METHODS FOR ESTIMATING PEAK DISCHARGE AND FLOOD BOUNDARIES OF STREAMS IN UTAH By Blakemore E. Thomas and K. L. Lindskov

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 83-4129

Prepared in cooperation with the U.S. BUREAU OF LAND MANAGEMENT

Salt Lake City, Utah

1983

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 1016 Administration Building 1745 West 1700 South Salt Lake City, Utah 84104 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 234-5888)

CONTENTS

Page

Glossary	۷
Abstract	1
Introduction	1
Classification of methods used in flood mapping	2
Detailed method	3
Historical method	4
Analytical method	4
Analytical methodPhysiographic method	4
Reconnaissance method	5
Classification of streams for flood-hazard definition	5
Category 1Streams in mountains	6
Category 2Streams on pediments or alluvial fans	6
Category 3Streams in areas of low-surface relief	6
Category 4Streams in alluvial valleys	6 7
Use of flood-mapping methods	
Description of methods for estimating T-year discharges and depths	7
Gaged sites	9
Sites near gaged sites on the same stream	10
Ungaged sites	11
Flood regions	11
Northern Mountains High Elevation Region	13
Northern Mountains Low Elevation Region	14
Uinta Basin Region	14
High Plateaus Region	15
Low Plateaus Region	16
Great Basin Region	16
High Elevation Subregion	17
Low Elevation Subregion	17
Estimating 500-year peak discharges and flood depths	27
Limitations of regression equations	27
Application of methods	29
Sites near gaged sites on the same stream	29
Example 1Flood frequency near a gaged site	29
Ungaged sites	30
Ungaged sites Procedure 1Computation of flood characteristics for	
sites where regression equations for one region are	
used	31
Example 2Use of the regression equations	31
Procedure 2Averaging procedure for sites that are near	
flood-region boundaries	31
Example 3Use of regression equations for two regions	
and averaging	32
and averaging Delineation of flood-prone areas using the physiographic method	33
Analytical development of regression equations	36
Station flood-frequency relations	38
Computation of flood depth	38
Regression analysis	38
Previous flood mapping	39
	43
•	45
	10

ILLUSTRATIONS

Page

Figure	1.	Map showing flood regions in Utah	12
	2.	Graph showing peak discharge versus drainage area for desert streams in western Utah and eastern Nevada	26
	3.	Map showing elevation of stream at zero flow, drainage areas, and boundaries of area inundated by the 100-year flood for a part of Cottonwood Wash	34
	4.	Graph showing zero-flow and 100-year flood profiles for a part of Cottonwood Wash	35
5	-7.	Maps showing:	
		5. Location of gaging stations	37
		 Location of U.S. Soil Conservation Service watershed projects 	40
		 Flood-prone area maps available from the U.S. Geological Survey, Water Resources Division 	42
		TABLES	
Table 1.		plicable flood-mapping methods for the different ategories of streams	8
2-7.		Northern Mountains Low Elevation Region Uinta Basin Region High Plateaus Region Low Plateaus Region	18 19 20 21 22 23
8.		tios for predicting 500-year peak discharge and flood epth	28
9.	Rai	nge of basin characteristics used in regression equations	28
10.		mmary of previous detailed flood mapping by the U.S. Army orps of Engineers, Sacramento District, Sacramento, Calif	48
11.	A a	st of communities participating with the Federal Insurance dministration in the National Flood Insurance Program s of March 31, 1982, and those not in program but which ave special flood-hazard areas	50
12.		ood characteristics and selected basin characteristics for aging stations	56

Bankfull stage.--The stage or depth at which a stream first overflows its natural banks.

<u>Control</u>.--The term "control" (or control of flow), as used in this report, refers to the relation between discharge and depth of flow. Natural controls in an open channel are of two types, channel and section. Channel control exists when the physical characteristics of a reach of channel downstream from the site of interest determines the relation between discharge and depth at the site. Section control exists when the physical characteristics of a single cross section of a stream determines the relation between discharge and depth.

Elevation.--Height of land or water surface as related to the National Geodetic Vertical Datum of 1929 (NGVD of 1929).

Flood depth.--A term used herein to represent a vertical distance above a line connecting points of zero flow along a reach of channel.

Flood plain.--The flat area adjoining a stream channel constructed by the stream in the present climate and overflowed at times of high discharge.

Gaging station.--A specific site on a stream or other body of water where systematic observations of gage height, discharge, or water-quality parameters (or any combination of these) are obtained.

Log-Pearson Type III distribution.--A probability distribution used in flood-frequency analysis, which is described by three parameters; mean, standard deviation, and coefficient of skewness of the logarithms of the sample observations.

Mixed-population flood area.--The transition zone between a high altitude mountain area and a much flatter plain or plateau area where floods are caused by snowmelt, rainfall, or a combination of both.

Multiple-regression analysis.--A statistical technique where a relation is derived between a dependent variable and one or more independent variables. The result is usually expressed as a regression equation.

Peak discharge.--A momentary maximum rate of streamflow.

Recurrence interval.--The average interval of time, in years, within which a given flood will be equaled or exceeded once.

<u>Residual</u>.--The difference between the measured value of an observation and the corresponding fitted value obtained by use of the fitted regression equation.

Stage.--The height of a water surface above an established datum plane; also gage height.

Stage-discharge relation (rating curve).--A graph showing the relation between gage height and the volume of water flowing in a channel.

<u>Stage of zero flow.</u>--A term used herein to denote the depth above a datum plane or an elevation at a cross section on a stream at which the stream ceases to flow.

Standard error of estimate (in percent).--The range of error of a regression estimate to be expected about two-thirds of the time. It is a measure of how well the observed data agree with the regression equation and is computed from the distribution of residuals about the regression line.

<u>T-year depth.</u>--For this report, the T-year depth is the water-surface stage or elevation for the T-year discharge minus the channel-bottom stage or elevation at zero flow.

<u>T-year discharge.</u>--The peak-flow rate, in cubic feet per second, that will be equaled or exceeded, on an average, once in T-years.

Water-surface profile.--A graph of elevation of the water surface of a stream, plotted as ordinate, against distance, measured in the upstream direction, plotted as abscissa.

CONVERSION FACTORS

Most values in this report are given in inch-pound units. The conversion factors are shown to obtain metric equivalents to four significant figures.

Multiply	<u>By</u>	<u>To obtain</u>
Cubic foot per second (ft ³ /s) Foot (ft)	0.02832	Cubic meter per second (m ³ /s)
Foot (ft)	0.3048	Meter (m)
Foot per mile (ft/mi)	0.1894	Meter per kilometer (m/km)
Inch (in.)	25.40	Millimeter (mm)
	2.540	Centimeter (cm)
Mile (mi)	1.609	Kilometer (km)
Square foot (ft_{2}^{2})	0.0929	Square meter (m ²)
Mile (mi) Square foot (ft ²) Square mile (mi ²)	2.590	Square meter (m ²) Square kilometer (km ²)

METHODS FOR ESTIMATING PEAK DISCHARGE AND

FLOOD BOUNDARIES OF STREAMS IN UTAH

By Blakemore E. Thomas and K. L. Lindskov

ABSTRACT

Equations for estimating 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges and flood depths at ungaged sites in Utah were developed using multiple-regression techniques. Ratios of 500- to 100-year values also were determined. The peak-discharge equations are applicable to unregulated streams and the flood-depth equations are applicable to unregulated flow in natural stream channels. The flood-depth information can be used to approximate flood-prone areas. Drainage area and mean basin elevation are the two basin characteristics needed to use these equations. The standard error of estimate ranges from 38 to 74 percent for the 100-year peak discharge and from 23 to 33 percent for the 100-year flood depth.

Five different flood-mapping methods are described. Streams are classified into four categories as a basis for selecting a flood-mapping method. Procedures for transferring flood depths obtained from the regression equations to a flood-boundary map are outlined. Also, previous detailed flood mapping by government agencies and consultants is summarized to assist the user in quality control and to minimize duplication of effort.

Methods are described for transferring flood-frequency data from gaged to ungaged sites on the same stream. Peak-discharge and flood-depth frequency relations and selected basin-characteristics data, updated through 1980 water year, are tabulated for more than 300 gaging stations in Utah and adjoining states. In addition, weighted estimates of peak-discharge relations based on the station data and the regression estimates are provided for each gaging station used in the regression analysis.

INTRODUCTION

This report contains methods for estimating peak discharges and flood boundaries of streams in Utah. The peak-discharge information can be used for a wide variety of projects ranging from the design of bridges, culverts, dams, and embankments to detailed flood-plain and flood-insurance studies based on complex hydraulic characteristics of the stream and valley. The equations for estimating flood depth can be used for a simple, rapid approximation of floodprone areas.

The equations for estimating peak discharge and flood depth were developed using multiple-regression techniques. Peak-discharge records at 282 gaging stations on unregulated streams throughout Utah and adjoining states were used to define the flood-frequency curve for each station. Regional equations were developed by relating estimates of selected frequency peak discharges and depths at the gaging stations to basin and climatic characteristics. Five general methods of flood mapping are discussed. Step-by-step guidelines on how to use the physiographic method, a simple and rapid method of flood mapping, are presented. The other four methods are only briefly explained. The reader is referred to Burkham (1977, 1978) for a detailed description of the advantages and limitations of four of the five general methods of flood mapping.

This report was prepared by the U.S. Geological Survey in cooperation with the U.S. Bureau of Land Management (BLM). The increasing amount of development of energy resources on BLM-administered lands in Utah has created a need for a quick and inexpensive methodology to determine flood hazards. This report was prepared to provide the BLM with a simple and inexpensive (physiographic method) outlining flood-prone method for areas. The appropriateness of this simplified method should be judged by how it satisfies the objectives of the user. The physiographic method should be adequate for many locations in Utah. In some areas, however, where expensive structures or human life are involved, a more sophisticated analysis (such as the detailed method) may be required. In addition to the flood-plain mapping procedures, a summary of previous flood mapping in Utah by government agencies and consultants is included herein to guide the reader to more detailed mapping and to minimize duplication of effort.

The U.S. Geological Survey has published several reports concerning the magnitude and frequency of floods in Utah. Woolley (1946) and Butler and Marsell (1972) described the characteristics of cloudburst floods in Utah. U.S. Geological Survey (1957), Whitaker (1969), Butler and Mundorff (1970), and Roeske, Cooley, and Aldridge (1978) described large infrequent floods that have occurred in Utah. Berwick (1962), Thomas, Broom, and Cummans (1963), Butler, Reid, and Berwick (1966), Patterson and Somers (1966), Butler and Cruff (1971), Whitaker (1971), Fields (1975), and Eychaner (1976) provided methods for estimating the magnitude and frequency of floods at ungaged sites. The first four reports used the index-flood method of estimating peak discharges. The latter four reports used multiple-regression techniques to develop equations for estimating peak discharges. The methods presented in this report should provide more reliable estimates of peak discharge because more years of record and more gaging stations are included in the analysis.

CLASSIFICATION OF METHODS USED IN FLOOD MAPPING

Geological Survey, (U.S. Sacramento, California, written Burkham commun., 1981), in work on flood-hazard areas in the Great Basin, grouped flood-mapping methods into five general categories--detailed, historical, analytical, physiographic, and reconnaissance. The reader is referred to Burkham (1977, 1978) for a detailed description of the limitations, accuracy, and relative expense of four of these five methods. The reconnaissance method described in detail by Wolman (1971). This report uses the same is classification scheme and only brief descriptions of the five flood-mapping methods are given.

Four steps are usually involved in the mapping of flood-prone areas. They are:

- 1. Determining the T-year discharge. (See glossary.)
- 2. Determining the depth of water associated with the T-year discharge.
- 3. Determining the water-surface profile for the T-year discharge.
- 4. Developing a flood-boundary map. This requires the transfer of elevations from a water-surface profile to a topographic map.

The T-year discharge can be obtained by a number of different methods (Riggs, 1973), which are independent of the flood-mapping method. Methods are presented later in this report for determining T-year discharges for streams in Utah. The five different flood-mapping methods include some variation of the four flood-mapping steps to arrive at the flood-boundary map. The discussion for each method will relate to the above four steps.

Detailed Method

The detailed method, commonly called step-backwater, is applicable to a wide range of hydraulic and topographic conditions. The stream channel must have fairly stable boundaries. This means that the stream-channel boundaries must have a low probability of change that would significantly affect the hydraulic characteristics of a T-year discharge.

The detailed method is probably the most accurate of all five methods and is the most expensive to use. Detailed field surveys of channel cross sections and channel and valley elevations are needed, either by ground surveys or by aerial photography combined with ground control. All four flood-mapping steps are used in this method.

The T-year depths and water-surface profile are computed using a combination of Bernoulli's energy equation and the Manning equation (Chow, 1959, p. 249-296). A number of computer programs have been developed to make the computations required for determining water-surface profiles. Three commonly used computer programs are HEC-2, developed by the U.S. Army Corps of Engineers (USCE) (1973); E-431, developed by the U.S. Geological Survey (Shearman, 1976); and WSP-2, developed by the U.S. Soil Conservation Service (1976).

A flood-boundary map is developed by transferring the water-surface elevations from a profile to a topographic map. The elevations can be transferred directly from field surveys, or from field surveys in conjunction with aerial photographs, or solely on the basis of elevation contours on a topographic map. Field surveys or field surveys in conjunction with aerial photographs can be used with a high degree of accuracy. The accuracy of contours and the contour interval must be considered when evaluating the accuracy of a flood-boundary map determined using elevation contours on a topographic map. The standard error of ground elevations based on contours on topographic maps is assumed to be about one-fourth of the contour interval (Burkham, 1978, p. 517-518). Flood-boundary maps prepared by the U.S. Army Corps of Engineers are examples of maps developed by the detailed method (see table 10 at back of report).

Historical Method

The historical method can be used for a wide range of hydraulic and topographic conditions. Data needed for this method are (1) the peak discharge and recurrence interval of a historical flood, (2) a water-surface profile for this flood, and (3) a T-year discharge. The boundaries of the historical flood are adjusted to the boundaries of a T-year discharge by using one of the several flow equations (Manning, Chezy, and so forth) or using a simple ratio. The historical method can be very accurate; however, very few flood profiles and boundaries of major historical floods have been determined for Utah streams.

Analytical Method

The analytical method can be used for a wide range of hydraulic and topographic conditions. The stream channel must have fairly stable boundaries. This method, developed by Burkham (1977), is similar to the detailed method. It involves the same four steps for mapping flood-prone areas, but the T-year depths and water-surface profile are determined by a different procedure.

The analytical method is based on the assumption that channel control conditions exist during a T-year discharge and the relation between depth and discharge can be adequately represented as a straight line on logarithmic graph paper. An equation representing this relation (Manning equation) is used to make estimates of the T-year depth. The necessary data are the T-year discharge and a small amount of field information. A channel shape factor, channel width at a reference depth, channel-bottom slope or water-surface slope, and Mannings roughness factor, n, must be determined at representative subreaches in the reach of interest. Step-by-step guidelines on how to use the analytical method are provided in Burkham (1977). This method is less accurate than the detailed method and less expensive.

Physiographic Method

The physiographic method is based on work by Leopold and Maddock (1953) who showed that the channel geometry of a stream is a function of the discharge of water and sediment, which, in turn is a function of the physical and climatic characteristics of the drainage basin. The direct basinwide relationship between depth and discharge is based on the assumption that discharge is of equal frequency of occurrence at all sites within the basin.

The physiographic method can be used for natural stream channels having stable boundaries. It cannot be used where local on-site conditions such as bridges, culverts, and other modified channels affect the natural depthdischarge relation. This method is useful for a simple, rapid approximation of flood-prone areas. The physiographic method consists of three steps: Determining T-year depths, developing a T-year profile, and developing a flood-boundary map. T-year depths are estimated from regional regression equations which are developed by relating T-year depths determined at gaging stations to basin and climatic characteristics. An explanation of how the T-year depths are developed into a flood profile and then into a flood-boundary map is given later in this report.

Reconnaissance Method

The reconnaissance method is, as the name implies, a fairly rough method of delineating flood-prone areas. The hydrologist uses results of a general examination of the stream of interest as a basis for delineating on a topographic map the boundaries of a rare flood. The boundaries are delineated based on geomorphic and hydraulic principles. No cross sections are surveyed and no formal hydraulic computations are made. The user of this method needs experience in related fields of geomorphology. considerable several hydraulics, soil science, and so forth. Drawbacks to the method are (1) the relation between the boundaries of the flood and a recurrence interval is not established, and (2) values for the range of accuracy of the results cannot be However, this procedure may be the most logical for delineating flood given. boundaries on surfaces where stream-channel boundaries are very unstable (such as alluvial fans, pediments, and flat surfaces of unconsolidated material), and on streams where the channel becomes discontinuous. Most of the maps for communities participating in the National Flood Insurance Program were developed by this method (see table 11 at back of report).

CLASSIFICATION OF STREAMS FOR FLOOD-HAZARD DEFINITION

A stream is classified based on the topography of the area through which it is flowing. The topography will directly influence the type of flood hazards that may occur. Also, the accuracy and reliability of a flood-mapping method is dependent on the topography adjacent to the stream channel.

Burkham (U.S. Geological Survey, Sacramento, California, written commun., 1981) provided a detailed description of flood-hazard areas in the Great Basin. He described the different flood hazards and the merits of each flood-mapping method for streams in mountains, alluvial fans, alluvial valleys, and playas. Burkham's discussion about flood hazards in the Great Basin is applicable to Utah with a few minor differences due to the different physiography of the Colorado River Basin in Utah. About one-half of Utah is in the Great Basin and one-half is in the Colorado River Basin.

The Great Basin is in the Basin and Range physiographic province described by Fenneman (1931). The Great Basin includes a series of northwardtrending fault-block mountain ranges separated by alluvium-filled valleys. Alluvial fans and pediments are widespread and are the transition zone between the mountains and valleys.

Most of the Colorado River Basin in Utah includes the Colorado Plateaus physiographic province and the Uinta Mountains, which are part of the Middle Rocky Mountain physiographic province (Fenneman, 1931). The east-west trending Uinta Mountains are a high glaciated mountain range located on the northern boundary of the Colorado Plateau. The Colorado Plateaus physiographic province is characterized by high plateaus modified by various degrees of erosion. Topography in this region is extremely varied. Major land forms in the region are plains, plateaus, pediments, and laccolith-formed mountains. Drainage systems generally are deeply incised.

The topography of the Colorado River Basin, the Great Basin, and the Uinta Mountains is incorporated into the following stream classification scheme. The stream classification can be used to determine which flood-mapping methods are most applicable.

Category 1--Streams in Mountains

Streams in mountains are usually in V-shaped valleys with gentle to steep sideslopes that extend to the low-water channel. This category also includes streams in canyonland areas in the Colorado River Basin where stream channels are deeply incised into the surrounding bedrock. The flood plain is very narrow or nonexistent. Surficial material is bedrock or colluvium. Stream channels generally are very stable.

Category 2--Streams on Pediments or Alluvial Fans

Pediments and alluvial fans occur just downstream from mountain or Longitudinal slopes range from 2 to 20 percent, with slopes plateau fronts. on alluvial fans occasionally reaching 30 percent. A pediment is an erosional surface cut on rock and usually covered with a thin layer of alluvium. Alluvial fans are made up of material deposited by streams emerging from mountains onto a lower surface of flatter gradient. The surface relief of the land perpendicular to the channel is fairly flat and the flood plain can be Surficial material is alluvium (boulders, gravel, and sand). verv wide. Larger streams may be cut through the fan material down into bedrock. Stream channels usually are unstable on both alluvial fans and pediments. Because of the depositional nature of alluvial fans, channels generally are more unstable These two landforms, however, tend to on alluvial fans than on pediments. grade into each other and it is sometimes difficult to distinguish one from the other without detailed geologic mapping. Therefore, they are grouped together for this classification.

Category 3--Streams in Areas of Low-Surface Relief

The areas of low-surface relief include land forms with slopes of less than 10 percent. This includes the top surfaces of plateaus and plains. The surface relief of the land perpendicular to the channel is fairly flat, stream meanders are often well developed, and the flood plain can be very wide. Surficial material is unconsolidated weathered rock or bedrock. Channels cut into unconsolidated material usually are unstable and channels cut into bedrock are stable.

Category 4--Streams in Alluvial Valleys

Alluvial valleys exist throughout Utah. The stream channel is cut into material that has been deposited by the stream. Typically, an alluvial valley will have a flat valley bordered by hillslopes on each side. The flood plain can be tens of feet to several miles wide. Surficial material is alluvium. Channel stability can range from very unstable to stable. In categories 2, 3, and 4, the stream channel needs to be classified as incised or discontinuous. A stream channel that becomes discontinuous needs special treatment when determining the flood boundaries. Most flood-mapping methods are not applicable to discontinuous stream channels. For categories 2 and 3, the stream needs to be classified as local runoff (a stream that begins on the pediment, alluvial fan, or plain) or as a stream originating in the mountains or high plateaus and flowing through the pediment, alluvial fan, or plain. Channel boundaries are more unstable on a local runoff stream than on a stream that originates in the mountains. This characteristic can be used in evaluating the reliability of a flood-mapping method for streams on these surfaces.

USE OF FLOOD-MAPPING METHODS

The choice of the appropriate flood-mapping method to use for a particular stream depends on the objectives of the user, the desired accuracy, the cost, the time available, the experience of the user, and the topography of the stream valley. Burkham (1978) and Wolman (1971) describe the factors involved in selecting the best mapping method for a particular situation. Only the topography factor is discussed in this report.

The four stream classifications and the flood-mapping methods that are applicable to each stream category are shown in table 1. The accuracy and reliability of each method as it applies to the stream classification is rated on a relative scale of poor-fair-good.

Only the reconnaissance method is applicable to a discontinuous stream channel regardless of the category under which the stream is listed. The accuracy and reliability of the results of the reconnaissance method for discontinuous channels depends on the knowledge and experience of the user.

Category 2 (streams on pediments or alluvial fans) and category 3 (streams in areas of low-surface relief) are grouped together in this table. These categories are similar in that stream channels usually are unstable and can range from very unstable to stable. Thus, flood-plain area estimates on these surfaces are more uncertain than in mountains or alluvial valleys. Generally, alluvial fans will have the most unstable channels followed by pediments and then plains (low-surface relief). This characteristic needs to be considered in determining which flood-mapping method to use and in evaluating its reliability.

DESCRIPTION OF METHODS FOR ESTIMATING T-YEAR DISCHARGES AND DEPTHS

This section describes the methods that can be used to estimate T-year discharges and depths for streams in Utah. The T-year discharges can be used in the detailed, historical, and analytical flood-mapping methods. The T-year depths are for use in the physiographic method and can be used as a reference depth in the analytical method. These methods are for use at a study site which is defined for this report as a short reach of a stream. The study site will fit into one of three categories: at a gaged site, a site near a gaged site on the same stream, or an ungaged site.

Category	Description	Applicable methods	Accuracy and reliability
1	Streams in mountains	Detailed	Good
		Historical	Do.
		Analytical	Do.
		Physiographic	Fair to good
		Reconnaissance	Poor to good ¹
2,3	Streams on pediments or alluvial	Detailed	Poor to good ²
	fans or in areas of low-surface	Historical	Do.
	relief (entrenched streams origi-	Analytical	Do.
	nating in mountains)	Physiographic	Poor to fair ²
		Reconnaissance	Poor to good ¹
2,3	Streams on pediments or alluvial	Detailed	Poor
,	fans or in areas of low-surface	Historical	Do.
	relief (local runoff)	Analytical	Do.
		Reconnaissance	Poor to good ¹
4	Streams in alluvial valleys	Detailed	Good
	· · · · · ·	Historical	Do.
		Analytical	Do.
		Physiographic	Fair
		Reconnaissance	Poor to good ¹

Table 1.--Applicable flood-mapping methods for the different categories of streams

 ¹ Depends on the knowledge and experience of the user.
 ² Depends on how deep stream is incised and if the channel is cut into unconsolidated material or bedrock.

