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The area of reaction mechanism discovery simulation has taken considerable
strides in recent years. Novel methods that make hypotheses for elementary
steps and complementary means for reaction path and transition state
(TS) optimization are lowering the amount of chemical intuition and user effort
required to explore reaction networks. The resulting networks lead from reac-
tants to reactive intermediates and products, and are becoming closer represen-
tations of physical mechanisms involved in experiments. This review describes
several of these approaches, which are categorized based on their overarching
TS finding strategies. Future advances are discussed that may revolutionize the
ability of simulation to fully predict not just the reaction mechanism but reaction
outcomes. © 2017 Wiley Periodicals, Inc.
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HARVESTING REACTION PATHWAYS
USING COMPUTATION

Deep mechanistic insight into a chemical reaction
can be gained from atomistic studies of elemen-

tary steps, where one intermediate is connected to
another by a path containing a single transition state
(TS). The three-dimensional (3D) structural informa-
tion provided by reaction paths not only provides a
basic framework for conceptualizing the reaction,
but also estimates the rates, thermodynamics, and
selectivity that quantify key reaction parameters. In a
highly successful model of a reaction, all key elemen-
tary steps composing the mechanism are known and
accounted for. Building such a model is by no means
trivial, even for relatively well-studied reactions
where many of the elementary steps are already
known. For emerging reactions with little mechanis-
tic precedent, the task requires large amounts of
effort—both computational and human time—and
no current strategy provides any guarantee of
success.

This article outlines recent contributions to the
area of computational mechanism discovery, where
sequences and networks of individual elementary
steps are created and analyzed. The powerful
methods of this area are designed to locate intermedi-
ates, reaction paths, and TSs with as little guidance
from the researcher as possible. Ultimately, it is
hoped that further advances will allow full reaction
mechanisms to be revealed purely from computation,
even for challenging chemical reactions with large
numbers of intermediates, TSs, and products densely
populating the reaction landscape. Although reaching
this goal by gathering up all vital reaction pathways
is not yet within sight, major advances in recent years
have started moving toward it.

First principles, or ab initio, simulations of
reactant molecules and catalysts provide an impor-
tant, central viewpoint on how computation can
approach reactivity with little or no guidance from
experiment.1–3 Ab initio simulations provide poten-
tial energy surfaces (PESs) and, from these, free
energy surfaces,4,5 which approximate the true reac-
tive landscapes. All potential elementary steps may
be located by exploring these landscapes, at least in
principle. The high dimensionality (approximately
3 N, where N is the number of atoms in the system)
of the surfaces, however, means that exhaustive
exploration is usually impossible. Some form of
search strategy, often coming from a low-
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dimensional re-envisioning of reaction paths, must be

employed to locate intermediates and the TSs that

connect them. This situation leads us to the two key

challenges discussed herein: (1) Locating reaction

paths for single, posited elementary steps, and their
associated TSs and (2) Identifying hypothetical reac-

tion pathways quickly, automatically, and with good
coverage of the chemically relevant elementary steps.

Locating a pathway for an envisioned reaction
often employs local TS finders to optimize saddle
points along the path.6–8 The TS structures can be
guessed using intuition or approximated using vari-
ous interpolation tools before optimization.9–23 Once
a TS is found, intrinsic reaction coordinate (IRC)24,25

computations provide the reaction path connecting
the TS to its neighboring intermediates. Largely, this
method has relied on chemical intuition to designate
the TSs that are of interest, as well as the intermedi-
ates that have to be found.26,27 Therefore, this strat-
egy has been shown to be largely useful for
accomplishing Goal 1, but at the same time is not
conducive for solving Goal 2.

To accomplish Goal 2, excellent methods for
achieving Goal 1 must be available nonetheless. Con-
ceptually, elementary step exploration on a PES can
occur via three general approaches (Figure 1). TS
finding followed by IRC, double-ended path optimi-
zation starting from two endpoints, and single-ended
searching by moving along a reaction coordinate.
While all three method classes lead to the same infor-
mation about one elementary step, strategies for
exploring many such steps on a PES must carefully
account for the strengths and weaknesses of each
approach. A strong strategy for PES exploration
must synergistically combine its reaction path finder
with its reaction hypothesis generator to achieve
maximal success.

Reaction mechanism discovery is an immense
challenge, and the methods discussed in this review
will show a variety of tools that have approached the
problem. A number of interesting areas must be left

out of this review to maintain focus: standard optimi-
zation methods28,29 computer aided synthesis,30

quantum and molecular mechanical (QM/MM)
methods,31–35 molecular dynamics (MD) simulations
that do not look for TSs,36–39 haptic quantum
chemistry,40,41 and machine learning tools42–44 will
not be described herein. Our focus instead is on PES
exploration tools for molecular systems, and closely
related atomistic methods that approximate the
mechanistic information that would have come from
ab initio simulations. Furthermore, the accuracy of
kinetics emerging for all of these methods depends
ultimately on the capabilities of the underlying elec-
tronic structure methodologies,2,45–48 but this area is
also outside the scope of this article.

