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1. INTRODUCTION

User-supplied “tags,” textual labels assigned to content, are a powerful and
useful feature in many social media and Web applications (prominent examples
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include Flickr, del.icio.us, and YouTube). Tags usually manifest in the form of a
freely chosen, short list of keywords associated by a user with a resource such
as a photo, Web page, or blog entry. Unlike category- or ontology-based systems,
tags have no a priori semantics, and therefore result in unstructured knowledge.
The unstructured nature of tags is the basis of their utility. For example, tags are
often easier to enter than picking categories from an ontology, allow for greater
flexibility and variation, and naturally evolve to reflect emergent properties of
their referents [Golder and Huberman 2006].

The information challenge facing tagging systems is to extract structured
knowledge from the unstructured set of tags. Despite the lack of ontology and a
priori defined semantics, patterns and trends emerge that enable the extraction
of structured information from tag-based systems [Golder and Huberman 2006;
Marlow et al. 2006; Schmitz 2006]. While complete semantic understanding of
tags associated with individual resources is unlikely, the ability to assign some

structure to tags and tag-based data will make tagging systems more useful.
Broadly, we are interested in the problem of identifying patterns in the dis-

tribution of tags over some domain. In this work, we focus on spatial patterns
in tags from Flickr. Specifically, we concentrate on Flickr,1 a popular photo-
sharing Web site that supports user-contributed tags and geo-referenced (or,
geotagged) photos. Tag usage distributions are derived from the metadata of
photos associated with each tag. While the correctness of the location metadata
for each individual photo is suspect [Bulterman 2004], in large numbers, trends
and patterns can be reliably extracted and used [Dubinko et al. 2006; Jaffe et al.
2006], as we show in this work.

Based on the spatial distributions of each tag’s usage, we attempt to auto-
matically determine whether each tag has a coherent place semantic. To clarify,
by “place semantic” we mean that the tag has a strong associative mapping
(i.e., signifier-signified relationship), as demonstrated by its usage, to a spe-
cific place—socio-culturally defined location, or set of locations. For example,
the tag Bay Bridge2 has a coherent place semantic in the San Francisco Bay
area. Our place semantic definition is similar to the “query’s dominant location”
definition [Wang et al. 2005].

Extraction of place semantics can assist many different applications in the
photo retrieval domain and beyond, including:

—improved image search through inferred query semantics;

—automated creation of place gazetteer data that can be used, for example,
to improve Web search by identifying relevant spatial regions for particular
keywords;

—generation of photo collection visualizations by location;

—support for tag suggestions for photos (or other resources) based on location;
and

—automated association of missing location metadata to photos or other re-
sources, based on tags or caption text.

1http://www.flickr.com.
2We use this font to represent tags in the text.
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In this work we do not apply our analysis to a specific application, but rather in-
vestigate the feasibility of automatically determining place semantics for Flickr
tags.

This article explores a number of possible methods for automatically de-
tecting place semantics. In particular, we extend and expand on our work in
Rattenbury et al. [2007] by proposing and evaluating new methods to perform
this task. Ultimately, we demonstrate the advantage of hybrid methods that
mix the output from a number of existing methods.

We note that our general approach to semantics extraction, and the methods
we present as instantiations of this approach, can be applied to any informa-
tion sources with spatial encodings from which we can extract textual terms,
like GeoRSS blog data and geo-annotated Web pages. Additionally, the gen-
eral approach of analyzing a distribution of occurrences over a domain (in our
case, geographic coordinates) to infer semantics could be extended to other
metadata domains like time, color (hue/saturation), visual features, audio fea-
tures, and text/semantic features. Indeed, in Rattenbury et al. [2007] we apply
the same methods to extract event semantics (using the temporal usage dis-
tribution of the photos associated with each tag). The new methods proposed
in this work would apply to the time domain as well; however, for simplic-
ity, in this article we concentrate on the spatial domain and detecting place
semantics.