Gaged Sites

Peak-discharge and flood-depth data for gaged sites are listed in table 12 at the back of the report. The top line in the flood-characteristics section of the table is the station flood-frequency data. The bottom line is a weighted flood-frequency estimate based on the station flood frequency and the regional regression estimate of flood frequency at the gaged site. The regional regression equations are described on pages 11-23. The weighted estimate is considered to be the best estimate of flood frequency at a gaged site on an unregulated stream.

The last section of table 12 (p. 76-77) presents flood- and basincharacteristics data for gaging stations not used in the regression analysis. The annual peak discharges for most of these stations are materially affected by diversions or regulation. The flood-frequency relations apply to the streams for the conditions (volume of diversions, reservoir releases, and so forth) that were present during the period of record used to define the floodfrequency relation. If there are major changes in the amount of diversions or reservoir releases, then the flood-frequency relation given here may not be representative of future flows.

Weighted estimates are used for unregulated streams to reduce the timesampling error that may occur in a station flood-frequency estimate. This time-sampling error is the error associated with the length of record for a station. A station with a short period of record may have a large timesampling error because its record may not be representative of the actual flood history of the site which would be based on a large number of years. The observed period of record at a station has the possibility of falling within a wet or dry climatic cycle. The weighted estimate of flood frequency should be a better indicator of the true values because the regression estimate is an average of the flood histories of many gaging stations over a long period of time.

The weighting procedure used in this report is described by Sauer (1974). This procedure weights the station flood frequency and the regression estimate of flood frequency by the years of record at the station and the equivalent years of record of the regression estimate. The flood-frequency data for a station with a long period of record will be given greater weight than that for a station with a short period of record. The following equation is used:

$$Q_{T(w)} = \frac{Q_{T(s)}(N) + Q_{T(r)}(E)}{N + E}$$

where

Q_{T(w)} = the weighted discharge, in cubic feet per second, for recurrence interval T-years;

- Q_{T(s)} = the station value of the flood, in cubic feet per second, for recurrence interval T-years;
- Q_{T(r)} = the regression value of the flood, in cubic feet per second, for recurrence interval T-years;
- N = the number of years of station data used to compute $Q_{T(s)}$; and
- E = the equivalent years of record for $Q_{T(r)}$.

The U.S. Water Resources Council (1981, p. 21) recommends using 10 years of equivalent years of record when accuracy appraisals of the regression equations are not made. Accuracy appraisals were made following a procedure described in Hardison (1971); however, the resulting values varied considerably throughout the State. Because of this variability and the many assumptions and possible errors in these accuracy appraisals, it was decided to use a value of 10 years for all the regression estimates.

Sites Near Gaged Sites on the Same Stream

Peak discharges can be computed by the following equation:

$Q_{T(u)} = Q_{T(g)} (A_u/A_g)^X$

where

Q_{T(u)} = peak discharge, in cubic feet per second, at ungaged site for recurrence interval T-years;

- Q_{T(g)} = peak discharge, in cubic feet per second, at gaged site for recurrence interval T-years;
- A₁₁ = drainage area, in square miles, at ungaged site;

x = exponent for each flood region as follows:

Flood region

Exponent, x

Northern Mountains High Elevation	0.9
Northern Mountains Low Elevation	.7
Uinta Basin	.4
High Plateaus	.7
Low Plateaus	.4
Great Basin High Elevation	.7

The exponent was determined by regressing the six T-year discharges (T= 2, 5, 10, 25, 50, 100 years) on drainage area for each flood region and taking the average of the drainage area exponent ($Q_T = a \cdot Area^X$) for the six equations. The above equation is considered applicable for ungaged sites where the drainage area ratio is between 0.75 and 1.5. The same procedure may be used for T-year depths. Simply change the exponent x to 0.25 and replace Q with depth. The exponent of drainage area in the flood-depth equations varied little between the flood regions, thus for simplicity an average of 0.25 is recommended. In addition to the ratio method for sites near gaged sites, if a study site is between two gages, the peak discharge or flood depth may be estimated by interpolation between values for the two gages with allowance for major tributaries.

Ungaged Sites

This method consists of a series of regression equations relating peak discharge and flood depth to basin characteristics. A discussion of the multiple-regression analysis is given in the "Analytical development of regression equations" section of this report. The resulting equations have the following form:

$$Y_{T} = a(X_{1})^{b_{1}} (X_{2})^{b_{2}}$$

where

Y_T = flood characteristic, either peak discharge or flood depth for recurrence interval T-years;

 X_1, X_2 = basin characteristics;

a = regression constant; and

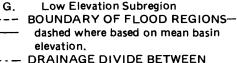
 b_1, b_2 = regression coefficients.

Two basin characteristics (independent variables) are needed to use the regression equations in this report. These basin characteristics should be measured from the largest scale topographic map available. The characteristics are:

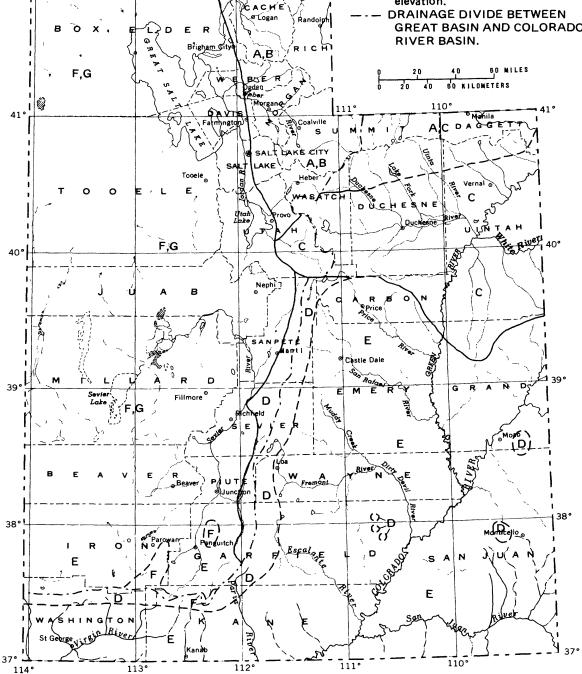
- 1. A is drainage area, in square miles--It is determined by planimetering the contributing drainage area on a topographic map.
- 2. E is mean basin elevation, in thousands of feet--The mean basin elevation is determined using a transparent grid overlay on a topographic map. The elevations of a minimum of 20 equally spaced points are determined and the average of the points is taken.

Flood Regions

One regression model for Utah does not adequately explain the variation in flood characteristics throughout the State. The State was, therefore, divided into seven different flood regions (fig. 1) and separate regression equations were developed for six of these regions. This removes some of variation in the system not explained by independent variables readily available on existing maps and thus makes the subsequent equations simpler. Regression equations were not developed for stations in the Great Basin below 5,000 feet elevation for reasons described on page 16.


The flood regions were delineated based on residual patterns, mean basin elevation of the gaging stations, and on the type of floods that have occurred at the gaging stations (snowmelt, thunderstorm, frontal rainfall, or combinations thereof).

The boundaries of the flood regions are based on the mean basin elevation of the drainage basin, datum of the study site, drainage divides, or political features such as county lines or State highways. A detailed explanation of the boundaries in figure 1 is given in the next few pages under the subsection for each flood region. Detailed reference is made to streams,


EXPLANATION

FLOOD REGIONS

- Northern Mountains High Elevation Α.
- Northern Mountains Low Elevation в.
- Uinta Basin с.
- **High Plateaus** D.
- Ε. Low Plateaus
- Great Basin-F.
 - High Elevation Subregion
 - Low Elevation Subregion

GREAT BASIN AND COLORADO

114° 42° -

113°

2

112°

Figure 1.—Flood regions in Utah.

highways, and towns which are not shown in figure 1. All of these streams, highways, and towns, however, appear on U.S. Geological Survey maps, scale 1:500,000. To determine which flood region the study site is in, the user needs to determine the datum and mean basin elevation of the study site. The datum is the elevation (NGVD of 1929) at the site and the mean basin elevation is determined for the drainage basin which contributes streamflow to the study site.

The mean basin elevation boundaries in figure 1 roughly coincide with the upper elevation limit where thunderstorm floods are less frequent than those from snowmelt (Woolley, 1946; Farmer and Fletcher, 1971). The thunderstorms that occur in the high elevation regions are usually not of large areal extent and do not produce many of the larger floods. However, flood peaks from rare thunderstorms can exceed those from snowmelt, especially for small basins. In the lower elevation regions, thunderstorm floods usually dominate the flood history of streams.

The mean basin elevations that define boundaries in the State increase from north to south. North of 40° latitude, the boundary is at 7,500 feet. Between 38° and 40° latitude, the boundary is at 8,000 feet. South of 38° latitude, a study site in a high elevation region must have a mean basin elevation greater than 8,000 feet and a datum greater than 7,000 feet. These different boundaries were selected because at high elevations thunderstorm floods are more significant in the southern parts of the State. This is apparent in the gaging-station records. Based on many adjustments of the region boundaries, the boundaries selected (fig. 1) gave the best results in terms of lowest standard error of estimate and realistic estimates of flood magnitudes.

Northern Mountains High Elevation Region

The Northern Mountains High Elevation Region includes all sites north of 40° latitude and east of $112^{\circ}10'$ longitude (fig. 1) that have a mean basin elevation greater than 7,500 feet. The southern boundary coincides with a mean basin elevation of 7,500 feet from the Colorado border to the Duchesne River at Tabiona. The absolute southern boundary (study site cannot be south of this boundary) is from east to west, along the Green River to the confluence with the Duchesne River, then along the Duchesne River to the town The boundary then follows the drainage divide between the of Tabiona. Duchesne River and Currant Creek up to the Great Basin-Colorado River Basin It extends south along the Great Basin-Colorado River Basin drainage divide. drainage divide to the drainage divide between Hobble Creek and Diamond Fork and follows that divide westward to near the town of Spanish Fork. The western boundary follows the Wasatch Front at an elevation of 4,500 feet from Spanish Fork in a north-northwest direction to the Idaho border at about 112⁰10' longitude near the town of Portage, Utah.

The topography is mostly mountainous and most streams are in the mountains or alluvial valley stream categories. Most of the floods result from snowmelt. Thunderstorm floods generally are smaller in magnitude than the annual snowmelt peaks. However, peaks from rare thunderstorm floods over small basins can exceed those from snowmelt. Sixty-two stations were used in the peak-discharge analyses and 42 stations were used in the flood-depth analyses. Peak-discharge estimates for streams that cross Mississippian limestone formations that crop out in this region could be much higher than actual values because water readily infiltrates into these locally permeable formations.

The regression equations relating peak discharge and flood depth to basin characteristics for the Northern Mountains High Elevation Region are listed in table 2. The flood- and basin-characteristics data for this region are listed in table 12.

Northern Mountains Low Elevation Region

The Northern Mountains Low Elevation Region includes all sites in the Great Basin north of 40° latitude and east of $112^{\circ}10'$ longitude (fig. 1) that have a mean basin elevation less than 7,500 feet. Several stations in Idaho in the Bear River Basin are included in this region. The boundaries coincide with the Northern Mountains High Elevation Region, except all sites are in the Great Basin.

Topography in this region is mostly mountainous, however, all four stream categories can be found. This is a mixed population flood area where floods may result from snowmelt, thunderstorms, or a combination. The infrequent thunderstorm floods usually will have a higher magnitude than the snowmelt floods.

Twenty-nine stations were used in the peak-discharge analyses and 12 stations were used in the flood-depth analyses. Mississippian limestone formations crop out to a minor extent in this region and peak-discharge estimates should be viewed with discretion for streams that cross such outcrops because of the likely loss of flow to these formations.

The regression equations relating peak discharge and flood depth to basin characteristics for the Northern Mountains Low Elevation Region are listed in table 3. The flood- and basin-characteristics data for this region are listed in table 12.

Uinta Basin Region

The Uinta Basin Region is south and east of the Northern Mountains High Elevation Region and north of the Low Plateaus Region (fig. 1). There is no mean basin elevation criterion except on the northern boundary with the Northern Mountains High Elevation Region where the boundary is based on a mean basin elevation of 7,500 feet. The region includes all sites in the Colorado River Basin, north of 40⁰ latitude, up to the Wyoming border with a mean basin elevation less than 7,500 feet. The western and southern boundary extends from the mountain front near the town of Spanish Fork up the north face of Loafer Mountain, then eastward through the town of Birdseye to the drainage divide taking in all streams flowing northward into Soldier Creek. Then it follows the county line between Utah County and Carbon County eastward to the Price River at State Highway 6. From there eastward to State Highway 53 (Wellington to Myton), the boundary coincides with the Low Plateaus Region and is based on a mean basin elevation of 8,000 feet. Sites with a mean basin elevation greater than 8,000 feet are in the Uinta Basin Region and those with a mean basin elevation less than 8,000 feet are in the Low Plateaus Region. From State Highway 53, the boundary is along the major drainage divide (Roan Cliffs) of the Uinta Basin to the Colorado State line.

The topography is mostly high plateaus cut by deeply incised streams. All four stream categories can be found in the region. This is a mixed population flood area and thunderstorms will produce the larger floods.

Twenty-five stations were used in the peak-discharge analyses and 16 stations were used in the flood-depth analyses. Estimates of peak discharges and depths need to be viewed with discretion because the region has widely varying topography, a mixed population of floods, and few gaging stations for the large area it covers. The peak-discharge equations apply to all unregulated streams except the White River. The White River was excluded from this analysis because most of its drainage area is in Colorado and many of the annual peak discharges result from snowmelt in Colorado. The station record for 09306500, White River near Watson, is representative of the entire reach of the White River in Utah.

The regression equations relating peak discharge and flood depth to basin characteristics for the Uinta Basin Region are listed in table 4. The flood- and basin-characteristics data for this region are listed in table 12.

High Plateaus Region

The High Plateaus Region is south of the Uinta Basin Region and east of the Great Basin Region (fig. 1). This region includes all sites in the Colorado River Basin south of the Uinta Basin Region that meet the following (1) Between $39^{\circ}50'$ latitude and 38° latitude, the mean elevation criteria: basin elevation must be greater than 8,000 feet. (2) South of 38° latitude, the mean basin elevation must be greater than 8,000 feet and the study site datum must be greater than 7,000 feet. The region also includes streams in the Great Basin on the western side of the Wasatch Plateau which may be below a mean basin elevation of 8,000 feet. The northern and western boundary is as follows: from north to south, it starts at the Colorado River Basin-Great Basin drainage divide just north of Scofield Reservoir and coincides with the Uinta Basin Region boundary in this area. From the town of Birdseye, the High Plateaus boundary follows State Highway 89 southward to the town of Vermillion. Then it follows State Highway 24 to Otter Creek, then south along Otter Creek to the confluence with East Fork Sevier River, then south along East Fork Sevier River to State Highway 12, then east along State Highway 12 to the drainage divide between the Great Basin and Colorado River Basin.

The topography is mostly mountains or high plateaus. All four stream categories can be found in this region, although most streams are in the mountains or alluvial valley categories. This is a mixed population flood area and the infrequent thunderstorm floods can have greater magnitudes than snowmelt floods.

Twenty-seven stations were used in the peak-discharge analyses and 20 stations were used in the flood-depth analyses. The alluvial fans on the west side of the Wasatch Plateau and the Aquarius (mostly in Garfield County) and Awampa Plateaus (mostly in Wayne County), where some permeable volcanic

material occurs, are areas where peak-discharge estimates may be slightly higher than actual values. The regression equations relating peak discharge and flood depth to basin characteristics for the High Plateaus Region are listed in table 5. The flood- and basin-characteristics data for this region are listed in table 12.

Low Plateaus Region

The Low Plateaus Region includes a large area, mostly in the Colorado River Basin south of $39^{\circ}50'$ latitude (fig. 1). Between about $39^{\circ}50'$ latitude and 38° latitude, all sites are in the Colorado River Basin and have a mean basin elevation less than 8,000 feet. The region includes all of Utah south of 38° latitude and all sites in this southern part must have a mean basin elevation less than 8,000 feet or a study site datum less than 7,000 feet.

The topography in this region is extremely varied and all four stream categories can be found. A major distinguishing feature is the deep and narrow canyons that are present throughout the region. Summer thunderstorms produce most of the large magnitude floods. Snowmelt floods are rare and usually small.

Eighty-one stations were used in the peak-discharge analyses and 46 stations were used in the flood-depth analyses. Peak-discharge estimates should be viewed with discretion when much of the drainage basin is made up of wind-deposited material or alluvium, or where streams cross permeable volcanic material, alluvial fans, or playas.

The regression equations relating peak discharge and flood depth to basin characteristics for the Low Plateaus Region are listed in table 6. The flood- and basin-characteristics data for this region are listed in table 12.

Great Basin Region

The Great Basin Region includes most of western Utah (fig. 1). This region consists of northward-trending mountains paralleled by alluvium-filled Large alluvial fans are widespread throughout the region and the vallevs. upper elevation limit of the fans is generally between 6,000 and 6,500 feet. Floods in the mountains occur as a result of snowmelt or thunderstorms. Thunderstorms will produce most of the floods on the alluvial fans and valley Gaging stations are sparse and thus it was difficult to develop floors. regression relations for the whole region. Most of the gaging stations are in the mountains or on alluvial fans. Because many of these stations had no flow during more than 25 percent of the years of record, no flood-frequency relations could be developed for them (U.S. Water Resources Council, 1981, p. Therefore, regression equations were developed only for those gaging 5-1). stations that have flood-frequency relations, and that have a mean basin elevation greater than 6,000 feet and a datum greater than 5,000 feet. There are four stations below these elevation criteria which have flood-frequency relations, but the predicted floods at these stations did not fit in with the higher elevation group. Thus, the Great Basin Region is divided into two subregions based on elevation of the study site. These two subregions, Great Basin High Elevation and Great Basin Low Elevation, are discussed in the following sections.

Regression equations apply to the High Elevation Subregion and alternative procedures are given in a following section for predicting flood characteristics in the Low Elevation Subregion. The regression equations for the High Elevation Subregion are primarily predicting peak discharge from snowmelt. However, infrequent intense thunderstorms can occur at higher elevations and thus these regression estimates must be viewed with discretion. The alternative procedures for the Low Elevation Subregion, which will predict higher peaks, might be used for a very conservative estimate of peak discharge in the 6,000 to 8,000 feet elevation range; or an average can be taken of the two estimates.

<u>High Elevation Subregion.</u>--All sites in the High Elevation Subregion are in the Great Basin (fig. 1). The eastern boundary coincides with the Northern Mountains (High and Low Elevation) Regions and the High Plateaus Region. North of 38° latitude, the mean basin elevation must be greater than 6,000 feet and the study site datum must be greater than 5,000 feet. South of 38° latitude, the mean basin elevation must be greater than 8,000 feet and the study site datum must be greater than 7,000 feet.

The High Elevation Subregion is mostly in mountainous topography. Streams in this subregion may be in the mountains, alluvial valley, or alluvial fan/pediment category. This is a mixed population flood area with floods resulting from snowmelt or thunderstorms. The infrequent thunderstorms will produce larger floods than snowmelt.

Thirty stations were used in the peak-discharge analyses and 19 stations were used in the flood-depth analyses. Peak-discharge estimates should be viewed with discretion for streams that cross alluvial fans, because flows are likely to decrease as the water infiltrates or spreads out over the fan. This decrease in flow is usually true, however, if a thunderstorm occurs just over the alluvial fan, the resulting flood can be very large.

The regression equations relating peak discharge and flood depth to basin characteristics for the Great Basin High Elevation Subregion are listed in table 7. The flood- and basin-characteristics data for this region are listed in table 12.

Low Elevation Subregion.--The Low Elevation Subregion includes all sites in the Great Basin north of 38° latitude (fig. 1) that have a mean basin elevation less than 6,000 feet or a study site datum less than 5,000 feet. The topography in this subregion is mostly alluvial fans, alluvial basins, and playas. Most of the floods in this subregion will result from thunderstorms.

No regression equations were developed for this subregion because of the extremely variable flood characteristics and the small number of gaging stations with 75 percent or more years of record with any flow. To estimate flood characteristics in this subregion, some alternatives are discussed in the following paragraphs.

Table 2Regression equation	ıs foi	: peak	discharge	es and flo	ood depths of
selected recurrence-interv	al flo	ods for	Northern	Mountains	High Elevation
Region					

Equation:	Q, pea	k disch	arge, i	n cubi	c feet p	er secon	d; D, f	lood depth,	in
feet; A,	draina	ge area,	in squ	ıare mi	les; and	l E, mear	basin	elevation,	in
thousands	s of fee	et.							

Recurrence interval, in years	Equation	Number of stations used in analysis	Average standard error of estimate, in percent
	Peak Disch	arge	
2	$Q = 0.044 A^{0.831} E^{2.67}$	62	44
5	$Q = 0.064 A^{0.822} E^{2.67}$	62	39
10	$Q = 0.071 A^{0.815} E^{2.70}$	62	37
25	$Q = 0.077 A^{0.807} E^{2.76}$	62	37
50	$Q = 0.079 A^{0.801} E^{2.80}$	62	37
100	$Q = 0.078 A^{0.795} E^{2.86}$	62	38
	Flood Dep	th	
2	$D = 1.02 A^{0.241}$	42	25
5	$D = 1.22 A^{0.238}$	42	23
10	$D = 1.33 A^{0.236}$	42	23
25	$D = 1.44 A^{0.235}$	42	23
50	$D = 1.54 A^{0.230}$	42	23
100	$D = 1.67 A^{0.222}$	42	23

Table 3Reg	Jression	equations	for j	peak	discharge	s and flo	od d	epths of
selected	recurren	ce-interval	flood	ls for	Northern	Mountains	LOW	Elevation
Region								

Equation: Q, peak discharge, in cubic feet per second; D, flood depth, in feet; A, drainage area, in square miles; and E, mean basin elevation, in thousands of feet.

Recurrence interval, in years	Equation	Number of stations used in analysis	Average standard error of estimate, in percent
	Peak Dischar	ge	
2	$Q = 562 A^{0.755} E^{-2.06}$	29	77
5	$Q = 6,660 A^{0.757} E^{-3.08}$	29	70
10	$Q = 30,500 A^{0.758} E^{-3.74}$	29	69
25	$Q = 184,000 A^{0.758} E^{-4.54}$	29	68
50	$Q = 644,000 A^{0.758} E^{-5.10}$	29	69
100	$Q = 2.08 \times 10^6 A^{0.757} E^{-5.6}$	53 <u>29</u>	69
	Flood Depth	1	
2	$D = 0.804 A^{0.245}$	12	32
5	$D = 0.971 A^{0.252}$	12	27
10	$D = 0.996 A^{0.272}$	12	26
25	$D = 1.05 A^{0.287}$	12	26
50	$D = 1.12 A^{0.287}$	12	26
100	$D = 1.21 A^{0.283}$	12	26

Recurrence interval, in years	Equation	Number of stations used in analysis	Average standard error of estimate, in percent
-	Peak Dischard	ge	
2	$Q = 1,500 A^{0.403} E^{-1.90}$	25	82
5	$Q = 143,000 A^{0.374} E^{-3.66}$	25	66
10	$Q = 1.28 \times 10^6 A^{0.362} E^{-4.50}$	0 25	64
25	$Q = 1.16 \times 10^7 A^{0.352} E^{-5.32}$	2 <u>25</u>	66
50	$Q = 4.47 \times 10^7 A^{0.347} E^{-5.88}$	5 25	70
100	$Q = 1.45 \times 10^8 A^{0.343} E^{-6.23}$	9 ₂₅	74
	Flood Depth	1	
2	$D = 1.03 A^{0.159}$	16	30
5	$D = 13.3 A^{0.148} E^{-1.03}$	16	28
10	$D = 68.6 A^{0.131} E^{-1.69}$	16	26
25	$D = 556 A^{0.128} E^{-2.59}$	16	24
50	$D = 1,330 A^{0.123} E^{-2.95}$	15	24
100	$D = 1,210 A^{0.130} E^{-2.86}$	14	23

Equation: Q, peak discharge, in cubic feet per second; D, flood depth, in feet; A, drainage area, in square miles; and E, mean basin elevation, in thousands of feet.

Table 4.--Regression equations for peak discharges and flood depths of selected recurrence-interval floods for Uinta Basin Region

¹ The number of stations used in the flood-depth analysis varies because station rating curves were extended only as far as available information would permit.

