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Abstract
Background: Human endogenous retroviruses (HERVs) are surviving traces of ancient retrovirus
infections and now reside within the human DNA. Recently HERV expression has been detected
in both normal tissues and diseased patients. However, the activities (expression levels) of
individual HERV sequences are mostly unknown.

Results: We introduce a generative mixture model, based on Hidden Markov Models, for
estimating the activities of the individual HERV sequences from EST (expressed sequence tag)
databases. We use the model to estimate the relative activities of 181 HERVs. We also empirically
justify a faster heuristic method for HERV activity estimation and use it to estimate the activities of
2450 HERVs. The majority of the HERV activities were previously unknown.

Conclusion: (i) Our methods estimate activity accurately based on experiments on simulated
data. (ii) Our estimate on real data shows that 7% of the HERVs are active. The active ones are
spread unevenly into HERV groups and relatively uniformly in terms of estimated age. HERVs with
the retroviral env gene are more often active than HERVs without env. Few of the active HERVs
have open reading frames for retroviral proteins.

Background
Human endogenous retroviruses (HERVs) are surviving
traces of ancient infections by retroviruses that have
become fixed to human DNA. If ancient highly mutated
elements are included, HERV sequences form 8% of the
human genome [1].

HERVs are DNA sequences with a typical retroviral struc-
ture. A full-length HERV sequence is about 9,000 base
pairs long and has a long terminal repeat (LTR) at each
end. The rest, the internal part, of the HERV consists of 4
retroviral genes: gag, pro, pol and env. A functional, active
HERV can transcribe its genes and produce retroviral pro-
teins. These proteins enable the HERV to move and copy
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its DNA to other locations in the genome; such copying
eventually yields several mutated versions of the original
virus. A set of sequences mutated from the same virus is
called a group; a group may contain hundreds of very sim-
ilar sequences. A list of HERV groups can be found for
example in [2].

Some of the HERVs have lost the typical retrovirus struc-
ture through mutations and various genomic rearrange-
ments, and may contain mutated versions of only some or
even one of the viral genes and/or zero to one LTRs. As a
result, the present-day HERVs are mainly unable to move
and copy themselves. Naturally, older elements have had
more time to mutate and generally are less intact. The age
of the retroviral element can be estimated from the
sequence similarity of its two LTRs: they are identical
upon integration and mutate afterwards.

HERVs are interesting for two reasons: they can express
viral genes in human tissues, and their presence in the
genome may affect the functioning of nearby human
genes. Retroviral activity might cause disease; retroviral
mRNAs have been detected in schizophrenia, autoim-
mune diseases and cancer [3], although a causal role of
HERVs in these conditions is highly uncertain. On the
other hand, a few retroviral genes have been co-opted for
functions beneficial to the human host [4].

In this paper we analyze the activity of individual HERV
sequences. Being able to do so is vital for analyzing their
individual control mechanisms and their possible roles in
diseased and normal cell functions. Most previous studies
of HERV expression report activities only for HERV groups
(e.g. [5]); the only exceptions we know of are [6] where a
small test for individual HERVs of one group was done
with a heuristic method and [7] where HERVs were
searched from gene mRNAs but activities were not com-
pared across HERVs.

To find evidence of HERV expression, we use a large pub-
lic database of expressed sequence tags (ESTs) which are
short and "noisy" mRNA samples. The amount of ESTs
coming from a particular HERV is evidence of its activity
(expression level). However, the noise level in ESTs can be
larger than the sequence differences within a group, so it
may be hard to determine exactly which HERV an EST
stems from. This is the EST matching problem. Two HERVs
whose ESTs are often confused are said to have cross-talk.
In this work, we introduce a generative mixture model to
model the uncertainty in the EST to HERV matching. The
model learns the relative activities of the HERVs from EST
sequence data. We validate the performance of our model
with simulated EST data and then proceed to estimating
the activities of HERVs. It turned out during our experi-
ments that a fast heuristic method performed reasonably

accurately on simulated data, which made it possible to
analyze very large HERV collections.