To summarize, the contributions of this work are:

—a generalizeable approach for extracting tag semantics based on the distri-
bution of individual tags;

—the modification, application, and analysis of existing methods to the problem
of place semantic identification for tag data;

—the demonstration of the superior performance of hybrid (i.e., mixed) meth-
ods; and

—a practical application of these methods, evaluating extraction of place se-
mantics from tags associated with geotagged images on Flickr.

We formally define our problem in Section 2. Then we describe the methods
(in Section 3) and report on our evaluation (Section 4). Before concluding, we
review related work (in Section 5).

2. PROBLEM DEFINITION

In this section, we provide a formal definition of our data and research problem.
Our dataset includes two basic elements: photos and tags. We define the set of
photos as P

△
= {p}, where p is a tuple (θp, ℓp, up) containing a unique photo ID,

θp; the photo’s capture location, represented by latitude and longitude, ℓp; and
the ID of the user that contributed the photo, up. The location ℓp generally
refers to the location where the photo p was taken, but sometimes marks the
location of the photographed object.

Photos with location metadata can be generated in at least two ways. First,
the photographer could use a GPS-enabled camera or carry an external GPS
device that automatically associates latitude and longitude coordinates with
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photos (in the case of the external device, the association is performed by post-
processing software). Location metadata generated automatically is both pre-
cise and accurate at the micro-second of degrees resolution, and specifies the
location where the photo was taken.

A second method for generating location metadata is to use mapping software
to locate photos on a map (e.g., Flickr). This method often allows people to
associate location metadata at a range of resolutions, from coarse to precise.
Interestingly, people can locate the photo either at the location where the photo
was taken or at the location of the primary object(s) in the photo.

In this work, we restrict our dataset to those photos with high-resolution
location metadata (i.e., either those photos with automatically associated lati-
tude and longitude coordinates or those photos which people have located with
high precision on a map). The distinction on whether the photo location meta-
data corresponds to the location where the photo was taken or to the location of
the photographed object(s) is irrelevant in this work. In terms of place seman-
tics, the geographic location of photographed objects and the geographic loca-
tion of good vantage points of those objects both carry place semantics (albeit
with slightly different meaning) that can be referenced by a single tag. Hence,
in terms of the place semantics of tags, both types of geographic location are
relevant.

The second element in our dataset is the set of tags associated with each
photo. We use the variable x to denote a tag and X to denote the set of all tags.
Note that each photo can have multiple tags associated with it, and each tag
is often associated with many photos. We use the notation XS to denote the set
of tags that appear in any subset PS ⊆ P of the photo set. We also define the
subset of photos associated with a specific tag as Px ⊆ P. Accordingly, photos
with the tag x in a subset PS of P are denoted PS,x . We also define US,x as the set
of users associated with photos in PS,x ; and US as the set of all users associated
with photos in PS . Finally, based on the location metadata associated with
photos, we define the location usage distributions for each tag x as Lx

△
= {ℓp|p ∈

Px}.
Using this data we address the problem of identifying the place semantics

of tags.

Can place semantics for a tag x be identified from the tag’s location

usage distribution, Lx?

In the rest of this work, for simplicity, we refer to those tags that have co-
herent place semantics as “place tags.” Example place tags are Delhi, Logan
Airport, Notre Dame, London, Bath, and New York Marathon (interestingly, New
York Marathon represents both a place and an event). Examples of tags not
expected to represent places are dog, party, food, and blue.

Some tags have relatively simple, unambiguous place semantics, for exam-
ple, Logan Airport and New York Marathon. Other tags might refer to multiple
geographic locations, with different semantics depending on the location, for
example, Palace and museum. Still other tags might have place semantics as well
as nonplace semantics, for example, Bath and Savannah. What place semantics
we are able to find from a tag’s occurrences will depend on the available data.
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What semantics did the people who contributed the photos and tags intend?
Bath outside of the U.K. should not be a place tag, while in the U.K. it will likely
occur more often in the city of Bath than in random houses.

The first step in determining whether a tag has a coherent place semantic
is to define these terms. We aimed for a definition that addresses both gen-
eral human perception and the generic (i.e., socially common) notion of place
[Aipperspach et al. 2006; Jones et al. 2001]. We propose the following.