Table	5Regression	equations	for	peak	dischar	ges	and	flood	depths	of
	selected recu	rrence-inter	val	floods	for High	ı Pla	ateau	us Regio	on	

Recurrence interval, in years	Equation	Number of stations used in analysis	Average standard error of estimate, in percent
	Peak Discha	rge	
2	$Q = 10.8 A^{0.800}$	27	66
5	$Q = 25.1 A^{0.740}$	27	53
10	$Q = 680 A^{0.706} E^{-1.30}$	27	53
25	$Q = 10,300 A^{0.672} E^{-2.33}$	27	57
50	$Q = 64,200 A^{0.651} E^{-3.03}$	27	62
100	$Q = 347,000 A^{0.631} E^{-3.68}$	27	68
	Flood Depth	n ¹	
2	$D = 11.2 A^{0.284} E^{-1.22}$	20	34
5	$D = 26.7 A^{0.278} E^{-1.47}$	20	28
10	$D = 40.1 A^{0.272} E^{-1.57}$	20	26
25	$D = 53.7 A^{0.269} E^{-1.62}$	20	26
50	$D = 113 A^{0.252} E^{-1.89}$	19	28
100	$D = 150 A^{0.250} E^{-1.97}$	19	30

Equation: Q, peak discharge, in cubic feet per second; D, flood depth, in feet; A, drainage area, in square miles; and E, mean basin elevation, in thousands of feet.

¹ The number of stations used in the flood-depth analysis varies because station rating curves were extended only as far as available information would permit.

Table 6.--Regression equations for peak discharges and flood depths of selected recurrence-interval floods for Low Plateaus Region

Equation:	Q, peak	discharg	e, in cu	bic fee	t per a	second	; D, f]	Lood depth,	in
feet; A,	drainage	area, in	square	miles;	and E,	mean	basin	elevation,	in
thousands	s of feet.	•							

Recurrence interval, in years	Equation	Number of stations used in analysis	Average standard error of estimate, in percent
	Peak Discha	rge	
2	$Q = 3,980 A^{0.535} E^{-2.21}$	81	87
5	$Q = 13,300 A^{0.467} E^{-2.23}$	81	72
10	$Q = 23,700 A^{0.433} E^{-2.23}$	81	67
25	$Q = 42,500 A^{0.398} E^{-2.21}$	81	65
50	$Q = 61,000 A^{0.375} E^{-2.19}$	81	65
100	$Q = 83,100 A^{0.356} E^{-2.17}$	81	66
	Flood Dept	h ^l	
2	$D = 11.3 A^{0.230} E^{-1.23}$	46	35
5	$D = 22.7 A^{0.180} E^{-1.25}$	46	35
10	$D = 29.3 A^{0.157} E^{-1.21}$	46	37
25	$D = 32.0 A^{0.141} E^{-1.10}$	46	38
50	$D = 35.8 A^{0.128} E^{-1.06}$	45	37
100	$D = 17.9 A^{0.143} E^{-0.680}$	43	33

¹ The number of stations used in the flood-depth analysis varies because station rating curves were extended only as far as available information would permit.

Table 7.--Regression equations for peak discharges and flood depths of selected recurrence-interval floods for Great Basin High Elevation Subregion

Equation: Q, peak discharge, in cubic feet per second; D, flood depth, in feet; A, drainage area, in square miles; and E, mean basin elevation, in thousands of feet.

Recurrence interval, in years	Equation	Number of stations used in analysis	Average standard error of estimate, in percent
	Peak Disch	arge	
2	$Q = 0.004 A^{0.786} E^{3.51}$	30	83
5	$Q = 15.5 A^{0.681}$	30	69
10	$Q = 24.2 A^{0.665}$	30	61
25	$Q = 38.7 A^{0.648}$	30	58
50	$Q = 52.1 A^{0.638}$	30	60
100	$Q = 68.1 A^{0.630}$	30	65
	Flood Dep	oth	
2	$D = 0.568 A^{0.260}$	19	36
5	$D = 0.784 A^{0.276}$	19	28
10	$D = 0.957 A^{0.275}$	19	24
25	$D = 1.16 A^{0.281}$	19	24
50	$D = 1.36 A^{0.276}$	19	27
100	D = 1.53 A0.279	19	30

23 (page 25 follows)

Two envelope curves for maximum peak discharge versus drainage area for two sets of data for Great Basin streams are shown in figure 2. The higher curve, obtained from a national study by Crippen and Bue (1977), envelopes the maximum peak discharges observed through September 1974, in the Great Basin area (Crippen and Bue, 1977, fig. 18), including parts of Utah, California, Arizona, and Nevada. The lower curve envelopes the peak discharge of record for 28 gaging stations in the Great Basin of western Utah and eastern Nevada. These 28 stations do not fit in the Great Basin High Elevation Subregion. Values for these 28 stations are listed in table 12 under the Great Basin Low Elevation Subregion.

It is difficult to assign a frequency or probability to either of the two envelope curves in figure 2. Crippen and Bue (1977) did not attempt to assign a frequency to their curve, which is intended for estimating maximum potential floods. Record length averaged 15 years for the 28 stations used to develop the lower envelope curve. Using design probability theory (Riggs, 1968, p. 13), an approximate 100-year peak discharge relation was sketched on figure 2. Design probability indicates that for a number of independent 15year records, about 86 percent should not experience a 100-year peak discharge. This theory, however, assumes that the peak discharges at individual stations are independent of those for other stations and represent a random sample of the total population. All 28 stations were operated during 1960-80 and the records for these 28 stations could have a time-sampling bias. Thus, this 100-year peak-discharge relation is only a reference and no accuracy judgments are intended.

An alternative for estimating flood characteristics for the Great Basin Low Elevation Subregion is to use the equations developed for the Low Plateaus A plot of the 100-year peak discharge values from the Region (table 6). equation for the Low Plateaus Region with a mean basin elevation of 5,000 feet is between the upper envelope curve and the approximate 100-year peakdischarge relation obtained by design probability and using data for the 28 gaging stations (fig. 2). This comparison indicates the equations in table 6 probably overestimate peak discharges for streams in the Great Basin Low Such estimates provide a factor of safety and may Elevation Subregion. provide reasonable estimates of T-year discharges. The user should recognize the assumptions and limitations of this method. The appropriate T-year discharge can be used with the detailed or analytical methods for determining T-year depth and flood boundaries.

Reports by Fields (1975) and Hedman and Osterkamp (1982) also provide methods to compute selected T-year discharges for ungaged streams in the Great Basin. However, the methods require that the user measure selected channel widths in the field.

Although the channel depth-discharge relations for streams in the Great Basin are similar to those for streams with low mean basin elevation in the Low Plateaus Region, use of the depth-frequency relations developed for the Low Plateaus Region with the physiographic method should be used with judgment. Many of the streams in the Great Basin in Utah have unstable boundaries and areas mapped as inundated by T-year discharge may change with time.

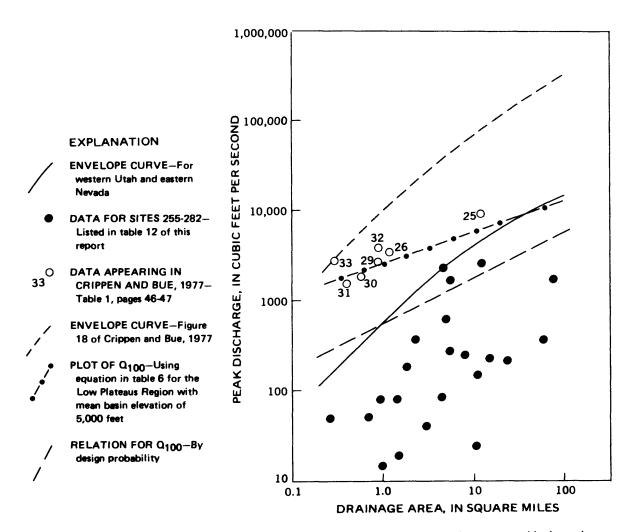


Figure 2.—Peak discharge versus drainage area for desert streams in western Utah and eastern Nevada.

Estimating 500-Year Peak Discharges and Flood Depths

Regression equations were not developed for determining the 500-year peak discharges and flood depths. The flood-frequency analysis of station data is fairly accurate in defining flood-frequency relations where the extension of the flood-frequency relation does not exceed twice the number of years of record. Thus, the extension of a flood-frequency relation defined with a short record to the 500-year recurrence interval is very uncertain. Time-sampling errors of short records can be large because the short records may not be representative of the long-term flood history. In Utah, there are 63 stations on unregulated streams with 25 or more years of record and only 16 stations on unregulated streams with 50 or more years of record. This is too small a sample to adequately define regression equations for the 500-year flood.

It is recognized that the 500-year peak-discharge and flood-depth information is needed for some planning documents. Therefore, ratios of the peak discharges and flood depths to the 100-year values were 500-year developed for each flood region (table 8). No accuracy judgments are given or implied for these ratios. The ratio is the average of every station in the region. The standard deviation about this average value also is given to make the user aware of the variability within each region. The 500-year station values of peak discharge and flood depth were obtained from extending the log-Pearson Type III flood-frequency relation and the rating curve for each station. The 500-year peak discharges and flood depths are not given in table 12 because of the aforementioned uncertainties in the long extensions. The ratios can be used for a gaged site, site near a gaged site, or an ungaged site.

Limitations of Regression Equations

The following are general limitations for using the regression equations for Utah streams. Specific limitations for each flood region were given earlier in the description of each flood region.

- 1. Equations for estimating peak discharge may not apply to streams:
 - a. Where a significant part of the watershed is urbanized.
 - b. Where manmade works such as large storage reservoirs, flooddetention structures, or major diversions have a significant effect on peak discharge.
 - c. Where basin and climatic characteristics are outside of the range of those used to develop the regression equation. The ranges of the variables used in each equation are given in table 9.
- Equations for estimating flood depth are not applicable to regulated streams, where stream channel boundaries are very unstable (such as on alluvial fans and on very wide sandy desert wash-type channels), and where local on-site conditions such as bridges, culverts, and modified channels affect the natural depth-discharge relation.

Table 8.—Ratios for predicting 500-year peak discharge and flood depth [An analysis of variance showed only two groups of the six flood regions are appropriate]

	P	Peak discharge			Flood depth		
Flood region	Average ratio Q ₅₀₀ /Q ₁₀₀	Standard deviation	Number of stations used	Average ratio D ₅₀₀ /D ₁₀₀	Standard deviation	Number of stations used	
Northern Mountains High Elevation Northern Mountains Low Elevation	1.3	0.11	82	1.1	0.03	53	
Uinta Basin High Plateaus Low Plateaus Great Basin High Elevation Subregion	• 1.7	.43	155	1.3	.15	85	

Table 9.-Range of basin characteristics used in regression equations

	Drainage are (square mi		Mean basin elevation (E) (feet)			
Flood region	T-year discharge equations	T-year depth equations	T-year discharge equations	T-year depth equations		
Northern Mountains High Elevation	2.49–356	7.5356	7,540—10,960	7,540—10,960		
Northern Mountains Low Elevation	2.08–268	2.35–268	5,810–7,470	6,730–7,450		
Uinta Basin	2.89–950	2.89-897	5,360—9,060	6,110—9,060		
High Plateaus	.43-415	1.47-415	7,470–10,500	8,160-10,000		
Low Plateaus	.96-4,160	.96–1,540	4,300–8,890	4,8108,890		
Great Basin High Elevation Subregion	4.19–164	5.58–164	6,070—9,370	7,100–9,370		

3. For streams where peak discharges are significantly affected by man, stream-system studies or flood routing may be used to estimate the peak discharges (U.S. Army Corps of Engineers, 1976). Butler, Reid, and Berwick (1966) and Patterson and Somers (1966) provide methods for estimating peak discharges on some of the regulated streams in Utah. Flood-prone area estimates on streams where the depth-discharge relation is affected by man will require open-channel hydraulic studies such as the detailed flood-mapping method.

APPLICATION OF METHODS

- 1. From figure 1 and the explanation of boundaries in the section on flood regions (p. 11-17) determine which flood region the study site is in. Some streams will cross the boundary of two regions when the boundary is based on mean basin elevation, or in a few cases, an absolute boundary crosses some streams. For sites that are near the boundary of two flood regions, it is recommended that flood characteristics be computed for both flood regions and then the average of the two estimates should be used. This transition zone procedure is described in the following section on application of ungaged sites method.
- 2. From table 12 determine if the study site is on a gaged stream.
- 3. If the study site is located at a gaged site listed in table 12, use the weighted flood-frequency values and the flood depths in table 12.
- 4. If the study site is located near a gaged site on the same stream, use the method described in the section "Sites Near Gaged Sites on the Same Stream."
- 5. If the study site is located on an ungaged stream, use the method described in the section "Ungaged Sites."

Sites Near Gaged Sites on the Same Stream

Peak-discharge and flood-depth information for sites near gaged sites on the same stream can be computed using the method described on page 10. The first step is to determine the drainage area ratio of ungaged site to gaged site. If the ratio is between 0.75 and 1.50, the equation on page 10 should be used to compute the required peak discharges or flood depths. If the drainage area ratio is outside that range, the method for "Ungaged Sites" should be used. Peak-discharge and flood-depth values for sites between gaged sites on the same stream can be computed by interpolating between values for gaged sites appearing in table 12.

Example 1.--Flood Frequency Near a Gaged Site

Determine the Q₁₀-,Q₅₀-, Q₁₀₀-year recurrence interval peak discharges for the Duchesne River at an ungaged site where the drainage area (A_y) is 310 square miles. From table 12, note that station 09277500, Duchesne River near Tabiona, Utah (drainage area A_g = 356 mi²) is in the Northern Mountains High Elevation Region and is located downstream of the study site. Check that the drainage area ratio $A_{\rm u}/A_{\rm g}$ is between 0.75 and 1.5:

$$A_u/A_q = 310 \text{ mi}^2/356 \text{ mi}^2 = 0.87$$

This meets the ratio requirement, and the following relation is used:

$$Q_{T(u)} = Q_{T(g)} (A_u/A_g)^X$$

where

x = 0.9 for the Northern Mountains High Elevation Region, and

 $Q_{T(q)}$ = the weighted discharge from table 12.

Obtain the weighted discharges at the gage from table 12:

$$Q_{10} = 2,280 \text{ ft}^3/\text{s}$$

 $Q_{50} = 2,790 \text{ ft}^3/\text{s}$
 $Q_{100} = 2,980 \text{ ft}^3/\text{s}$

Compute discharges at ungaged site:

$$Q_{10(u)} = 2,280 (310/356)^{0.9} = 2,010 \text{ ft}^3/\text{s}$$

 $Q_{50(u)} = 2,790 (0.87)^{0.9} = 2,460 \text{ ft}^3/\text{s}$
 $Q_{100(u)} = 2,980 (0.87)^{0.9} = 2,630 \text{ ft}^3/\text{s}$

Ungaged Sites

Peak discharges and flood depths at ungaged sites can be computed by one of the following procedures, depending on the location of the site and its relation to the flood-region boundaries. Procedure 1 is for sites where regression equations for one region are used. Procedure 2 is for sites that are near region boundaries. Where streams cross region boundaries, the predicted flood characteristics for a site that is near a region boundary may be quite different depending on which regression equation is used. Therefore, it is recommended that an averaging procedure be used for sites that fall near region boundaries. This should smooth out the transition zone between two flood regions. The following criteria should be used to determine if the averaging procedure 2 should be used:

 Flood-region boundary is based on mean basin elevation or study site datum. If a study site has a mean basin elevation or study site datum within 500 feet of either side of the boundary, then flood characteristics should be computed using the regression equations for both regions and the average of the two estimates used. The average can either be an arithmetic- mean or prorated according to the amount of drainage area in each region.

- A few boundaries follow county lines or State highways. If a study site is on a stream that crosses an absolute boundary and is within 2 miles of either side of the boundary, then the above averaging procedure should be used.
- 3. If a study site does not fall within the above criteria for averaging, then the regression equations for one region should be used.

Procedure 1--Computation of Flood Characteristics for Sites Where Regression Equations for One Region Are Used

The flood region is identified in figure 1 and appropriate equations are selected from tables 2-7.

Example 2--Use of the regression equations

Determine the peak discharges and flood depths for recurrence intervals of 10, 50, and 100 years for an ungaged site in the Low Plateaus Region. The equations for peak discharges and flood depths for the Low Plateaus Region are listed in table 6. The required basin characteristics are: drainage area (A), in square miles, and mean basin elevation (E), in thousands of feet. Using the procedures outlined on page 11, the drainage area is computed as 45 square miles and the mean basin elevation is 6,400 feet.

These basin characteristics are inserted into the appropriate equations which are solved as follows:

 $Q_{10} = 23,700 \text{ A}^{0.433} \text{ E}^{-2.23} = 23,700 (45)^{0.433} (6.40)^{-2.23} = 1,960 \text{ ft}^3/\text{s}$

 $Q_{50} = 61,000 \text{ A}^{0.375} \text{ E}^{-2.19} = 4,360 \text{ ft}^3/\text{s}$

 $Q_{100} = 83,100 \text{ A}^{0.356} \text{ E}^{-2.17} = 5,740 \text{ ft}^3/\text{s}$

 $D_{10} = 29.3 \ A^{0.157} \ E^{-1.21} = 29.3 \ (45)^{0.157} \ (6.40)^{-1.21} = 5.6 \ feet$

 $D_{50} = 35.8 A^{0.128} E^{-1.06} = 8.1 feet$

 $D_{100} = 17.9 \ A^{0.143} \ E^{-0.680} = 8.7 \ feet$

Procedure 2--Averaging Procedure for Sites That Are Near Flood-Region Boundaries

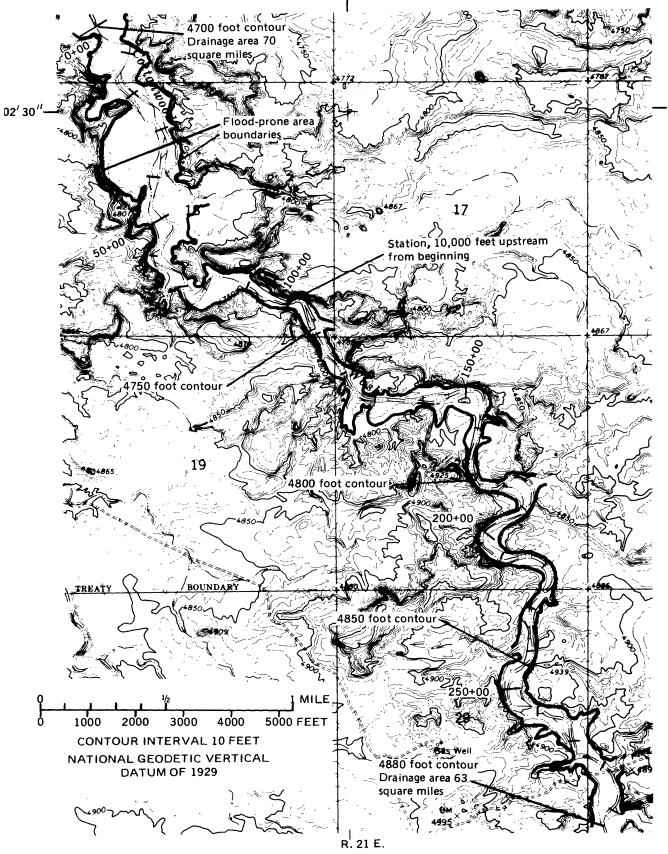
The flood regions are identified in figure 1 and using the criteria on pages 30-31 it is determined that the averaging procedure should be used. The appropriate equations for the two flood regions are then selected from tables 2-7.

Example 3--Use of regression equations for two regions and averaging

Determine the peak discharges and flood depths for recurrence intervals of 10, 50, and 100 years for an ungaged site that is near the Northern Mountains High Elevation Region and the Uinta Basin Region boundary based on a mean basin elevation of 7,500 feet. The equations for peak discharges and flood depths for the Northern Mountains High Elevation Region and the Uinta Basin Region are listed in tables 2 and 4. The required basin characteristics are: drainage area (A), in square miles, and mean basin elevation (E), in thousands of feet. Using the procedures outlined on page 11, the drainage area is computed as 96 square miles and the mean basin elevation is 7,200 feet. These basin characteristics are inserted into the appropriate equations and then the average of the two estimates for each region is taken.

Northern Mountains High Elevation Region

 $Q_{10} = 0.071 \ A^{0.815} \ E^{2.70} = 0.071 \ (96)^{0.815} \ (7.20)^{2.70} = 605 \ ft^3/s$ $Q_{50} = 0.079 \ \text{A}^{0.801} \ \text{E}^{2.80} = 769 \ \text{ft}^3/\text{s}$ $Q_{100} = 0.078 \ A^{0.795} \ E^{2.86} = 832 \ ft^3/s$ $D_{10} = 1.33 A^{0.236} = 1.33 (96)^{0.236} = 3.9$ feet $D_{50} = 1.54 A^{0.230} = 4.4 feet$ $D_{100} = 1.67 A^{0.222} = 4.6$ feet Uinta Basin Region $Q_{10} = 1.28(10)^6 A^{0.362} E^{-4.50} = 1.28(10)^6 (96)^{0.362} (7.20)^{-4.50} = 926 ft^3/s$ $Q_{50} = 4.47(10)^7 A^{0.347} E^{-5.85} = 2,100 \text{ ft}^3/\text{s}$ $Q_{100} = 1.45(10)^8 A^{0.343} E^{-6.29} = 2,810 \text{ ft}^3/\text{s}$ $D_{10} = 68.6 \ A^{0.131} \ E^{-1.69} = 68.6(96)^{0.131} (7.20)^{-1.69} = 4.4 \ feet$ $D_{50} = 1,330 \text{ A}^{0.123} \text{ E}^{-2.95} = 6.9 \text{ feet}$ $D_{100} = 1,210 \ A^{0.130} \ E^{-2.86} = 7.7 \ feet$ 32


Flood characteristic	Northern Mountains High Elevation Region	Uinta Basin Region	Average estimate
	Peak discharge, in	cubic feet per so	econd
0 ₁₀	605	926	766
Q ₅₀	769	2,100	1,430
Q ₁₀₀	832	2,810	1,820
	Flood dep	oth, in feet	
D ₁₀	3.9	4.4	4.2
D ₅₀	4.4	6.9	5.6
D ₁₀₀	4.6	7.7	6.2

Transition zone - average flood characteristics estimate

DELINEATION OF FLOOD-PRONE AREAS USING THE PHYSIOGRAPHIC METHOD

The procedure for estimating flood depths and water-surface elevations, and for delineating areas inundated by the 100-year flood on topographic maps is described in the following example for Cottonwood Wash. The wash is a tributary to the White River in the Uinta Basin, and is located about 30 miles southwest of Vernal (fig. 1).

The first step is to construct a zero-flow stage profile of a reach of Cottonwood Wash by locating points where contour lines cross the wash. It is necessary to assume that the contour lines on the topographic map are exact and intersect streams at about the stage of zero flow (Edelen, 1976, p. 6). Then a zero-flow stage profile is constructed using these points of intersection. Five of the 19 points of intersection are indicated by leaders on the topographic map (fig. 3) where the 4,700 to 4,880, 10-foot contour lines intersect Cottonwood Wash. The profile of zero-flow stage appearing in figure 4 was plotted using these 19 points.

Base from U. S. Geological Survey 1:24,000 series, Ouray SE, Utah, 1964

Figure 3.—Elevation of stream at zero flow, drainage areas, and boundaries of area inundated by the 100-year flood for a part of Cottonwood Wash.