Methods
Hidden Markov Mixture Model
We introduce a method for solving the EST matching
problem. We start from the following assumptions about
how ESTs are generated from HERVs: (i) EST transcription
starts at some point of the HERV sequence; (ii) the EST
sequence follows the HERV sequence, but can contain
mismatches between the EST and HERV nucleotide, and
can skip HERV nucleotides or insert new ones; (iii) lastly,
the end of the EST sequence is of lower quality and does
not resemble the HERV sequence.

We design a generative mixture model to mimic EST gen-
eration from HERVs, based on the above-mentioned
assumptions. Each mixture component is a Hidden
Markov Model (HMM) for ESTs from a particular HERV;
such a HMM generates data that roughly matches a sub-
sequence of the source HERV, but with mismatches, inser-
tions, deletions, and a low-quality end part. The EST can
match the HERV in either orientation. We need to make a
small change to the model for those ESTs that match in
reverse orientation. The modification is explained in the
Additional file 1.

Hidden Markov mixture models have also been used in
other bioinformatics applications, for example in [8]
where HMM mixtures are used to cluster protein
sequences, and in [9] where HMM mixtures were used to
model gene expression time-courses.

The mixture can be interpreted as one large HMM where
the first transition chooses one of the N HERV-specific
sub-HMMs (see Fig. 1). We use the Baum-Welch algo-
rithm to learn the whole mixture. The learned probabili-
ties of the first transition (the mixture weights) are
estimates of the HERV activities; learning the mixture
model thus solves the EST matching problem. In addition
to HERV activities, the best matches of individual ESTs to
HERVs can also be computed from the learned HMM.
However, we analyzed such matches only for large data
where we use a simpler alternative; see the section BLAST
approach.

We constrain the model complexity by sharing parame-
ters. Each match state corresponds to a nucleotide in a
HERV sequence; the probabilities of emitting the "correct"
HERV nucleotide or a mismatch are the same for all match
states. Other emission and transition parameters are
shared between all the basic blocks (shown in Fig. 1) of all
the sub-HMMs.
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Data
HERV data
We have 3164 individual sequences in our complete
HERV data set. They were detected automatically from the
human genome by the program RetroTector (Sperber,
Blomberg et al, submitted); see the Appendix for details.
RetroTector also annotates the HERVs; it estimates the
structure of the element (presence and locations of LTRs
and viral genes), the age of the element, the intactness of
viral gene reading frames etc. It further classifies the
HERVs into groups, based on sequence similarity to
known representatives of the group. (Some sequences
remain unclassified because they are not similar to the ref-
erence sequence of any group.)

EST data
We use two kinds of EST data: real and simulated.

Real ESTs matching the HERVs were searched from the
dbEST database [10] with BLAST [11]. We first used a cut-
off of E-value < 10-25 in BLAST, and then removed all ESTs
that match the HERVs in both orientations. This was done
to remove suspicious ESTs; we assume that a retrovirus
sequence does not contain long sequence portions that
would match itself when reverse complemented. Then we
used a strict match threshold of E-value < 10-60 to get the
final list of ESTs. We assume that the ESTs retrieved using
the latter E-value threshold are of retroviral origin and do
not match non-retroviral portions of the human genome,
such as human genes. As a simplification, we kept only
the best match for each EST-HERV pair; see the Additional
file 1 for a discussion. Note that the ESTs in dbEST are
measured from different tissues and conditions; in this
paper we discuss average HERV activities, over the tissues

and conditions in their proportions in the database. Tis-
sue and condition-specific activities will be studied later.

For comparison studies we generated artificial ESTs from
a set of HERVs using our HMM model. To make this sim-
ulated EST data as realistic as easily possible, the parame-
ters of the generating HMM were set close to the
parameters learned from real ESTs, and the lengths of the
ESTs were controlled with a heuristic. After generating the
ESTs we treated them following exactly the same proce-
dure as with real data, starting with BLAST to match the
HERVs against the ESTs.

Removing HERVs with suspected non-retroviral content
In some cases our detected HERV sequences may contain
long stretches not annotated as any viral gene or LTR by
RetroTector. It is a matter of choice whether to use the
whole HERV sequence when searching for EST matches,
or to only search with the sequences of each viral gene sep-
arately. Both approaches have their own merits; here we
did the former.