Place tags exhibit spatial usage patterns that are significantly geo-
graphically localized.

The term “significantly” in this definition is intentionally vague, designed to
capture the idea that a tag’s place semantic is socially defined and hence ulti-
mately in flux, as are all signifier-signified relationships. More concretely, the
definition refers to the fact that a person living in 2008 can expect New York

Marathon to appear significantly more often in New York City than elsewhere;
whereas dog should appear in many locations. We expect a reasonable human
judge to be able to determine, for any tag and the set of photos associated with
that tag, whether the tag has a coherent place semantic.

It is important to consider place tags relative to some predefined geographic
area. For example, carnival may not exhibit any patterns worldwide, but does
have spatial patterns if we are only considering the dataset of photos taken
in Brazil. Similarly, Palace may have distinct location-based patterns in cer-
tain areas (e.g., London) but no significant patterns worldwide. For simplic-
ity, we do not introduce notation to handle the specification of geographic ar-
eas; we generally assume that the set of photos considered by the algorithm
is such that for all photos p in the set, ℓp is contained in a specific area of
interest.

Related to areas is the concept of “scale.” The basic idea is that tags may ex-
hibit significant spatial patterns at various scales. For example, museum refers
to specific locations within the San Francisco Bay area, while California is not
expected to show significant patterns if our area is limited to San Francisco. Ac-
cordingly, the methods described next search for and aggregate measurements
of significant patterns at multiple spatial scales.

3. PLACE SEMANTIC IDENTIFICATION

The goal of our analysis is to determine, for each tag in the dataset, whether the
tag has a coherent place semantic (i.e., is a place tag). The intuition behind the
various methods we present is that a coherent place semantic should reference
a specific spatial region within the area of inquiry. So, the significant patterns
for place tags should be manifested as a burst (like a probability distribution
which is highly peaked over a small number of nearby values in its domain).
It’s important to note that spatial patterns are often positively autocorrelated;
that is, if a region exhibits a characteristic, it is likely that nearby regions will
also exhibit this characteristic. However, unlike, for example, income or disease
distributions that can vary over entire areas, there is usually some boundary
to a place. If we sample regions that subdivide the area of the place, it should
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be possible to see fairly high autocorrelation. However, at larger granularities,
namely scales, the place will be localized to a single region. It is in this latter
case, when the place is localized to a single sampled region, that we apply the
notion of bursts. In other words, above a certain scale, the number of usage
occurrences for place tags should be much higher in a small region of the area
than the number of usage occurrences of that tag outside the region. The scale
of the region is one factor that these methods must address; the other factor
is calculating whether the number of usage occurrences within the region is
significantly higher than the number outside the region.

Another aspect of place semantics is that they should be generally first-
order phenomena. In other words, the geographic location of a single tag’s place
semantic should be based primarily on the physical geography of the world and
the socio-cultural interpretations of this geography, as opposed to the locations
of other tags’ place semantics. Of course, place semantics are not strictly first-
order. For example, we would expect art and museum to have positively correlated
place semantics. In this work, we focus on identifying place semantics using
first-order data (i.e., primarily a single tag’s distribution of usage). Some of the
methods described in this article use the spatial distribution of all the tags in
combination in addition to a single tag’s distribution. (We briefly discuss how
using second-order, intertag relationships should help disambiguate some tag’s
place semantics in the Future Work section of this article.)

In the remainder of this section, we describe the methods in detail. We first
present adaptations of three existing techniques to the place semantic iden-
tification problem. Then we present the scale-structure identification methods
which we developed particularly for identifying tag semantics [Rattenbury et al.
2007]. Finally, we describe a simple technique for combining the described meth-
ods into a hybrid approach. We present empirical evidence that demonstrates
the superiority of hybrid methods.

All of the methods we describe perform the same generic steps.