FOUR CONCEPTS FOR DISCOVERING
ELEMENTARY REACTION NETWORKS

The four categories shown in Figure 2 will be used to
organize our discussion on reaction exploration.
These methods start from a designated set of reac-
tants and catalysts, but otherwise are supposed to
operate with as little input from a researcher as possi-
ble. The categories consist of: Concept 1. Encoded
elementary step types from databases or chemical
heuristics are used to describe reaction pathways,
with the steps taken depending on the input reac-
tants. In this category, activation energies are fre-
quently approximated, but sometimes computed
based on TS optimization. Concept 2. Approximate
TSs are generated, followed by local TS optimization
and IRC computations. For example, a well-known
tool in this area pushes two molecules together with
artificial forces to generate the approximate
TS. Concept 3. Putative elementary steps are gener-
ated and corresponding intermediates formed, then
double-ended methods are used to refine a reaction
path and TS. Concept 4. Hypothetical reaction coor-
dinates are generated, and single-ended methods per-
form reaction path searches along these coordinates.
All of these methods are closely related to one
another in spirit, but differences in the details can be
paramount to their degree of success. All generate
approximate reaction paths, estimate energetic bar-
riers for reaction, and can be used to sequentially
assemble networks of elementary steps. These
methods, however, can break down at one point or
another, and none achieve a perfectly ideal balance
of high accuracy, comprehensive PES searching, and
low computational cost. Despite the apparent prom-
ise of user-interaction-free exploration, every method

FIGURE 1 | Single elementary step characterization algorithms.

(a) IRC, (b) double-ended, (c) single-ended.
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still requires at least some input from chemical
intuition.

Concept 1: Reaction Discovery Using
Encoded Transformations
One of the earliest attempts at computerized reaction
mechanism generation was pioneered by Broadbelt
and coworkers in the 1990s, in a method called Net-
Gen.49 The strategy used graph theory to represent
reaction networks, reducing the 3D problem of struc-
tural rearrangements of chemistry into a simplified,

two-dimensional (2D) view of reactions as modifica-
tion of the edges (bonds) connecting vertices (atoms)
of a graph (see Figure 3). This concept can be imple-
mented in matrix form using adjacency matrices or
bond and electron (BE) matrices, allowing chemical
transformations to easily be described by matrix
operations.50,51 These transformations correspond to
postulated reaction steps, or specifically encoded
rules that dictate what may or may not occur at a
given substrate.

Broadbelt’s original work estimated kinetic
parameters using the concept of reactive families,
where each family obeyed uniform principles of reac-
tivity. These rates were calculated using the Evans–
Polanyi principle52 (Eq. (1)):

Ea =E0 + αΔHrxn ð1Þ

Where E0 is a reference activation energy based on a
known reaction, α is a constant particular to the
reaction family, and ΔHrxn is the enthalpy of reac-
tion, which is obtained using Benson group additiv-
ity.53,54 In the Benson approach, a species is divided
into predefined groups, and overall thermodynamic
properties such as enthalpy of formation (ΔHf), and
therefore the activation energy, can be estimated as a
sum of the individual values of its groups (e.g., ΔHf

for propane is a sum of enthalpies for two methyl
and one methylene group). In cases where group

FIGURE 2 | Four categories of automated reaction path exploration methods.
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additivity was unable to give accurate results,
ab initio computations provided the necessary ther-
modynamic information.

The Netgen algorithm begins by applying trans-
formations to the reactant molecule graph, and the
newly made molecules are added to a list of species
involved in the global mechanism. Iterating on this
procedure can lead to a large number of possible
reactions, products, and intermediates.55 Because
only a fraction of these species are mechanistically
relevant, the reaction network can be trimmed using
a rate-based termination algorithm.56 Early studies
examined pyrolysis of tetradecane57 and even the
Fischer–Tropsch reaction catalyzed by Ni and Co
surfaces.58 This latter study demonstrated the flexi-
bility of graphical approaches, but also the challenges
for applications to new chemistries: new thermody-
namic and kinetic parameters were required, as the
gas-phase models were inapplicable to species on the
surface.

The Green group subsequently created the
Reaction Mechanism Generator (RMG) software to
provide insights into complex mechanisms, where
manual searches would prove extraordinarily
tedious.59,60 Although their overall strategy is repre-
sented by Figure 3, significant steps were taken
beyond the original approach by Broadbelt. The
graph representation was expanded to include new
atom types (e.g., a carbonyl carbon when a R2C O
was present), more efficient graph isomerism algo-
rithms to identify reaction families, and improved
approximations for group additivity and rate predic-
tions. To achieve the latter, a hierarchical organiza-
tion identifies general functional groups, then refines
these based on more specific chemical moieties.
Importantly, specific kinetic parameters were esti-
mated using quantum chemical optimization of TSs,

especially for cases where good rate estimates were
otherwise unavailable.61

RMG has been used to extensively map pyroly-
sis reaction mechanisms in an automated way. The
mechanism of n-butanol pyrolysis, where previous
reports found 1446 reactions, was found to be com-
posed of 263 intermediates and 3381 elementary
steps.62 In a related scenario, RMG created a global
reaction map for the low-temperature, pressure-
dependent pyrolysis of methane, with roughly
100 species and 1000 reversible reactions.59 In this
study, they were able to account for an unexplained
phenomenon of autocatalysis at low methane conver-
sion via nonintuitive reactions. The Green and West
groups have shown that RMG can be applied in a
variety of complex systems with good success,63–67

and is adaptable enough to study even silicon hydride
chemistry.64 While RMG is clearly a powerful con-
cept, it is ultimately limited by the availability of
good reaction data available to its libraries, as RMG
itself provides no automated approach for TS finding
(but see Concepts 2 and 3 for recent advances).

