(x) — hep(2). (c)-(e) The curves representing conditional distribution
functions w(.|z); thick line — w(.|z), thin line — adjusted Nadaraya-Watson estimate,
dashed line — local logistic estimate (r = 2).



the LL method. The larger MADE-values for the NW method are due to its larger bias
and poor boundary effect. The large variation of the MADE for LG-3 is to be expected
since it has larger asymptotic variance than the other estimators. (See Remark 3 and
Section 3.3.1 in Fan and Gijbels 1996.) Note that its bias would be smaller than that
of the others if a bandwidth of size n='/® were used. For the sample size used in our
simulation, and analogously to local polynomial regression, local logistic methods with

r > 2 are not appealing for estimating the conditional distribution function itself.

For each of 200 random samples of size n = 600, we estimated (.|z) using the
bandwidth ﬁ(:c) selected by the bootstrap scheme for z = —0.5, 0.1 and 0.7. To this end,
we fitted a parametric model for Y; as a polynomial in X;. In the 200 replications the order
determined by AIC was always 3. We replicated bootstrap resampling 40 times. We only
consider here the adjusted Nadaraya-Watson method and the local logistic method with
r = 2. For the sake of comparison, we calculated the estimates, for the same data, using
the optimal bandwidth h,,(z). For = —0.5, 0.1 and 0.7, kg, (z) with the ANW method
is 0.062, 0.036 and 0.106 respectively, and with the LG-2 method is 0.086, 0.055 and 0.085
respectively. Figure 2{a) presents boxplots of the differences of MADEs based on h{z)
over the MADESs based on hop(z). Figure 2(b) displays boxplots of i(z) — hey(x) in the
simulation with 200 replications. The performance of estimates based on the bootstrap
bandwidths is fairly consistent, although in most cases A(z) overestimates hop(z). Figures
2(c) — (e) depict typical examples of the estimated conditional distribution fuctions 7 {.|x)
and 7(.|z). The typical example was selected in such a way that the corresponding
MADE was equal to its median in the simulation with 200 replications. Note that #(.|z)

is monotonically increasing.

Example 2. Here we considered an AR(1) model,
Y, = 3.76Y;.1 — 0.235 Y2 | + 0.3 ¢, (3.1)

where the errors e, were independent with common distribution U[—+/3, v/3]. We treated
two- and three-step ahead prediction, by taking X; = Y, for m = 2 and 3. For
each of 400 samples of size n = 600, we calculate the MADEs with asymptotically
optimal bandwidths on regular grid points with step 0.40 in the z-direction and steps
0.10 and 0.19 in the y-direction, for m = 2 and 3 respectively. Note that the conditional
distributions concerned no longer admit simple explicit forms. In order to calculate

hop(z), we evaluated the true values of w(y|z) and its derivatives by simulation, as follows.
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{a} True conditional distribution (m=2) (b) True conditional distribution (m=3)
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Figure 3: Simulation results for Ezample 2: estimating the conditional distribution of Y,
given Xy = Yi_,, using optimal bandwidths. (a) The conditional distribution function z =
w(ylz) for m = 2. (b) The conditional distribution function z = w(y|z) for m = 3. (c)
The bozplots of MADEs for the Nadaraya-Watson estimate (NW), local linear regression
estimate (LL), adjusted NW estimate (ANW), local logistic estimate with r = 2 (LG-2)
when m = 2. (d) The bozplots of MADEs for the Nadaraya-Watson estimate (NW),
local linear regression estimate (LL), adjusted NW estimate (ANW), and local logistic
estimate with r = 2 (LG-2) when m = 3.
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(a) Difference of MADESs (b) Difference of bandwidths
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Figure 4: Simulation results for Example 2: estimating the two-step ahead predictive
distribution w(y|z) with bootstrap bandwidths. (a) The bozplots of the MADEs based on
h(z) minus the MADEs based on hop(x). (b) The boxplots of h(x) — hep(z). (¢) — (d)
The curves representing conditional distribution functions w(.|z): thick line — = (.|z),
thin line — adjusted Nadaraya-Walson estimate, dashed line — local logistic estimate

fr=2).
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We generated 50,000 random samples by iterating (3.1) two (or three) times starting at a
fixed value z. The relative frequency of the sample exceeding y was regarded as the true
value of 7(y|z). The resulting conditional distribution functions are plotted in Figures
3(a) and (b). We used kernel methods to estimate the marginal density function with
a sample of size 100,000. Figures 3(c) and (d) are the boxplots of MADEs for the 400
replications. Similar to Example 1, both ANW and LG-2 methods provide competitive
performance relative to the LL method, in terms of the absolute error of estimation;

while the bias of the NW estimator is relatively larger.