(1) Scale Specification. Choose a finite set of scale values, K = {k1, . . . , kn}.
These scales can be specified without reference to the data, in which case
we generally choose an exponentially increasing set of scales (i.e., scale ki

corresponds to a spatial range of αi for some α > 1.0).

(2) Region Specification. For each scale k define a finite set of spatial regions
to search over, say Rk = {R|PR ⊆ P}. The simplest set of regions is a reg-
ularly spaced, square grid where grid size is based on scale. However, it
is certainly feasible to use overlapping, irregularly sized, and unconnected
regions.

(3) Partial Computation. For each scale k ∈ K and each spatial region R ∈ Rk ,
compute a statistic on Lx that captures some aspect of the tag’s usage pat-
tern in space (likely, although not necessarily, based on some relationship
between the usage occurrences within R versus outside of R).

(4) Significance Test. Aggregate the partial computation statistics for each
spatial region R ∈ Rk at each scale k ∈ K and determine whether x is a
place tag.
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(5) Identify Significant Regions. Provided a significant pattern for x is found,
determine which scales and spatial regions are referenced by x ’s place se-
mantic.

Before describing each method, we introduce some additional notation. First,
we use |PR,x |, the number of times tag x was used in spatial region R, as an
important computational element in some of our methods. Also, while region
R ∈ Rk is defined relative to some scale k, we drop the scale index for readability.
Note that according to the preceding definitions, |PR,x | ≤ |PR |. Finally, some of
the methods that follow also require the total number of tag usage occurrences
in a region:

∑

x∈XR
|PR,x |.

3.1 Baseline Methods

At a high level, the baseline methods are based on well-known techniques for
burst detection. We describe three baseline methods: naı̈ve scan, spatial scan,
and TagMaps TF-IDF.

3.1.1 Naı̈ve Scan Methods. Naı̈ve scan methods consist of an application
of a standard burst detection method used in signal processing [Vlachos et al.
2004]. The method computes the frequency of usage for each region at each
scale. The method identifies a burst at a specific scale when the frequency of
data in a single region is larger than the average frequency of the data over all
regions plus two times the standard deviation of the region frequencies.

The majority of tags in our data have sparse usage distributions, which re-
sults in low average frequencies and low standard deviations. Consequently,
the standard formulation of this method generates too many false positives. To
combat this problem we compute the average and standard deviation values
from aggregate data: either from all of the photos or from all of the tags com-
bined, rather than the average and standard deviation for each tag separately.
We further relax the condition that the number of tag occurrences be larger
than the average plus two standard deviations, instead requiring that the ratio
of these values be larger than some threshold, which we can vary for optimal
performance.

For Naı̈ve Scan 1, the partial computation (step 3) for each tag x and region
R (at scale k) is specified by

|PR,x |

μ1 + 2σ1
,

where μ1 is the average of {|PR | | R ∈ Rk} and σ1 is the standard deviation
of {|PR | | R ∈ Rk}. To identify place tags, we compare the maximum partial
computation value over all regions R and scales k to a threshold (step 4). We can
vary this threshold to obtain different results, which we discuss in Section 4.3
to follow.

To identify the regions of space corresponding to a tag’s place semantic (step 5
given before), we simply record the regions that pass the significance test (step 4
given before) at each scale k. Specifically, we record the region R where the
partial computation statistic is larger than the threshold.
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For the scale specification step (step 1), we define K = {k1, . . . , kn} such that
ki corresponds to a spatial length of 2i (an exponential set of scales). The spatial
length is used to define a square grid of regions (step 2 given earlier).

An alternative approach, which we refer to as Naı̈ve Scan 2, compares the
individual tag occurrences to the total number of tag occurrences, instead of the
number of photo occurrences. The reasoning behind this modification is based
on the assumption that if tag x captures the important aspects of a photo, then
this photo will require few tags in addition to x.

The partial computation statistic is

|PR,x |

μ2 + 2σ2
,

where μ2 is the average, and σ2 the standard deviation, of {(
∑

x∈XR
|PR,x |) | R ∈

Rk}. If every photo had the same number of tags, these results would be identical
to those produced by Naı̈ve Scan 1. However, as photos can have an arbitrary
number of tags with some photos using far more tags than others, the Naı̈ve
Scan 2 method does produce (slightly) different results.

