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ABSTRACT: Developing effective methods for estimating regional-scale surface water storage change (DSW) has be-
come increasingly important for water resources studies and environmental impact assessment. Three methods for estimat-
ing monthly DSW are proposed in this study, of which one is based on land surface runoff and two that use water body
water budgets. Water areas observed by Landsat satellites for Canada’s entire landmass are used for evaluation of the re-
sults. The surface runoff method achieved the least satisfactory results, with large errors in the cold season or dry regions.
The two water-budget methods demonstrated significant improvements, particularly when water area dynamics is consid-
ered in the estimation of the water body water budget. The three methods performed consistently across different climate
regions in the country and showed better correlations with observations over wet climate regions than over dry regions
with poorly connected hydrological system. The results also showed the impact of glacier and permanent snow melts over
the Rocky Mountains on basin-scale surface water dynamics. The methods and outputs from this study can be used for cali-
brating and validating hydrological and climate models, assessing climate change and human disturbance impacts on
regional water resources, and filling the DSW data gaps in GRACE-based total water storage decompositions studies.

SIGNIFICANCE STATEMENT: The purpose of this study is to develop and evaluate methods for estimating re-
gional-scale surface water storage change. This is important because information on surface water dynamics is limited
for water resources studies and environmental impact assessment. Our study makes available two new methods which
significantly improve on surface water storage estimation from the traditional runoff model. A guide on controls of sur-
face water dynamics is provided for regions under various hydroclimate and physiographic–hydraulic conditions and
reveals the influence of glacier melt on surface water variations.
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1. Introduction

Surface water is one component of the total terrestrial
water storage (TWS) which also includes soil water, ground-
water, snow, and ice, among others. The Gravity Recovery
and Climate Experiment (GRACE) satellite mission and its
follow-on mission (GRACE-FO) have been monitoring global
TWS changes since 2002 by measuring temporal variations of
Earth’s gravity field (Tapley et al. 2004; Landerer et al. 2020).
GRACE observations have provided invaluable datasets to
study the TWS dynamics beyond small-scale studies based
on in situ data (e.g., Long et al. 2015; Li et al. 2016; Wang
and Li 2016; Rodell et al. 2018; Famiglietti and Ferguson
2021; Scanlon et al. 2021). One important application of the
GRACE observations is to decompose TWS into its individ-
ual components to study their status, long-term trends, and
interactions. In particular, estimating groundwater storage

change by removing the changes from all other water compo-
nents in the TWS has been extensively conducted to fill
knowledge gaps in understanding the impacts of climate
change and human activities on the groundwater resources
for large aquifers over the world (e.g., Rodell et al. 2009;
Tiwari et al. 2009; Scanlon et al. 2012; Voss et al. 2013;
Famiglietti 2014; Joodaki et al. 2014; Richey et al. 2015; Chen
et al. 2016; Long et al. 2020; Rateb et al. 2020; Shamsudduha
and Taylor 2020; Fatolazadeh and Goïta 2022; Li and Wang
2022). The removals of soil water and snow water equivalent
in available studies were mostly based on datasets from in
situ observations or land surface model (LSM) outputs, nota-
bly a vast majority of them used the LSM outputs from
GLDAS (Rodell et al. 2004).

Datasets for surface water storage change (DSW) are
scarce, particularly at large regional scale. Most LSMs do not
include explicit surface water simulations. Ground-based sur-
face water monitoring networks in most countries are com-
monly restricted to selected water bodies such as large lakes
and hydroelectric or irrigation reservoirs, and the spatial cov-
erage is often far from adequate for determining DSW at large
regional scales. In some regions of the world, ground-based
surface water monitoring networks do not exist. Restrictions
on data access in some countries further hinder the study of
DSW using ground-based observations. Adding to the chal-
lenge, global information on surface water is very inconsistent
across spatial scales and regions. For example, the estimates
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for total world lakes varies widely, ranging from about
2 3 106 to 5 3 106 km2 in surface area, and from about
166 3 103 to 275 3 103 km3 in total volume (Lehner and Döll
2004; Downing et al. 2006; McDonald et al. 2012; Verpoorter
et al. 2014; Messager et al. 2016). Moreover, these datasets
pose large limitations in estimating DSW at subseasonal scales
(e.g., the GRACE TWS monthly scale), as most of them gives
static information and are not dynamic time series.

Satellite remote sensing has the potential to detect and
monitor surface water dynamics. Satellites for terrestrial sur-
face water area monitoring include those using multispectral
optical sensors such as MODIS and Landsat (Tulbure and
Broich 2013; Zhao and Gao 2018; Wang et al. 2020), and
those using synthetic aperture radar (SAR) technologies such
as RADARSAT-2, Envisat, and Sentinel-1 (Li and Wang
2015; Bartsch et al. 2012; Huang et al. 2018; Bonnema et al.
2022). Several regional and global datasets for surface water
areas have been produced from satellite observations, such as
the Global Inundation Extent from Multi-Satellite (GIEMS)
dataset which quantified the monthly distribution of surface
water extent at ;25-km sampling intervals using multiple-
satellite observations (Prigent et al. 2007; Papa et al. 2010),
the global areal extent and temporal variations of known reser-
voirs at 500-m spatial resolution using MODIS data (Khandelwal
et al. 2017), and a number of global surface water datasets pro-
duced using the Landsat satellites at 30 m resolution (Pekel
et al. 2016; Ogilvie et al. 2018; Zou et al. 2018; Jones 2019; Yao
et al. 2019; Pickens et al. 2020). Satellites for inland surface wa-
ter level retrievals include satellite laser altimetry, such as
ICESat-2 (Cooley et al. 2021; Luo et al. 2022), and radar altim-
etry such as Envisat and Sentinel-3 (Shu et al. 2020; Chen et al.
2021). Datasets derived from satellite altimetry for global sur-
face water levels include the Database for Hydrological Time
Series over Inland Waters (DAHITI; Schwatke et al. 2015),
which provides water level time series for more than 780 lakes,
reservoirs, rivers and wetlands; the Global Reservoirs and
Lakes Monitor (G-REALM; Birkett et al. 2011), and the
global water level dataset by Cooley et al. (2021), which quan-
tified water level variability and derived storage changes for
227 386 water bodies from October 2018 to July 2020. The
DSW can be determined by combining data from multispace
missions for water areas and heights, such as in Frappart et al.
(2015), Crétaux et al. (2011), Normandin et al. (2018), Busker
et al. (2019), Li et al. (2019), and Hou et al. (2022).