For each of 200 random samples of size n = 600, we estimated the two-step ahead
predictive distribution m(.}z) using the bandwidth A(z) selected by the bootstrap scheme
for z = 4.99 and 13.71. The bootstrap resampling was conducted as follows. We fitted a
linear AR(1) model to the original data, and sampled time series (with length 600) from
the fitted model. We replicated bootstrap sampling 40 times. As in the case of Example
1, we considered only the adjusted Nadaraya-Watson estimator and the local logistic
estimator with » = 2. We compared the estimates with those based on the optimal
bandwidth h,(z), which is equal to 0.182 for x = 4.99 and 0.216 for x = 13.71 in the
case of the ANW estimate, and equal to 0.241 for £ = 4.99 and 0.168 for z = 13.71
in the case of the LG-2 estimate. Figure 4(a) presents boxplots of the differences of
MADEs based on &(x) over the MADEs based on h,,(z). Figure 4(b) displays boxplots
of A(x) — hep(x) in the simulation with 200 replications. Since we used a simple linear
model to fit the nonlinear structure, it is not surprising that h(z) always overestimates
hop(x). But the estimates for 7 (y|z) remain reasonably reliable. Figure 4(c) — (d) depicts
typical examples of the estimated conditional distribution functions #(.jz) and #(.|z).
The typical example was selected in such a way that the corresponding MADE was equal

to its median in the simulation with 200 replications.

3.2 Case study with Canadian lynx data

Finally we illustrate our method with the Canadian lynx data (on a natural logarithmic
scale) for the years 1821-1934. The time series data plot is presented in Figure 5(a). We
estimated the conditional distribution of Y; given Y;_; by the adjusted Nadaraya-Watson

12



method. The bandwidths were selected by the bootstrap scheme based on resampling
the whole time series from the best fitted linear AR(1) model. We did 40 replications

in the bootstrap resampling step. The estimated conditional distribution function is

depicted in Figure 5(b).

{b) Conditional distribution

(a) Lynx data

T: b b

N Al &
'\}-!\.!.!1. I‘f\s‘_,‘\;

AT

AR

Figure 5: (a) Canadian lynz data. (b) Estimated conditional distribution z = w(y|z) of

Y; given Yy = .

As an alternative application, we constructed the predictive interval [#~!(a/2|z),
771 — @/2|z)] for @ € (0,1), based on the estimated conditional distribution function.
To check on performance, we used the data for 1821-1924 (i.e. n = 104) to estimate
7(y|x), and the last 10 data points to check the predicted values. This time we used the
local logistic method with r = 2. The results with a = 0.1 are reported in Table 1. All
the predictive intervals contain the corresponding true values. The average length of the
intervals is 2.80, which is 53.9% of the dynamic range of the data.

We also include in Table 1 the predictive intervals based on the estimated condi-
tional distribution of ¥; given both ¥;.; and Y;_5. To obtain these results we used the
local (linear) logistic method to estimate mw(y|z1,22). To this end, let L(zi,2,,6) =

Almy, 0, 80) /{1 + A1, 22, 0)} with Az, z2,0) = exp(fo + 6121 + O222). The estimator

is defined as #(y|z1, z2) = L(0,0,8), where # denotes the minimiser of

3 Y1 - Y. o —
Z{I(YtSy)—L(Ytﬁl—xl,yt_z_mg,g)}zf{( 2l m Y : :1:2) |
1 2

t=3
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K is a symmetric probability density on R?, and h; and hy are bandwidths. In our
calculation, we simply chose K to be the standard Gaussian kernel and h; = hg. The
bandwidths were selected by the bootstrap scheme based on resampling time series from
the best fitted linear AR(2) model. Qut of 10 predictive intervals, only one (for the year
1929) missed the true value, and then only narrowly. The average length of the intervals

is now reduced to 1.63, which is 32.8% of the dynamic range of the data.

Table 1: Predictive intervals for Canadian lynx in 1925-1934, based on the data in 1821-
1924. The nominal coverage probability is 0.9.