24,000 26,000 28,000 30,000 HTUOS NOTE. Data showh were plotted at a larger scale and reduced 4870-foot contour 4895 feet Pipeline crossing at 28,200 feet 00-year profile STREAM DISTANCE, IN FEET, TO INDICATED CONTOUR: to accommodate space limitations of this report 17,600 19,200 20,800 22,000 24,800 26,400 23,400 16,400 vater surface at 24,800 feet Intersects 100-year flood Zero-flow profile 22,000 20,200 21,600 22,600 24,300 25,400 27,500 29,300 18,500 20,000 JIIJOHA 10,000 12,000 14,000 16,000 18,000 Contour 4810 4820 4830 4840 4850 4870 4860 1880 JII JOHA STREAM LENGTH, IN FEET 000 vater surface at 15,000 feet MONY Intersects 100-year flood THEFT STREAM DISTANCE, IN FEET, TO INDICATED CONTOUR: 100-year profile OC S -1500 1100 3300 5400 7400 9400 11,400 12,500 13,800 15,000 16,400 ig) ESTIMATED 1800-foot contour 8000 Zero-flow profile 10,900 13,200 14,500 15,800 17,100 12,100 2500 4400 6800 8300 6000 0 4000 Contour 4710 4720 4730 4740 4750 4750 4770 4770 4780 4790 4700 4800 4810 2000 47161éei NORTH 0 4710 4890 4870 4840 4820 4810 4790 4780 4770 4760 4750 4740 4730 4720 4700 4900 4880 4860 4850 4830 4800 ELEVATION, IN FEET

Figure 4.-Zero-flow and 100-year flood profiles for a part of Cottonwood Wash.

The second step is to determine the drainage areas and mean basin elevations for drainages to the most upstream and downstream locations by the drainage boundaries above these points outlinina on appropriate topographic maps. The drainage area can then be planimetered and the mean basin elevation determined by averaging 20 or more equally spaced grid points. (See page 11.) Where the 4,700-foot contour line crosses, the drainage area is 70 square miles and the mean basin elevation is 5,500 feet. At the upstream end where the 4,880-foot contour crosses, the values are 63 square miles and 5.560 feet. Applying these values of drainage area and mean basin elevation to the flood-depth equation for the Uinta Basin Region (table 4), $D_{100} = 1,210 \ A^{0.130} \ E^{-2.86}$, one obtains a downstream 100-year flood depth of 16.0 feet and an upstream value of 15.3 feet. These flood-depth values are then added to the zero-flow profile, and an estimated 100-year profile for the reach is constructed more or less parallel to the zero-flow profile. (See fig. 4.) If there is a large difference between depths obtained for the upstream and downstream locations, depths should be computed at one or more intermediate locations.

The next step is to use the estimated 100-year flood profile and determine the approximate area that is inundated by the 100-year flood. An example is shown for a part of Cottonwood Wash in figure 3. As shown in figure 4, the estimated 100-year flood elevations vary from 4,716 feet where the 4,700-foot contour crosses the stream to 4,895 feet where the 4,880-foot contour crosses. The appropriate locations (stationing or stream length) where the water surface of the 100-year flood intersects the contour lines at the left and right ends of the cross sections are determined from figure 4 and are used to mark the edges in figure 3. Also the left and right bank edges of the 100-year flood are located about 1.6 contour intervals out from where the topographic contours cross the stream at the zero-flow profile on the map.

The same procedure is also applicable to reaches between gaging stations. In some cases, one only needs to obtain the appropriate depths from table 12, thus, eliminating using an equation to compute the depths. Also, many times, low-water profiles and cross sections are available from other government agencies and can be used to more accurately delineate the floodprone areas.

ANALYTICAL DEVELOPMENT OF REGRESSION EQUATIONS

Using multiple-regression techniques, equations for estimating T-year discharges and depths were developed by relating flood-frequency data at 254 gaging stations in Utah and adjoining states to basin and climatic characteristics measured from maps (fig. 5). These flood and basin characteristics are given in table 12. All the gaging stations had 10 or more years of record and the annual flood peaks were not significantly affected by diversions or regulation. Some of the gaging stations were on streams that had dams or major diversions built during the period of record for the station. For these stations, the earlier unregulated part of the record was used in the flood-frequency analysis and only that unregulated part of the record is shown in table 12.

The methods used to determine the two dependent variables (T-year discharge and T-year depth) are described first. Then the regression analysis is briefly explained.

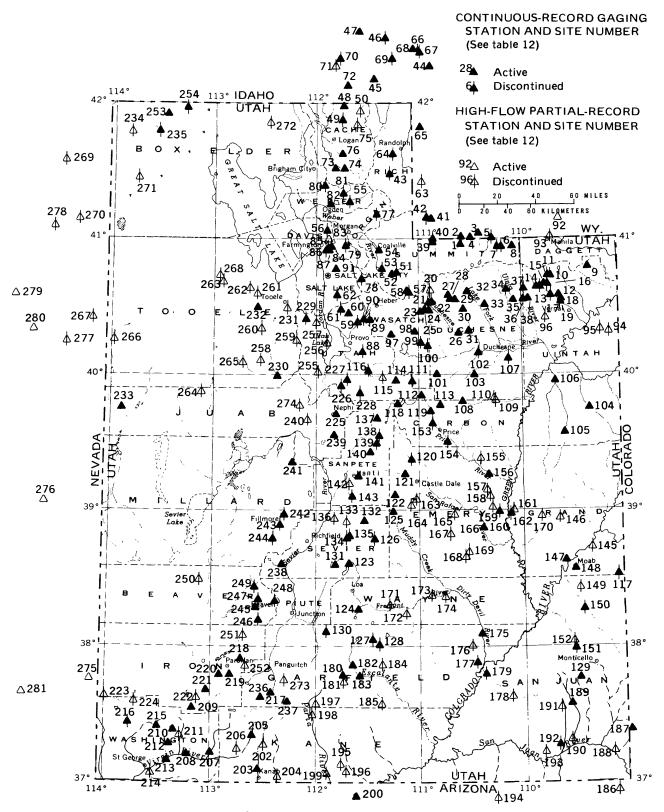


Figure 5.-Location of gaging stations.

Station Flood-Frequency Relations

The relation of annual peak discharge to exceedance probability, or to recurrence interval, is referred to as a flood-frequency relation or curve. Exceedance probability is the chance that a flood will equal or exceed a given magnitude in any year. Recurrence interval is the reciprocal of the exceedance probability and is the average number of years between exceedances.

Flood-frequency relations were defined for each gaging site for records through September 30, 1980, using the log-Pearson Type III probability distribution. Techniques recommended by the U.S. Water Resources Council (1981) were used to fit the Pearson Type III distribution to the logarithms of annual maximum discharges at each site. Adjustments were made for historic peaks and outliers where necessary. The skew coefficient used was a weighted average of the station skew and a skew taken from the generalized skew map appearing in the report by the U.S. Water Resources Council (1981). Estimates of the 2-, 5-, 10-, 25-, 50-, and 100-year floods taken from these frequency curves are given for each station in table 12.

Computation of Flood Depth

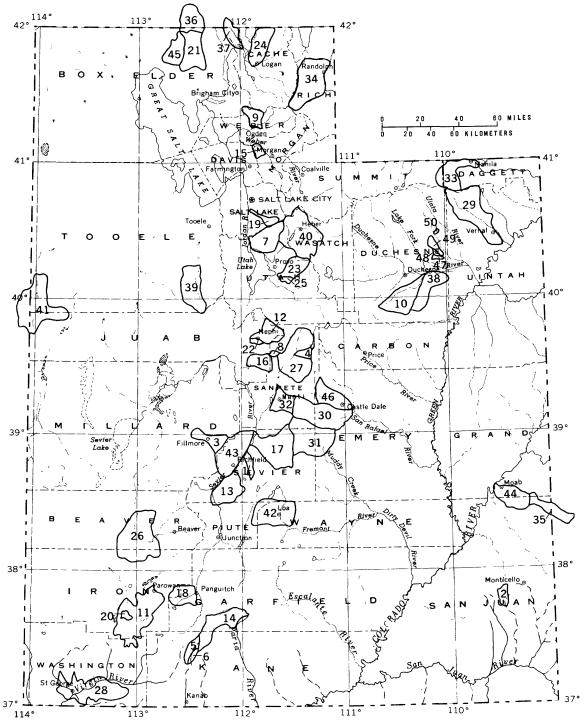
Depths for floods of recurrence intervals of 2, 5, 10, 25, 50, and 100 years were computed for 155 gaging stations. Some of the stations used in the discharge analysis were not used in the depth analysis because of artificial controls (such as culverts and bridges), or very unstable channel boundaries at the gaged site, or there was not enough information to accurately extend rating curves to cover large flood discharges.

The most recent rating curve for each station was used as the base stage-discharge relation. Because of time and budget limitations, the ratings were extended to the 100-year or 500-year flood without obtaining additional field data. Generally a straight-line extension on log-log paper was made except where channel shape indicated that a straight-line extension was not appropriate. Many of the rating curves required long extensions. Flood depth is the stage of the T-year flood minus the stage of zero flow.

Regression Analysis

Standard multiple-regression techniques were used to develop the equations for estimating T-year discharges and T-year depths. The SAS software package was used in the analysis (SAS Institute Inc., 1979).

Many basin characteristics were investigated in the multiple-regression analysis in an attempt to find the best relations for estimating T-year The RSQUARE procedure, which evaluates all possible discharge and depth. combinations of the independent variables, was used to determine the best equations for each dependent variable. A stepwise regression, with maximum R^2 improvement option, was also used to further refine the equations. Equations were investigated with log-transformed variables, untransformed variables, and log-transformed and untransformed variables. a combination of The multiplicative model (all variables are log transformed) provided the best results, high R^2 value and low standard error of estimate, and it is used in all the equations in this report.


The following independent variables were investigated as possible predictors of T-year discharges and depths:

- 1. Drainage area, in square miles;
- 2. Main channel slope, in feet per mile;
- 3. Main channel length, in miles;
- 4. Mean basin elevation, in thousands of feet;
- 5. Percentage of basin above elevation of 6,000 feet;
- 6. Area of lakes and ponds, in percent;
- 7. Forested area, in percent;
- 8. Azimuth of main channel (ranked variable; N=8, NE=7, NW=6, E=5, W=4, SE=3, SW=2, S=1);
- 9. Mean annual precipitation, in inches (U.S. Weather Bureau, 1963);
- 10. 100-year, 24-hour rainfall, in inches (Miller and others, 1973);
- 11. Elevation of gage datum, in feet;
- 12. Streambed slope, in feet per mile (local slope of the stream channel at the gaged site); and
- Geology factor (based on relative infiltration rates of surface geologic formations outlined on a geologic map of Utah, (Utah Geological and Mineral Survey, 1980).

Only drainage area and mean basin elevation appear in the final equations.

PREVIOUS FLOOD MAPPING

The first step before one would delineate areas inundated by T-year discharges or depths using any of the methods described previously is to consider the flood boundaries determined in work by others. For example, the areas inundated by a 100-year flood have been delineated for many stream reaches by other government agencies and consultants. Flood-plain information studies by the U.S. Army Corps of Engineers, flood-insurance studies for the Federal Insurance Administration (prepared by consultants and other government agencies), watershed studies by the U.S. Soil Conservation Service, and floodprone area maps by the U.S. Geological Survey provide miscellaneous and detailed information. A general tabulation of these studies and where the information may be obtained are listed in tables 10 and 11 and figures 6 and Many times the flood-plain information appearing in these reports can be 7. transferred directly to the appropriate scale map. If a published floodinundation map differs substantially from one prepared by the methods described here, the final results should be coordinated with the appropriate agency to add credibility and where possible minimize duplication of effort.

Base by U. S. Soil Conservation Service, taken from U. S. Geological Survey 1:1,000,000 National Atlas

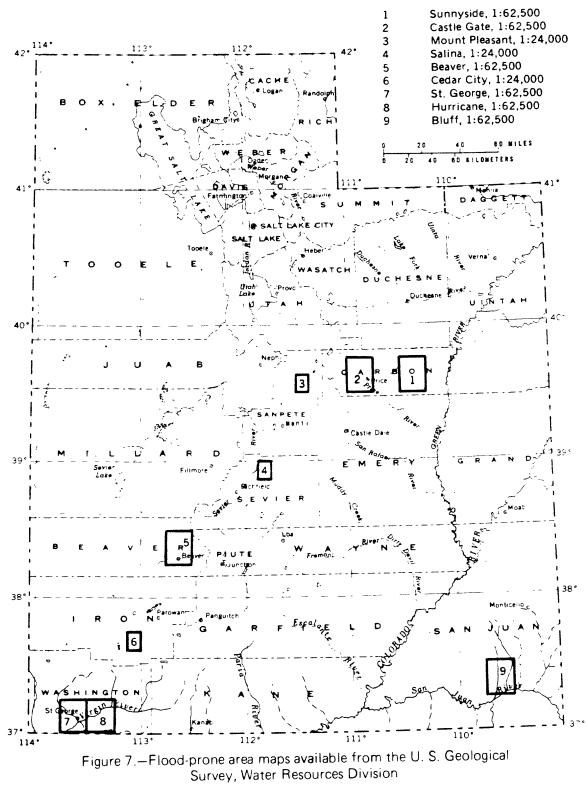
Figure 6.—Location of U. S. Soil Conservation Service watershed projects. (From Utah District of the U. S. Soil Conservation Service work plan, 1978.)

EXPLANATION

3

WATERSHED PROJECT LISTED BELOW

- 1. Glenwood
- 2. Blanding
- 3. Chalk Creek
- 4. Birch Creek, included in 27
- 5. Upper Kanab
- 6. Sink Valley
- 7. American Fork-Dry Creek
- 8. Tidds Canyon
- 9. North Fork-Ogden River
- 10. Sowers-Antelope
- 11. Coal Creek
- 12. Salt Creek
- 13. Monroe-Annabella
- 14. Tropic
- 15. Peterson-Milton
- 16. Levan
- 17. Salina Creek
- 18. Panguitch-Threemile
- 19. Little Cottonwood
- 20. Greens Lake
- 21. Blue Creek-Howell
- 22. Miller-Biglows
- 23. Hobble Creek
- 24. North Cache
- 25. Maple Canyon


Figure 6.-Continued

- 26. Minersville
- 27. North Sanpete
- 28. Warner Draw
- 29. Dry Fork
- 30. Ferron
- 31. Muddy Creek
- 32. Manti–Sixmile
- 33. Sheep Creek-Carter Creek
- 34. Woodruff Creek
- 35. West Paradox (Colorado)
- 36. Pocatello Valley (Idaho)
- 37. Clarkston Creek (Idaho)
- 38. Pleasant Valley
- 39. Vernon
- 40. Wasatch Soil Conservation District
- 41. Deep Creek-Callao (Nevada)
- 42. Upper Fremont
- 43. Richfield-West Sevier
- 44. Moab
- 45. Hansel Valley
- 46. Cottonwood Creek
- 47. Martin Lateral
- 48. Hancock Cove
- 49. Class K-2
- 50. T. N. Dodd Irrigation Co.

EXPLANATION

FLOOD-PRONE AREA MAPS

Quadrangle name and scale Map No.

42

SUMMARY

A brief description of five different methods of flood mapping-detailed, historical, analytical, physiographic, and reconnaissance--is given to make the user aware of these methods and their principal advantages and limitations. The physiographic method, a simple and rapid method of flood mapping, is the primary emphasis on flood mapping for this report.

Streams are classified into four categories based on the topography adjacent to the stream channel and the type of flood hazards that may occur. The user can use this stream classification to determine which flood-mapping methods are most applicable to a particular stream.

Multiple-regression equations relating T-year discharges and depths to basin characteristics for recurrence intervals of 2, 5, 10, 25, 50, and 100 years were developed for six regions in Utah. Ratios of 500- to 100-year values also were determined for these six regions. Drainage area and mean basin elevation are the only independent variables used. The standard error of estimate ranges from 38 to 74 percent for the 100-year peak discharge and from 23 to 33 percent for the 100-year flood depth.

Examples are given on how to use the regression equations for any ungaged site and the drainage-area ratio method of transferring gaged data to ungaged sites on the same stream. Procedures for transferring flood depths obtained from the regression equations to a flood-boundary map are outlined. Also previous detailed flood mapping by government agencies and consultants is summarized to assist the user in quality control and to minimize duplication of effort.

peak-discharge and flood-depth frequency relations and basin-The characteristics data for gaging stations are tabulated. In addition, weighted estimates of peak-discharge relations based on station data and the regression estimates are provided for each of the gaged sites on unregulated streams. The use of weighted values at the gaged sites may provide more reliable floodmagnitude estimates than the use of station data only.

43 (page 45 followo)

- Berwick, V. K., 1962, Floods in Utah, magnitude and frequency: U.S. Geological Survey Circular 457, 24 p.
- Burkham, D. E., 1977, A technique for determining depths for T-year discharges in rigid-boundary channels: U.S. Geological Survey Water-Resources Investigations 77-83, 38 p.
- 1978, Accuracy of flood mapping: U.S. Geological Survey Journal of Research, v. 6, no. 4, p. 515-527.
- Butler, Elmer, and Cruff, R. W., 1971, Floods of Utah, magnitude and frequency characteristics through 1969: U.S. Geological Survey open-file report, 34 p.
- Butler, Elmer, and Marsell, R. E., 1972, Cloudburst floods in Utah, 1939-69: Utah Division of Water Resources - U.S. Geological Survey Cooperative Investigations Report 11, 103 p.
- Butler, Elmer, and Mundorff, J. C., 1970, Floods of December 1966 in southwestern Utah: U.S. Geological Survey Water-Supply Paper 1870-A, 40 p.
- Butler, Elmer, Reid, J. K., and Berwick, V. K., 1966, Magnitude and frequency of floods in the United States, Part 10, The Great Basin: U.S. Geological Survey Water-Supply Paper 1684, 256 p.
- Chow, V. T., 1959, Open-channel hydraulics: New York, McGraw-Hill, 680 p.
- Crippen, J. R., and Bue, C. D., 1977, Maximum floodflows in the conterminous United States: U.S. Geological Survey Water-Supply Paper 1887, 52 p.
- Edelen, G. W., Jr., 1976, National program for managing flood losses, guidelines for preparation, transmittal, and distribution of flood-prone area maps and pamphlets: U.S. Geological Survey open-file report, Reston, Va., 30 p.
- Eychaner, J. H., 1976, Estimating runoff volumes and flood hydrographs in the Colorado River basin, southern Utah: U.S. Geological Survey Water-Resources Investigations 76-102, 18 p.
- Farmer, E. E., and Fletcher, J. E., 1971, Precipitation characteristics of summer storms at high-elevation stations in Utah: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-110, 24 p.
- Fenneman, N. M., 1931, Physiography of Western United States: New York, McGraw-Hill, 534 p.
- Fields, F. K., 1975, Estimating streamflow characteristics for streams in Utah using selected channel-geometry parameters: U.S. Geological Survey Water-Resources Investigations 34-74, 19 p.

1

3,

45

- Hardison, C. H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.
- Hedman, E. R., and Osterkamp, W. R., 1982, Streamflow characteristics related to channel geometry of streams in Western United States: U.S. Geological Survey Water-Supply Paper 2193, 17 p.
- Leopold, L. B., and Maddock, Thomas, Jr., 1953, The hydraulic geometry of stream channels and some physiographic implications: U.S. Geological Survey Professional Paper 252, 57 p.
- Miller, J. F., Frederick, R. H., and Tracey, R. J., 1973, Precipitationfrequency atlas of the Western United States--Volume VI, Utah: National Oceanic and Atmospheric Administration NOAA Atlas 2, 67 p.
- Patterson, J. L., and Somers, W. P., 1966, Magnitude and frequency of floods in the United States, Part 9, Colorado River Basin: U.S. Geological Survey Water-Supply Paper 1683, 475 p.
- Riggs, H. C., 1968, Frequency curves: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 4, Chapter A2, 15 p.
- _____1973, Regional analyses of streamflow characteristics: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 4, Chapter B3, 15 p.
- Roeske, R. H., Cooley, M. E., and Aldridge, B. N., 1978, Floods of September 1970 in Arizona, Utah, Colorado, and New Mexico: U.S. Geological Survey Water-Supply Paper 2052, 135 p.
- Sauer, V. B., 1974, Flood characteristics of Oklahoma streams: U.S. Geological Survey Water-Resources Investigations 52-73, 301 p.
- SAS Institute, Inc., 1979, SAS user's guide: Raleigh, N. C., 494 p.
- Shearman, J. O., 1976, Computer applications for step-backwater and floodway analyses: U.S. Geological Survey Open-File Report 76-499, 103 p.
- Thomas, C. A., Broom, H. C., and Cummans, J. E., 1963, Magnitude and frequency of floods in the United States, Part 13, Snake River basin: U.S. Geological Survey Water-Supply Paper 1688, 250 p.
- U.S. Army Corps of Engineers, 1973, Water surface profile: Hydrologic Engineering Center Users Manual for HEC-2, Davis, Calif.

____1976, Reservoir system analysis for conservation: Engineering Center Programmers Manual for HEC-3, Davis, Calif.

- U.S. Geological Survey, 1957, Floods of April-June 1952 in Utah and Nevada: U.S. Geological Survey Water-Supply Paper 1260-E, p. 577-686.
- U.S. Soil Conservation Service, 1976, WSP-2 computer program: U.S. Department of Agriculture, Engineering Division Technical Release No. 61.

- U.S. Water Resources Council, 1981, Guidelines for determining flood flow frequency: U.S. Water Resources Council Bulletin 17B, 28 p., 14 appendixes.
- U.S. Weather Bureau, [1963], Normal annual precipitation (1931-60) for the State of Utah: Map of Utah, scale, 1:500,000.
- Utah Geological and Mineral Survey, 1980, Geologic map of Utah (compiled by L. F. Hintze), scale 1:500,000.
- Whitaker, G. L., 1969, Summary of maximum discharges in Utah streams: Utah Department of Natural Resources Technical Publication 21, 42 p.
- 1971, A proposed streamflow data program for Utah: U.S. Geological Survey open-file report, 46 p.
- Wolman, M. G., 1971, Evaluating alternative techniques of floodplain mapping: Water Resources Research v. 7, no. 6, p. 1383-1392.
- Woolley, R. R., 1946, Cloudburst floods in Utah, 1850-1938: U.S. Geological Survey Water-Supply Paper 994, 128 p.

Table 10.—Summary of previous detailed flood mapping by the U.S. Army Corps of Engineers, Sacramento District, Sacramento, Calif.

[All maps printed in the U.S. Corps of Engineers report series are titled "Flood Plain Information", except Weber River, Ogden study which is in a "Flood Hazard Information" report.]

Description of area mapped	Completion date
Jordan River complex, Salt Lake City.—Jordan River between 5700 South and Cudahy Lane on the north and east side tributaries from their canyon mouth.	October 1969
American Fork and Dry Creek, American Fork and Lehi.—American Fork downstream from rodeo grounds to Interstate Highway 15, and Dry Creek from Interstate 15 downstream to State Highway 68.	November 1969
Barton, Mill, and Stone Creeks, Bountiful, West Bountiful, and Woods Cross.— Barton and Stone Creeks from approximately the eastern city limits of Bountiful to the Denver and Rio Grande Western Railroad in West Bountiful, and Mill Creek from Orchard Drive in Bountiful to 1100 West Street in West Bountiful.	December 1969
Burch Creek, Ogden.—Canyon mouth in southeast Ogden downstream to confluence with Weber River	November 1970
Ogden River, Ogden.—C anyon mouth downstream to confluence with Weber River.	June 1971
Provo River and Rock Canyon Creek, Provo, Orem.—Provo River from canyon mouth downstream to Provo-Orem Diagonal, and Rock Canyon Creek from canyon mouth downstream to Provo River.	June 1971
Provo River and Slate Canyon Creek, Provo.—Provo River from Provo- Orem Diagonal downstream to Utah Lake, and outwash fan of Slate Canyon.	May 1972

1

Table 10.—Summary of previous detailed flood mapping by the U.S. Army Corps of Engineers, Sacramento District, Sacramento, Calif.—Continued

Description of area mapped	Completion date
Virgin River and Fort Pierce Wash, St. George.—Virgin River from Mill Creek to Man of War Road, and Fort Pierce Wash from State Highway 64 to mouth.	April 1973
Hobble Creek, Springville.—Mapleton Drive near canyon mouth downstream to Interstate Highway 15.	June 1973
Logan River, Logan.—State Dam at mouth of Logan Canyon downstream to Mendon Road Bridge.	June 1973
Jordan River Complex II Midvale-Draper.—Jordan River from Bullion Street upstream to County boundary, and Dry, Willow, and Corner Canyon Creeks from Jordan River upstream to foothills of Wasatch Mountains.	March 1974
Farmington Bay tributaries, Farmington-Centerville.—Farmington, Steed, Ricks, Parrish, and Deuel Creeks from canyon mouths downstream to Denver and Rio Grande Western Railroad.	June 1974
Box Elder Creek, Brigham City.—Black Slough upstream to the settling basin of diversion to Box Elder, Perry, and Ogden-Brigham Canals.	June 1975
Weber River, Ogden.—Highway 84 upstream to Interstate Highway 80 N.	April 1976
Blacksmith Fork and Spring Creek, Millville.—Blacksmith Fork from U.S. Highway 89-91 upstream to State Highway 242, Spring Creek from U.S. Highway 89-91 upstream to Center Street in Providence, and Millville Canyon Creek from canyon mouth downstream to confluence with Blacksmith Fork.	May 1976

Table 11.—List of communities participating with the Federal Insurance Administration in the National Flood Insurance Program as of March 31, 1982, and those not in program but which have special flood-hazard areas

[Information obtained from National Flood Insurance Program Community States Book, Federal Emergency Management Agency, Federal Insurance Administration, Washington, D. C. 20472.]