A problem with our approach is that some of the un-
annotated portions might in reality be non-retroviral. To
control this phenomenon, we kept in our HERV set only
those sequences where the real ESTs matched mainly in
the annotated areas of the HERV sequence (85% of EST hit
mass overlaps the viral genes or LTRs); we removed the
other sequences from the HERV set. This removal leaves
out HERVs where the EST matches are mainly in suspected
non-retroviral areas.

Note that our approach enables us to find ESTs where the
match overlaps multiple viral genes, or where the match

The structure of the HMM mixtureFigure 1
The structure of the HMM mixture. The structure of the HMM mixture is shown on the left. Each sub-HMM has the 
structure shown in the middle. The shaded box is the basic block of the sub-HMM and is repeated length-2 times. It is identical 
in all sub-HMMs; only the emission distribution of the match state varies between blocks. The emission is either the nucleotide 
in that position of the HERV sequence or a mismatch. The probabilities for match and mismatch are equal for all blocks. The 
EEMIT-state emits the low-quality end part.
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overlaps both a viral gene and an un-annotated area. This
would not have been possible if ESTs had been searched
with separate sequences for each viral gene.

Three data sets
We used three different data sets in our experiments:

A small well-chosen set
First, we used a small set of 181 sequences from three
HERV groups: HERV-W, HML-2, and HERV-E. The groups
were selected based on previous studies where they were
reported to be active (e.g. [5,12]). We used this subset of
HERVs as an example of HERV data. We estimated the
activities of these HERVs from real EST data using our
model: the dbEST database yielded 1988 ESTs that match
at least one HERV, with on average 118 EST matches per
HERV.

A small simulated set
The same set of 181 HERVs was used to generate simu-
lated EST data. The parameters of the generating HMM
were set equal to those learned from real ESTs above, with
small random deviations introduced. We generated 2500
ESTs, yielding 2012 ESTs that match at least one HERV,
with on average 148 EST matches per HERV. The reason
why some ESTs were discarded is that they have too long
low-quality portions and the longest match in the BLAST
step will then be short compared to the EST length, result-
ing in a large E-value. This simulated data was used to esti-
mate the amount of cross-talk between HERVs, and the
performance of our model.

Full set
Lastly, we estimated the activities for all HERVs in our data
set, using real EST data. We originally had 3164 HERVs
and 44653 real ESTs, with on average 42 EST matches per
HERV. After sequences with suspected non-retroviral por-
tions were removed, 2450 HERVs with 9393 real ESTs
were left.

HMM training time
The computational complexity of the HMM model is rel-
ative to the product of the following: number of itera-
tions, HERVs and ESTs, and total lengths of the HERVs
and the ESTs.

We make the HMM training time reasonable by applying
two shortcuts. (i) Only HERV-EST pairs returned by
BLAST are used (others get zero probability). (ii) We intro-
duce the restriction that the EST can only match the HERV
sequence in the immediate vicinity of the BLAST match.
We tested the effect of the shortcuts on a tiny test data set;
the shortcuts gave (with a very high precision) the same
results as the complete model (results not shown). The
computational complexity is reduced to the product of

number of iterations, number of HERV-EST pairs, and
squared average length of the match area.

BLAST approach
A straightforward alternative to the HMM mixture is to
neglect any cross-talk between the HERVs. Their activities
can then be estimated simply by the number of BLAST
hits. Each EST is counted in favor of its best matching
HERV and the activities of HERVs are given as counts of
ESTs in their favor ("EST hits"). We investigated with sim-
ulated data whether this computationally much more fea-
sible method would be accurate enough; see the section
Simulated data below. A similar BLAST approach was used
in [6] for a tiny data set containing only intact HERV
sequences.

Reliability estimation by resampling
The BLAST approach produces an activity distribution
over HERVs. The reliability of the distribution can be esti-
mated with a bootstrap-like method as follows: The EST
data is resampled with replacement several times (here
10,000 times) and the EST counts are recomputed for each
replicate. See Supplementary Fig. 7 in Additional file 1 for
details. A similar approach could be used to estimate the
reliability of the activity distribution obtained with the
HMM method; activities are reoptimized for each repli-
cate while other parameters are kept fixed.