In a strategy closely related to RMG, reaction
mechanism construction can be achieved by using
principles inspired by organic chemistry, rather than
specifically encoded elementary step types. In work
by Aspuru-Guzik and coworkers,68 a set of heuristic
transformation rules were developed to represent the
electron flow of polar reactions (i.e., their work is
inspired by the ‘arrow pushing’ concept). For
example in Figure 4, cleavage of a single H─Cl bond
generates a reactive charged species. The H+ and Cl−

sequentially are added to an alkene via ionic interme-
diates until a neutral product is formed. The kinetics
of a reaction pathway are evaluated using a heuristic
based on the energy of the highest intermediate
(in accord with the Hammond postulate).

Aspuru-Guzik and coworkers heuristic mecha-
nism generator has been used to study the formose
reaction, a base-catalyzed reaction that converts
formaldehyde into a complex mixture of sugars.69,70

While it is encouraging that such a complex reaction
could be explored and so many intermediates found
(hundreds), the predictions included reactions consid-
ered infeasible by organic chemists. For instance, 3-
and 4-membered rings appear as key intermediates,
despite being highly strained structures.

The three Concept 1 strategies outlined in
Table 1 represent a core class of tools for generating
reaction mechanisms using knowledge-based
approaches. In these methods, TSs are typically
implicit, and not computed at an ab initio level of
theory. This paradigm is not precisely true of RMG,
where select TSs are often computed to augment the

FIGURE 4 | Example of an alkene hydrohalogenation pathway by

the Aspuru-Guzik method.
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kinetic parameter libraries (see Concepts 2 and 3).
Therefore, activation barriers and rates must be esti-
mated for most species, due to experimental data not
being available for the hundreds or thousands of dif-
ferent elementary steps in a particular reaction net-
work. At a basic physical level, different reaction
mechanisms can differ by orders of magnitude in
their relative rates, and one mechanism can dominate
over others due to just a few kcal/mol differences in
activation barriers. This well-known, but major chal-
lenge has motivated the development of Concepts
2 to 4, which all consider the 3D, atomistic descrip-
tion of TSs to be a key factor for uncovering reaction
mechanisms.

Concept 2: Reaction Paths by Focus on TSs
Our focus now returns to the PES and methods that
explore this surface to determine low-energy reac-
tion mechanisms. In principle, a complete, high-
quality PES from an appropriate quantum chemical
method is sufficiently detailed to provide all infor-
mation required for a complete mechanism delinea-
tion. In practice, the massive dimensionality and
huge breadth of PESs means that only highly local,
low-dimensional regions can be reasonably charac-
terized. Up until recent years, the great majority of
quantum chemical studies of reaction paths have
restricted themselves to regions selected via chemical

intuition. Typically, guess TS structures are formed
and optimized in manual, stepwise procedures
(e.g., the often-used eigenvector following71–73 and
related algorithms74–87) that provide atomistic
detail, but also serve to verify the intuition from
which they came. This strategy has been highly use-
ful in analyzing rate-limiting steps and assessing ste-
ric and electronic preferences of reaction, despite the
human burdens in which they entail.88 This
section will describe four methods for reaction path
searches that center on the TS as the most impor-
tant aspect of reaction network generation and pro-
vide streamlined, more systematic means for TS
finding.

The first Concept 2 strategy was developed by
Maeda and coworkers to identify reaction paths
using an important insight into PES curvature. Specif-
ically, when traveling along a PES from one interme-
diate to another, the PES curves downward
compared to the harmonic potential centered in the
original minimum. This effect was exploited by
Maeda and coworkers in a strategy called anharmo-
nic downward distortion following (ADDF),89–92

shown in Figure 5. By following the ADDs in con-
tours of increasing energy (i.e., further displaced
from the minima), direct paths to TSs are found. A
major advantage of ADDF is that the paths generated
closely match the IRC path, so ADDF paths are not
only search paths, in the sense of optimization, but

TABLE 1 | Comparison of Automatic, Knowledge-Based Mechanism Generators

Method
Representation of

Reactants Rules Rates and Thermodynamics

Netgen49 Bond-electron matrices General reaction family templates Evans–Polanyi relationships, group
additivity, quantum chemistry