Community: Asterisk (*), unincorporated area only.

Date of current effective map (or map index): NSFHA, no special flood-hazard area; R, entry date into regular program; S, suspended community; F, effective map is a flood insurance map.

Community	Date of entry, emergency or regular (R) program	Date of current effective map (or map index)
Alpine, City of	Feb. 11, 1976 (R)	(NSFHA)
Alton, Town of	Feb. 5, 1979	_
Amalga, Town of	July 22, 1980 (R)	July 22, 1980
American Fork, City of	Nov. 25, 1980 (R)	Nov. 25, 1980
Annabella, Town of	Oct. 30, 1979 (R)	Oct. 30, 1979
Aurora, Town of	Dec. 4, 1979 (R)	Jan. 12, 1982
Beaver County*	May 23, 1975	
Bicknell, Town of	July 10, 1975	Jan. 24, 1975
Bountiful, City of	Sept. 29, 1978 (R)	Mar. 2, 1982
Box Elder County*	Dec. 17, 1974	Jan. 30, 1979
Brigham City, City of	Aug. 17, 1981 (R)	Aug. 17, 1981
Cache County*	Feb. 12, 198 0	Sept. 29, 1981
Carbon County*	Nov. 15, 1979 (R)	Nov. 15, 1979
Castle Dale, City of	May 1, 1980 (R)	May 1, 1980
Cedar City, City of	Mar. 19, 1975	Mar. 5, 1976
Cedar Fort, Town of	Oct. 6, 1976	Feb. 7, 1975
Centerville, City of	Mar. 1, 1982 (R)	Mar. 1, 1982
Charleston, Town of	Aug. 5, 1980 (R)	Aug. 5, 1980
Circleville, Town of	Sept. 14, 1977	June 11, 1976
Clarkston, Town of	Aug. 18, 1980 (R)	Aug. 19, 1980
Clearfield, City of	Feb. 20, 1979 (R)	Feb. 20, 1979
Clinton, City of	July 21, 1978 (R)	(NSFHA)
Coalville, City of	July 24, 1975	Oct. 3, 1975
Corinne, City of	July 15, 1980 (R)	July 15, 1980
Davis County*	Mar. 1, 1982 (R)	Mar. 1, 1982
Delta, City of	May 20, 1975	July 25, 1975
Draper, City of	Apr. 30, 1980	-
Duchesne, City of	Nov. 25, 1974	Oct. 24, 1975
East Carbon, City of	Mar. 7, 1975	Oct. 29, 1976
East Layton, City of	Oct. 17, 1974	Apr. 1, 1977
Elsinore, Town of	Aug. 14, 1979 (R)	Aug. 14, 1979
Emery County*	July 25, 1975	Jan. 17, 1978
Emery, Town of	Sept. 11, 1978 (R)	(NSFHA)

Table 11.-List of communities participating with the Federal Insurance Administration in the National Flood Insurance Program as of March 31, 1982, and those not in program but which have special flood-hazard areas-Continued

Community	Date of entry, emergency or regular (R) program	Date of current effective map (or map index)
Ephraim, City of	Jan. 31, 1975	Jan. 16, 1976
Escalante, Town of	Aug. 28, 1979 (R)	Aug. 28, 1979
Eureka, City of	July 2, 1975	Nov. 7, 1975
Fairview, City of	June 12, 1975	Jan. 9, 1976
Farmington, City of	Aug. 17, 1981 (R)	Aug. 17, 1981
Ferron, Town of	Jan. 20, 1975	Dec. 26, 1975
Fillmore, City of	May 1, 1975	May 14, 1976
Fruit Heights, City of	Aug. 17, 1981 (R)	Aug. 17, 1981
Garfield County*	July 3, 1975	Jan. 10, 1978
Glendale, Town of	May 19, 1977	Apr. 2, 1976
Glenwood, Town of	July 1, 1977	Oct. 22, 1976
Grantsville, City of	July 9, 1975	_
Green River, City of	Apr. 7, 1975	Dec. 5, 1975
Gunnison, City of	Aug. 27, 1975	Aug. 13, 1976
Harrisville, City of	Sept. 29, 1975	Aug. 8, 1975
Hatch, Town of	July 24, 1979 (R)	July 24, 1979
Heber City, City of	Mar. 25, 1975	_
Helper, City of	Mar. 1, 1979 (R)	Mar. 1, 1979
Henefer, Town of	May 20, 1980 (R)	May 20, 1980
Henrieville, Town of	Sept. 25, 1979 (R)	Sept. 25, 1979
Holden, Town of	Sept. 28, 1977	June 3, 1977
Honeyville, Town of	July 29, 1980 (R)	July 29, 198 0
Huntington, City of	July 9, 1975	May 24, 1974
Hurricane, City of	Aug. 5, 1975	July 12, 1977
Hyde Park, Town of	July 29, 1980 (R)	July 29, 1980
Hyrum, City of	Apr. 8, 1980 (R)	Apr. 8, 1980
Iron County*	May 8, 1975	Apr. 11, 1978
lvins, Town of	Oct. 21, 1974	Sept. 12, 1975
Joseph, Town of	Aug. 24, 1979 (R)	Aug. 28, 1979
Junction, Town of	Jan. 7, 1975	Aug. 8, 1975
Kamas, City of	July 2, 1975	July 30, 1976
Kanarraville, Town of	June 6, 1977	Dec. 17, 1976
Kane County*	July 1, 1975	Jan. 10, 1978
Kanosh, Town of	Nov. 25, 1977	Apr. 2, 1976
Kaysville, City of	Mar. 1, 1982 (R)	Mar. 1, 1982
Koosharem, Town of	July 16, 1979	Dec. 24, 1976
Laketown, Town of	Mar. 12, 1980	Nov. 12, 1976
LaVerkin, Town of	Sept. 3, 1975	July 2, 1976
Layton, City of	Dec. 13, 1974	May 14, 1976

Table 11.—List of communities participating with the Federal Insurance Administration in the National Flood Insurance Program as of March 31, 1982, and those not in program but which have special flood-hazard areas—Continued

Community	Date of entry, emergency or regular (R) program	Date of current effective map (or map index)
Leeds, Town of	Aug. 11, 1978	Apr. 2, 1976
Lehi, City of	Sept. 14, 1979 (R)	Sept. 14, 1979
Levan, Town of	Aug. 1, 1978	Dec. 9, 1980
Lewiston, City of	July 29, 1980 (R)	July 29, 1980
Logan, City of	Nov. 26, 1974	Apr. 8, 1977
Manti, City of	July 10, 1975	Dec. 19, 1975
Mantua, Town of	July 8, 1980 (R)	July 8, 1980
Mapleton, City of	Dec. 16, 1980 (R)	Dec. 16, 1980
Marysvale, Town of	Mar. 8, 1977	Feb. 11, 1977
Mendon, City of	July 22, 1980 (R)	July 22, 1980
Midvale, City of	Dec. 9, 1976	Sept. 26, 1975
Midway, City of	Aug. 19, 1980 (R)	Aug. 19, 1980
Milford, City of	Feb. 24, 1975	Dec. 19, 1975
Moab, City of	June 4, 1980 (R)	June 4, 1980
Monroe, City of	July 24, 1979 (R)	July 24, 1979
Morgan, City of	Nov. 26, 1974	Apr. 16, 1976
Morgan County*	June 25, 1975	Feb. 14, 1978
Moroni, City of	Aug. 5, 19 80 (R)	Aug. 5, 1980
Mount Pleasant, City of	Feb. 25, 1976	July 11, 1975
Murray, City of	Dec. 19, 1974	Dec. 19, 1975
Myton, City of	July 29, 1981	Apr. 2, 1976
Nephi, City of	May 29, 1975	-
Newton, Town of	July 22, 198 0 (R)	July 22, 1980
Nibley, Town of	Mar. 24, 1975	July 18, 1975
North Logan, City of	Sept. 26, 1974	Nov. 21, 1975
North Ogden, City of	Oct. 2, 1975	May 6, 1977
North Salt Lake City, City of	Aug. 29, 1978 (R)	Dec. 22, 1981
Oak City, Town of	Sept. 22, 1975	Feb. 7, 1975
Oakley, Town of	June 11, 1 9 75	Dec. 24, 1976
Ogden, City of	Dec. 27, 1974	Aug. 16, 1977
Orangeville, City of	Mar. 1, 1979 (R)	Mar. 1, 1979
Orderville, Town of	Mar. 15, 1978	Mar. 4, 1980
Orem, City of	Mar. 10, 1975	Oct. 29 , 19 76
Panguitch, City of	Aug. 28, 1979 (R)	Aug. 28, 1979
Paragonah, Town of	Mar. 12, 1975	Feb. 14, 1975
Park City, City of	May 8, 19 75	Sept. 3, 1976
Parowan, City of	June 9, 1975	Dec. 19, 1975
Perry, City of	May 20, 1980 (R)	May 20, 1980
Piute County*	Mar. 14, 1978	Nov. 8, 1977

Table 11.-List of communities participating with the Federal Insurance Administration in the National Flood Insurance Program as of March 31, 1982, and those not in program but which have special flood-hazard areas-Continued

Community	Date of entry, emergency or regular (R) program	Date of current effective map (or map index)
Plain City, City of	May 19, 1981 (R)	May 19, 1981
Pleasant Grove, City of	Aug. 5, 1975	_
Pleasant View, City of	Mar. 30, 1981 (R)	(NSFHA)
Price, City of	Mar. 1, 1979 (R)	Dec. 29, 1981
Providence, City of	May 2, 1975	Aug. 13, 1976
Provo, City of	Feb. 1, 1979 (R)	Dec. 2, 1980
Redmond, Town of	July 2, 1975	-
Richfield, City of	Sept. 26, 1974	Dec. 5, 1975
Richmond, City of	Aug. 12, 1980 (R)	Aug. 12, 1980
Riverdale, City of	Feb. 3, 1982 (R)	Feb. 3, 1982
Riverton, City of	Oct. 23, 1975	July 23, 1976
Roy, City of	Oct. 24, 1978 (R)	Oct. 24, 1978
Salem, City of	July 16, 1979 (R)	July 16, 1979
Salina, City of	Apr. 30, 1974	Sept. 26, 1975
Salt Lake City, City of	May 28, 1974	Dec. 27, 1974
Salt Lake County*	Sept. 26, 1974	Aug. 30, 1977
San Juan County*	June 30, 1975	Jan. 31, 1978
Sandy, City of	Feb. 3, 1975	Jan. 16, 1976
Sanpete County*	Mar. 2, 1976	Nov. 14, 1978
Santa Clara, Town of	Aug. 7, 1975	June 4, 19 76
Santaguin, City of	May 16, 1975	
Scipio, Town of	Aug. 3, 1978	July 12, 1977
Sevier County*	Nov. 14, 1975	Feb. 7, 1978
Sigurd, Town of	Sept. 26, 1975	Sept. 19, 1975
Smithfield, City of	Dec. 18, 1974	Dec. 26, 1975
South Jordan, City of	June 10, 1975	Jan. 30, 1976
South Ogden, City of	Mar. 1, 1982 (R)	Mar. 1, 1982
South Salt Lake, City of	May 23, 1975	Sept. 19, 1975
South Weber, City of	Sept. 12, 1978 (R)	May 19, 1981
Spring City, City of	Aug. 5, 1980 (R)	Aug. 5, 1980
Stockton, Town of	Aug. 5, 1980 (R)	Aug. 5, 1980
St. George, City of	Aug. 28, 1974	Nov. 4, 1980
Summit County*	June 10, 1975	Jan. 3, 1978
Sunnyside, City of	Sept. 29, 1978 (R)	Sept. 29, 1978
Sunset, City of	Nov. 21, 1978 (R)	Nov. 21, 1978
Syracuse, City of	June 1, 1978 (R)	(NSFHA)
Tooele County*	June 7, 1976	-
Tooele, City of	Mar. 10, 1975	Apr. 9, 1976
Torrey, Town of	Mar. 22, 1979	Nov. 12, 1976

Table 11.—List of communities participating with the Federal Insurance Administration in the National Flood Insurance Program as of March 31, 1982, and those not in program but which have special flood-hazard areas—Continued

Community	Date of entry, emergency or regular (R) program	Date of current effective map (or map index)
Tropic, Town of	Dec. 4, 1979 (R)	Dec. 4, 1979
Uintah County*	Nov. 30, 1977	Aug. 15, 1978
Uintah, Town of	May 19, 1981 (R)	May 19, 1981
Utah County*	Nov. 12, 1971	Jan. 10, 1975
Vernal, City of	Apr. 16, 1975	July 30, 1976
Virgin, Town of	June 25, 1975	June 25, 1976
Wasatch County*	Apr. 4, 1975	Dec. 13, 1977
Washington County*	Oct. 15, 1975	Feb. 7, 1978
Washington, City of	July 7, 1975	June 4, 1976
Weber County*	Mar. 25, 1975	May 2, 1978
Wellington, City of	Feb. 9, 1977	Apr. 9, 1976
Wellsville, City of	July 29, 1980 (R)	July 29, 1980
Wendover, Town of	Aug. 19, 1980 (R)	Aug. 19, 1980
West Bountiful, City of	Aug. 3, 1981 (R)	Aug. 3, 1981
West Jordan, City of	July 16, 19 75	Mar. 5, 1976
Willard, City of	Jan. 16, 197 6	Jan. 9, 19 7 6
Woodruff, Town of	July 22, 1980 (R)	July 22, 1980
Woods Cross, City of	Aug. 29, 1978 (R)	Aug. 29, 1978

ź ; : $\delta < \infty$ 12 6 a cat is * *# }-__

Table 11.—List of communities participating with the Federal Insurance Administration in the National Flood Insurance Program as of March 31, 1982, and those not in program but which have special flood-hazard areas—Continued

Community	Hazard area identified	Date on which sanctions apply
Antimony, Town of	Apr. 2, 1976	Apr. 2, 1977
Bear River City, City of	Sept. 5, 1975	Sept. 5, 1976
Beaver, City of	June 11, 1974	June 11, 1975
Cleveland, Town of	July 12, 1977	July 12, 1978
Cornish, Town of	Apr. 2, 1976	Apr. 2, 1977
Deweyville, Town of	Apr. 29, 1977	Apr. 29, 1978
Elwood, Town of	Jan. 24, 1975	Jan. 24, 1976
Enterprise, City of	Aug. 16, 1974	Aug. 16, 1975
Fountain Green, City of	Apr. 2, 1976	Apr. 2, 1977
Francis, Town of	July 25, 1975	July 25, 1976
Genola, Town of	Feb. 7, 1975	Feb. 7, 1976
Goshen, Town of	Feb. 7, 1975	Feb. 7, 1976
Grand County*	Oct. 6, 1981	Oct. 6, 1982
Hilldale, Town of	June 4, 1976	June 4, 1977
Huntsville, Town of	June 21, 1974	June 21, 1975
Kanab, City of	Oct. 29, 1976	Oct. 29, 1977
Kingston, Town of	Feb. 4, 1977	Feb. 4, 1978
Lindon, City of	June 21, 1977	June 21, 1978
Loa, Town of	Dec. 20, 1974	Dec. 20, 1975
Mayfield, Town of	May 28, 1976	May 28, 1977
Meadow, Town of	July 2, 1976	July 2, 1977
Millville, Town of	Oct. 22, 1976	Oct. 22, 1977
Monticello, City of	Dec. 24, 1976	Dec. 24, 1977
Paradise, Town of	Nov. 5, 1976	Nov. 5, 1977
Payson, City of	June 28, 1974 (F)	Nov. 15, 1978 (S)
Randolph, Town of	Aug. 16, 1974	Aug. 16, 1975
Rush Valley, Town of	Oct. 25, 1977	Oct. 25, 1978
Springdale, Town of	May 10, 1977	May 10, 1978
Springville, City of	Feb. 1, 1974 (F)	Sept. 29, 1978 (S)
Toquerville, Town of	June 25, 1976	June 25, 1977
Tremonton, City of	Apr. 23, 1976	Apr. 23, 1977
Trenton, Town of	June 27, 1975	June 27, 1976
Vernon, Town of	June 4, 1976	June 4, 1977
Wallsburg, Town of	July 2, 1976	July 2, 1977

SITE NO.: SEE FIGURE 5. FLOOD CHARACTERISTICS: PEAK DISCHARGES ARE: (FIRST LINE) STATION FLOOD-FREQUENCY VALUES USED IN MULTIPLE-REGRESSION ANALYSIS (SECOND LINE) WEIGHTED FLOOD-FREQUENCY VALUES.

LINC)		D-FREQUENCT VALUES.		BASIN CHARA	CTERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
				NORTH	IERN MOUNTAINS
1	09217900	Blacks Fork near Robertson, Wyo.	1938-39; 1967-80	130	10,640
2	09218500	Blacks Fork near Millburne, Wyo.	1940-70	152	10,270
3	09220000	East Fork of Smiths Fork near Robertson, Wyo.	1940-79	53.0	10,250
4	09220500	West Fork of Smiths Fork near Robertson, Wyo.	1940-80	37.2	9,790
5	09226000	Henrys Fork near Lonetree, Wyo.	1943-72	56	10,270
6	09226500	Middle Fork Beaver Creek near Lonetree, Wyo.	1949-70	28	10,480
7	09227500	West Fork Beaver Creek near Lonetree, Wyo.	1949-62	23	10,490
8	09228500	Burnt Fork near Burntfork, Wyo.	1944-65; 1967-75	52.8	10,300
9	09235600	Pot Creek above diversions, near Vernal, Ut.	1958-61; 1963-80	24.6	8,170
10	09264000	Ashley Creek below Trout Creek, near Vernal, Ut.	1944-54	27	9,930
11	09264500	South Fork Ashley Creek near Vernal, Ut.	1944-55	20	10,480
12	09266500	Ashley Creek near Vernal, Ut.	1914-80	101	9,440
13	09268000	Dry Fork above sinks, near Dry Fork, Ut.	1940-75	44.4	10,240
14	09268500	North Fork of Dry Fork near Dry Fork, Ut.	1946-80	8.62	10,120
15	09268900	Brownie Canyon above sinks, near Dry Fork, Ut.	1961-67; 1969-80	8.24	10,110
16	09269000	East Fork of Dry Fork near Dry Fork, Ut.	1946-63	12	9,360
17	09270000	Dry Fork below springs, near Dry Fork, Ut.	1941-45; 1954-69	97.4	9,360
18	09270500	Dry Fork at mouth, near Dry Fork, Ut.	1955-80	115	9,190
19	09271000	Ashley Creek at Sign of the Maine, near Vernal, Ut.	1900-04;1940-42; 1944-65	241	9,100
20	09273000	Duchesne River at Provo River Trail, near Hanna, Ut.	1930-33; 1936-40; 1942-43; 1945-53	39	9,730
21	09273500	Hades Creek near Hanna, Ut.	1950-68	7.5	9,730
22	09274000	Duchesne River (North Fork) near Hanna, Ut.	1922-23; 1946-53	78	9,810
23	09275000	West Fork Duchesne River below Dry Hollow, near Hanna, Ut.	1950-68; 1975-80	43.8	9,100
24	09275500	West Fork Duchesne River near Hanna, Ut.	1946-49; 1951-80	61.6	8,840
25	09276000	Wolf Creek above Rhoades Canyon, near Hanna, Ut.	1946-54; 1956-80	10.6	9,040
26	09277500	Duchesne River near Tabiona, Ut.	1919-53	356	8,770
27	09277800	Rock Creek above South Fork, near Hanna, Ut.	1966-80	98.9	10,360
28	09278000	South Fork Rock Creek near Hanna, Ut.	1 954 -78; 1980	15.7	10,000
29	09278500	Rock Creek near Hanna, Ut.	1950-69; 1975-80	122	10,200

	FLOOD CHARACTERISTICS PEAK DISCHARGE (CUBIC FEET PER SECOND), FOR FLOOD CHARACTERISTICS							MAXIMUM				
2	NDICATED F 5	IO 10	25	AL (YEARS) 50	100	2	REC 5	CURRENCE II 10	NTERVAL 25	(YEARS) 50	100	PEAK DISCHARGE OF RECORD (CUBIC FEET
HIGH ELI	EVATION RE	GION										PER SECOND)
1,550 1,490	1,990 1,970	2,240 2,230	2,510 2,570	2,690 2,780	2,860 3,000	3.2	3.6	3.9	4.2	4.4	4.5	2,160
1,470 1,460	1,840 1,880	2,070 2,130	2,350 2,450	2,560 2,670	2,760 2,890	-	-	-	-	-	-	2,530
501 520	738 757	916 926	1,160 1,160	1,370 1,350	1,590 1,560	-	-	-	-	-	-	1,450
442 432	708 678	912 859	1,200	1,430 1,320	1,690 1,540	-	-	-	-	-	-	2,100
583 594	900 895	1,150 1,120	1,500 1,430	1,790 1,680	2,110 1,960	-	-	-	-	_	-	2,010
316 333	490 501	610 610	764 757	880 861	996 970	-	-	_	-	-	-	775
168 230	254 335	315 401	396 496	460 561	525 633	-	-	-	-	-	-	417
287 392	506 619	687 784	960 1,030	1,200 1,230	1,470 1,460	-	-	-	-	-	-	3,200
66 100	129 165	182 214	263 287	333 345	411 410	2.4	3.0	3.3	3.7	4.2	4.4	286
436 377	563 505	635 577	715 670	768 728	817 790	-	-	-	-	_	-	630
315 300	415 407	472 468	537 550	581 602	621 657	2.1	2.5	2.7	2.9	3.2	3.4	460
1,050 1,020	1,540 1, 490	1,850 1,780	2,230 2,140	2,500 2,400	2,760 2,650	3.0	3.5	3.9	4.3	4.5	4.8	3,500
532 528	754 747	895 882	1,070 1, 0 60	1,190 1,170	1,310 1,290	2.8	3.3	3.6	3.9	4.0	4.1	1,010
78 89	114 129	137 154	165 186	184 207	203 230	1.5	1.7	1.9	2.0	2.2	2.4	169
182 161	267 235	323 282	392 343	442 385	491 429	1.8	2.5	2.8	3.1	3.3	3.5	395
131 133	191 192	226 226	266 269	291 295	314 322	2.0	2.5	2.8	3.1	3.3	3.5	240
539 615	780 877	932 1,030	1,110 1,230	1,240 1,360	1,370 1,500	3.6	4.0	4.5	5.0	5.5	5.8	974
531 619	887 969	1,110 1,180	1,370 1,440	1,540 1,600	1,690 1,760	3.0	4.1	4.6	5.2	5.6	6.0	1,210
1,420 1,450	2,060 2,070	2,480 2,460	3,000 2,960	3,380 3,310	3,760 3,660	4.2	4.7	5.1	5.5	5.7	5.9	4,110
710 607	896 786	1,000 885	1,130 1,120	1,210 1,100	1,290 1,180	3.2	3.6	3. 8	4.0	4.1	4.2	1,180
75 84	108 121	129 143	153 172	170 191	187 212	1.5	1.8	1.9	2.1	2.2	2.4	156
1,220 975	1,430 1,230	1,540 1,360	1,660 1,540	1,730 1,640	1,800 1,750	4.4	4.7	4.9	5.1	5.3	5.4	1,500
476 446	694 644	821 758	963 894	1,060 983	1,140 1,060	2.8	3.5	3.8	4.2	4.4	4.7	740
454 454	613 618	700 708	793 812	852 876	903 937	2.2	2.6	2.8	3.0	3.1	3.3	758
48 63	61 84	69 95	78 111	84 121	89 132	-	-	-	-	_	-	82
1,410 1,520	1,830 2,010	2,070 2,280	2,330 2,600	2,500 2,790	2,650 2,980	3.5	3.9	4.2	4.5	4.6	4.8	2,500
1,680 1,420	2,180 1,880	2,460 2,140	2,770 2,460	2,970 2,660	3,150 2,850	4.2	4.8	5.0	5.4	5.5	5.7	2,760
96 126	138 180	165 212	198 257	221 285	243 316	1.2	1.4	1.5	1.6	1.7	1.8	189
1,750 1,590	2,170 2,020	2,380 2,240	2,600 2,510	2,730 2,660	2,850 2,820	5.9	6.6	6.9	7.2	7.4	7.6	2,540