From the perspective of GRACE-TWS decomposition
which requires large-scale continuous coverage of DSW at a
monthly time step, remote sensing faces a number of key chal-
lenges. Both optical and SAR data have limitations for re-
trieving surface area changes in winter when water bodies are
frozen and covered by ice or snow. Satellite altimetry for wa-
ter level monitoring of frozen water bodies is also a challenge
(Shu et al. 2020). Even in summer, missing observations due
to atmospheric contaminations (e.g., clouds) and other factors
make it difficult to obtain full valid data coverages for a re-
gion at high temporal resolutions. Most of the satellite altime-
try data are only available for recent years and are limited in
both time and space due to wide spacing of the satellite altim-
etry tracks. Existing studies typically focused on large lakes

and reservoirs, resulting in the oversight of small lentic water
bodies which can play important roles in contributing to the
overall regional DSW (Downing 2010; Smith et al. 2002). The
accuracy of measurements is also a major concern in many cir-
cumstances. For example, for small lakes and rivers, the mea-
surement errors are often at a magnitude of several decimeters
or higher due to the surrounding land influence (Schwatke et al.
2015; Boergens et al. 2016; Bergeron et al. 2020), far exceeding
the magnitudes of natural water level month-over-month changes
(Cooley et al. 2021). Most of the optical satellites that have long
data records and high temporal resolutions only have a moderate
spatial resolution of 250–1000 m (e.g., MODIS, VIIRS, AVHRR),
which is too coarse to detect the month-by-month shoreline
changes of a water body.

Due to the limitations in obtaining large regional-scale and
subseasonal datasets for DSW, the vast majority of investiga-
tions on GRACE-TWS decomposition have either neglected
surface water component (completely or partially) (e.g.,
Rodell et al. 2007, 2009; Richey et al. 2015; Xia et al. 2017) or
used land surface runoff from LSMs as a proxy for DSW (e.g.,
Bhanja et al. 2016; Getirana et al. 2017; Thomas et al. 2017;
Shamsudduha and Taylor 2020). The impact of ignoring surface
water on TWS decomposition or the validity of surrogating DSW
by surface runoff has rarely been examined, although some stud-
ies have demonstrated the important role of DSW in the TWS
change (Kim et al. 2009; Getirana et al. 2017; Papa et al. 2013;
Pokhrel et al. 2013; Salameh et al. 2017). Thus, developing effec-
tive methods for estimating regional-scale DSW and evaluating
its dynamics have become of increasing interest for improving
GRACE-TWS decomposition studies (Scanlon et al. 2019).

The objective of this study is to develop methods for DSW
estimation. Two new methods are presented that are based
on water body water budgets, one using constant water areas
and the other being implemented with dynamic water area
simulation. The results from these two new methods as well
as the land surface runoff method are evaluated using Landsat-
observed monthly water area variations. The study region for
method evaluation is the Canadian landmass, an area that
contains 62% of the world’s total number of lakes and 32% of
the world total terrestrial water area. Besides the significance
of surface water in the total terrestrial water storage, the sur-
face water process over the Canadian landmass is also highly
complex due to the seasonal cycles of snow accumulation and
melt, and water body freeze and thaw. Results from the two
new methods showed a large improvement over the estimation
by surface runoff. The methods are simple and can be easily im-
plemented to fill the DSW data gaps in GRACE TWS decom-
position studies. The methods and outputs can be used for
calibrating and validating hydrological and climate models and
for assessing climate change and human disturbance impacts on
regional water resources. A list of acronyms is given in Table 1.

2. Materials and methods

a. Methods

Three methods were used in the surface water storage
change estimation: (i) runoff method, (ii) water budget with

J OURNAL OF HYDROMETEOROLOGY VOLUME 24446

Unauthenticated | Downloaded 09/22/23 09:41 AM UTC



static water area (WBSA), and (iii) dynamic water area simu-
lations based on WBSA (WBDA). The three methods each
employ additional enhanced data input to refine the storage
change and reduce uncertainty. After the time series of
monthly DSW were estimated, the DSW was adjusted by its
minimum value as the baseline (so the final DSW values can-
not be negative) in order to be evaluated with Landsat obser-
vations. All the water variables presented below refer to the
water depth (mm) with a base area of the entire basin and at
monthly time step.

The runoff method uses land surface runoff (Q) as a proxy
for DSW. It basically assumes Q produces a positive DSW
causing water levels to rise in the network. In this study, the
surface runoff generated by the land surface model EALCO
[Ecological Assimilation of Land and Climate Observations,
Natural Resources Canada; see section 2c(1)] was used. Land
surface runoff in EALCO is simulated by the liquid water
budget of the ground surface:

DSW 5 Q 5 max(0:0, RG 1 Smelt 1 Wdew 1 Winput 2 IG

2 CG 2 EG), (1)

where RG is the rain throughfall received on the ground sur-
face which is mainly determined by the difference between
liquid precipitation and canopy interception, Smelt is water
from snowmelt, Wdew is dew formed on the ground surface,
Winput is other types of water inputs such as irrigation, IG is
ground surface infiltration, CG is the water retention capacity

of ground surface under which water is temporally held by the
ground surface for infiltration before the water flows away as
surface runoff, and EG is evaporation of water before it infil-
trates or runs off. All the above variables are obtained for
each time step at 30 min and then upscaled to monthly values
in this study.

When Q is used as a proxy for DSW (e.g., in GRACE-TWS
decomposition), it implicitly assumes that all the water from
Q is a surplus, so the DSW from the runoff method will never
be below 0. This could be problematic in dry periods when
water storage of a water body is in deficit conditions. Further-
more, since GRACE-TWS has a monthly time step, the run-
off method essentially assumes that it takes one month for the
Q to flow out of the basin. Note that Eq. (1) only accounts for
the liquid form of water, as precipitation in the form of snow
will stay in the system and commonly has been accounted for
separately in GRACE-TWS decomposition studies.