We compute a threshold value for activity as follows. For
each HERV, we compute the 95% confidence interval for
its activity value from the bootstrap samples for the BLAST
approach. We then find the minimum EST count such
that if the EST count of a HERV is at least this value, then
zero (inactivity) is not included in its confidence interval.
For the full HERV data this threshold value is 5 EST hits;
in our results we call HERVs with at least 5 hits active.

Results and discussion
Simulated data
Sequences within a HERV group are very similar in
sequence, and the differences are larger between groups.
As a result, there is more cross-talk between sequences of
the same group than between groups. We can directly esti-
mate the amount of cross-talk in our simulated data by
measuring how many ESTs that were originally generated
from one HERV match another HERV. We observe more
cross-talk in HML-2 than in the other two groups. HML-2
is more difficult from the point of view of the EST match-
ing problem. See Supplementary Fig. 1 in Additional file
1 for details.

The HMM method performed slightly better than the
BLAST approach. The Kullback-Leibler divergence
between the learned activity distribution and the generat-
ing distribution (ground truth) was 0.045 for the HMM
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method and 0.065 for the BLAST approach; see Fig. 2. As
would be expected, the difference is a bit larger for the
HML-2-elements that have more cross-talk between ele-
ments. The HMM model preserved 26 and BLAST 24 of
the top 30 most active HERVs. The top 30 HERVs cover
about 60% of the generating activity distribution. The
simple BLAST approach is surprisingly good compared to
HMM-based modeling; this suggests that it can be used for
large tests where HMM training would be computation-
ally too costly.

Real data
Overview of HERV activity
We estimated the activities for the large set of 2450
HERVs. To save time the activities were estimated using
the fast BLAST-based approach. About 7% (165) of the
HERVs were active, that is had at least 5 EST hits in their
viral gene or LTR areas. However, 10 of the most active
HERVs explain as much as 60% of the activity distribution
and have over a hundred EST hits. Most of the HERVs are
inactive based on the EST collection used; 1903 HERVs
had no EST matches. We estimated the reliability of the
results with the bootstrap method and set the threshold
for activity so that the confidence interval for active
HERVs does not include zero (see section Reliability esti-
mation by resampling). Thus we can reasonably trust the
active ones to truly be active.

Relationship between HERV structure and activity
There are several kinds of HERVs among the active ones;
old and young, full-length and those missing several viral
genes, HERVs with open reading frames in their genes and

HERVs that do not code for viral proteins, HERVs from
almost all HERV groups. The EST sequences match various
portions of the HERVs. In some cases the ESTs match
(portions of) one or several of the viral genes, in some
cases none. See Fig. 3 and Supplementary Fig. 4 in Addi-
tional file 1 for examples.

We explored the correlation of HERV activity to various
annotations with an exploration set (or "training set"; half
of the HERVs). The observed effects were verified with an
independent test set (the rest of the HERVs).

We had expected that young elements would be more
active and that the age of the element would correlate neg-
atively with activity. For elements that have both LTRs, we
were able to estimate the age of each element from LTR
dissimilarity and check the hypothesis. However, it turns
out active HERVs can also be found among the old ele-
ments. Fig. 4 shows that the age does not correlate with
transcriptional activity. Another hypothesis is that the
presence of an LTR in the beginning of the HERV sequence
could itself explain activity, because the LTR contains tran-
scription factor binding sites for human transcription fac-
tors. The LTR is basically designed to activate the viral
genes. However, this hypothesis cannot explain all activity
since an LTR in the beginning was not detected for almost
half of the active elements.

The data shows, somewhat unexpectedly, that HERVs hav-
ing an env-gene are more often active (13% are active)
than those without an env-gene (only 4% are active). The
difference is significant (Wilcoxon rank sum test p < 10-

Performance evaluation of HERV activity estimation on simulated dataFigure 2
Performance evaluation of HERV activity estimation on simulated data. Activity distributions from simulated data. 
The activities learned by the HMM mixture and the simple BLAST approach are compared to the true generating distribution. 
The HERVs on the x-axis have been sorted according to relative activity in the true generating distribution.
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11). See Supplementary Fig. 3 in Additional file 1 for a
closer view of the difference. The presence or absence of
the other viral genes seems to have no clear effect. This
suggest that expression from env-containing elements has
had selective value. Note, however, that it is not necessar-
ily the env-gene area that is active in the env-containing
HERVs. In fact, in only about a third of the env-containing
HERVs do the EST hits overlap the env-gene to some
extent.