				BASIN CHARACTERISTICS		
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)	
				NORTHERN	MOUNTAINS HIGH	
30	09279000	Rock Creek near Mountain Home, Ut.	1938-80	147	10,000	
31	09279100	Rock Creek near Talmage, Ut.	1964-80	238	9,400	
32	09289500	Lake Fork River above Moon Lake, near Mountain Home, Ut.	1943-55; 1964-80	77.9	10,800	
33	09292500	Yellowstone River near Altonah, Ut.	1945-80	132	10,440	
34	09296000	Uinta River above Clover Creek, near Neola, Ut.	1946-55	132	10,960	
35	09297000	Uinta River near Neola, Ut.	1925-27 <i>;</i> 1930-80	163	10,710	
36	09298000	Farm Creek near Whiterocks, Ut.	1950-59; 1961-80	14.9	9,180	
37	09298500	Whiterocks River above Paradise Creek, near Whiterocks, Ut.	1946-55	90	10,700	
38	09299500	Whiterocks River near Whiterocks, Ut.	1902-03; 1918-20; 1922-25; 1930-80	113	10,370	
39	10011500	Bear River near Utah-Wyoming State line	1943-80	172	9,770	
40	10012000	Mill Creek at Utah-Wyoming State line	1943-48; 1950-62	59	9,320	
41	10015700	Sulphur Creek above reservoir, near Evanston, Wyo.	1958-80	64.2	8,050	
42	10016000	Sulphur Creek near Evanston, Wyo.	1943-48; 1950-59	80.5	7,930	
43	10021000	Woodruff Creek near Woodruff, Ut.	1940; 1942-43; 1950-70	56.8	7,900	
44	10032000	Smiths Fork near Border, Wyo.	1942-80	165	8,270	
45	10058600	Bloomington Creek at Bloomington, Ida.	1961-80	24.0	7,860	
46	10069000	Georgetown Creek near Georgetown, Ida.	1940-56	22.2	7,830	
47	10072800	Eightmile Creek near Soda Springs, Ida.	1961-80	22.6	7,710	
48	10099000	High Creek near Richmond, Ut.	1944-52; 1971-72; 1979	16.2	7,700	
49	10102300	Summit Creek above diversions, near Smithfield, Ut.	1962-79	11.6	7,590	
50	10107700	Logan River near Garden City, Ut.	1962-73	34	8,230	
51	10128200	South Fork Weber River near Oakley, Ut.	1965-74	16	8,780	
52	10128500	Weber River near Oakley, Ut.	1905-80	162	9,090	
53	10129350	Crandall Creek near Peoa, Ut.	1964-73	12	7,700	
54	10131000	Chalk Creek at Coalville, Ut.	1927-80	250	7,540	
55	10137500	South Fork Ogden River near Huntsville, Ut.	1921-65	148	7,960	
56	10141500	Holmes Creek near Kaysville, Ut.	1950-66	2.49	7,560	
57	10153800	North Fork Provo River near Kamas, Ut.	1964-80	24.4	9,550	
58	10154000	Shingle Creek near Kamas, Ut.	1964-73	B.4	9,280	
59	10160800	North Fork Provo River at Wildwood, Ut.	1965-74	12.3	8,100	

_

PE	AK DISCHAR	CE CUBIC	REFT PER S	FL ECOND), FOR	OOD CHARA	CTERISTICS	- MAXIMUM					
<u> </u>	NDICATED 1	RECURRENC 10	CE INTERVA 25	AL (YEARS) 50	100	2		D DEPTH (FE CURRENCE I 10			100	- PEAK DISCHARGE OF RECORD
												(CUBIC FEET PER SECOND)
ELEVATI 1.600	ON REGION	Continued 2,270	2,540	2,720	2,880	4.0	4.3	4.6	4.8	4.9	5.0	2,920
1,540	1,990	2,230	2,530	2,720	2,900							
1,580 1,610	1,960 2,080	2,170 2,330	2,390 2,650	2,530 2,840	2,650 3,030	3.3	3.7	4.0	· 4.1	4.3	4.4	2,320
1,330 1,230	1,740 1,640	2,000 1,880	2,330 2,210	2,560 2,430	2,790 2,650	3.2	3.7	3.9	4.2	4.4	4.7	2,700
1, 000 1,070	1,300 1,420	1, 490 1,630	1,720 1,900	1,880 2,080	2,040 2,270	2.5	2.9	3.1	3.2	3.4	3.5	1,880
1,300 1,410	1,840 1,980	2,180 2,310	2,610 2,770	2,920 3,070	3,220 3,390	3.4	4.2	4.7	5.2	5.6	6.0	2,300
1,380 1, 43 0	2,070 2,120	2,570 2,590	3,240 3,240	3,770 3,740	4,330 4,270	2.3	2.9	3.2	3.6	3.9	4.2	5,000
90 106	179 189	244 247	331 326	396 382	460 440	1.2	1. 6	1.9	2.2	2.4	2.6	350
1,100 1 070	1,580 1,510	1,870 1,770	2,210 2,110	2,450 2,330	2,670 2,560	-	_	-	-	_	-	1,780
1, 110 1,120	1,640 1,640	1,980 1,960	2,390 2,370	2,690 2,650	2,980 2,940	3.0	3.8	4.1	4.8	5.0	5.2	2,750
1,830 1,740	2,310 2,230	2,590 2,510	2,900 2,850	3,120 3,070	3,310 3,280	3.8	4.2	4.4	4.7	4.8	5.0	2,980
391 430	544 601	642 702	760 836	845 923	927 1,020	-		-	-	_		690
365 365	545 535	681 653	871 819	1,030 949	1,190 1,080	3.5	4.1	4.3	4.6	4.8	5.0	1,220
520 483	795 718	977 863	1,200	1,370	1,530	_	-	-	_	-		1,220
263	368	427	1,050 493	1,180 535	1,310 573	_	_	_	-	-		528
278 963	390 1,220	450 1,350	525 1,500	570 1,590	615 1,680	3.7	4.3	4.5	4.8	4.9	5.1	1,610
943 146	1,220 202	1,350 232	1,520 265	1,620 285	1,730 302	-	_	-	_	-	_	248
148 50	206 67	237 79	275 94	298 106	320 118	_		-	_	-	_	110
84 110	116 144	135 164	161 187	178 203	197 218	-	_	_	_		_	209
119 206	161 250	184 278	214 311	233	252 360		2.0		• •		2.4	355
159	203	229	262	285	308	1.8	2.0	2.1	2.2	2.3	2.4	
147 121	212 175	253 207	300 246	334 273	365 299	-			-	-	-	302
315 276	346 336	360 366	375 407	383 430	390 456	-		-	-	-	-	365
198 172	226 216	241 240	258 274	268 294	278 315	1.9	2.0	2.0	2.1	2.1	2.2	259
1,820 1,740	2,390 2,290	2,740 2,630	3,160 3, 03 0	3,460 3,320	3,750 3,600	3. 9	4.5	4.7	5.0	5.3	5.6	4,170
91 86	124 119	143 138	166 163	181 178	195 194	2.0	2.3	2.5	2.7	2.8	2.9	134
535 603	809 892	962 1,050	1,130 1,230	1,230 1,340	1,320 1,440	2.9	3.7	4.0	4.5	4.7	5.0	1,540
782 770	1,270 1,220	1,560 1,480	1,900 1,800	2,210 2,000	2,310 2,180	3.7	4.8	5.3	5.9	6.2	6.6	1,890
18 19	28 29	36 35	44 44	50 49	56 55	-	-	-	-	_	-	36
403 352	512 461	576 523	651 604	702 656	750 709	2.4	2.7	2.9	3.1	3. 2	3.4	705
179 139	204 173	218 191	233 217	243 233	253 250	2.5	2.6	2.7	2.8	2.9	3.0	238
106 100	148 141	177 166	215 201	244 225	274 251	1.5	1.8	1.9	2.1	2.2	2.5	225

.

				BASIN CHARAC	TERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
				NORTHERN N	OUNTAINS HIGH
60	10164500	American Fork above Upper Powerplant, near American Fork, Ut.	1927-52; 1954-80	51.1	8,460
61	10165500	Dry Creek near Alpine, Ut.	1 948-55; 1959-74	9.82	8,770
62	10167500	Little Cottonwood Creek near Salt Lake City, Ut.	1948-63	27.4	8,680
				NORTH	RN MOUNTAINS
63	10019700	Whitney Canyon Creek near Evanston, Wyo.	1965-80	8.93	7,300
64	10023000	Big Creek near Randolph, Ut.	1941-44; 1950-70	52.2	7,370
65	10027000	Twin Creek at Sage, Wyo.	1944-60; 1962; 1976-80	246	7,270
66	10040000	Thomas Fork near Geneva, Ida.	1940-51	45.3	7,170
67	10040500	Salt Creek near Geneva, Ida.	1940-51	37.6	7,390
68	10041000	Thomas Fork near Wyoming-Idaho State line	1950; 1952-80	113	7,290
69	10047500	Montpelier Creek at irrigators weir, near Montpelier, Ida.	1943-70; 1977-78	49.5	7,370
70	10084500	Cottonwood Creek near Cleveland, Ida.	1939-80	61.7	6,650
71	10090800	Battle Creek tributary near Treasureton, Ida.	1961-71; 1973-79	4.5	5,810
72	10093000	Cub River near Preston, Ida.	1940-52; 1956-80	31.6	6,890
73	10104700	Little Bear River below Davenport Creek, near Avon, Ut.	1969-80	61.6	6,730
74	10104900	East Fork Little Bear River above reservoir, near Avon, Ut.	1964-80	56.7	7,350
75	10107800	Temple Fork near Logan, Ut.	1962-73	15.4	7,290
76	101135 00	Blacksmith Fork above Utah Power & Light Co.'s dam, near Hyrum, Ut.	1914-17; 1919-22; 1925-80	268	7,150
77	10132500	Lost Creek near Croydon, Ut.	1921-23; 1941-66	123	7,320
78	101337 00	Three Mile Creek near Park City, Ut.	1964-74	2.68	7,340
79	10135000	Hardscrabble Creek near Porterville, Ut.	1942-70	28.1	7,220
80	10137680	North Fork Ogden River near Eden, Ut.	1964-74	6.03	7,170
81	10137780	Middle Fork Ogden River above diversions, near Huntsville, Ut.	1964-74	31.3	7,250
82	10139300	Wheeler Creek near Huntsville, Ut.	1959-80	11.1	6,620
83	10142000	Farmington Creek above diversions near Farmington, Ut.	1950-80	10.0	7,470
84	10142500	Ricks Creek above diversions, near Centerville, Ut.	1950-66	2.35	7,360
85	101 43000	Parrish Creek above diversions, near Centerville, Ut.	1950-68	2.08	7,090
86	10143500	Centerville Creek above diversions, near Centerville, Ut.	1952-75; 1978-80	3.15	6,940
87	10144000	Stone Creek above diversions, near Bountiful, Ut.	1950-64; 1966	4.48	7,050
88	101 52500	Hobble Creek near Springville, Ut.	1904-16; 1945-73	105	7,110
89	101 58500	Round Valley Creek near Walisburg, Ut.	1939-50	71.9	6,960
90	10160000	Deer Creek near Wildwood, Ut.	19 39 -50	26	7,450
91	10172200	Red Butte Creek at Fort Douglas, near Salt Lake City, Ut.	1964-80	7.25	6,800

CHARACTERISTICS FOR GAGING STATIONS-CONTINUED

FLOOD CHARACTERISTICS PEAK DISCHARGE (CUBIC FEET PER SECOND), FOR FLOOD DEPTH (FEET), FOR INDICATED										MAXIMUM		
	DICATED R 5				100	2		URRENCE I 10			100	PEAK DISCHARGE OF RECORD (CUBIC FEET
ELEVATIO	N REGION-	-Continued										PER SECOND)
343 343	461 465	528 533	600 611	647 660	689 706	1.6	1.9	2.1	2.2	2.3	2.4	645
200 169	279 236	333 281	405 341	461 386	518 433	2.7	3.1	3.4	3.7	3.9	4.2	597
471 375	560 465	613 516	677 583	722 627	765 672	-	-	-	-	-	-	736
	ATION REG											
47 48	88 84	121 111	169 149	209 178	253 214	-	-	-	-	-	-	160
78 108	126 171	162 215	215 275	258 318	306 374	-	-	-	-	-	-	337
243 352	521 652	739 875	1,030 1,160	1,260 1,370	1,490 1,610	-	-	-	-	-	-	853
147 159	250 262	326 335	428 430	506 496	587 579	-	-	-	-	-	-	418
165 154	294 260	386 333	506 425	595 488	684 563	-	-	-	-	-	-	382
441 414	790 724	1,020 928	1, 300 1,180	1,500 1,350	1,680 1,520	2.6	3.4	3.8	4.4	4.6	5.0	1,040
97 117	144 176	174 214	209 259	235 288	259 325	-	-	-	-	-	-	224
354 335	519 504	625 616	756 759	8 50 859	941 971	-	-	-	-	-	-	788
37 41	82 86	128 130	208 203	287 271	384 361	-	-	-	-	-	-	98
583 491	682 590	733 644	787 705	821 744	8 51 787	2.6	2.9	3.0	3.2	3.3	3.4	803
4 62 391	723 624	909 791	1,160 1,020	1,350 1,180	1, 540 1,370	2.6	3.2	3 .7	4.2	4.5	4.9	1,200
462 363	589 483	667 559	761 649	828 708	89 3 780	-	-	-	-	-	-	760
61 67	96 105	120 131	150 162	173 183	195 210	1.4	1.7	1.8	2.0	2.2	2.3	124
485 509	816 851	1,040 1, 08 0	1,3 20 1,370	1,530 1,580	1,730 1,800	2.4	3.2	3.7	4.2	4.6	4.9	1,620
233 264	413 450	553 588	750 774	910 914	1,080 1,080	-	-	-	-	-	-	770
9 14	12 20	13 25	15 29	16 32	17 37	-	-		-	-	-	15
249 216	364 319	431 381	505 450	553 494	596 541	2.3	2.7	2.9	3.1	3.3	3.4	464
91 66	120 91	137 108	159 128	174 141	188 157	-	-	-	-	2.5	2.6	156
457 300	562 391	626 448	702 516	756 560	808 616	2.6	2.8	3.0	3.2	3.3	3.4	744
106 95	208 180	294 251	421 3 54	529 439	649 539	-	-	-	-	-		440
151 127	238 199	298 248	376 312	434 359	493 408	-	-	-	-	-	-	366
19 18	34 31	44 40	56 51	66 58	74 66	.7	1.0	1.1	1.2	1.3	1.5	51
13 15	22 24	28 30	35 38	40 43	44 49	-	-		-	-	-	30
14 17	23 28	29 35	36 45	41 51	46 58	-	-		-	-	-	35
24 27	49 50	71 68	102 94	129 114	158 139	-	-	-	-	-	-	82
256 271	468 481	630 639	851 851	1, 03 0 1,020	1,210 1,190	2.2	3.2	3.8	4.5	5.0	5.6	1,250
117 182	155 280	180 348	210 434	232 489	253 572	2.5	3.0	3.3	3.7	4.0	4.2	201
62 82	88 123	103 148	121 177	133 194	143 218	1.0	1.2	1.3	1.4	1.5	1.6	99
16 28	28 48	36 62	48 81	58 95	69 114	-	-	-	-	-	-	60

				BASIN CHARA	CTERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
					UINTA BASIN
92	09225200	Squaw Hollow near Burntfork, Wyo.	1965-B0	6.57	6,610
93	09229450	Henrys Fork tributary near Manilla, Ut.	1965-74	3, 15	6,600
94	09263700	Cliff Creek near Jensen, Ut.	1960-74	64	6,570
95	09263800	Cow Wash near Jensen, Ut.	1960-71; 1973-74	9.40	5,360
96	09271B00	Halfway Hollow tributary near LaPoint, Ut.	1960-74	4.20	6,550
97	092B0400	Hobble Creek at Daniels Summit, near Wallsburg, Ut.	1964-80	2.B9	9,060
9B	09287000	Currant Creek below Red Ledge Hollow near Fruitland, Ut.	1946-68; 1975-80	50.1	B,880
99	092B7500	Water Hollow near Fruitland, Ut.	1946-71	13.8	8,380
100	09288000	Currant Creek near Fruitland, Ut.	1935-74	140	8,360
101	09288150	West Fork Avintaquin Creek near Fruitland, Ut.	1965-80	56.1	8,310
102	09288500	Strawberry River at Duchesne, Ut.	1909-10; 1914-68	950	7,660
103	09288900	Sowers Creek near Duchesne, Ut.	1965-80	40.6	B,120
104	09306800	Bitter Creek near Bonanza, Ut.	1971-80	324	7,300
105	09307500	Willow Creek above diversions, near Ouray, Ut.	1951-55; 195B-70; 1975-80	297	7,710
106	09308000	Willow Creek near Ouray, Ut.	1947-55; 1960-68; 1975-79	B97	7,140
107	09308200	Pleasant Valley Wash tributary near Myton, Ut.	1960-70	15	6,110
10B	09308500	Minnie Maud Creek near Myton, Ut.	1952-55; 1958-75; 1977-80	32.0	8,460
109	09309000	Minnie Maud Creek at Nutter Ranch near Myton, Ut.	1947-55; 1960-73	231	7,880
110	09309100	Gate Canyon near Myton, Ut.	1960-63; 1965-72	5.4	6,860
111	09312500	White River near Soldier Summit, Ut.	1940-67	53	8,360
112	09312700	Beaver Creek near Soldier Summit, Ut.	1961-68; 1971-76; 1979-80	26.1	8,750
113	09312800	Willow Creek near Castle Gate, Ut.	1963-80	62.8	B, 120
114	10148200	Tie Fork near Soldier Summit, Ut.	1964-80	19.4	7,500
115	10148300	Dairy Fork near Thistle, Ut.	1959-72	11	6,950
116	1014B500	Spanish Fork at Thistle, Ut.	1908-25; 1933-36; 1938-74	490	7,130

CHARACTERISTICS FOR GAGING STATIONS-CONTINUED

	NDICATED F	RECÙRRENC	CE INTERVA	ECOND), FO AL (YEARS)	R		ERISTICS FLOOD DEPTH (FEET), FOR INDICATED RECURRENCE INTERVAL (YEARS)						
2	5	10	25	50	100	2	5	10	25	50	100	- OF RECORD (CUBIC FEET PER SECOND)	
REGION													
103 97	227 250	339 407	516 678	673 940	852 1,260	-	-	-	-	-	-	620	
24 45	101 160	205 301	427 579	677 873	1,020 1,260	-	-	-	-	-	-	588	
165 1 89	753 728	1,540 1,410	3,100 2,720	4,7 4 0 4,090	6,800 5,820	2.1	4.2	5.7	7.4	-	-	1,360	
298 237	800 762	1,320 1,400	2,240 2,660	3,120 4,020	4,200 5,830	-	-	-	-	-		2,950	
91 85	301 281	532 502	937 900	1,320 1,290	1,780 1,770	1.4	2.5	3.3	4.5	5.4	6.5	702	
72 58	100 88	118 109	141 137	157 159	174 183	1.8	2.1	2.3	2.4	2.6	2.7	145	
260 223	443 383	569 496	7 26 642	840 751	950 861	2.3	2.9	3.4	3.8	4.1	4.4	946	
29 42	60 88	89 129	136 194	178 251	227 318	1.3	1.4	1.7	2.1	2.5	2.7	133	
324 298	508 483	643 623	829 820	979 983	1,140 1,160	1.8	2.2	2.5	2.9	3.1	3.5	1,260	
239 199	538 438	828 663	1,320 1,040	1,790 1,390	2,360 1,820	1.7	2.4	3.0	3.7	4.4	5.1	1,830	
1,090 1,000	1,690 1,600	2,100 2,030	2,620 2,600	3,010 3,040	3,400 3,520	-	-	-		-	-	3,490	
50 79	142 191	240 300	416 485	587 659	797 869	-	-	-	-	-	-	350	
67 210	342 601	801 1,080	1,970 2,070	3,530 3,240	5,950 4,930		-	-	-	-		1,660	
2 26 251	448 523	655 775	1,000 1,190	1,330 1,580	1,720 2,050	3.1	4.2	5.0	6.1	6.9	7.9	2,240	
612 597	1,920 1,770	3,420 3,060	6,220 5,450	9,090 7,860	12,700 10,800	2.4	4.0	4.9	6.9	8.5	10.0	11,000	
157 151	802 669	1,750 1,390	3,840 2,920	6,190 4,620	9,330 6,880	1.4	2.9	4.6	8.8	11.5	-	2,590	
93 96	312 284	567 493	1,040 873	1,520 1,250	2,110 1,720	1.7	2.7	3.4	4.5	5.2	6.1	1,370	
483 417	845 763	1,100	1,440 1,390	1,700 1,700	1,960 2,020	3. 9	5.7	6.7	7.7	8.3	9.1	1,380	
179 132	727 503	1,390 943	2,600 1,740	3,770 2,520	5,170 3,460	.8	1.9	2.9	4.2	5.1	6.1	1,000	
175 164	306 295	409 402	554 555	673 684	801 826	1.8	2.6	3.1	3.7	4.0	4.2	1,120	
50 65	86 119	112 161	147 222	175 272	203 328	-	-	-	-	-	-	135	
217 193	399 369	551 519	7 83 751	985 954	1,210 1,180	-	-	-	-	-	-	836	
29 58	90 157	168 266	332 468	521 680	787 961	1.2	1.9	2.6	3.6	4.5	5.6	422	
159 134	403 356	665 594	1,140 1,020	1,630 1,460	2,260 2,010	2.4	3.5	4.6	5.7	6.5	7.2	980	
511 500	769	955	1,210	1 400	1,610	_	_	-		_	_	1,800	
500	816	1,070	1,450	1,760	2,130								