The second method, the WBSA method, is based on a sim-
ple surface water budget for water bodies in a basin:

DSWm 5 Win,m 1 Dm21 1 fw, (2)

where m denotes month, Win,m is water input into the water
bodies, Dm21 is the water deficit of water bodies historically
accumulated until the previous month (it cannot be above 0),
fw is used to account for impact of the possible mismatch of
actual water outflow time versus the monthly time step of the
data used in this study on the DSW. TheWin,m is calculated as

Win,m 5 [Aw(Pw,m 2 Em) 1 (Abasin 2 Aw)Qm]/Abasin, (3)

where Aw is the surface water area in the basin and it is pa-
rameterized as a constant, Abasin is the total area of the basin,
Pw,m is the precipitation (including snow) directly received by
water bodies, Em is water surface evaporation or ice/snow
sublimation for frozen water bodies, and Qm is calculated in
Eq. (1). Note that snowfall on water bodies is added to the
surface water storage directly, unlike that on land surface
aforementioned. Because snowfall is accounted for in the
month when it occurs, the springtime melt of accumulated
snow in the winter season on the frozen water body surface
will not change the DSW at that time. Essentially, the Win,m is
composed of two parts: the first part represents the water
body water yield, or the net water exchange between water
bodies and the atmosphere, and the second part represents
the water input from surrounding land surface to the water
bodies.

When Win,m in month m is negative, water bodies have net
water loss and it contributes to the water deficit (D) of water
bodies. This addresses the limitation in the Runoff method
mentioned above. When Win,m is positive, the water will first
replenish the water bodies until water deficit D reaches zero
[Eq. (4)]. After that, any available water is treated as a surplus
and will flow out of the system (Wout) [Eq. (5)]:

Dm 5 min(Win,m 1 Dm21, 0:0), (4)

Wout,m 5 max(Win,m 1 Dm21, 0:0): (5)

TABLE 1. Nomenclature.

DSW Surface water storage change in depth of water
with base area of study basin

DV Water storage change by volume
Abasin Total area of a basin
Aw Surface water area in a basin
CG Water retention capacity of ground surface
D Water deficit of a water body
E Water surface evaporation or ice/snow

sublimation for frozen water bodies
EALCO Ecological Assimilation of Land and Climate

Observations model
EG Evaporation of water on ground surface before

water infiltrates or runs off
IG Ground surface water infiltration
MDA Major drainage areas
Pw Precipitation (including snow) directly received by

water bodies
Q Land surface runoff
RG Rain throughfall received on the ground surface
Smelt Water from snowmelt
WBDA Water budget with dynamic water area method
WBSA Water budget with static water area method
Wdew Dew formed on ground surface
Win Water input into a water body
Winput Other types of water inputs such as irrigation
WNHB Western and North Hudson Bay Major Drainage

Area
Wout Water outflow of a basin
u Surrounding terrain slope of a water body
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The term fw in Eq. (2) is calculated as

fw 52bWout,m 1 (1:0 2 b)2Wout,m21, 0 , b , 1: (6)

The time for the surplus water to flow out of the system de-
pends on the geographic nature of a basin (e.g., basin size,
slope, drainage network density) (Allen et al. 2018). By com-
paring the time difference between peak snowmelt and the
peak river flow induced by the snowmelt, Wang and Russell
(2016) and Wang et al. (2017) estimated the water outflow
time to be about two weeks for the Red River basin and over
three weeks for the Makenzie River basin in Canada. The
Red River basin has a flatter terrain but a smaller drainage
area (116 3 103 km2), compared with the Mackenzie River
basin having a rougher terrain and the largest area and lon-
gest river in Canada (1.8 3 106 km2). The basins in this study
(section 2b) vary greatly in size, terrain topography, and hy-
drological drainage connections, which could result in very
different water outflow time. To compensate for any mis-
match with the data time step of one month in this study, the
above adjustment is necessary. For the two extreme cases, a b

value of 1.0 suggests that the time for the surplus water to
flow out of the system is 0.0, which means the surplus water
will not have any impact on the DSW, and a b value of 0.0 sug-
gests that it would take two months for the surplus water to
flow out of the system, so the surplus water will stay in the sys-
tem and contribute to the DSW for two consecutive months.
Without fw the method essentially assumes that the surplus
water stays in the system for one full month, but immediately
leaves the system at the month end without affecting the
DSW for the next month. The actual values for b in this study
was obtained through model best fitting with observed water
areas from the Landsat satellites [section 2c(3)].

The third method, the WBDA method, is based on WBSA,
but with dynamic water area simulations. When surface water
storage changes, the surface area Aw in Eq. (3) is likely to
change accordingly, which will affect the water budget of the

water bodies. For example, assuming an inverted-cone-shaped
lake with a surface area of S0 and a surrounding terrain slope
of u [tan(u) 5 height difference/horizontal distance], a water
storage change of DV by volume will result in a surface area
change of DS [Eq. (7)]:

DS 5 [S3/20 1 3DV
���

p
√

/tan(u)]2/3 2 S0: (7)

In this study, we used the above simple case to estimate the
area variations with water storage changes. The S0 was param-
eterized using the average size of lakes in a basin (Table 2).
Rivers and small water bodies of less than 0.1 km2 are not in-
cluded in the HydroLAKES database, so they are not re-
flected in our parameterization. For specific watershed
studies, the S0 can be parameterized more accurately using
known water body sizes. Note that the average size rather
than the total size of lakes is used in the parameterization, as
the latter case could deviate more significantly from the ac-
tual DS–DV relationships for a basin with large number of
lakes such as in our study. The DV is the water storage
change (by volume) obtained in Eq. (2) for each time step.
The u was obtained through best fitting the time series of
simulated surface water areas with the Landsat-observed
surface water areas.

While the WBDA method can simulate the dynamic
change of water areas which can be directly compared with
the water area from the Landsat data, the Runoff and
WBSA methods only give estimates for surface water stor-
age changes which have a dimension of length L3. To evalu-
ate their results using Landsat data, we converted their
storage estimates into a virtual area variable (DSW 3 Abasin)

2/3.
This virtual variable has a dimension L2 (area), and is used to
represent the relative area variations and compare with the
Landsat data. The WBSA and WBDA methods do not include
the impact of direct lake–aquifer water exchanges on the water
budget. Its impact on the DSW estimation will be discussed later
in the paper.

TABLE 2. Major drainage areas (MDAs) and lake distributions in Canada (MDAs are from Statistics Canada 2003). Number of
lakes and area of lakes are calculated using the HydroLAKES database (https://www.hydrosheds.org/products/hydrolakes, last access
31 March 2022; Messager et al. 2016). Data refer to all natural lakes and manmade reservoirs with a surface area $ 0.1 km2. Trans-
boundary lakes are assigned to only one MDA based on the maximum area. The Great Lakes of North America are not included;
data for all of Canada are shown in bold in the last row.