The data suggests that in many cases the retroviral
sequence has been used as a building block for something
else than retroviral proteins, for example human gene
exons, promoters or polyadenylation signals. The evi-
dence for this is: (i) only a few of the active elements have
viral gene open reading frames, and (ii) the ESTs often
match only a short portion of a viral gene (See Fig. 3 and
Supplementary Fig. 4 in Additional file 1). However, for
some HERVs there may be an alternative explanation: the
retroviral transcripts may have RNA-mediated activities.

Active HERV groups
Almost all groups have some active elements. However,
the proportion of active HERVs varies greatly from group
to group, see Fig. 5. For example, in HERV-FB, HML-6,
HML-2 and HERV-I about 20% of the HERVs are active,
whereas in the largest group HERV-H only 2% are active.
Another interesting aspect is the proportion of totally

inactive HERVs. The young HML-2 group has very few of
these. An explanation for this may be the large amount of
cross-talk in HML-2; some of the EST hits for the almost
inactive HERVs (1 to 4 EST hits) may actually be coming
from other active HERVs. On the other hand, in HERV-H
about 90% of the elements are inactive. This is curious
because the group is so large that it must have been able
to actively copy its members at some stage (usually prolif-
eration happens through activation of the moving ele-
ment). There is evidence, however, that the proliferation
of HERV-H has happened with the help of so called "mid-
wife" elements that have copied the inactive HERV-H ele-
ments [13].

The HERV group activity can be summarized by accumu-
lating the EST counts of its members. We compared the
summed activities to earlier expression studies where
group level activities were reported [5,6,12,14,15]. The
groups reported as active were found to be among the
most active also in our studies and, vice versa, the inactive
groups were among the less active groups in our results.
This comparison partly validates our approach. The
summed activities are shown in Supplementary Fig. 6 in
Additional file 1.

Correlation between estimated age and activityFigure 4
Correlation between estimated age and activity. Esti-
mated age vs. activity (EST count) plot for all HERVs. HERVs 
with unknown age are plotted separately on the left (random 
jitter has been added in the age direction). We can see that 
there is no clear correlation between estimated age and 
activity. There is a more detailed figure in the Additional file 
1.
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Cross-talk with undiscovered HERVs
It is not always possible to take all HERVs into the HERV
set, for example because of limited computational time or
because some HERVs are yet undiscovered. This naturally
affects the group activity levels, but also the activities of
the individual HERVs in the HERV set: some ESTs match-
ing the HERVs might match an un-included HERV better.

The possible error can be estimated by comparing the
results estimated with the complete set of HERVs to results
estimated with the smaller subset of 181 HERVs (with real
ESTs for both sets). Optimally, the activity order of the
181 HERVs would remain the same when more HERVs are
introduced to the model. Fig. 6 shows that HERVs that
were detected as most active in the smaller set are still
among the most active in the larger set. However, their
rank order changes slightly between the sets.

Individual active HERVs
In this section we discuss some individual interesting
HERVs that were detected as active by our method. We
analyze in more detail both HERVs that were known to be
active based on previous studies and also interesting
highly active HERVs that were not previously known to be
active. Table 1 summarizes the top 10 most active HERVs
and two other sequences analyzed here.

The most active element is active in an area that is con-
served in chimpanzee, mouse, and rat according to the
UCSC Genome Browser. The ESTs match it in the end of

the pol-gene (Fig. 3). The element is presumably old; it has
12% dissimilar LTRs.

In the second most active element the active area, located
in the the pol-env gene border (Supplementary Fig. 4 in
Additional file 1), is conserved in chimpanzee, mouse, rat,
and chicken. The EST match area is also a predicted gene
area at UCSC. The element is presumably old; it has 15%
dissimilar LTRs. For the above two HERVs, the LTR dissim-
ilarity translates to a time since integration of 30–40 mil-
lion years ago (assuming 0.2% substitution per million
years of a selection neutral sequence for each LTR). For the
second most active HERV this is odd because the split
between human and chicken was considerably earlier. The
reasons for the conservation of the active areas are
unknown.