3.1.2 Spatial Scan Methods. Spatial scan methods comprise a standard
application of the spatial scan statistic [Kulldorff 1999], a burst detection
method used in epidemiology. These methods assume an underlying proba-
bility model of observing some phenomenon over some domain. The methods
then test whether the number of occurrences of a phenomenon in a region of the
domain (e.g., region of space) is abnormal relative to the underlying probability
model. This abnormality test is performed for each region.

To illustrate how the spatial scan methods work, we describe an example
from our data. Consider Yoda, a tag that refers to a little-known statue of the
widely popular Star Wars character in the Presidio of San Francisco.3 Suppose:
(1) Over the entire San Francisco Bay area, q denotes the global probability
of the tag Yoda being applied to any photo; (2) all M photos tagged with Yoda

occur within a single spatial region; and (3) there are a total of N photos located
within this same region. If Yoda is a place tag, M should be quite a bit larger than
qN . Spatial scan methods are designed to test whether the value M represents
a significant deviation from the global probability distribution (an important
note is that q is not defined a priori, but is derived from the data.)

The expression for the partial computation statistic for Spatial Scan 1 is

(

|PR,x |

|PR |

)|PR,x |

·

(

|PRc ,x |

|PRc |

)|PRc ,x |)

·

(

|Px |

|P|

)−|Px |

· I

((

|PR,x |

|PR |

)

>

(

|PRc ,x |

|PRc |

))

,

where Rc is the complement set to R (i.e., PR ∩ PRc = ∅ and PR ∪ PRc = P) and
I (·) is the indicator function. For details on the derivation of this expression,
see Kulldorff [1999].

As in naı̈ve scan methods, the significance test (step 4) searches for the max-
imum partial computation statistic value over all scales k and regions R. This

3We refer the reader to the Star Wars movie series by George Lucas and urge the reader to visit
the statue of the Master.
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maximum statistic value is tested against a threshold; tags whose maximum
partial computation statistic exceeds the threshold are identified as place tags.
Also, by storing those regions where the partial computation statistic is larger
than the threshold, we can identify the spatial regions referred to by the tag’s
place semantic (step 5). Finally, as with naı̈ve scan methods, we use an expo-
nential set of scales and a square grid of regions (steps 1 and 2 given earlier).
We describe how to set the threshold in Section 4.3.

Similar to the naı̈ve scan 2 modification, we developed Spatial Scan 2 using
the total number of tags that occur inside regions. The expression for the partial
computation statistic for the Spatial Scan 2 method is

(

|PR,x |
∑

x∈XR
|PR,x |

)|PR,x |

·

(

|PRc ,x |
∑

x∈XRc
|PRc ,x |

)|PRc ,x |

·

(

|Px |

|P|

)−|Px |

·

I

((

|PR,x |
∑

x∈XR
|PR,x |

)

>

(

|PRc ,x |
∑

x∈XRc
|PRc ,x |

))

This expression differs from the expression for the Spatial Scan 1 statistic in
that the number of photos in each region has been replaced with the num-
ber of tag occurrences in each region. This replacement impacts the baseline
occurrence statistics used by the Spatial Scan 2 method.

In the four methods described before, we determine the regions of space for
each scale independent from the actual usage distributions of the tags. It follows
that these methods can only propose a priori defined regions as the locations
of a place semantic. In the worst case, these regions might hide the actual
location of a place semantic by splitting the usage occurrences into adjacent
spatial regions, none of which are above the significance test threshold. This is
a general problem known as the modifiable areal unit problem, which we discuss
in Section 5. The next two methods we describe address the issue of a priori
defined regions; they both generate regions based on the actual tag occurrences.