MDA name MDA area (km2)

Number of lakes Area of lakes

Total Per 103 km2 land Size (km2) Percent

1) Maritime Provinces 163 990 3963 24.2 4602 2.8%
2) St. Lawrence 1 067 879 85 580 80.1 74 760 7.0%
3) Northern Quebec and Labrador 1 158 292 167 041 144.2 162 148 14.0%
4) Southwestern Hudson Bay 735 320 55 734 75.8 50 914 6.9%
5) Nelson River 987 015 33 278 33.7 89 767 9.1%
6) Western and Northern Hudson Bay 1 253 213 196 847 157.1 186 153 14.9%
7) Great Slave Lake 974 853 76 439 78.4 108 660 11.1%
8) Pacific 666 349 11 348 17.0 15 282 2.3%
9) Yukon River 337 036 5954 17.7 6588 2.0%
10) Arctic 2 605 138 243 310 93.4 188 364 7.2%
11) Mississippi River 27 097 174 6.4 199 0.7%
Canada 9 976 182 879 668 88.2 887 438 8.9%
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b. Study region

The study region covers Canada’s entire landmass. It in-
cludes 11 drainage basins which are termed as “major drain-
age areas” (MDAs; Fig. 1) in the Standard Drainage Area
Classification (SDAC; Statistics Canada 2003). The MDAs
provide a hydrological unit for data collection and compila-
tion, and for spatial analysis of environmental, economic, and
social statistics. They will be used in this study for presenting
the results. The hydroclimate conditions have large variations
across the Canadian landmass. Precipitation decreases from
over 1000 mm yr21 in the west and east coasts to under
300 mm yr21 in the western interior lowlands and the high
Arctic (Wang et al. 2013). Water surface evaporation increases
from under 200 mm yr21 in the north to over 1000 mm yr21 in
the southwest prairies (Li et al. 2020). Land surface evapotrans-
piration varies from 600 mm yr21 over several regions in the
south to less than 100 mm yr21 in the northern Arctic (Wang
et al. 2013; Fernandes et al. 2007). As a result, land surface wa-
ter yield has a large decrease from over 800 mm yr21 in the
west and east coasts to basically 0 in the southwest prairies (Li
and Wang 2021), and water body water yield varies in a range
from over 800 mm yr21 in the west coast to 2600 mm yr21 in
the southwest prairies.

Surface geology and climate govern the nature and distribu-
tion of water bodies in the Canadian landmass. There are
around 880000 natural lakes with a surface area of over 10 ha
distributed over Canada’s landmass (Minns et al. 2008; Messager
et al. 2016), which account for 62% of the world total number of

lakes. The total area of these lakes is about 856.5 3 103 km2,
which accounts for 32% of the total area of world lakes. Many
Canadian lakes are distributed through a 1000-km swath of land
surrounding Hudson Bay (Fig. 2). Nearly all of them are of gla-
cial origin. The line of contact between the Canadian Shield and
the western interior lowlands is marked by a band of Canada’s
largest lakes, ranging from Great Bear Lake in the Northwest
Territories to the Laurentian Great Lakes of North America
(Fig. 2). Table 2 lists the lake total numbers and areas in each
MDA. Note that the above estimates do not include the
Laurentian Great Lakes of North America, which are the
largest group of freshwater lakes on Earth with a total area
of over 2443 103 km2. Additionally, these estimates only in-
clude natural lakes and manmade reservoirs of over 10 ha
and do not include rivers and small water bodies under
10 ha. Given the enormous number of small water bodies
over the landmass (Messager et al. 2016), the actual total
lake numbers and surface water areas are expected to be
significantly higher than our estimates.

c. Datasets

Three main datasets were used in this study: land surface
runoff, water body water yield, and water surface areas. De-
tails for these datasets are given below.

1) LAND SURFACE RUNOFF (Q)

Land surface runoff was generated using the land surface
model EALCO V4.2 (Wang et al. 2013). EALCO is developed

FIG. 1. Map of the 11 studied basins [the major drainage areas (MDAs) in the Standard Drain-
age Area Classification (SDAC; Statistics Canada 2003)].
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for simulating terrestrial ecosystem–atmosphere interactions
using in situ and remote sensing observations. The model
includes five main modules for simulating the dynamic land
surface processes of radiation transfer at multiwavelengths
(Wang et al. 2007), water transfer in the aquifer–soil–vegetation–
atmosphere system (Wang 2008), canopy and ground surface
energy balances (Wang et al. 2009; Zhang et al. 2008), and
vegetation and soil carbon and nitrogen biogeochemical cycles
(Wang et al. 2002). The water module is dynamically coupled
with the other four modules in EALCO to integrate the con-
trols of atmosphere, plant, and soil conditions in the eco-
system water cycle. Land surface runoff is obtained in the
water module which simulates all the water processes de-
scribed in Eq. (1). EALCO is developed in Canada with a
specific focus on cold-region processes, such as soil freeze–
thaw, snow accumulation and melt which include snow cover
dynamic layering, compaction, destructive metamorphism, and
surface albedo changes due to snow aging and surface littering
(Zhang et al. 2008).

Evaluations of EALCO performances have been conducted
for diverse ecosystems and climate conditions at various spatio-
temporal scales. This includes model intercomparison [e.g., with
the Community LandModel (CLM) and the Variable Infiltration
Capacity (VIC) model of GLDAS], remote sensing products, wa-
tershed water budget, and in situ tower flux measurements (e.g.,
Hanson et al. 2004; Grant et al. 2006; Fernandes et al. 2007;
Walker et al. 2014; Medlyn et al. 2015; Wang et al. 2015a; Chen
et al. 2019). Recent assessments of EALCOwater outputs over
Canada’s landmass include examining the monthly water bud-
get closures for all gauged large drainage basins using GRACE
observations, and the long-term (30 years) water budget clo-
sures for all gauged watersheds (Wang et al. 2014a,b, 2015b).

The extensive tests and evaluations of EALCO over Canada’s
landmass have improved EALCO’s algorithms and calibration
and enhanced its performance particularly for cold region eco-
systems, which provides confidence for model results of this
study over the Canadian landmass.

The EALCO model in this study was driven by the atmo-
spheric forcing produced by the Terrestrial Hydrology Re-
search Group at Princeton University (Sheffield et al. 2006),
which includes shortwave and longwave radiation, air temper-
ature and humidity, precipitation, wind speed, and atmo-
spheric pressure. It was parameterized by the remotely sensed
land surface vegetation data and inventory soil maps (Wang
et al. 2013). The simulated land surface runoff is provided at a
5-km spatial resolution and 30-min time step, and covering a
time period of 38 years (1979–2016). The model outputs were
then upscaled into monthly values for each of the MDAs.
Note that all the variables in Eq. (1) and P and E in Eq. (3)
were calculated at pixel-level first using subpixel information
(Wang et al. 2013), before they were upscaled to the MDAs.