Reaction Mechanism
Generator (RMG)59,60

Atomically detailed
adjacency lists

Hierarchically organized, more
specific reaction family templates

Same as above, plus some
transition states (TSs) from
quantum chemistry

Heuristics-Aided Quantum
Chemistry68

SMILES Heuristic rules for electron flow in
polar organic reactions (‘arrow
pushing’)

Heuristic kinetic parameters based
on Hammond postulate

Follow ADD

path to

maxima

Optimize

TS guess

Run IRC

Guess TS

ADDF path

Product A

Product B

Actual TS
ADDF path
IRC path

ADDs at contours

of increasing energy

Reactant

FIGURE 5 | The anharmonic downward distortion following (ADDF) method.
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also are reaction pathways that represent the true
reaction coordinate. Iterative invocation of ADDF
leads to a reaction network, including essentially all
relevant pathways. Although the current method
scales poorly with system size,90 it is especially useful
for unimolecular reactions, and has been applied suc-
cessfully to form reaction maps for formaldehyde,
propyne, and formic acid reactions.

Limitations in cost and scope provided impetus
for Maeda and coworkers to design the artificial
force-induced reaction (AFIR) method,93–96 shown in
Figure 6, which is particularly useful for bimolecular
reactions. AFIR overcomes intermolecular activation
barriers by applying an artificial external force to
push the reactants together. When optimizing under
applied force, the unbiased maximum energy point
(i.e., when forces are removed) along the path toward
the product is close in geometry to the true TS and
can easily be refined to the actual saddle point. Sam-
pling over many random initial orientations of the
two reactants allows a variety of bimolecular reac-
tions to be found.

AFIR has been successfully used, for example,
in Claisen rearrangements, Biginelli reactions,97 and
cobalt-catalyzed hydroformylations.98 These exam-
ples include cases where variants of AFIR could
approach intramolecular reactions by defining frag-
ments within a molecule, showing that the method is
not strictly limited to bimolecular reactions. To
accomplish these studies without massive computa-
tional cost, human input was required in the form of
selecting which pairs of molecules/catalyst react as
well as intramolecular fragment selection (i.e., active
atom selection). In other words, some input guiding
the reactants toward particular types of reaction
paths was required (though similar limitations exist
for other methods in this review).

Another method that uses energetic bias to push
reactions forward was developed by Martínez-Núñez
and coworkers.99–102 Their method, termed transition
state search using chemical dynamics simulations
(TSSCDS), diagrammed in Figure 7, relies on running
high-energy dynamics to induce reactions to occur.
To initiate the dynamics, vibrational modes are popu-
lated with multiple quanta of energy, providing an
effective stimulus to surmount activation barriers. For
large systems, vibrational mode selection will inevita-
bly be incomplete and require manual guidance due
to the large number of mode combinations that may
be populated. These dynamics are run at a semiempir-
ical level of theory to minimize costs, yet still qualita-
tively capture bond-breaking and bond-forming
events. After performing the dynamics simulations, an
algorithm identifies atomic connectivity changes
throughout each trajectory. When a reaction is found,
a TS guess is formed by examining points around the
transition region. The TS guesses are optimized at the
PM7 level and then at a higher level using density
functional theory (DFT)103 methods, followed by an
IRC computation. The process is repeated until a sat-
isfactory set of reaction paths is obtained.

The original TSSCDS procedure was tested in
intramolecular reactions involving formaldehyde,
formic acid, and vinyl cyanide.100 In these cases, not
only did TSSCDS locate TSs in agreement with
other established methods in terms of the lowest
energy TSs and reaction paths, but also several
other unprecedented TSs were found. Advances in
this method have allowed global reaction mapping
and treatment of fragments within molecules to
allow larger systems to be studied.102 These
advances have allowed examination of pyrolysis of
propenal and cobalt catalysis for hydroformylation
of ethylene.101

1. Apply

intermolecular

force

2. Minimize

energy

Input reactants

AFIR RP AFIR RP

True RP

4. IRC

TS guess
Exact TS
Starting point

Minimum
Artificial force

3. Optimize

intermediates

and TS

AFIR RP

w/o force
AFIR RP

w/o force

FIGURE 6 | The artificial force-induced reaction (AFIR) method.
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The Concept 2 examples conclude with devel-
opments by West designed to obtain useful kinetic
information for particular reaction types104,105

(Figure 8). This procedure generates good TS struc-
tural guesses by using group contribution consider-
ations to predict interatomic distances in the reactive
site of the TS, saving a huge amount of labor when
similar reactions are examined across many sub-
strates. To form these guesses, the interatomic dis-
tances of the reactive atoms are modified based on a
library containing typical reactions of the same class.
The optimized TSs, as typical for Concept 2 strate-
gies, are subjected to IRC calculations to confirm the
product identity.

West and coworkers applied this method to
study H-abstraction reactions from a diisopropyl
ketone (DIPK) combustion model. Based on a collec-
tion of 1393 H-abstraction reactions,106 an initial
training set of 44 unique reactions failed to provide
good TS guesses, but once the training set was
expanded to 827 reactions, 65% of the desired TSs
could be found. West’s approach is a good example
of leveraging existing data to create additional useful
data,107 and we believe this concept should be used
more frequently in the area of TS optimization and
reaction mechanism exploration.