Predictor from one - Predictor from two

Year | True value lagged value (=) lagged values h(w1,22)
1925 8.18 [5.89, 8.69] 0.123 [6.86, 8.60] ©0.245
1926 7.98 [5.99, 8.81] 0.340 [6.86, 8.81] 0.570
1927 7.34 [5.94, 8.75) 0.485 [6.40, 8.26] 0.715
1928 6.27 [5.43, 8.35] 0.195 [5.44, 6.86] 0.715
1929 6.18 [4.69, 7.71) 0.268 [4.60, 6.16] 1.095
1930 6.50 [4.65, 7.70] 0.340 [5.43, 7.03] 0.860
1931 6.91 [5.21, 7.72) 0.268 [5.71, 7.50] 0.860
1932 7.37 [5.37, 7.82] 0.268 [6.38, 8.12] 0.860
1933 7.88 [5.44, 8.38] 0.123 [7.17, 8.25] 0.715
1934 8.13 [5.89, 8.74] 0.485 [7.26, 8.81] 1.205

4 Theoretical properties

For the local logistic estimator #(y|z) we only consider functions A of exponential-
polynomial type, with » > 2: A(z,0) = exp(f1z° + ... + 8,5""'). Let f denote the

marginal density of X;. We impose the following regularity conditions:

(C1) For fixed y and z, f(z) > 0, 0 < n(y|z) < 1, f is continuous at z, and
n(y|-) has 2[(r + 1)/2] continuous derivatives in a neighbourhood of z,

where [f] denotes the integer part of .

(C2) The kernel K is a symmetric, compactly supported probability density
satisfying | K (z1) — K(zq)| < C|z1 — 22| for 1, zo.

14



(C3) The process {(X;, Y;)} is absolutely regular, i.e.
B) =sup B{ sup |P(A|F) - P(A)|} =0 as j— oo,
i1 AEFE,
where F! denotes the o-field generated by {(X:, Yi) : ¢ < k < j}.
Further, 3,51 726(5)%+%) < oo for some 4 € [0,1). (We define a® =0
when ¢ =b=10.)

(C4) Asn — oo, h — 0 and liminf,_,,, nh¥ > 0.

Remark 1: Discussion of conditions. Assumption (C3) holds with § = 0 if and enly if
the pracess {(X;, Y;)} is m-dependent for some m > 1. The requirement in (C2) that K
be compactly supported is imposed for the sake of brevity of proofs, and can be removed
at the cost of lengthier arguments. In particular, the Gaussian kernel is allowed. In (C3),
the assumption on the convergence rate of 4(j) is also not the weakest possible. The last
condition in (C4) may be relaxed if we are prepared to strengthen (C3) somewhat. For
example, if the process {(X;,Y;)} is m-dependent then, for Theorem 1 below, we need
only nh — oo, not nh? bounded away from 0. However, since (C4) is always satisfied
by bandwidths of optimal size (i.e. A & const.n~Y/@+1)) we shall not concern ourselves

with such refinements.

Remark 2: Consistency. It may be proved that, under conditions (C1)-(C4) and

assuming r > 2, f,, — #° in probability, where §° = #3, is uniquely defined by
mNylz) = L&0,6°), i=0,1,...,7—1, (4.1)

and 7@, L% are as in Section 2.1. It follows from this result that at z, #(y|-) and its first
7 — 1 derivatives are consistent for the corresponding derivatives of w(y|-). In the case of
the ‘zeroth derivative,” Theorem 1 will extend this property to a detailed description of

the stochastic and systematic errors of 7 (y|-).
Define x; = f 4/ K(u) du and v; = f v/ K(u)? du. Let S denote the r x r matrix with
(i, 7)'th element k;y;_p, and £ be the (i,7)’th element of S~'. Let r; = 2[(r + 1)/2]
and put 7(y|z)? = 7(ylz) {1 — 7(y|z)}/f (=),
@) = (7 {1 D(yle) = L0080} 3 K0 i,

i=1

T 2
T = f(z k(b ui_l) K(u)du.

i=1

Let Np1, Nya, Np3 denote random variables with the standard Normal distribution.
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Theorem 1. (i) Suppose r > 2 and conditions (C1)—-(C4) hold. Then as n — oo,
#(ylz) — m(ylz) = (nh) V2 7(y|z) 7, Nut + 7 e () + 0p (A7 + ()72}, (4.2)
(ii) Assume conditions (C1)-(C4) with r = 2. Then asn — 0,

(ylz) —m(ylz) = (nh) 2 7(ylw) 15" Nug+ h2 iy 7D (y|z) +0, {B? + (nh) ™2} . (4.3)

The first term on the right-hand side in both (4.2} and (4.3) represents predominantly

error about the mean, and the second term represents predominantly bias.