2) WATER BODY WATER YIELD (P − E)

Water body water yield refers to the net water exchange
between water bodies and the atmosphere, or the difference
between precipitation (Pw) and water body surface evapora-
tion (E). The water yield dataset used in this study was de-
tailed in Li and Wang (2021), in which the dataset was
evaluated in Budyko space and compared with streamflow ob-
servations across Canada. The precipitation dataset in the
water yield used that from Sheffield et al. (2006). It was con-
structed by combining a suite of global observation-based pre-
cipitation datasets with atmospheric model reanalysis and
available globally at 0.258. Later updates in the dataset can

FIG. 2. Lakes (.0.1 km2) over Canada’s landmass show in dark blue. Note the outline of the
Laurentia Great Lakes is not shown.
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found in http://hydrology.princeton.edu/data/pgf/v3/ (last ac-
cessed on 31 March 2022). Biases in the reanalysis precipitation
were corrected using observation-based datasets. Corrections
were also made to the rain day statistics of the reanalysis pre-
cipitation, which have been found to exhibit a spurious wave-
like pattern in wintertime at high latitudes. This dataset
provides long-term, spatially consistent precipitation and has
been noted to be one of the most suitable datasets for studying
land surface hydrology for long time periods and broad scales
(Wang et al. 2013, 2014a).

Water surface evaporation (E) refers to the water loss to
the atmosphere on the water body surface. In cold regions,
the year-round estimation of E is complicated by the water
body freezing–thaw cycles, the associated ice–surface snow
accumulation and melt, and the dynamic change of snow
albedo that affects the snow surface energy balance. The E
used in the water yield calculation was produced by EALCO,
which integrates the dynamic evolutions of water–ice–snow
processes of water bodies into the estimation of E (Li et al.
2020). The E datasets demonstrated its high confidence levels
through comparing with all the pan evaporation observations
available in Canada in 1979–2007 (Li et al. 2020). It is so far
the only available long-term E dataset covering Canada’s en-
tire landmass that accounts for the dynamic water bodies sur-
face changes (water–ice–snow) in E calculations.

3) SURFACE WATER AREA (AW)

The Global Surface Water (GSW) Monthly Water History
product (https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/GSWE/
MonthlyHistory/, last access 31 March 2022) generated using
Landsat-5, Landsat -7, and Landsat -8 archived data is used in
this study. GSW applies an expert system for water extraction at
30 m resolution from over 4000000 Landsat scenes since 1984
(Pekel et al. 2016). To fully cover Canada’s entire landmass,
33 tiles of this product were required, with each tile covering a
108 3 108 region. A total number of 11880 tiles for the period of
1991–2020 were used in this study, which provides an overlap of
26 years with the EALCO outputs. Validation of the GSW data-
set for the period of 1984–2015 was performed by Pekel et al.
(2016) using a total of 40124 control points. Errors of omission
overall were reported ,5% and errors of commission ,1%.
Our assessment of the dataset over the Canadian landmass gen-
erally confirmed this accuracy. Misclassification of water as land
for pixels affected by missing observation of Landsat-7 Scan
Line Corrector (SLC)-off and cloud, however, became more sig-
nificant in the dataset after September 2015 over the entire land-
mass, as illustrated in Fig S1 in the online supplemental material
using the Arctic MDA as an example.

To estimate the actual water areas for each month in a
MDA, we developed a Landsat data processing model. First,
a permanent and inundation water mask was generated using
all the monthly data for the 30 years of 1991–2020. It provides
the base surface water areas information. Next, the water
areas within the inundation areas for each month were calcu-
lated using the spatial and temporal coherence of the water
pixels. Finally, the surface water area was obtained by adding
the permanent water area for the region to the water area in

the inundation area obtained above. This data processing
method enables monthly water areas to be obtained, unless
the no-data percentage in a region exceeds a threshold (95%)
in a specific month. Moreover, it removes the misclassified
pixels over the permanent water area and reduces the impact
of misclassification errors on the estimation of water area
over the inundation area due to the offset of commission er-
rors and omission errors in the water–land ratio calculations.
Figure S2 is an illustrative example, showing a GSW original
product which contains substantial no-data and misclassified
land pixels over Lake Amisk for September 2016 (left) and
the postprocessed product from our data processing (right).

Due to the frozen water surface and snow cover condi-
tions of the water bodies in winter, Landsat-based surface
water areas had no data for the freeze-up period. The num-
ber of months with available data in a year varied from
about 3–4 months for the Arctic MDA to 7–8 months for
the Mississippi River, Maritime Provinces, and Pacific MDAs.
Fortunately, the surface water changes in winter season are
relatively small which reduces the impact of the Landsat data
gaps in our evaluation.

3. Results

The surface water storage changes estimated by the three
methods of runoff, WBSA, and WBDA are presented below.
The Western and North Hudson Bay (WNHB) MDA, which has
the highest lake distribution density (157.1 lakes per 1000 km2),
and the Mississippi River MDA, which is located in the driest
region in Canada and has the lowest lake distribution density
(6.4 lakes per 1000 km2), are used to demonstrate the results. The
results for all MDAs are summarized later in this section.

a. Land surface runoff method (runoff)

The surface water storage variations estimated by the land
surface runoff is shown in Fig. 3. For WNHB (Fig. 3a), surface
water storage in winter months had the minimum value of
0 mm, as there was no land surface runoff modeled for
WNHB when it was dominated by snow cover accumulation
process and rain events rarely occur. In spring months, the
surface water storage had a huge increase and reached its an-
nual peak (42.6 mm) in June due to snowmelt-induced surface
runoff. Low soil infiltration capacity due to the frozen soil in
early spring also contributed to this large surface runoff. The
surface water storage then had a sharp decrease and reached
its lowest summer-season value in July (6.3 mm), mainly due
to the large increase in soil infiltration capacity, a result of rel-
atively dry soil from high evapotranspiration. The surface
water storage had a slight increase after July until the cold
season started in October, resulting in a second peak in
September but with a much lower value (10.3 mm) than the
spring peak. This is a time period with a large decrease in
evapotranspiration and an increase in land water yield. Inter-
annually, the standard variation of surface water storage in
the 38 years had a maximum value of 11.0 mm observed in
June. The coefficient of variation (CV 5 standard variation/
mean) was observed to have a maximum value of 62% in
July.
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The surface water storage estimated for Mississippi River
(Fig. 3b) shows several major differences from that of the
WNHB due to its dry and warm climate conditions. First, the
magnitude of the surface water storage was small throughout
the year and its annual peak value was only 5.3 mm, or 12%
of that for the WNHB. The peak time occurred in March,
about 3 months earlier than that of the WNHB. Second, zero
surface water storage could occur in any month of a year,
even during spring snowmelt (March–April). On the other
hand, above zero values could even occur in the midwinter
months (December–February). Third, the interannual varia-
tions were huge relative to its mean values. The CV varied
from 130% in March to over 500% in September, October,
and January.