The four Concept 2 tools are substantially more
heterogeneous than those of the Concept 1 section.

1. Compute frequencies

2. Normal mode sampling and

generation of trajectory ensembles

Normal mode

3. High-energy chemical

dynamics simulations

Input structure

Trajectory A

Trajectory B

Trajectory C

Minimum A

Minimum B

Minimum C

TS

RP A

RP B

RP C

6. Repeat if a

new minimum

is obtained

Input structure
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TS in trajectories

5. Run IRC

FIGURE 7 | The transition state search using chemical dynamics simulations (TSSCDS) method.
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Generally, all four provide means to uncover TSs,
and therefore reaction paths. ADDF, AFIR, and
TSSCDS focus on finding pathways that are not nec-
essarily known a priori, while the group additivity
TS-constructor focuses on particular types of elemen-
tary steps. These methods, however, are conceptually
different from the Concept 3 approaches, which seek
to first locate plausible intermediates, and then go
back and locate TSs and reaction paths.

Concept 3: Connecting Paths by Stringing
Together Intermediates
Double-ended methods, such as the string
method108–110 and nudged elastic band,20,23,111,112

are powerful tools for refining single-elementary-step
reaction pathways where the two endpoints are
known. When these are combined with algorithms
that generate plausible intermediates starting from
given reactant structures, reactions mechanisms can
be found by connecting stable intermediates in the
hypothetical network. In Concept 3 techniques, reac-
tion network generation can be successful when the
intermediate generator and the double-ended method
are each efficient, accurate, and reliable. This
section details particular implementations of this
two-piece strategy, with more emphasis given to the
intermediate-generating tools.

One of the first methods developed in this area
was the ZStruct method of the Zimmerman research
group.113,114 This approach utilizes connectivity
graphs to determine potential intermediates that
could form when connections are made or broken
(Figure 9). Graphs with modified connections repre-
sent potential intermediates, for which 3D structures
are created and then optimized using semiempirical
methods. The low energy structures are optimized
using DFT, and the stable, relatively low-energy
intermediates are subjected to a double-ended reac-
tion path search using the growing string method
(GSM).115–118 GSM has proven to be a powerful
method in this regard,119–123 as it generates a reac-
tion pathway and exact TS structure using only two
structures as input. Repeated invocation of ZStruct
and GSM on newly generated intermediates provides
reaction networks of increasing complexity. The orig-
inal implementation of ZStruct worked best for intra-
molecular reactions due to the requirement that
reactants be prealigned, which limited the usefulness
of the method for systematic reaction exploration.
Furthermore, ZStruct did not guarantee that pairs of
intermediates were connected by a single elementary
step, causing double-ended GSM to struggle in

obtaining a single representative TS for a multistep
pathway.

Despite its limitations, ZStruct has been used to
investigate the mechanisms of several types of main
group and transition metal reactions. For instance,
this strategy uncovered an unexpected, off-cycle trap
that was preventing a Ni-based C-H functionalization
catalyst from turning over, which lead to the design of
a new catalyst that avoided this trap.119 A handful of
(mostly catalytic) reactions have also been investi-
gated using the original ZStruct, showing it to be a
competent tool for reaction exploration.119,124–126

In a similar vein as ZStruct, Green and
coworkers developed a graph-based approach to find
plausible reaction pathways,127 also described in
Figure 9. Two major differences are of note here.
First, the freezing string method,128 which rapidly
creates a TS guess structure, was used in tandem with
the Berny TS finder22,129 to refine the TS guesses to
exact TSs. From the optimized TS, an IRC calcula-
tion identifies the intermediates connected by the TS,
just like Concept 2 algorithms. Second, Green’s
method sampled not only changes in 2D structure,
but performed conformational sampling of each
graph-generated intermediate. This ensured that real-
istic sampling of configurations was included and
avoided ZStruct’s dependence on initial reactant
alignment.

Applications of Green’s approach have focused
on combustion and atmospheric chemistry, and
proved able to uncover complex, unexpected reaction
pathways. For the six unimolecular organic reactions
explored using the FSM-Berny method, 44 unique
TSs were identified, only 6 of which were present in
the RMG database. The TS search success rate was
low, however, with TSs found for less than 10% of
identified products.

Another method for generation reaction path-
ways was developed by Habershon, which also uses
connectivity graphs to describe possible intermedi-
ates. Reaction pathways are examined by MD over a
Hamiltonian that can be updated over time to sample
different connectivity graphs.130,131 The graphs are
switched using a Monte Carlo procedure at a user-
defined update probability, and the energetic cost of
each switch is estimated. When changes are accepted
due to being low enough in energy, the previously
sampled reaction paths to existing intermediates are
saved. Sampling on the updated Hamiltonian allows
analysis of the next reaction pathway to the new
intermediate (Figure 10). After dynamics sampling,
the unique reaction pathways are subjected to the
nudged elastic band method,20,23,111,112 which fur-
ther refines the paths.
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When tested on formaldehyde decomposition,
the major pathways leading to H dissociation as well
as H2 formation were found, as expected, but some
known high-energy intermediates were not found
during the sampling procedure. In the Cocatalyzed
hydroformylation of ethylene, the main reaction
pathways for catalysis were identified (Heck–Breslow
mechanism) using a DFT tight binding132 PES, fol-
lowed by optimization at an ab initio level of theory.
Overall, the Habershon approach provides an advan-
tage in more extensive reaction path sampling com-
pared to the Zimmerman and Green methods, at the
additional cost of requiring dynamics simulations.