Remark 3: Comparison of # and local polynomial estimator. To first order, and for
general x, the asymptotic variance of #(y|z) is exactly as in the case of local polynomial
regression estimators of order r; for the latter, see for example Ruppert and Wand (1994).
This siinilarity extends also to the bias term, to the extent that for both 7 and local
polynomial estimators the bias is of order A" for even r and ™! for odd r, and (to this
order) does not depend on the design density f. However, the forms of bias as functionals
of the ‘regression mean’ 7 are quite different. This is a consequence of the fact that,

unlike a local polynomial estimator, #(y|z) is constrained to lie within (0,1).

Remark 4: Comparison of @ and local linear estimator. It can be shown that, assuming
(C1)-(C4) for r = 2, the asymptotic formula (4.3) for #{y|z) is shared exactly by the
standard local linear estimator 7y (y|z), derived by minimising

(i

YAV <y) —a— B(X; — 2)} Kn(X; — 2)

i=1
with respect to (o, 3) and taking #pp(y|z) = & Note, however, that unlike #, 7, is
constrained neither to lie between 0 and 1 nor to be monotone in y. Additionally, 7

is somewhat more resistant against data sparseness than #r;. For example, it never

assumes the form (nonzero number)/(zero).
Remark 5: Comparison of # and 7. In the case r = 2, (4.2) reduces to

#(ule) — 7(3la) = (k)™ 7{ylz) Nus + L B 5 pa(yla) + 0p {2 + ()2} | (4.4)
where

1O (yle)® {1 — 2 (y|z)}
m(yle){1 — 7 (ylz)}

p2(ylz) = @ (y|z) —
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and 7® is defined as in Section 2.1. Comparing (4.3) and (4.4) we see that #(y|z)
(with r = 2) and #(y|z) have the same asymptotic variance, but that the first-order
bias formula of the former contains an additional term. In consequence, if 7(y|z) <
then #(y|z) is biased downwards relative to 7(y|z), while if 7(y|z) > 3 then it is biased

upwards.

Remark 6: Comparison with Nadaraya-Watson estimator. The analogue of (4.3) and

(4.4) in the case of the Nadaraya-Watson estimator,

fw (y]z) = {ZIY<y)Kh- }/{ZKh }

i=1

is
Aaw (y|z) — 7(ylz) = (nh) V2 7(y|z) 1p'* Nug + L 12 k2 plyla) + 05 {h2 + (nh)™V 2} ,

where u(y|z) = 7@ {y|z) + 2 f(z) "' f(z) *™(y}z). Note particularly that, unlike any
~of 7, 0 and 75z, fxvw has a bias that depends to first order on the density f of X.

However, the variances of all four estimators (# with r = 2) are identical to first order.

5 Appendix: Proofs

We derive only (4.2), noting that a proof of (4.3) is similar but simpler. For any € € (0, 1),
it follows from Remark 2 that there exists 7 € (0, 00) such that P{||f, —6°|| < n} > 1—¢
for all sufficiently large n. Let G = G(n) denote the closed ball centred at §° and with
radius 7. Let 8, ¢ be the minimiser of (2.1) with 8 restricted to G. Define #ig(y|z) =
L(0|84y.c). Then, P{fa(y|z) # #(y|z)} < € when n is sufficiently large. This argument
indicates that we need only establish (4.2) for #g(y|z). Therefore, we may develop the

proof below by assuming 93,.3, is always contained within a compact set G.

We consider only the case of even r. By simple Taylor expansion of L in (2.1) we

may show that

R9) = - [106 <)~ 3 607 19(0,60) (%, — 2

— (MY PLH (X, — 2),0} (X — )" 2Kh()Q —z),

17



where ¢; € [0,1). Define B*(8; z,y) as R(9; z,y) with 8 in LU {¢;(X; — 1), 0} replaced by
ézy. Let @;y denote the minimiser of R*(¢; z,y), and put #*(y|z) = L(0,8? ). To derive

' Vay

(4.2) it suffices to show that the result holds for #*(y|z), and additionally that
w(yle) = #*(y|z) + 0p(h") . (5.1)

Define

1

s3(z) = (k)71 Y Ku(Xi — 2) (Xs — 2,
i=1
let S, (z) denote the r X r matrix with s;;;.o(z) as its (¢, j)’th element, and put