The runoff-scaled (DSW 3 AMDA)
2/3 surface water areas

are compared with Landsat data in Fig. 4. Monthly time series
data for five years (2004–08) are presented in order to illus-
trate the variation details. For WNHB which is located
around the latitude of 608N, Landsat had data for about

5 months (May–September) in a year. For the Mississippi
River MDA which is located in latitudes south of 508N, Land-
sat data was much improved to 8 months (March–October) in
a year.

Landsat-observed water areas showed significant seasonal
variations in both WNHB and the Mississippi MDAs. For
WNHB (Fig. 4a), Landsat-observed water areas peaked
mostly in June and dropped by 5%–10% to its lowest values
in August, followed by a substantial increase in September.
The interannual variations were found to be relatively small.
In comparison, the runoff-scaled areas showed similar pat-
terns as observed in Landsat data; however, two major differ-
ences are noticed. 1) The large prewinter rebound observed
in the Landsat-based areas was markedly underestimated by
the runoff method. 2) The minimum areas from the runoff
method mostly appeared in July which was one month earlier
than that of Landsat. The water budget of the water body
modulated by its hypsometric curve determines the water
area dynamics. The above noted differences were mainly

FIG. 3. Surface water storage change estimated for (left) the Western and North Hudson Bay MDA and (right) the
Mississippi River MDA by the three methods of (a),(b) runoff, (c),(d) WBSA, and (e),(f) WBDA (including compar-
ative curves from runoff and WBSA). Values shown are the 38-yr mean and variations (standard deviation) for
1979–2016.
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caused by the large seasonal variations in water body water
yield which the runoff method does not include. This limita-
tion is addressed in the WBSA and WBDA methods detailed
below.

For the Mississippi River MDA, comparisons between the
Landsat-based and runoff-scaled water areas (Fig. 4b) showed
two major differences from that of the WNHB. 1) The sea-
sonal variations of the Landsat-based water areas essentially
showed a continuous decrease from March through September.
Although a slight prewinter increase in October was noticed,
its magnitude was much smaller than the prewinter rebound
for the WNHB. The magnitudes of seasonal changes are found
to have huge interannual variations. For example, water areas
in 2004 dropped as much as 60% from snowmelt season to
late summer, but only 20% in 2008. 2) The runoff-scaled
area frequently had zero values in a year. In years with dry
winter such as 2008, the runoff-scaled areas were essentially
zero year-round. The results show that, while the runoff
method generally captured the interannual variations as ob-
served by Landsat, it was not able to reproduce the seasonal
water variations for this dry MDA. More specifically, land
surface runoff cannot have negative values, so the runoff
method is unable to deal with the process of continued net
water loss (or water area decrease) in dry seasons/years. This

limitation is addressed in the WBSA and WBDA methods
detailed below.

The overall correlations between Landsat-based and runoff-
scaled surface water areas for all the available months for
1990–2016 are given in Fig. 5. The WNHB achieved a fairly
high correlation coefficient (r) value of 0.720 (Fig. 5a). For the
Mississippi River, the r had a relatively low value of 0.572
(Fig. 5b), mainly due to the zero values in summer from the
runoff method. It is worth mentioning that among the 11 MDAs,
only the Pacific MDA maintained a minimal level of surface
runoff year-round. For the 10 other MDAs, zero values of
land surface runoff occurred in most winter months due to
the frozen land surface conditions.

b. Water budget with static water area method

The results from the WBSA method largely improved the
limitations observed with the runoff method:

1) The large prewinter rebound of surface water areas for
the WNHB, which was observed by the Landsat data but
markedly underestimated by the runoff method as dis-
cussed above (Fig. 4a), was successfully reproduced by
the WBSA method (Fig. 4c). Further, compared to the
runoff method which estimated a dramatic decline in

FIG. 4. Comparison of Landsat-observed vs estimated [(a),(b) runoff method, (c),(d) WBSA method,
(e),(f) WBDA method] monthly surface water area variations for (left) the Western and North Hudson Bay
MDA and (right) the Mississippi River MDA in 2004–08.
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October and remained at zero values throughout the win-
ter season, the WBSA prewinter rebound is continued
into November before it started to fall slowly throughout
the winter season until March of the next year. This im-
provement is mainly due to the inclusion of water body
water yield in the WBSA method which had an increase
in the fall season and a decrease in winter season.

2) The time with annual minimum surface water storage/
area for WNHB, which appeared in July in the runoff
method (Fig. 3a), was estimated in August by the WBSA

method (Fig. 3c) and it agreed with the Landsat observa-
tions (Fig. 4c). This difference is mainly due to the impact
of high evaporative water loss for the water bodies in Au-
gust employed in the WBSA method.

3) The seasonal pattern of the surface water storage/area for
the Mississippi River shows a continuous decrease from the
snowmelt season through January of the next year for the
WBSA method (Figs. 3d and 4d), which agreed well with
the Landsat observations. It improved the runoff method,
which had mostly zero values for the corresponding period

FIG. 5. Correlations between Landsat-observed and estimated [(a),(b) runoff method, (c),(d) WBSA method,
(e),(f) WBDA method] surface water areas for (left) the Western and North Hudson Bay MDA and (right) the
Mississippi River MDA in 1990–2016. The data points in red represent 19 months from two severe drought periods to
be discussed below.
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(Figs. 3b and 4b). The September peak obtained with
the runoff method (Fig. 3b) was subtle with the WBSA
method.

The above changes reported by the WBSA method largely
improved the seasonal variation patterns by the runoff
method. The correlation coefficient with the Landsat-based
surface water areas in 1990–2016 was increased from 0.720
(Fig. 5a) to 0.750 (Fig. 5c) (WNHB), and from 0.572 (Fig. 5b)
to 0.636 (Fig. 5d) (Mississippi River) for the runoff and
WBSA methods, respectively.