An alternate means for reaction path generation
created by Reiher and coworkers utilizes the concept
of reactive sites,133 (Figure 11) instead of reactive
atoms connected in graphs, as was the case with
Zimmerman, Green, and Habershon. Analogous to
the use of arrow pushing or specifically encoded
chemical reaction libraries, Reiher’s method utilizes

chemical descriptors tailored to the target chemical
system to identify which atoms will most likely inter-
act with one another during bond forming or break-
ing elementary steps. This heuristic approach
generates high-energy structures by overlaying reac-
tive sites, followed by optimization to identify real
intermediates. Interpolation between structures pro-
vides TS guesses for subsequent TS optimization. In
principle, the selection of heuristics on a system-
specific basis means this method can work for
organic and organometallic transformations as long
as a good chemical descriptors can be defined.

Reiher’s heuristics-guided approach was used
to examine dinitrogen fixation by molybdenum via
the Chatt–Shrock catalytic cycle.133 Their method
identified the traditional Chatt–Schrock cycle and
multiple alternative pathways that could operate in
tandem, as well as hints of pathways that could lead
to catalyst deactivation. Overall, these benchmarks
suggested this method—when initiated with quality
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by reaction path finding.

FIGURE 10 | Graph-based, dynamical reaction path sampling method.
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chemical intuition—is a powerful tool for examining
complex reactive networks.

The methods for reaction path discovery dis-
cussed up to this point have proven most useful in
exploring chemical systems involving uni- or bimo-
lecular reactions. When multiple reactants are
involved, or solvent may participate in the reaction,
such methods are less useful. To address this chal-
lenge, Martínez and coworkers developed an
ab initio MD tool for use in complex reaction envi-
ronments134 (Figure 12). In their Nanoreactor tool,
high temperature and pressure dynamics simulations
are run for long timescales through the assistance of
fast, graphics processor unit-accelerated quantum
chemistry. The chemical transformations that occur
during the dynamics serve as input for subsequent
double-ended reaction pathway optimization, and in
the course of this process, intermediates, TSs, and
their associated energetics are compiled.135,136

The Nanoreactor method has been applied to
acetylene polymerization and Urey–Miller chemis-
try.134,137 For acetylene polymerization, the nanor-
eactor was able to grow polymer chains consisting of
more than 70 atoms over the time scale of the simu-
lation (560 ps), showing the power of this tool in
finding multistep, multicomponent reaction paths.
The exploration of Urey–Miller chemistry generated
more than 700 unique reactions during 1296 ps of
simulation, including pathways leading to glycine
and the formation of other amino acids. These

examples show the nanoreactor has significant
strengths in unbiased reaction network exploration,
but like other MD-based methods, it comes with sub-
stantial costs.

Generating putative elementary steps by creat-
ing the intermediates first (i.e., Concept 3) has certain
advantages over the direct TS searches of Concept 2
tools. For example, intermediates can be screened for
thermodynamics, and discarded if they are too high
in energy. Double-ended reaction path finders tend to
be more reliable than local TS optimizers as well.
Double-ended methods, however, tend to struggle to
find reaction paths when the two starting intermedi-
ates are connected by multiple elementary steps, and
there is no guarantee the intermediate-generation
tools will strictly identify single- versus multistep
pathways. When this problem occurs, individual ele-
mentary steps are lost, or additional reaction path
optimizations are needed to refine each step, a
tedious correction at best. To combat these issues,
single-ended reaction finding tools under Concept 4
have been developed.

Concept 4: Using Reaction Coordinates to
Find Reaction Paths
Using quantum chemistry to construct reaction path-
ways for even a single elementary step is a computa-
tionally costly, multistep procedure. In most
Concepts 2 and 3 strategies, TSs and reaction path

FIGURE 11 | Flow chart for the reaction path discovery method developed by Reiher and coworkers.

FIGURE 12 | Reaction pathway discovery using the nanoreactor.
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approximations are formed first, and then TSs are
optimized and IRC computations complete the reac-
tion pathway. Because many of these steps may be
costly or fail, constructing full reaction networks
becomes hindered by difficulties in optimizing indi-
vidual reaction paths. Streamlined approaches for
finding reaction paths directly from mechanistic
hypotheses therefore have considerable advantages
over prior elementary step analysis strategies. For
instance, the Zimmerman group has developed
methods that systematically generate and follow
qualitative reaction coordinates to construct a reac-
tion path, find the TS, and locate an intermediate in
a single computation. In related work, Li and
coworkers developed a method that utilizes bond
forming and breaking processes to drive reaction
exploration. Both of these methods are designed to
find single elementary steps, which reduces the cost
of reaction exploration and addresses the challenges
apparent in Concept 3 reaction path optimizations.