3.1.3 TagMaps TF-IDF Method. The TagMaps method was originally de-
veloped to automatically identify tags that are representative for each given
geographical area, namely tags that uniquely define regions within the area
in question. TagMaps would ideally give a high score to tags such as Golden

Gate Bridge, Alcatraz, and Yoda which uniquely represent specific locations,
landmarks, and attractions within the city. Using TF-IDF-like (term frequency,
inverse document frequency) techniques, TagMaps assumes (similarly to the
other methods described in this article) that tags that primarily occur in a sin-
gle region and do not occur often outside this region are more representative
than tags that occur diffusely over the whole area.

For example, a sample set of representative tags for San Francisco is shown
in Figure 1. In Ahern et al. [2007] and Jaffe et al. [2006] we supply more details
on the algorithm, and on how we extend the computation to support multiple re-
gions and zoom levels. Using this algorithm, we had created a live visualization4

of the world; the details and evaluation of this system can also be found in Ahern

4http://tagmaps.research.yahoo.com.
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Fig. 1. Representative tags for San Francisco generated by the TagMaps method.

et al. [2007]. Here we apply TagMaps analysis to extract the spatial semantics
of tags.

A key difference between the TagMaps method and the naı̈ve scan and spatial
scan methods is the use of spatial regions that are defined by the data (instead of
being defined a priori). This difference also impacts how the scale specification
step (step 1) happens. Whereas the naı̈ve scan and spatial scan methods define
the scales directly in the spatial domain, the TagMaps method defines its scales
indirectly. Specifically, the TagMaps method starts by selecting a fixed number
of photo clusters to find in the data. Generally, the fewer the number of clusters
to find, the larger the associated spatial scale.

The TagMaps computation follows the computation steps listed previously.
Scale specification (step 1) in this case is based on the number of clusters gen-
erated from the photo data. The region specification step (step 2) is a simple
k-means clustering on the location data of all photos in P. Geographical distance
is used as the distance metric, and the stopping condition for the k-means al-
gorithm is when every cluster’s centroid moves less than 50 meters during an
update. Each cluster defines a region.

Once the clusters have been determined, the system scores the tags in each
cluster to identify region-specific tags. In other words, we consider each cluster
R, and the set of tags XR that appear with photos from the cluster. We score
each tag x ∈ XR according to the factors defined next.

The factors used for scoring a tag are modified elements of the traditional
TF-IDF calculation. This method assigns a higher score to tags that have a
larger frequency within a cluster compared to the rest of the area under con-
sideration. The TF-IDF score is computed with slight deviation from its regu-
lar use in the information retrieval domain. The term frequency for a given
tag x within a cluster R is the count of the number of times x was used
within the cluster: tf(R, x)

△
= |PR,x |. The inverse document frequency for a tag
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x computes the overall ratio of the tag x amongst all photos under considera-
tion: idf(x)

△
= |P|/|Px |. Note, this inverse document frequency definition is similar

to the ones used in other algorithms used to score, and ultimately rank, ele-
ments [Zaragoza et al. 2007]. Recall that our total set of photos P is restricted
to a specific area (e.g., the San Francisco Bay area). This restriction to a specific
area allows us to identify local trends for individual tags, regardless of their
global patterns.

The tag’s score, as computed, can often be affected by a single photographer
who takes a large number of photographs using the same tag. To guard against
this scenario, we include a user element in our scoring that also reflects the
heuristic that a tag is more valuable if a number of different photographers use
it. In particular, we factor in the percentage of photographers in the cluster R

that use the tag x: uf(R, x)
△
= |UR,x |/|UR}.

The final score for tag x in cluster R is computed as

Score(R, x) = tf(R, x) · idf(x) · uf(R, x).

The higher the score and the user score, the more likely the tag is a place tag.
Again, the partial computation statistic is an aggregate value that combines

the separate scores, Score(R, x), from each tag and cluster. Specifically, since
we are interested in identifying place semantics, we are interested in tags that
are: (1) located within a single cluster (since places are spatially localized) and
(2) receive a high score within the cluster. Accordingly, the partial computation
statistic for the TagMaps method is

∑

k

(

∑

R∈Rk

Score(R, x) · I

(

∑

R ′ �=R

Score(R ′, x) == 0

) )

,

where I (·) is the indicator function. What this expression calculates is the sum
of TF-IDF scores for a tag x at scales, k, where the tag occurred in at most one
cluster. Note that both tf(R, x) and uf(R, x) will equal zero if tag x does not
occur in region R. Of course, the larger the partial computation statistic value,
the more likely that the tag is a place tag.