Walu,z) = (1,0,...,0) S, (2) (1,4, ..., v ) K(u)
and Wi, (4, ) = Wy(u/h, ). In this notation we have, by the definition of #*(y|z),
#(yle) — 1ylz) = Z Wan(Xi = 2,2) { 1Y < 9) = 3 ()7 79 (y1)
x (X = o) = ()™ B = o), By} (G = )}
Y Wanls = 2,) (s (7 [ e+ X )
— LO{a(X: - 2), Buy}] (X = 2 ) (5.2)

where ¢; = I(Y; < y) — n(y|X;) and ¢} € [0,1]. (See, for example, formula (3.11) of Fan
and Gijbels (1996).) By the ergodic theorem, S, (z) — f(z) S in probability, where S

denotes the r x r matrix with k;1;_5 in position (%, 5).

Define & = 1< <r £ {(X; — z)/R} " and
Ri= ()" [r]{ylz + (X — 2)} — L{a(X: — 2), 65} -

Noting the representation (5.2) for #*(y|z) —n(y|z), and also Lemmas 1 and 2 of Yao and
Tong (1997); and recalling that f,, € G; we my prove that the ratio of #*(y|z) — 7 (y|z)

and
(ﬂh, lf Zfth '—35') {Ei-l'Rfi(Xz'"-li)r}

converges in probability to 1. By the ergodic theorem,
(nh+) z & Kn(X; — ) R (Xi — 2) = 1r(2) + 05(1).
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If the § in (C3) is strictly positive then it follows from Theorem 1.7 of Peligrad (1986)
that (nh)~12 Y, & Ku(X; — z)¢; is asymptotically Normal with mean 0 and variance
h_l E{Kh(Xl — .'13) 61}2 + h_l Z E {rfl Kh(Xl — 117) €1 & Kh(X,, — .‘I,‘) E,;} .
i=2
The first term in this expression converges to f(z)w(y|z) {1 — #(y|z)} 72. By Lemma 1
of Yoshihara (1976), the second term is bounded above by a constant multiple of

R (1=0}/(1+8) zn: B8+

i=1
which, in view of (C3), converges to 0. Therefore, the second term is asymptotically
negligible. Combining the results in this paragraph we obtain, in the case § > 0, the
version of (4.2) that arises if #*(y|z) is replaced by #(y|z). This result continues to hold

in the case 6 = 0, and indeed is relatively easy to prove there; see Remark 1 in Section 4.

The final step is to prove (5.1). Formula (5.2) provides an explicit expression for
L(0, Q;y) — L(0,6°), and similarly we may derive an expression for L& (0, 8%,y — L®)(0, 6°).
Arguing thus we may prove that L®{0, é;y) — L@ (0, 6% in probability. Therefore, since
6° is uniquely determined by (4.1), Ej;';y — 6° in probability. Hence, [9;y —8yy,| — 0. Since
all the first derivatives of R*(6;z,y) (with respect to components of #) vanish at § = 9;y,
this implies that R(é;y; z,y) = R*(é;y; z,y) +op(nh?). Now, R(@my;m,y) = R*(E}my; T, Y).
Hence, since éxy and é;y minimise R and R*, respectively, -

~

0< R(é;y, ,9) — R(0y; 2,9) = RY0:,; 2,y) — R*(0ny; 3, 9) + 0p(nh?") < 0p(nh?) .

Ty

This establishes that (nh”)‘l{R(é;y;m,y) — R(f4y; =, )} — 0 in probability. Since all
the first derivatives of R(6;x,y) (with respect to components of f) vanish at 6 = 8,,,

this implies that
A (53:?; o é*y)T E(éwy) (éwy) (éo:y o é;y) — 0 (5-3)

in probability, where }E(H) equals the r X r matrix of second derivatives, with respect to

components of 4, of R(6; z,y). The left-hand side of (5.3) may be written as VT R(f,,) V,

where V' denotes the r-vector whose i'th element is (65, — 82,)9/h7=*1, and

~ A

R = diag(1, k™, ..., k") R(d,y) diag(1, b7, ..., b0 D),

It may be proved that R — f(z)n(y|z) {1 - w(y|z)} S in probability, where § is the

positive-definite matrix defined earlier in the proof. Hence, the i'th element of @my — Q;y
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equals o,(h"~"*!) for 1 <4 < r. The desired result (5.1) follows from this formula and
the fact that #(y|z) = exp(é%))/ {1+ exp(é%))}, where 9\%) denotes the first element

of émy.
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