The sixth active sequence acts as the ending point for a
human gene. The sequence is presumably an old element
(LTRs 19% dissimilar). The ESTs match the LTR in the
beginning of the sequence (Supplementary Fig. 4 in Addi-
tional file 1). UCSC Genome Browser reveals that the LTR
acts as the untranslated region at the end of a human gene,
YY1AP1. This is natural, because the LTRs contain the
polyadenylation signal sequence also used by the viral
genes themselves.

The seventh active sequence has EST hits along its whole
sequence (Supplementary Fig. 4 in Additional file 1).
UCSC Genome Browser shows a gene prediction and

Proportion of active HERVs in the groupsFigure 5
Proportion of active HERVs in the groups. The proportion of active HERVs in each group is presented with a stacked 
area plot. The two darkest gray areas together show the proportion of active HERVs in that group, the lightest gray area 
shows the proportion of inactive HERVs. The widths of the bars are proportional to the size of the HERV group. We can see 
that the proportion of active and inactive HERVs varies a lot from group to group.
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mRNAs mapped to this location. This sequence is a poten-
tial candidate for a retrovirally active HERV. However, its
viral gene reading frames are not open.

Both syncytin genes are detected as active. Syncytins are
human genes derived from retroviral env-genes that have
fusogenic functions in the placenta. 40 ESTs match syncy-
tin HERV on all viral genes, not only on the env-gene. Syn-
cytin-2 HERV has 20 EST matches that all overlap with the
env-gene as would be expected. See Supplementary Fig. 5
in Additional file 1 for EST hit histograms.

The examples above show that our method is able to give
detailed information about individual HERVs. In addition
to these examples, the data includes several potentially
interesting HERVs that merit further study.

Activity of group reference sequences
HERV activity is commonly studied for groups instead of
individual HERVs; this is sometimes done by measuring
the activity of hand-picked reference sequences for the
groups. It is striking that when we looked at the activities
of three reference sequences two of them were not the

most active elements within the group (HML-2 and
HERV-E). The reference sequence of HERV-W (subgroup
of ERV-9 [16]) was the most active element in the group.
All these reference sequences were active. These results
suggests that the more active HERVs could be better probe
sequences in expression studies.

Effect of leaving out HERVs with suspected non-retroviral sequence 
portions
As mentioned in the Data section, we removed from our
HERV data those sequences where most of the EST
matches were to an un-annotated portion of the sequence,
because such matches might be signs of non-retroviral
activity. What if we had not removed any sequences from
the HERV set? Briefly, the main conclusions would not
change, but the activity distribution of the HERV groups
would show large changes. We believe that removing the
sequences with suspected non-retroviral activity made our
HERV set more relevant for analysis of HERV activity, but
note that in some of the removed sequences, the un-anno-
tated portions could on close inspection turn out to be ret-
roviral after all. See the Additional file 1 for more details.

Conclusion
We have introduced a generative model-based method
that estimates the activities of individual HERVs rather
than only HERV groups. Such detailed analysis is vital for
understanding the underlying control mechanisms of
HERV activation. HERVs reported as active with our
method can later be verified with laboratory methods; by
contrast, exhaustive search of active HERVs with labora-
tory methods would be too expensive.

In simulated data both the HMM mixture and a heuristic
BLAST-based alternative were able to estimate underlying
activities fairly well: the most active HERVs in the ground
truth were among the most active in the results of both
methods. This justifies the use of the computationally
simpler alternative instead of the rigorous probabilistic
method.

We were able to get a detailed picture of HERV activity in
real data. Below we briefly summarize our main results so
far.

In almost all HERV groups we detected one or several new
active HERVs that need further biological analysis; alto-
gether 165 HERVs. Overall, only 7% of the elements were
active and more than two thirds of the HERVs were com-
pletely inactive. Various kinds of HERVs are included in
the set of active HERVs (young, old, full-length, non-full-
length). HERVs with the env-gene were observed to be
active more often than sequences without env. On the
other hand, no clear relation between age of the element
and activity was visible.