The Zimmerman group’s most recent reaction
exploration tool, ZStruct2, combinatorially samples
driving coordinates (DC), which are bond-addition
or bond-breaking vectors that describe elementary
reactions.138 These reactive coordinates are designed
for use with the single-ended GSM,117 which gener-
ates reaction paths, TSs, and intermediate structures
for single elementary steps that are consistent with
the CD (Figure 13). ZStruct2 handles intramolecular
and bimolecular reactions by aligning reactants in a
way consistent with the CD, giving it an important
advantage over the original ZStruct method. Varia-
tions on the CD and alignment rules, shown in
Figure 14, allow for more complete sampling of

reactions involving transition metals, which are par-
ticularly sensitive to 3D geometric structure.

The incorporation of knowledge of the transi-
tion metal center geometry, as well as aligning reac-
tants, has allowed ZStruct2 to usefully inform the
study of transition metal-catalyzed reactions. Recent
reports from Zimmerman and coworkers have used
ZStruct2 to explore Pd-catalyzed C-H arylation of
piperidine,139 FeCl3-catalyzed carbonyl-olefin
metathesis,140,141 and Ni-catalyzed thiazole
polymerization,142 among others.143,144 ZStruct2
was able to identify all of major steps of the catalytic
cycle for piperidine arylation, including the roles that
the multiple supporting reagents play in driving for-
ward the reaction. In the study of thiazole polymeri-
zation, ZStruct identified an unexpected route for
chain termination that was preventing controlled
growth. Ultimately, this insight was used to design a
new catalyst that showed improved polymerization
activity.142

A related method developed by Li and
coworkers combines MD and coordinate driving
(CD) to search for reaction paths, as shown in
Figure 15.145 One advantage of this method is that it
can sample conformational isomerization, which is
achieved through MD simulations. To generate
chemically interesting reactive pathways (e.g., those
involving bonds breaking or forming) the interatomic
distances between each pair of reactive atoms are set
as reaction coordinates, and constrained optimization
is used to approximate the reaction path. The lowest
and highest energy structures from along the con-
strained optimization are then fully optimized with-
out constraints to give exact intermediates and TSs.

FIGURE 13 | ZStruct2 graphical driving coordinate generation and reaction path searches.
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The MD/CD method was tested on four com-
mon organic reactions, three of which were intramo-
lecular, and one intermolecular. Previously identified
reaction pathways found with other reaction

exploration methods were confirmed, and the variety
of chemical systems successfully tested indicates that
the method is capable of exploring systems ranging
in size from 10 to 50 atoms. The authors note,

FIGURE 14 | Example of ZStruct2 reaction types and alignment of reactants at a square planar transition metal center.

FIGURE 15 | Flow chart for molecular dynamics/coordinate driving method of Li and coworkers.145
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however, that their MD/CD method is best utilized
for organic molecules, as the semiempirical simula-
tions cannot easily handle transition metal geome-
tries.145 As in Habershon’s work (Concept 3), this
choice is necessary because the use of MD largely
restricts the underlying level of theory to be semiem-
pirical, as also observed in the TSSCDS algorithm
(Concept 2).

CONCLUSIONS

Comparison of Reaction Mechanism
Exploration Tools
Concepts 1 to 4 are representative of contemporary
and emerging strategies for reaction mechanism
exploration. Two broad generalizations may be made
here: (1) Graphical methods are highly prevalent,
and the concept of the graph is implicit even when
not specifically invoked and (2) Successful TS optimi-
zation is paramount for success in mechanism discov-
ery. The foundations of graphical methods were laid
in Concept 1, see Table 1 for a summary of those
tools. Concepts 2 to 4 are specifically relevant to TS
optimization, and these are summarized in Table 2
and now discussed further.

A number of factors differentiate the individual
methods of Table 2. Fundamentally, cost is a severe
limitation because all quantum chemical methods
require nontrivial computational resources. These
costs can be difficult to estimate, however, as many
source articles do not clearly state the computational
resources used. For methods utilizing MD, however,
semiempirical methods almost always must be
employed, unless accelerated ab initio methods are
available (such as GPU-accelerated DFT). Whenever
low levels of theory are involved, the descriptions of
reactive events will suffer. In our opinion, having a
comprehensive reaction mechanism from a PES with
qualitatively incorrect reactive landscape is most use-
ful for benchmarking novel techniques, but not for
examining real systems of contemporary chemical
interest.

Under the constraint of available computational
power, Concepts 2 to 4 techniques reach different
degrees of completeness in reaction path exploration.
The ADDF method is likely the most comprehensive
in this regard, but is also fundamentally limited by
rapid increases in cost with growing system size. On
the other side of (in)completeness, the heuristics-
based approach of Reiher uses chemical intuition to
greatly limit the number of reaction pathways that
are searched. Reiher’s method still locates a great
number of pathways, however, showing how difficult

it is to strike a balance between exploring full reac-
tive space and maintaining a tractable computational
burden.