One unique feature found for the Mississippi River MDA
is the huge seasonal variations of surface water areas due to
its flat terrain and poorly connected hydrological system. An
analysis of the Landsat data shows that in the 30 years of
1991–2020, the median and the maximum surface water inun-
dation areas were 120% and 520% of its permanent water
area, respectively (Fig. S3). In contrast, for the other 10 MDAs,
the median inundation areas were from only 9% (Great Slave
Lake MDA) to 27% (Maritime Provinces MDA), and the max-
imum inundation areas were about 16% and 49% of their
corresponding permanent water areas. Another unique fea-
ture with the Mississippi River MDA as compared to the other
10 MDAs is that it had a very high surface water evaporation
rate (long-term average 984 mm yr21) and low precipitation rate
(long-term average 363 mm yr21) which resulted in a negative
water body water yield (water loss) of 2621 mm yr21 (Fig. S4),
and very low land surface runoff, or source of water input for
water bodies from its surrounding land (12 mm yr21, Fig. S4).
In contrast, the other 10 MDAs had much smaller net water
loss or even water gain over water body surface, and much
higher land surface runoff input (Fig. S4). The WBSA method
used a static surface water area for each MDA. The two fea-
tures mentioned above for Mississippi River suggest that
overlooking the water area dynamic variations in the WBSA
method could result in large estimation errors for this MDA.
This can be confirmed by the lower r value obtained for
Mississippi River than that for the WNHB. Additionally, the
data points in red (Fig. 5d), which deviated from the general
relationship, represent 19 months from two time periods,
July 2001 through October 2002, and April 2008 through
March 2009 (note that Landsat has no data for November–
February for this MDA), which correspond to the two low-
est runoff years in our study period after severe climate
droughts. Under prolonged drought conditions, using a static
surface water area from normal conditions for calculating water
body water budgets results in large overestimation of water loss,
and vise versa for flooding conditions.

c. Water budget with dynamic water area method

The WBDA method addresses the abovementioned short-
comings in the WBSA method. It simulates the dynamic
changes of water areas with water storage changes in its water
bodies water budget calculations. This leads to a reduction in
water areas when water budget is negative during a dry pe-
riod, and vice versa. It feeds back to the water budget calcula-
tions for water bodies. For example, the decrease in water
areas under dry conditions leads to the decrease of basin-level

evaporative water loss and the increase of total land surface
runoff input (due to the increase in land surface areas), and
vice versa. Consequently, the WBDA method reduced the
seasonal variation amplitude of water storages obtained by
the WBSA method (Figs. 3e,f). Overall, we found the sea-
sonal variation patterns by the WBDA and WBSA methods
are similar. By comparison, the runoff method shows large er-
rors particularly in the cold season and dry regions.

Another advantage of the WBDA method is that it simu-
lates the actual water areas which makes a direct comparison
with the Landsat-based areas possible (Figs. 4e,f). The
WBDA method further improved the correlations between
the model output and the Landsat data (Figs. 5e,f). In particu-
lar, it can be noticed that the months estimated with large er-
rors for the Mississippi River MDA by the WBSA method
(the data points in red in Fig. 5d) have been largely corrected
(Fig. 5f).

Overall, the runoff, WBSA, and WBDA methods for all the
11 MDAs obtained r values . 0.5 with most r values . 0.7
(Fig. 6). The differences among the three methods are consis-
tent for each of the MDAs, which show the Runoff method
had the lowest r values and the WBDA method achieved the
highest r values, demonstrating the improvements made by
considering water body water yield in the WBSA method, and
by further considering water area dynamics in the WBDA
method, in the surface water storage estimation. The three
methods performed consistently across the MDAs. High r val-
ues were achieved for most of the MDAs, the exceptions being
the Nelson River, Yukon River, and Mississippi River. The
possible reasons for the relatively low r values for these three
MDAs will be discussed next.

4. Discussion

Variations among methods and the MDAs with the valida-
tion data are considered related to Landsat data (temporal and
spatial resolutions) and environmental factors. Three aspects
of the MDAs related to physical environments are considered:
(i) contribution of glacial melt, (ii) water body connectivity,
and (iii) surface water–groundwater connectivity.

Landsat satellites have a revisit frequency of about 2 weeks
over the study region. Due to atmospheric contaminations
(e.g., clouds) and other missing observations, temporal avail-
ability of valid observations for water retrievals are further
decreased. This largely limits the number of valid observa-
tions for generating monthly water products that well repre-
sent the monthly averages, which poses limitations for water
characterization over regions where the water area is highly
dynamic. This is one reason for the low correlations obtained
for the Mississippi River MDA, where water area is highly dy-
namic. As shown in Fig. S3, the water inundation areas can be
5 times more than its permanent areas for the Mississippi
River. This MDA is located in the driest edge of the Canadian
Prairies. Its annual water surface evaporation is almost 3 times
the amount of precipitation. The land surface of the Canadian
Prairies is characterized by the glacier deposits of the Wisconsin
glaciation during the Pleistocene era, which left the ground
pocked with small depressions known as potholes. Many of
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these potholes are not connected by surface streams. They
typically receive most of their water from spring snowmelt to
become ponds, wetlands, or sloughs, and often dry up in sum-
mer due to high evaporation (Johnson et al. 2005), resulting
in highly dynamic water area variations. Integration of multi-
satellite missions, particularly those using SAR technologies
which can observe Earth’s surface in all weather conditions,
day and night (e.g., Sentinel-1, RCM), is necessary to obtain
high temporal resolution products to improve water monitor-
ing over highly dynamic regions.

Landsat water products have a spatial resolution of 30 m.
They have been successfully used in mapping flooding events
or long-term (multiyear) water area variations which involve
large area changes. For water bodies particularly those with
high slope surrounding terrains, the month-over-month shore-
line changes outside the time periods with extreme water
events (e.g., snowmelt and floods) are often within a few me-
ters, which cannot be accurately detected by Landsat satellites.
This relatively coarse spatial resolution poses a challenge in
quantifying monthly water variations in many circumstances.
It brought up uncertainties in the Landsat monthly water areas
and affected our model evaluations. Satellite missions with
higher spatial resolution for water surface monitoring (e.g.,
Sentinel-1/2, RADARSAT-2, and RCM), will be used to ad-
dress the issues in further studies. In particular, the Surface
Water and Ocean Topography (SWOT) mission launched in
2022 is expected to greatly advance the surface water studies by
providing spatially continuous observations for water area and
height information of inland water bodies.