				BASIN CHARA	ACTERISTICS
SITE NO.	STATION NO,	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
					HIGH PLATEAUS
117	09177500	Taylor Creek near Gateway, Colo.	1945-67	12	9,000
118	09310500	Fish Creek above reservoir, near Scofield, Ut.	1939-61;1963-76; 1978-80	60.1	8,710
119	09313000	Price River near Heiner, Ut.	1935-69; 1980	415	8,160
120	09318000	Huntington Creek near Huntington, Ut.	1909-79	190	9,000
121	09324500	Cottonwood Creek near Orangeville, Ut.	1910-27; 1932-65	208	8,940
122	09326500	Ferron Creek (Upper Station) near Ferron, Ut.	1912-23; 1948-80	138	8,800
123	09329050	Seven Mile Creek near Fish Lake, Ut.	1965-80	24.0	10,000
124	09329900	Pine Creek near Bicknell, Ut.	1965-80	104	9,300
125	09330500	Muddy Creek near Emery, Ut.	1911-14; 1949-80	105	8,850
126	09331500	Ivie Creek above diversions near Emery, Ut.	1951-74	50	8,870
127	09338000	East Fork Boulder Creek near 8oulder, Ut.	1951-55; 1958-72	21.4	10,500
128	09338500	East Fork Deer Creek near Boulder, Ut.	1951-55; 1959-73	1.9	9,290
129	09378630	Recapture Creek near Blanding, Ut.	1966-80	3.77	8,880
130	10185000	Antimony Creek near Antimony, Ut.	1947-48; 1958-76	84.0	9,560
131	10187300	Otter Creek near Koosharem, Ut.	1965-80	23.5	9,580
132	10205030	Salina Creek near Emery, Ut.	1964-80	51.8	8,720
133	10205070	Cottonwood Creek near Salina, Ut.	1959-68	7.8	7,470
134	10205200	West Fork Sheep Creek near Salina, Ut.	1958-69	.43	8,690
135	10205300	Sheep Creek at mouth, near Salina, Ut.	1958-69	1.47	8,780
136	10205700	Salina Creek above diversions, near Salina, Ut.	1959-74	280	7,950
137	10208500	Oak Creek near Fairview, Ut.	1965-80	11.8	8,560
138	10210000	Pleasant Creek near Mount Pleasant, Ut.	1946; 1955-75	16.4	8,830
139	10211000	Twin Creek near Mount Pleasant, Ut.	1955-66	5.9	8,900
140	10215700	Oak Creek near Spring City, Ut.	1965-74; 1980	8.35	9,140
141	10215900	Manti Creek below Dugway Creek, near Manti, Ut.	1965-74; 1979-80	26.4	9,080
142	10216300	Sixmile Creek near Sterling, Ut.	1959-74	29	8,700
143	10216400	Twelvemile Creek near Mayfield, Ut.	1960-78	59.4	8,570

	AK DISCHAR NDICATED F	RECURRENC	E INTERVA	ECOND), FOR			FLOOI REC		MAXIMUM PEAK DISCHARGE			
2	5	10	25	50	100	2	5	10	25	50	100	OF RECORD (CUBIC FEET PER SECOND)
REGION												
114 103	265 233	401 348	610 524	791 677	992 847	-	-	-	_	-	-	555
561 506	796 741	938 897	1,100 1,090	1,220 1,240	1,320 1,380	2.9	3.5	3.8	4.1	4.4	4.6	1,160
1,180 1,220	2,230 2,220	3,170 3,160	4,700 4,640	6,110 6,000	7,780 7,580	3.5	4.5	5.2	6.1	6.7	7.3	9,340
816 804	1,300 1,290	1,630 1,620	2,050 2,060	2,360 2,380	2,660 2,690	3.4	4.1	4.6	5.1	5.4	5.7	2,500
1,300 1,220	2,080 1,960	2,670 2,520	3,460 3,270	4,090 3,870	4,760 4,500	5.1	6.5	7.3	8.4	-	-	7,220
919 853	1,540 1,440	2,010 1,880	2,700 2,530	3,260 3,060	3,880 3,650	4.6	5.8	6.6	7.6	8.2	8.8	4,180
152 146	219 236	259 283	306 344	338 389	367 431	1.8	2.2	2.4	2.7	2.8	2.9	225
75 217	233 444	419 640	7 84 980	1,170 1,310	1,680 1,720	1.4	2.3	3.2	4.5	5.6	6.9	707
581 552	1,180 1,090	1,690 1,560	2,460 2,240	3,130 2,840	3,870 3,490	3.5	5.4	6.8	8.7	10.4	11.8	3,340
188 205	403 418	593 604	888 886	1,150 1,140	1,440 1,410	3.4	4.8	5.6	6.5	7.3	7.9	1,240
200 175	303 283	374 342	464 422	532 481	599 539	-	-	-	-	-	-	483
20 20	65 57	122 101	245 193	389 297	594 444	1.2	1.6	1.9	2.3	2.7	3.1	350
17 23	43 52	70 83	121 135	171 184	235 245	.6	1.0	1.4	1.9	2.4	2.9	142
2 29 276	417 497	551 639	726 831	856 976	985 1,120	2.4	3.2	3.7	4.3	4.6	5.0	669
55 8 6	79 148	94 187	113 240	127 283	140 326	-	-	-	- ,	-	-	117
177 206	350 393	48 5 550	673 772	821 956	974 1,150	2.7	3.8	4.5	5.4	5.9	6.5	519
26 41	103 109	213 213	460 419	758 655	1,190 983	_	-	-	-	-	-	457
3 4	8 11	13 17	20 28	26 38	32 50	-	-	-	-	-	-	12
12 13	23 28	33 42	46 64	57 83	68 105	1.0	1.3	1.5	1.7	1.8	1.9	32
561 722	934 1,200	1,240 1,710	1,700 2,440	2,110 3,110	2,560 3,850	-	-	-	-	-	-	2,300
138 115	200 183	237 237	282 313	312 376	340 444	2.5	3.0	3.3	3.5	3.7	3.9	262
164 148	352 314	544 480	890 773	1,240 1,060	1,690 1,440	1.4	2.2	2.8	3.8	4.3	4.8	2,060
69 58	133 115	192 168	289 252	379 330	487 421	-	-	_	-	-	-	488
119 90	193 159	247 211	319 285	375 346	433 410	1.2	1.5	1.7	1.9	2.1	2.2	300
349 258	441 369	502 451	580 564	638 655	6 98 752	2.2	2.4	2.5	2.7	2.8	2.9	682
223 199	430 381	613 546	901 801	1,160 1,030	1,460 1,290	1.6	2.2	2.6	3.4	4.0	4.6	1,050
271 275	492 500	681 703	975 1,010	1,240 1,280	1,540 1,590	2.4	3.6	4.3	5.3	6.2	7.1	1,350
	000		.,	.,200	.,							

				BASIN CHARA	CTERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
					LOW PLATEAUS
144 ¹	09168100	Disappointment Creek near Dove Creek, Colo.	1958-80	145	8,000
145	09181000	Onion Creek near Moab, Ut.	1951-55; 1961-68	18.8	5,700
146	09182600	Salt Wash near Thompson, Ut.	1959-71; 1973-74	3.9	5,510
147	09183000	Courthouse Wash near Moab, Ut.	1950-55; 1966-80	162	4,810
148	09184000	Mill Creek near Moab, Ut.	1915-17; 1949-71; 1973-80	74.9	7,170
149	09185200	Kane Springs Canyon near Moab, Ut.	1959; 1961-74	17.8	6,620
150	09185500	Hatch Wash near La Sal, Ut.	1950-71	378	6,550
151	09186500	Indian Creek above Cottonwood Creek, near Monticello, Ut.	1950-71	31.2	8,590
152	09187000	Cottonwood Creek near Monticello, Ut.	1950-57; 1960-67	115	7,210
153	09313500	Price River near Helper, Ut.	1904-06; 1908-16; 1918-20; 1922-34	530	7,920
154	09314200	Miller Creek near Price, Ut.	1960-71; 1973	62	7,040
155	09314400	Coleman Wash tributary near Woodside, Ut.	1959-68	3.6	5,540
156	09314500	Price River at Woodside, Ut.	1909-10; 1946-73; 1975-80	1,540	6,490
157	09315150	Saleratus Wash tributary near Woodside, Ut.	1959-71; 1973-74	10	5,070
158	09315200	Saleratus Wash tributary No. 2 near Woodside, Ut.	1959-71; 1973-74	4.4	5,030
159	09315400	Saleratus Wash above Cottonwood Wash, near Green River, Ut.	1959-68	120	5,430
160	09315500	Saleratus Wash at Green River, Ut.	1949-70	180	5,050
161	09315900	Browns Wash tributary near Green River, Ut.	1959-73	3.89	4,300
162	09316000	Browns Wash near Green River, Ut.	1949-59; 1961-68	75	5,220
163	09327600	Ferron Creek tributary near Ferron, Ut.	1959; 1961-71	.96	6,300
164	09328050	Dry Wash near Moore, Ut.	1959-73	14	6,320
165	09328300	Sids Draw near Castle Dale, Ut.	1959-73	17.6	6,380
166	09328500	San Rafael River near Green River, Ut.	1909-18; 1946-80	1,628	6,910
167	09328600	Georges Draw near Hanksville, Ut.	1959-67; 1969-73	6.63	7,010
168	09328700	Temple Wash near Hanksville, Ut.	1959-68	38.2	5,630
169	09328720	Old Woman Wash near Hanksville, Ut.	1959-68	17.6	5,450
170	09328900	Crescent Wash at Crescent Junction, Ut.	1959-68	23.3	6,180
171	09330120	Sulphur Creek near Fruita, Ut.	1959-74	56.7	7,400
172	09330200	Pleasant Creek at Notom, Ut.	1959-73	80.6	7,980
173	09330300	Neilson Wash near Caineville, Ut.	1959-73	22.3	4,830
174	09330400	Fremont River near Hanksville, Ut.	1959-73	1,900	7,450

¹ Not located in figure 5.

FLOOD CHARACTERISTICS PEAK DISCHARGE (CUBIC FEET PER SECOND), FOR MAXIMUM												MAXIMUM
				AL (YEARS) 50	100	2		URRENCE I			100	PEAK DISCHARGE OF RECORD (CUBIC FEET
REGION												PER SECOND)
1,110 919	2,320 1,960	3,320 2,840	4,770 4,180	5,980 5,330	7,270 6,5 9 0	-	-	-	-	-	-	7,270
754 604	1,400 1,260	1,860 1,810	2,470 2,660	2,930 3,420	3,380 4,260	2.0	2.9	3.6	4.4	5.0	5.5	2,100
281 245	727 660	1,170 1,080	1, 900 1,810	2,580 2,520	3,370 3,350	-	-	-	-	-	-	1,380
1,920 1,910	3,830 3,980	5,570 5,840	8,430 8,910	11,100 11,700	14,300 15,100	3.5	4.9	5. 9	7.4	8.7	10.1	12,300
787 725	2,140 1,930	3,600 3,210	6,260 5,530	8,930 7,840	12,300 10,700	-	-	-	-	_	-	5,110
535 435	844 808	1,060 1,120	1,340 1,620	1,550 2,070	1,770 2,600	2.6	3.5	4.0	4.7	5.2	5.4	1,290
501 812	1,220 1,840	1,950 2,800	3,240 4,440	4,500 5,970	6,060 7,800	2.0	2.9	3.7	4.9	5.9	7.0	4,650
136 161	383 435	679 738	1,280	1,950 1,960	2, 88 0 2,810	2.0	3.2	4.3	5. 9	7.5	9.3	2,330
353 463	1,140 1,270	2,080 2,150	3,920 3,780	5,880 5,460	8,450 7,580	1.5	3.3	5.2	8.1	10.5	13.2	2,200
1,890 1,700	4,000 3,600	5,920 5,300	8,960 8,000	11,700 10,400	14,900 13,300	4.5	5.8	6.8	8.0	8.9	9.8	12,000
1,460 1,040	3,420 2,440	5,130 3,690	7,670 5,610	9,800 7,280	12,100 9,110	4.4	8.7	11.6	15. 8	-	-	5,000
262 221	611 571	927 917	1, 420 1,510	1, 850 2,090	2,330 2,760	-	-	_	-	_	-	1,040
4,210 4,000	6,930 6,800	8,710 8,730	10,900 11,300	12,400 13,200	13,800 15,100	7.9	9.4	10.1	10.7	11.0	11.3	9,720
824 645	2,260 1,770	3,760 2,940	6,390 5,010	8, 940 7,020	12,000 9,430	-	-	-	-	-	-	5,340
1,010 705	2,550 1,820	3,920 2,840	5, 960 4,440	7,660 5,830	9,470 7,370	-	-	-	-	-	-	3,720
3,050 2,140	5,960 4,410	8,620 6,480	13,000 9,900	17,000 13,000	21,800 16,700	-	-	-	-	-	-	19,500
2,470 2,260	4,770 4,550	6,650 6,470	9,410 9,400	11,700 11,900	14,200 14,700	4.2	5.9	7.0	8.4	9.4	10.4	14,200
210 257	616 758	1,070 1,300	1,910 2,310	2,770 3,330	3, 860 4,590	-	-	-	-	-	-	1,470
1,820 1,550	3,760 3,330	5,400 4,870	7,830 7,250	9,870 9,310	12,100 11,600	6.4	9.1	10.6	12.2	13.3	14.3	5,620
114 92	343 285	596 500	1,050 900	1,500 1,300	2,060 1,810	1.4	2.6	3.5	4.8	5.8	6.8	600
328 308	646 687	931 1,050	1,390 1,660	1,800 2,240	2,290 2,930	3.8	5.0	5.8	6.7	7.4	8.3	1,630
447 391	1,200 1,050	1,940 1,690	3,170 2,790	4,290 3,810	5, 580 5,000	2.6	3.6	4.2	4.8	5.3	5.7	2,150
2,1 50 2,290	4,110 4,390	5,820 6,190	8,540 9,040	11,000 11,600	13,800 14,500	-	-	-	-	-	-	12,000
214 187	596 522	1,020 886	1,790 1,5 50	2,580 2,230	3,570 3,070	-	-	-	-	-	-	1,650
127 370	403 974	740 1,590	1,420 2,700	2,170 3,800	3,180 5,160	-	-	-	-	-	-	1,880
264 350	936 1,050	1,720 1,800	3,180 3,160	4,620 4,490	6,390 6,110	-	-	-	-	-	-	2,650
439 411	1,140 1,070	1,8 90 1,740	3,260 2,960	4,670 4,170	6,460 5,680	-	-	-	-	-	-	4,160
528 484	1,220 1,140	1,870 1,750	2,910 2,770	3,840 3,690	4,920 4,780	-	-	-	-	-	-	2,600
259 327	817 896	1,450 1,490	2,610 2,5 5 0	3,780 3,600	5,230 4,870	2.3	3.6	4.8	6.4	7.6	9.0	2,040
969 839	2,390 2,110	3,710 3,310	5,780 5,270	7,600 7,040	9,630 9,070	4.3	8.3	11.7	15.9	19.2	-	5,450
4,330 3,670	7,340 6,460	9,600 8,590	12,700 11,700	15,200 14,200	17,700 16,900	-	-	-	-	-	-	15,300

				BASIN CHARA	ACTERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
					LOW PLATEAUS
175	09333500	Dirty Devil River above Poison Spring Wash, near Hanksville, Ut.	1948-73; 1976-80	4,159	6,600
176	09333900	Butler Canyon near Hite, Ut.	1959-74	14.7	5,150
177	09334000	North Wash near Hanksville, Ut.	1950-70	136	5,400
178	09334400	Fry Canyon near Hite, Ut.	1959-73	20.9	6,250
179	09334500	White Canyon near Hanksville, Ut.	1951-70	276	6,090
1B0	09336000	Birch Creek near Escalante, Ut.	1959-74	36	8,080
181	09336400	Upper Valley Creek near Escalante, Ut.	1959-74	53	7,620
182	09337000	Pine Creek near Escalante, Ut.	1951-55; 1958-75; 1977-80	68.1	8,890
183	09337500	Escalante River near Escalante, Ut.	1910-12; 1943-55; 1972-B0	320	8,030
184	09338900	Deer Creek near Boulder, Ut.	1959-74	63	7,680
185	09339200	Twentymile Wash near Escalante, Ut.	1959-68	140	6,170
186	09371100	Teec Nos Pos Wash near Teec Nos Pos, Ariz.	1967-76	16.0	7,600
187	09372000	McElmo Creek near Colorado-Utah State line	1951-80	346	6,300
188	09372200	McElmo Creek near Bluff, Ut.	1959-70	720	6,200
189	09378700	Cottonwood Wash near Blanding, Ut.	1959-80	205	6,820
190	0937B720	Cottonwood Wash at Bluff, Ut.	1959-6B	340	6,250
191	0937B950	Comb Wash near Blanding, Ut.	1959-68	10.3	5,760
192	09379000	Comb Wash near Bluff, Ut.	1959-68	280	6,060
193	09379300	Lime Creek near Mexican Hat, Ut.	1959-73	67.2	5,360
194	09379560	El Capitan Wash near Kayenta, Ariz.	1963-76	5.88	5,690
195	09379800	Coyote Creek near Kanab, Ut.	1959-72	89	5,110
196	09379B20	Buck Tank Draw near Kanab, Ut.	1961-70	5.25	5,030
197	093B1100	Henrieville Creek at Henrieville, Ut.	1959-74	34	7,120
198	09381500	Paria River near Cannonville, Ut.	1951-55; 1959-74	220	6,890
199	09381800	Paria River near Kanab, Ut.	1959-73	668	6,390
200	093B2000	Paria River at Lees Ferry, Ariz.	1924-B0	1,410	6,150
2011	09403000	Bright Angel Creek near Grand Canyon, Ariz.	1924-73	101	7,390
202	09403500	Kanab Creek near Glendale, Ut.	1959-74	72	7,250
203	09403600	Kanab Creek near Kanab, Ut.	1959-80	198	6,670
204	09403700	Johnson Wash near Kanab, Ut.	1959-74	237	6,300
205	09404450	East Fork Virgin River near Glendale, Ut.	1 967-8 0	69.2	7,300

¹ Not located in figure 5.

PE.	AK DISCHAR	GE (CUBIC	FEET PER S	ECOND), FOI	<u>OOD CHARA(</u> R	TERISTICS	S FLOOD DEPTH (FEET), FOR INDICATED RECURRENCE INTERVAL (YEARS)					MAXIMUM PEAK DISCHARGE
2	5	10	25	50	100	2	<u></u> 5	10 10	25	50	100	OF RECORD (CUBIC FEET PER SECOND)
REGION-	-Continued											
5,640 5,560	11,500 11,100	16,800 15,900	25,300 23,500	32,900 30,300	41,800 38,200	-	-	-	-	-	-	35,000
411 425	749 925	1,030 1,390	1,430 2,150	1,780 2,870	2,160 3,700	2.8	4.4	5.3	6.3	7.0	7.5	1,950
1,190 1,230	3,070 3,070	4,990 4,870	8,300 7,950	11,500 10,900	15,300 14,300	3.6	5.7	7.1	8.7	10.0	11.2	8,900
447 409	1,930 1,530	3,790 2,870	7,300 5,370	10, 80 0 7,860	14,900 10,800	2.1	4.8	6.9	9.7	11.7	13.9	3,500
2,200 1,960	4,260 3,930	5,970 5,580	8,530 8,130	10,700 10,300	13,100 12,800	3.5	5.2	6.4	7.9	9.1	10.3	7,390
434 370	1,090 929	1,740 1,480	2,850 2,430	3,890 3,320	5,140 4,390	1.7	2.8	3.6	4.6	5.4	6.2	3,400
721 588	1,580 1,320	2,440 2,050	3,920 3,300	5,390 4,530	7,210 6,040	-	-	-	-	-	-	5,560
173 209	422 505	655 783	1,030 1,240	1,360 1,660	1,740 2,150	3.0	4.5	5.5	6.7	7.6	8.5	1,010
771 800	1,760 1,800	2,670 2,700	4,110 4,140	5,420 5,450	6,910 6,950	3.6	5.1	5. 9	7.0	7.8	8.6	3,450
327 356	1,250 1,140	2,430 2,080	4,790 3,890	7,300 5,770	10,600 8,200	2.0	3.3	4.6	6.3	7.5	8. 9	3,820
1,660 1,330	3,020 2,660	4,080 3,780	5,570 5,510	6,790 7,010	8,080 8,690	-	-	-	-	-	-	4,620
557 378	841 684	1,050 952	1,320 1,380	1,530 1,780	1,760 2,250	-	-	-	_	-	-	1,350
930 1,090	1,510 1,970	1,950 2,6 9 0	2,570 3,790	3,090 4,740	3,640 5,800	-	-	-	-	-	-	3,040
595 1,450	1,670 3,210	2,990 4,900	5,740 7, 9 30	8,890 11,000	13,400 14,900	-	-	-	-	-	-	13,100
1,190 1,130	3,670 3,210	6,440 5,450	11,500 9,490	16,600 13,500	22,900 18,400	-	-	-	-	-	-	20,500
956 1,150	2,770 2,970	5,090 5,050	10,200 9,370	16,300 14,300	25,200 21,200	-	-	-	-	-	_	42,100
749 519	1,460 1,130	2,110 1,710	3,170 2,710	4,150 3,660	5,330 4,800	-	-	-	-	-	-	3,430
1,830 1,670	3,170 3,250	4,320 4,610	6,110 6,790	7,710 8,730	9,570 11,000	-	-	-	-	-	_	8,390
1,690 1,380	4,190 3,410	6,600 5,350	10,500 8,520	14,200 11,500	18,400 14,900	3.7	5.9	7.4	9.0	10.5	11.9	6,600
482 373	959 822	1,370 1,240	2,000 1,940	2,560 2,590	3,180 3,350	_	-	-	-	-	_	2,340
1,400 1,310	2,760 2,800	3,880 4,080	5,540 6,110	6,940 7,890	8,470 9,910	4.1	5.9	6.9	8.2	9.1	10.0	4,590
10 141	2,000 72 429	215 770	712 1,510	1,570 2,440	3,240 3,870	-	-	-	-	_	-	6 80
866 665	429 2,070 1,610	3,330 2,580	5,640 4,340	8,000 6,120	11,000 8,350	-	-	-	_	-	-	7,360
2,780 2,210	4,860 4,010	6,590 5,530	9,210 7,890	11,500 9,960	14,100 12,300	5.1	8.0	10.0	13.0	15.0	16.5	11,600
2,210 2,480 2,340	5,290 4,950	7,960 7,310	12,400 11,200	16,600 14, 80 0	21,700 19,000	9.2	10.8	13.5	16.0	17.7	19.8	15,400
2,340 4,140 4,040	7,630 7,510	10,300 10,200	13,900 13,900	16,800 16,900	19,800 20,000	-	_	_	-	-	-	16,100
424	997	1,580	2,620	3,640 3,750	4,930 5,040	_	-	-		_	-	4,400
448 621	1,050 1,440	1,650 2,150	2,720 3,200 3,090	4,090	5,040	3.2	5.1	6.4	7.8	9.0	10.0	2,100
571 1,030	1,340 1,800	2,020 2,390	3,210	4,040 3,870	5,090 4,570	_	_	_	_	_	_	3,030
1,020 996	2,030 2,060	2,870 2,890	4,190 4,040	5,330 4,930	6,630 5,840	6.3	8.6	9.9	11.7	12.5	13.5	2,750
1,100 152	2,350 368	3,380 585	4,950 964	6,270 1,330	7,720 1,780	1.5	2.6	3.3	4.2	5.2	6.0	640
286	691	1,080	1,740	2,380	3,130							

				BASIN CHARA	CTERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
206	09404500	Mineral Gulch near Mount Carmel, Ut.	1959-69; 1971-72; 1974	7.6	6,110
207	09405500	North Fork Virgin River near Springdale, Ut.	1913-14; 1926-80	344	7,350
208	09406000	Virgin River at Virgin, Ut.	1910-71; 1979-80	934	6,400
209	09406300	Kanarra Creek at Kanarraville, Ut.	1960-80	9.85	7,950
210	09406700	South Ash Creek below Mill Creek, near Pintura, Ut.	1967-80	11.0	7,210
211	09406800	South Ash Creek near Pintura, Ut.	1959-70; 1973-74	14.0	6,720
212	09408000	Leeds Creek near Leeds, Ut.	1964-80	15.5	6,360
213	09408150	Virgin River near Hurricane, Ut.	1967-80	1,499	6,350
214	09408200	Fort Pierce Wash near St. George, Ut.	1959-69	1,650	4,870
215	09408400	Santa Clara River near Pine Valley, Ut.	1960-80	18.7	8,720
216	09409500	Moody Wash near Veyo, Ut.	1955-69	33	6,070
217	10174500	Sevier River at Hatch, Ut.	1915-23; 1925-26; 1939-80	340	8,480
218	10241400	Little Creek near Paragonah, Ut.	1960-80	15.8	7,470
219	10241470	Center Creek above Parowan Creek near Parowan, Ut.	1965-80	11.6	8,450
220	10241600	Summit Creek near Summit, Ut.	1965-80	24.0	8,230
221	10242000	Coal Creek near Cedar City, Ut.	1916-19; 1935-80	80.9	8,640
222	10242100	Shirts Creek near Cedar City, Ut.	1959-74	12.8	8,032
223	10242420	Shoal Creek near Enterprise, Ut.	1960-70; 1972; 1974	19	6,160
224	10242440	Cottonwood Creek near Enterprise, Ut.	1961-65; 1969-74	6.0	6,110