In between these limits, a variety of tools are
available from Concepts 2 to 4. These tools are semi-
guided, in that they require some prior labeling of
reactive atoms and designation of graph-allowed
rearrangements. These choices restrict the reactive
space, but it can be unclear in each application
whether these restrictions are truly limiting. If new
knowledge is gained about the reaction mechanism,
any of these methods can claim success to the degree
that this knowledge is useful. In practice, we believe
that the scientific impact of the discovered knowledge
measures the reaction exploration tool, but further
conversations in the development community about
benchmark systems for reaction discovery
approaches will also be useful. We hope that contin-
ued development of these tools widens the scope of
their application, with examination of emerging and
unexplained reactions as an important focus.

These considerations all rely on tools which
may or may not consistently converge reaction path-
ways and TSs. As noted in the beginning of this arti-
cle, effective exploration of reaction paths (Goal 2)
requires robustness in TS finding (Goal 1). While
methods like the single-ended GSM and West’s TS
estimator have provided some advances in this
regard, no method yet developed provides failsafe
algorithms. A failed reaction path optimization may
mean the path does not exist, is highly unfavorable,
or simply that the optimizer was stuck and did not
converge. This is troubling, as automated approaches
would disregard any failed path, even if it were the
actual major reaction pathway. Much work remains
to be done to achieve greater fidelity in these
simulations.

A Wish-List for Reaction Discovery
Simulations
As progress in reaction mechanism exploration con-
tinues, we will move closer and closer to uncovering
the full details of chemical reactions, with less and
less guidance from user input and chemical intuition.
The combinatorial complexity of chemistry means
that simulation will never be useful for locating all
elementary steps and TSs on high-dimensional sur-
faces. On the other hand, only the lowest energy,
physically relevant reaction paths need to be found
to usefully inform mechanistic understanding. This
latter task may well be achievable with advances in
simulation. Here, we provide a wish-list of goals that
may be vital to accomplish this task.
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• Delineation of all possible intermediates that
are within a given number of elementary steps
from currently known structures, including
interactions between many reactive components
and accessible conformational isomers.

• Accurate, but low-cost ranking of possible ele-
mentary transformations to determine those
that are most kinetically viable, prior to quan-
tum chemical optimizations.

• More generalized treatment of transition metals,
surfaces, solvents, and nanoporous materials.

• Reaction path and TS optimizers that are fail-
safe and require no user input.

• Streamlined procedures for setting up calcula-
tions, managing ongoing research, and pushing
results to open-access databases.

• Visualization tools, based on kinetic analysis,
that show the reaction network, rate-limiting
steps, and potential channels for reactions out-
side of the known network.

• Procedures to generate experimentally testable
hypotheses based on the simulated reaction
mechanism.

These goals are within reach of imagination, yet far
from trivial. Fortunately, many of these tasks can be
accomplished individually, and later interfaced with
other advances. The field of reaction exploration sim-
ulation may have far to travel, but the ultimate
promise of fully ab initio reaction mechanism predic-
tion is surely a goal worth continued effort for years
to come.
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TABLE 2 | Comparison of Recent Methods for Reaction Path Finding and Transition State Optimization

Method
(Concept #) Input Required Method of Change TS Finding Strategy

Intermediate
Generation Strategy

ADDF89,90 (2) Reactant Anharmonic downward
distortion (ADD)

Anharmonic mode following then
TS optimization

IRC

AFIR93–96 (2) Reactant(s) Artificial external force TS optimization along force-biased
pathway

IRC

TSSCDS100–102

(2)
Reactant(s) High energy dynamics Optimize TS from where bond

change occurs
Dynamics and IRC

West104 (2) Reactant(s), library of
TS geometries

Interatomic distances Reactive atom constraints followed
by TS optimization

IRC

ZStruct113,114

(3)
Reactant, reactive
atoms

Graph rules Double-ended reaction path
optimization

Graph rules

Green127 (3) Reactant, reactive
atoms

Graph rules Freezing string then local TS
optimization

Graph rules

Habershon130

(3)
Initial reactants and
intermediates

Reaction/ graphical
Hamiltonian

Double-ended reaction path
optimization

Graph rules

Reiher133 (3) Reactants,
reactive sites

Reactive sites
(Heuristics)

Interpolation then local TS
optimization

Heuristic rules and
IRC

Nanoreactor134

(3)
Reactants High p, T dynamics Double-ended reaction path

optimization
MD trajectories

ZStruct2138 (4) Reactant(s), reactive
Atoms

Graph rules Single-ended growing string Single-ended
growing string

MD/CD145 (4) Reactant(s) Distance between
reactive atoms

Interpolation then local TS
optimization

Trajectories,
interatomic
distances

ADDF, anharmonic downward distortion following; AFIR, artificial force-induced reaction; CD, driving coordinates; MD, molecular dynamics; IRC, intrinsic
reaction coordinate; TS, transition state; TSSCDS, transition state search using chemical dynamics simulations.
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