The correlation coefficients for the Yukon River are also
relatively low (Fig. 6). This was caused mainly by the large
model underestimation in September of each year (note that

Landsat data are not available after September for Yukon
River). As shown in Fig. S5, Landsat-based water areas had a
huge increase in September consistently in each year during
our study period, but none of the three methods reproduced
this change. By removing the September data, the r value by
the WBDA method was increased considerably from 0.654 to
0.843 (Fig. S6). Examination of all the datasets and water pro-
cesses over this MDA found that there were no meteorologi-
cal variables that could explain the large change in the
Landsat data. On the other hand, the change is highly consis-
tent with the glacier changes reported for the region due to
climate change impacts. The Rocky Mountains have an esti-
mated glacierized area of over 38 000 km2 (Ommanney 2002).
Wang et al. (2014a, 2015b) reported that the Yukon River ba-
sin has experienced significant and consistent water losses in
the past four decades due to glacier and permanent snow
cover shrinkage. The average water loss rate was reported at
a magnitude of 39.5 mm yr21 during 2003–08, with a trend of
accelerating loss. Similar results have also been reported in
some other studies using satellite and ground observations as
well as models over the region (e.g., Spence 2002; Ge et al.
2012; Rodell et al. 2018; Young et al. 2021; Pradhananga and
Pomeroy 2022; Wiersma et al. 2022). It is reasonable to assume
that the melt of glacier/permanent snow mostly occurs in sum-
mer, which provides water input for water bodies and results
in surface water area increase in late summer as observed in
the Landsat data. This has been observed in other cold re-
gions of the world such as Tibetan Plateau where glacier melt
was found to have contributed to water extent increase
(Zhang et al. 2011; Zhao et al. 2022). It is worth noting that
the precipitation in September over the basin was 25.9 mm,
which was only two-thirds of the abovementioned water input

FIG. 6. Correlation coefficients between Landsat-observed surface water areas and the runoff-
scaled, WBSA-scaled, and WBDA-simulated surface water areas for the 11 MDAs in Canada.
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from glacier/permanent-snow melts (39.5 mm). Therefore, the
impact of this climate changed–induced water input on sur-
face water areas in late summer is large. The water contribu-
tion from this process was not included in the three methods
in this study, resulting in the large differences between Land-
sat data and our estimates in late summer.

The Nelson River showed the lowest r values (Fig. 6)
among the 11 MDAs. A large part of the Nelson River MDA
belongs to the Canadian Prairies, where the water area is
highly dynamic. Glacier and permanent snowmelt in the
Rocky Mountains headwater areas of the Nelson River MDA
also had significant contribution to its surface water (Comeau
et al. 2009), of which the impact on our estimates can be seen
in Fig. S5. Additionally, we found that Landsat data showed a
significant trend of water area increase over our study period
for this MDA (overall trend 290 km2 yr21). Our methods as-
sume that the water bodies in a basin are hydrologically well
connected so surplus water can flow out of the system. The
unique land surface characteristics over the Canadian Prairie
pothole region result in many of the basins over the Nelson
River MDA as closed basins (e.g., Winter 1989). This caused
discrepancies between Landsat data and our model estimates.
After removal of the overall trend from the Landsat data, the
correlation coefficient (representing seasonal variations) ob-
tained by the WBDA method was increased to 0.686. It
is worth noting that no significant trend was found for the
Mississippi River MDA to the south, which suggests that the
water increase likely occurred in the northern part of the prairie
region. All the above three processes affected the estimates for
the Nelson River MDA, which resulted in the lowest correla-
tions with the Landsat observations.

Our methods do not include direct water body–aquifer wa-
ter exchanges. Groundwater discharge to water bodies in the
wet regions with well-connected hydrological systems largely
contributes to river baseflow and flows out of the system, so
the net change (discharge minus baseflow) and its impact on
surface water area is secondary. This can be confirmed by our
results which showed fairly high r values for most MDAs except
for the prairie dry region. The hydrology over the Canadian
Prairies is very variable and complex (Spence et al. 2022). Some
potholes may receive groundwater discharge, while some others
may be sources for groundwater recharge. However, for the
overall prairie region, the impact of groundwater on the water
bodies dynamics is secondary to land surface runoff (particularly
from snowmelt) and water surface evaporation (Leibowitz and
Vining 2003; Johnson et al. 2005; Betts et al. 2014). Nevertheless,
direct water body–aquifer water exchange is an additional
source of uncertainties affecting our estimates. The surface
water–groundwater interactions are complex and data on water
body–aquifer water exchanges are extremely rare especially at
large scales. Further studies are necessary to couple this process
in surface water studies particularly for regions with self-closed
hydrological systems.

5. Conclusions

Three methods for estimating surface water storage
changes are proposed. They include the runoff method, which

uses land surface runoff as a proxy for surface water storage;
the water budget with static water area (WBSA) method,
which calculates surface water budget for water bodies using
static water areas; and the dynamic water area simulations
(WBDA) based on the WBSA method. The three methods
were used to estimate monthly surface water storage changes
for 11 major drainage areas (MDAs) that cover Canada’s en-
tire landmass. The results were evaluated using observed
monthly water areas by the Landsat satellites. The runoff
method obtained results with the lowest correlations with the
Landsat data. It could have large errors in the estimates in
cold season or dry regions. However, it had positive r with
moderate values for all the MDAs, indicating it can capture
the water variation signal to a certain degree. It suggests that
using land surface runoff as a proxy for surface water storage
change in GRACE-TWS decomposition provides improve-
ment over the approaches of neglecting this water component.
The WBDA method shows the best performance, demon-
strating the improvements made by considering water body
water yield and water area dynamics in the surface water stor-
age change estimation. The WBDA method, however, needs
additional data input for calibrating the surface water volume–
area relationships. TheWBSAmethod significantly improved the
runoff method, and its estimates had similar seasonal variation
patterns to those by the WBDA method. Moreover, the WBSA
method is relatively simple. It is thus recommended for surface
water storage change estimation when available data are limited
for more physically based modeling. The three methods per-
formed consistently across the 11 MDAs. All the methods per-
formed well for most of the MDAs except those that have
significant glacier melt input (Yukon, Nelson) and dry regions
with poorly connected hydrological system (Mississippi, Nelson).
Themethods and outputs from this study can be used for calibrat-
ing and validating hydrological and climate models, assessing cli-
mate change and human disturbance impacts on regional water
resources, and filling the DSW data gaps in GRACE-based total
water storage decompositions studies.
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