	AK DISCHAR			SECOND), FO	LOOD CHARAO R	TERISTICS	TERISTICS FLOOD DEPTH (FEET), FOR INDICATED RECURRENCE INTERVAL (YEARS)						
2	5	10	25	50	100	2	5	10	25	50	100	PEAK DISCHARGE OF RECORD (CUBIC FEET PER SECOND)	
REGION-	-Continued												
239 229	1,050 865	2,160 1,680	4,490 3,350	7,070 5,160	10,500 7,530	2.4	5.7	11.8	13.0	15.9	-	3,210	
1,820 1,710	3,330 3,190	4,560 4,400	6,380 6,220	7,920 7,770	9,630 9,500	5.2	7.3	9.0	11.2	12.7	13.9	9,150	
3,810 3,6 40	7,270 6,990	10,300 9,890	1 <i>4,90</i> 0 14,300	19,100 18,400	23,800 22,900	5.3	7.7	9.3	11.6	13.6	15.4	22,800	
148 145	373 375	614 618	1,060 1,070	1,510 1,520	2,090 2,090	1.6	2.4	3.0	4.0	4.8	5.7	1,000	
238 215	641 581	1,050 953	1,750 1,610	2,420 2,240	3,200 2,980	2.3	3.6	4.0	4.8	5.4	6.0	1,910	
194 214	469 545	739 873	1,200 1,450	1,630 2,010	2,1 40 2,670	1.7	3.0	3.9	5.2	6.3	7.3	938	
283 285	1,100 991	2,170 1,860	4,380 3,630	6,800 5,520	10,000 7,990	2.1	3.5	4.4	5.8	6.9	8.0	2,980	
6,470 5,170	12,600 10,100	17,600 14,100	24,800 19, 9 00	30,600 24,700	36,900 30,000	7.4	11.5	14.3	17.9	20.4	22.2	20,100	
2,2 40 4,1 9 0	4,650 8,340	6,730 11,700	9,910 16, 90 0	12,700 21,200	15,800 26,100	-		-	-	-	-	8,760	
79 105	176 254	275 403	450 670	625 940	847 1,270	1.9	2.8	3.5	4.6	5.5	6 .6	776	
208 317	801 969	1,610 1,740	3,360 3,290	5,390 4,980	8,230 7,2 40	3.3	6.1	7.5	12.2	14.3	16.7	1,810	
608 638	897 1,030	1,090 1,320	1,340 1,7 40	1,520 2,080	1,710 2,450	2.1	2.8	3.2	3.7	4.0	4.3	1,490	
36 91	126 261	245 451	5 09 830	823 1,230	1,280 1,780	1.1	2.1	2.9	4.2	5.3	6.7	351	
63 90	158 235	261 386	453 670	652 950	910 1,310	1.5	2.7	3.6	5.1	6.2	7.3	353	
73 124	252 360	498 635	1,050 1,200	1,730 1,830	2,730 2,700	1.1	1.6	2.2	3.0	3.8	4.9	858	
773 703	1,730 1, 580	2, 580 2,370	3,920 3,610	5,090 4,710	6,420 5,960	-	-		-	-	-	4,620	
269 225	495 466	684 685	969 1,050	1,220 1,390	1,490 1,780	-	-	-	-	-	-	1,070	
40 173	108 458	185 745	335 1,260	496 1,770	710 2,400	1.2	2	2.4	3.0	3.4	3.9	390	
145 166	398 467	684 791	1,2 40 1,410	1,820 2,030	2,590 2,830	-	-	-	-	-	-	1,470	

				BASIN CHARA	CTERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
				G	REAT BASIN HIGH
225	10146000	Salt Creek at Nephi, Ut.	1926-37; 1951-80	95.6	7,490
226	10147000	Summit Creek near Santaquin, Ut.	1910-16; 1955-66	14.6	8,400
227	10147500	Payson Creek above diversions, near Payson, Ut.	1948-62	18.8	7,610
228	10148400	Nebo Creek near Thistle, Ut.	1964-73	36.7	7,540
229	10166430	West Canyon near Cedar Fort, Ut.	1965-75	26.8	7,630
230	10172700	Vernon Creek near Vernon, Ut.	1959; 1962; 1964-80	25.0	7,100
231	10172790	Settlement Canyon near Tooele, Ut.	1960-70	5.77	7,900
232	10172800	South Willow Creek near Grantsville, Ut.	1961-80	4.19	8,370
233	10172870	Trout Creek near Callao, Ut.	1959-80	8.19	9,100
234	10172920	Cotton Creek near Grouse Creek, Ut.	1961-70	19.1	6,560
235	10172940	Dove Creek near Park Valley, Ut.	1959-73	33.2	6,620
236	10173450	Mammoth Creek above West Hatch Ditch near Hatch, Ut.	1965-80	105	9,000
237	10183900	East Fork Sevier River near Rubys Inn, Ut.	1962-80	71.6	8,640
238	10194200	Clear Creek above diversions near Sevier, Ut.	1958-80	164	7,880
239	10219200	Chicken Creek near Levan, Ut.	1963-77; 1979-80	27.9	7,480
240	10220300	Tintic Wash tributary near Nephi, Ut.	1960-70; 1972-74	18	6,070
241	10224100	Oak Creek above Little Creek, near Oak City, Ut.	1965-80	5.58	7,710
242	10232500	Chalk Creek near Fillmore, Ut.	1944-71	58.7	8,020
243	10233000	Meadow Creek near Meadow, Ut.	1914;1966-75	11.6	8,380
244	10233500	Corn Creek near Kanosh, Ut.	1959-75	87.0	7,400
245	10234500	8eaver River near 8eaver, Ut.	1914-80	91.0	9,280
246	10235000	South Creek near 8eaver, Ut.	1965-76	14.7	8,730
247	10236000	North Fork North Creek near 8eaver, Ut.	1959-76	14.1	8,340
248	10236500	South Fork North Creek near Beaver, Ut.	1966-76	23.0	9,370
249	10237500	Indian Creek near Beaver, Ut.	1948-49; 1966-75	18.5	8,370
250	10240600	Big Wash near Milford, Ut.	1959-68	51	6,120
251	10241300	Fremont Wash near Paragonah, Ut.	1959-74	120	7,240
252	10241430	Red Creek near Paragonah, Ut.	1965-75	6.3	9,050
253	13077700	George Creek near Yost, Ut.	1960-80	7.84	8,570
254	13079000	Clear Creek near Naf, Id.	1945-70	20.2	7,870

	K DISCHARG			SECOND), FOR	<u>.OOD CHARAC</u> R			MAXIMUM PEAK DISCHARG				
2	5	10	25	50	100	2	5	10	NTÉRVAL (25	50	100	OF RECORD (CUBIC FEET PER SECOND)
	ON SUBREGIO						-					- • •
214 205	372 367	497 498	675 688	824 849	985 1,030	2.0	3.0	3.5	4.3	4.9	5.5	832
73 68	123 114	157 152	203 209	237 255	271 305	.8	1.0	1.1	1.3	1.4	1.5	215
139 103	258 201	352 279	483 393	590 489	703 595	1.9	2.7	3.1	3.7	4.2	4.7	465
111 96	209 195	291 278	414 407	519 519	637 648	1.2	1.9	2.4	3.1	3.7	4.2	478
56 61	175 161	326 273	649 495	1,030 742	1,560 1,080	1.1	2.0	2.8	4.0	5.1	6.2	1,660
24 33	93 109	189 195	408 375	674 582	1,060 873	.7	1.3	2.0	3.1	4.2	5.6	825
22 22	64 58	108 94	180 152	247 205	324 268	.9	1.3	1.6	1.9	2.2	2.4	155
33 29	55 50	71 68	92 94	107 115	122 138	-	-	-	_	-		92
44 46	79 75	105 104	142 147	171 183	202 223	1.6	2.1	2.3	2.6	2.9	3.1	129
4 17	17 66	40 106	99 180	180 261	312 374	.6	1.0	1.4	2.2	2.9	3.8	91
10 25	36 89	76 145	169 251	287 367	469 529	-	-			-	-	275
404 382	575 496	681 625	805 799	892 939	974 1,090	3.3	4.0	4.3	4.7	4.9	5.2	652
119 155	205 232	275 323	379 461	468 581	568 718	-	-		-	-	-	448
262 276	435 455	556 605	713 816	831 988	949 1,170	2.4	3.4	4.0	4.9	5.3	5.9	769
50 55	118 130	183 197	289 306	388 406	503 522	-	-			-	-	268
64 47	161 140	259 220	430 356	597 485	801 643	-	-	-	-	-	-	545
20 20	45 47	69 72	108 112	143 148	185 192	.9	1.3	1.6	1.9	2.1	2.4	120
232 210	414 370	571 516	815 743	1,030 943	1,280 1,180	-	-	-	-	-	-	1,850
54 51	105 94	146 135	203 197	249 249	298 308	1.4	1.8	2.1	2.4	2.6	2.8	198
136 142	361 347	595 548	1,000 884	1,400 1,210	1,890 1,600	1.5	2.5	3.3	4.3	5.1	6.0	1,350
365 362	615 579	787 748	1,000 964	1,160 1,130	1,310 1,290	2.1	2.7	3.0	3.3	3.6	3.9	1,080
30 48	76 87	126 136	219 221	315 305	440 409	-	_	-	-	-	-	200
39 45	76 82	108 120	158 178	202 231	251 290	1.4	2.1	2.6	3.4	3.9	4.4	198
165 144	461 304	798 511	1,450 900	2,140 1,300	3,060 1,840	1.1	1.7	2.2	2.8	3.4	4.0	1,550
34 50	74 92	114 139	187 219	260 294	355 388	-		-	-	-	_	311
159 105	336 281	488 409	716 605	911 776	1,130 970		-	-	-	-	-	520
105 134	200 278	276 394	383 567	471 715	564 882	1.8	2.7	3.3	4.1	4.6	5.2	282
14 26	25 39	33 56	44 84	54 109	64 137	-		-	-	-	-	48
69 59	98 87	118 111	142 144	159 170	176 200	1.2	1.4	1.5	1.6	1.7	1.8	146
121 104	184	226 213	278 276	317 327	355 382	_	_	_	_	_	_	386

				BASIN CHARA	CTERISTICS
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)
				G	REAT BASIN LO
255	10146900	Utah Lake tributary near Elberta, Ut.	1961-74	4.71	5,530
256	10153200	Big Cove Wash near Lehi, Ut.	1961-74	.44	5,190
257	10166400	Tickville Gulch near Cedar Valley, Ut.	1961-74	15.6	5,740
25B	10172720	East Government Creek tributary near Vernon, Ut.	1961-74	.98	6,340
259	10172740	Rush Valley tributary near Fairfield, Ut.	1961-74	.26	5,850
260	10172760	Clover Creek near Clover, Ut.	1960-74	4.45	7,190
261	10172810	Mack Canyon near Grantsville, Ut.	1961-74	2.84	7,200
262	10172830	North Fork Muskrat Canyon near Timpie, Ut.	1961-74	1.7B	7,080
263	10172835	Skull Valley tributary near Delle, Ut.	1960-74	1.5	5,780
264	10172885	Great Salt Lake Desert tributary No. 2 near Dugway, Ut.	1961-74	5.48	5,570
265	10172890	Government Creek near Dugway, Ut.	1961-74	59	6,080
266	10172900	Bar Creek near Ibapah, Ut.	1959-74	12	5,460
267	10172902	Dead Cedar Wash near Wendover, Ut.	1961-78	5.0	6,910
268	10172905	Great Salt Lake Desert tributary near Delle, Ut.	1961-74	.97	6,010
269	10172909	Burnt Creek near Shores, Nev.	1968-78	10.5	7,320
270	10172913	Loray Wash tributary near Cobre, Nev.	1961-78	24	6,590
271	10172925	Great Salt Lake Desert tributary No. 3 near Park Valley, Ut.	1961-73	10.1	6,120
272	10172990	Blue Spring Creek near Snowville, Ut.	1960-73	78	5,300
273	10174800	Red Canyon tributary near Bryce Canyon, Ut.	1959-74	2.2	7,860
274	10223800	Hop Creek near Jericho, Ut.	1961-74	1.81	6,470
275	10242460	Escalante Valley tributary near Panaca, Nev.	1964-80	7.9	6,790
276	10243660	Conners Pass Creek near Shoshone, Nev.	1962-80	.45	7,920
277	10243950	Millick Canyon tributary near Currie, Nev.	1965-78	1.4	6,470
278	10244220	Maverick Canyon near Oasis, Nev.	196B-78	3.02	7,150
279	10244240	Clover Valley tributary near Arthur, Nev.	1968-80	3.0	6,370
280	10245080	Nelson Creek tributary near Currie, Nev.	1961-78	.7	6,000
281	10245270	Drylake Valley tributary near Caliente, Nev.	1967-80	11	5,910
2821	10245450	Illipah Creek tributary near Hamilton, Nev.	1962-80	5.47	7,100

¹ Not located in figure 5.

CHARACTERISTICS FOR GAGING STATIONS-CONTINUED

MAXIMUM PEAK DISCHARGE		DICATED YEARS)	ET), FOR IN NTERVAL (DEPTH (FE URRENCE I	FLOOD REC		FLOOD CHARACTERISTI PEAK DISCHARGE (CUBIC FEET PER SECOND), FOR INDICATED RECURRENCE INTERVAL (YEARS)							
OF RECORD (CUBIC FEET PER SECOND)	100	50	25	10	5	2	100	50	25	10	5	2		
										ON	N SUBREGI	ELEVATIO		
2,210	-	-	-	-	-	-	-	-	-	1,430	724	179		
8.0	-	-	-		-	-	-	-	-	-	-	-		
236	-	-	-	-	-	-		-	-	130	78	28		
5.6	-	-	-	_		-	-	-		-	-	-		
49			_	-	-	_	-	-		-	-	-		
87			-	-		-	-	-	-	-	-	-		
2.1	-	-		-	-			-	-	-	-	-		
.6		-	-	-	-	-	-	-	-	-	-	-		
20	-	-	-	-		-	-	-	-	-	-	-		
1,720		-	-	-	-	-	-	-	-	-	-	-		
370			-	-	-	-	-	-	-	-		_		
2,690	10.0	8.7	6.7	4.6	3.3	1. 9	-	-	2,240	914	383	66		
752		-	-	-	-	-	-	-	-	-	-	-		
80	-	-		-	-	-	-	-	-	-	-	-		
25	_	-	-	-	-	-	-	-	-	-	-	-		
220	-	-	-	-	-	-	-	-	-	-	-	-		
420	-	-	-	-		_	-	-		-	-	-		
1,820	-	-	-	-	-	-	-	-	-	726	380	102		
365		-	-	-	-	-	-	-	-	-	-	-		
182	-	-	-	-	-	-	-	-	-	-	-	-		
250	-	-	-	-	-	-	-	-	-	-	-	-		
3	-	-	-	-	-	-	-	-	-	-	-	-		
83	-	-	-	-	-		-	-		-	-	-		
0	-	-	-	-	-		-	-		-	-	-		
43	_	-	-	-	-	-	-	-	-	-	-	-		
52	-	-	-	-	-		-	-	-	-	-	-		
156	-	-	-	-	-	-	-	-	-	-	-	-		
287	-	-	-	-	-	-	-	-	-	-	-	-		

				BASIN CHARACTERISTICS		
SITE NO.	STATION NO.	STATION NAME	PERIOD OF RECORD USED (WATER YEARS)	DRAINAGE AREA (SQUARE MILES)	MEAN BASIN ELEVATION (FEET)	
			MISCELLANEC	OUS AND PARTIALLY REC	GULATED GAGING [These sites are not	
283	09180000	Dolores River near Cisco, Ut.	1951-80	4,580	_	
284	09235800	Pot Creek near Vernal, Ut.	1958-80	107	_	
285	09262000	Big Brush Creek near Vernal, Ut.	1939-46; 1948-79	79.6	_	
286	09271500	Ashley Creek near Jensen, Ut.	1947-80	383	-	
287	09291000	Lake Fork River below Moon Lake, near Mountain Home, Ut.	1922-27; 1930-32; 1942-80	112	-	
288	09295000	Duchesne River at Myton, Ut.	1901-10; 1912-62; 1964-80	2,643	-	
289	09302000	Duchesne River near Randlett, Ut.	1943-62; 1964-80	4,247	-	
29 0	09306500	White River near Watson, Ut.	1904-05; 1923-53; 1955-79	4,020	-	
291	09310000	Gooseberry Creek near Scofield, Ut.	1931-32; 1941-80	16.8	_	
292	09328000	San Rafael River near Castle Dale, Ut.	1948-64; 1973-80	930	-	
293	09330230	Fremont River near Caineville, Ut.	1967-80	1,208	_	
294	09332100	Muddy Creek below Interstate Highway I-70, near Emery, Ut.	1951-55; 1957-68; 1974-80	418	-	
295	09410000	Santa Clara River above Winsor Dam near Santa Clara, Ut.	1943-71	338	_	
296	10017000	Yellow Creek near Evanston, Wyo.	1943-45; 1950-78	79.2	-	
297	10026500	Bear River near Randolph, Ut.	1944-60; 1962-80	1,616	-	
298	10106000	Little Bear River near Paradise, Ut.	1937-80	198	-	
299	10109000	Logan River above State Dam, near Logan, Ut.	1896-1980	214	-	
300	10118000	Bear River near Collinston, Ut.	1890-1980	6,267	-	
301	10126000	Bear River near Corinne, Ut.	1950-57; 1964-80	7,029	-	
302	10129300	Weber River near Peoa, Ut.	1957-77	296	-	
303	10130700	East Fork Chalk Creek near Coalville, Ut.	1965-74	35	-	
304	10134500	East Canyon Creek near Morgan, Ut.	1932-80	144	-	
305	10154200	Provo River near Woodland, Ut.	1964-80	162	_	
306	10155000	Provo River near Hailstone, Ut.	1950-80	233	-	
307	10159500	Provo River below Deer Creek Dam, Ut.	1953-80	547	-	
308	10163000	Provo River at Provo, Ut.	1903-05; 1937-80	673	~	
309	10171000	Jordan River at Salt Lake City, Ut.	1943-80	3,438	-	
310	10176300	Panquitch Creek near Panquitch, Ut.	1961-80	9 7.0	-	
311	10180000	Sevier River near Circleville, Ut.	1915-18; 1920-22; 1924-26; 1950-80	986		
312	10183500	Sevier River near Kingston, Ut.	1916-26; 1930-31; 1933-80	1,131	-	
313	10189000	East Fork Sevier River near Kingston, Ut.	1913-80	1,207	-	
314	10191500	Sevier River below Piute Dam, near Marysvale, Ut.	1912-75; 1977-80	2, 4 41	-	
315	10194000	Sevier River above Clear Creek near Sevier, Ut.	1914-16; 1939-55; 1961-80	2,707	-	
316	10205000	Sevier River near Sigurd, Ut.	1915-80	3,375	-	
317	10206000	Salina Creek at Salina, Ut.	1914-15; 1943-55; 1960-80	292	-	
318	10237000	Beaver River at Adamsville, Ut.	1914-80	303	-	
319	10239000	Beaver River at Rocky Ford Dam, near Minersville, Ut.	1914-75; 1977-80	535	-	
					······	

CHARACTERISTICS FOR GAGING STATIONS-CONTINUED

	AK DISCHAR NDICATED I				OOD CHARAC R		MAXIMUM PEAK DISCHARGE					
2	5	10	25	50	100	2	5	CURRENCE 10	25	50	100	OF RECORD
												(CUBIC FEET PER SECOND)
	S NOT USED igure 5]	IN REGRES	SION ANAL	YSIS								
5,580	9,510	12,600	17,100	20,800	24,800	6.6	8.4	9.6	11.0	12.1	13.2	17,400
43	111	176	284	382	_	-	_	-	_		-	286
259	356	418	495	551	606	_	-	_		-		543
786	1,530	2,070	2,780	3,310	3,830	-	-	-	-			2,790
897	1,410	1,770	2,240	2,600	2,980	2.8	3.5	4.0	4.5	4.8	5.2	2,180
3,860	6,100	7,480	9,080	10,100	11,100	5.3	6.6	7.2	7.8	8.2	8.5	12,800
2 000	C 490	8 070	0.060	11 200	12 500	E 2	67	7 6	0.2		0.4	10.200
3,990	6,480	8,070	9,960	11,300	12,500	5.2	6.7	7.5	8.3	8.8	9.4	10,300
4,070	5,450	6,350	7,460	8,280	9,090	5.2	7.5	9.4	11.0	11.8	13.0	8,160
222	304	352	404	438	468	2.5	3.0	3.4	3.6	3.8	3.9	414
~~~	304	352	404	400	400	2.5	3.0	3.4	3.0	5.0	5.5	414
1,410	2,410	3,190	4,310	5,220	6,210	4.1	5.2	5.8	6.8	7.4	8.1	4,510
1,130	1,920	2,490	_	_	_	3.3	4.3	4.9			_	2,310
1,010	1,680	2,140	2,740	3,190	_	5.3	6.6	7.2	7.7	8.1	-	2,890
		•		-•		-						
902	2,310	3,770	6,350	8,890	12,000	3.7	5.4	6.6	8.2	9.5	-	6,190
123	217	288	387	467	551	-		_	-		-	477
1,320	2,110	2,590	3,13 <b>0</b>	3,490	3,810	-		-			-	2,660
	004			1 000	0.070							2 000
669 1 100	984	1,220	1,540	1,800	2,070	-	-	_		-	-	2,000 2,480
1, <b>10</b> 0 4, <b>94</b> 0	1,480 6,770	1,690 7,940	1,930 9,360	2, <b>080</b> 10, <b>400</b>	2,220 11,400	_	_	_		-	_	11,600
4,610	5, <b>94</b> 0	6,770	3,300 7,7 <b>80</b>	8,510	9,230	10.4	12.2	13.3	14.4	15.4	16.2	7,880
1,010	0,040	0,770	1,100	0,0,0	0,200	10.1		10.0		,		,,
1,390	1,960	2,300	2,670	2,930	-	-	-			-	-	2,160
288	368	420			_			-	-	-		541
208	295	360	451	525	604	-		-	-		-	872
1,940	2,310	2,530	2,780	-	-	4.7	4.9	5.3	5.6	-	-	2,950
2,400	2,990	3,300	3,630	3,840	4,030	4.2	4.6	4.9	5.1	5.3	5.5	3,880
1,210	1,800	2,160	2,590	2,890	3,170	-	-	-			-	2,190
834	1,280	1,560	1,890	2,130	2,350	-		-	 •		-	2,5 <b>20</b>
244	293	322	357	382	405	-		-	-			384
143	258	361	528	682		-	-	-		-	-	670
5 <b>94</b>	1,020	1, <b>36</b> 0	1,870	2,290	2,760	3.0	3.8	4.6	5.4	5.9	6.5	2,730
586	1,000	1,320	1,760	2,110	2,490			_	_	_		3,000
000	,,	1,020	1,700	2,,0	2,100							
383	663	918	1,340	1,730	2,210	2.3	3.1	3.8	4.7	5.4	6.2	2,030
701	975	1,190	1,490	1,750	2,040	-	-	-		-	-	2,600
735	1, <b>03</b> 0	1,250	1,570	1,830	2,110	2.9	3.3	3.7	4.0	4.3	4.7	2,270
364	606	808	1,120	1,390	1,700	3.1	4.0	4.6	5.3	6.0	6.7	2,400
453	823	1,110	1,530	1,860	2,220	-	-	-	-		-	1,800
278	538	743	1,030	1,260	1,500	-	-	-	-	_		1,090
145	265	375	558	732	943	_	-		-		-	762