Effect of cross-talk with undiscovered HERVsFigure 6
Effect of cross-talk with undiscovered HERVs. Com-
parison between results from a small subset of 181 HERVs 
(learned with the HMM mixture model) and results from the 
complete set of 2450 HERVs (learned using the BLAST 
approach). The scale of the figure is such that the relative 
activities for the HERVs sum up to 1 in both x and y dimen-
sions.
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The data suggests that in many cases the retroviral
sequence has been used as a building block for something
else than retroviral proteins, for example human gene
exons. However, for some HERVs there may be an alterna-
tive explanation: the retroviral transcripts may have RNA-
mediated activities. We need to study the active elements
more closely to discover the possible functions of retrovi-
ral transcripts.

Our results are in accordance with earlier results on HERV
activation. We observe activity/inactivity of the same
groups as in earlier publications. Furthermore, we detect
the two well known examples of active HERVs, the syncytin
genes, as active. These observations support the claim that
we can truly find real activities with our approach.

The generally used reference sequences (the first pub-
lished sequence which is used to define a group) of the
groups were not always the most active, which suggests
that the more active HERVs could be better probe
sequences in expression studies.

A possible future application is to study the interplay
between the definition of the HERV groups and their
activity. This can be done interactively, because the activi-
ties are computed in silico.

The proposed method is general; it can be used to com-
pare HERV activities in different conditions, or to study
endogenous retroviruses in other organisms, or to include
other kinds of transposable elements.

Authors' contributions
MO, JP and SK jointly designed the study and developed
the HMM model. JB gave the initial idea of studying HERV
expression and provided the HERV data. MO imple-
mented the HMM model, collected the EST data, ran all
the experiments and conducted most of the analysis of the
results. JP, JB and SK took part in analyzing the results. All
authors participated in writing the manuscript. All
authors read and approved the final manuscript.

Appendix
RetroTector
The program package RetroTector (Sperber, Blomberg et
al, submitted) is an expert system for identification of
potential LTRs and ERVs. It rests on known data about
conserved motifs and distances between them, combining
hits by the motifs into chains fulfilling the distance con-
straints. Chains are assigned a score depending on
number and goodness of hits, and a genus depending on
the genus affiliation of the motifs. Chains with a good
enough score are further analyzed, attempting to recon-
struct the coded proteins, improving the LTRs etc.

HERV-L and HERV-S are underrepresented in the Retro-
Tector data set. This is known by comparison of RetroTec-
tor data with RepeatMasker output and HERVd for the
human genome hg15 assembly (Blomberg and Sperber,
unpublished).

Table 1: Selected highly active HERVs.

rank chr start end subgenes group ESTs hit area

1 5 52510446 52525065 LTRgagpropolLTR HERV-48 2981 (short) pol
2 2 98059068 98067632 LTRgagpropolenvLTR ERV-9 1182 pol, env
3 5 180072600 180059089 LTRgagLTR UNCL. 373 gag
4 2 62302244 62290382 LTRpropolLTR UNCL. 310 pol
5 21 37885010 37876409 LTRgagpol HERV-H 176 (short) pol
6 1 152846189 152836852 LTRgagpolenvLTR MER-41 148 5' LTR
7 16 25125181 25118816 gagpropolenv HERV-E 125 overall
8 3 8690554 8695505 gagpropol HERV-E 113 pol
9 6 123050520 123043680 gagpropolenv HERV-E 109 (short) pol
10 14 23890064 23879831 LTRgagpol HERV-H 109 pol

31 7 91719541 91709354 LTRgagpropolenvLTR ERV-9 40 all genes
62 6 11220436 11211151 LTRgagpropolenvLTR HERV-FRD 20 env

Details about the 10 most active HERVs and the two HERVs that code for the syncytin proteins. The HERVs are sorted in a decreasing activity 
order, rank is the position in this ordering. "Chr", "start" and "end" tell the chromosome and sequence start and end positions of the HERV in this 
chromosome (in the July 2003 version (hg16) of the human genome). "Subgenes" describes the structure and "group" the HERV group of the HERV. 
"ESTs" is the count of EST matches to the HERV. "Hit area" briefly describes where the ESTs match the HERV. The HERV with rank 31 is syncytin 
and the HERV with rank 62 is syncytin-2.
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