As with the other methods described earlier, a simple threshold can be used
to determine which tags are place tags and which ones are not. And, by storing
those clusters (i.e., regions) where the partial computation statistic is larger
than the threshold, we can identify the spatial regions (as defined by spatial
extent of the photos in the cluster) that correspond to each tag’s place semantics
(step 5). We describe how to set the threshold in Section 4.3.

3.2 Scale-Structure Identification Methods

Similar to the aforementioned TagMaps method, scale-structure identification
methods perform a significance test (step 4) that depends on multiple scales
simultaneously and does not rely on a priori defined spatial regions. However,
scale-structure identification methods differ from TagMaps in the scale specifi-
cation step (step 1). Whereas the scale values in the TagMaps method refer to
a number of clusters, the scale values in scale-structure identification methods
refer to the minimum spatial distance between clusters, as explained next.
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The key intuition behind scale-structure identification methods is the follow-
ing: If tag x is a place tag then the points in Lx , the spatial usage distribution,
should appear as a single cluster at many scales. The clustering mechanism
used in scale-structure identification methods is proximity-based: Points that
are closer together get merged before points that are further apart. This is
a well-known hierarchical clustering method known as nearest neighbor or
single-linkage, which is equivalent to the minimum spanning tree algorithm
developed by Kruskal [1956]. It is also similar to the clustering mechanism in
the scale-space method developed by Witkin [1983]. However, whereas Witkin
was interested in any structure that exhibits robustness over a range of scales,
we are interested in the robustness of a single type of structure: a single cluster
containing a majority of the tag occurrences.

Consider the graph over the points in Lx where edges exist if and only if
the points are closer together than dk , where dk is the spatial distance defined
such that ki > k j ⇐⇒ dki

> dk j
. We compute the distance between points

in Lx as the L2 distance between the points as they lie on a sphere. Rk is then
defined as the set of connected subcomponents of this graph. We can measure
a number of interesting statistics on Rk . For example, we might measure how
much entropy Rk contains: Does it consist of a single cluster containing all the
tag occurrences, or are the tag occurrences evenly split among a number of dis-
joint clusters/subcomponents? We could also measure the range of scales k over
which Rk exibits a single cluster that contains the majority of tag occurrences.
Yet another thing we could measure is the area delimited by the entropy of Rk

as the scale varies (a natural combination of the two previous measurements).
Each of these measurements results in a variation of the general scale-

structure identification approach. We describe each variation in more detail.

3.2.1 Scale-Structure Identification 1. For this method, the partial compu-
tation step (step 3 given before) computes the entropy of Rk at each scale k. We
chose an exponential sampling method to select the scales: dki

= αi, 1.1 ≤ α ≤ 5
(see the discussion in Section 4.3). The entropy for a single scale can be written
as

Ek,x
△
=

∑

R∈Rk

(|PR,x |/|Px |) log2(|Px |/|PR,x |).

We use the entropy value as a measurement of how similar the data is to a
single cluster, since entropy increases as data becomes more distributed. We
are interested in low-entropy structures, Rk (note that Ek,x = 0 when the usage
distribution is a single cluster, i.e., |Rk| = 1).

Accordingly, the significance test calculation (step 4) aggregates the partial
computation statistics simply by summing them over the set of scales specified
in the scale specification step (step 1):

∑

k Ek,x . This summed value is tested
against a threshold to determine if the tag is a place tag. Unlike the naı̈ve
scan and spatial scan methods, which are interested in exceeding a threshold,
the scale-structure identification 1 method is interested in tags whose summed
partial computation statistics falls below a threshold; recall that low entropy
corresponds to a more concentrated distribution of tag occurrences.
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Finally, by recording the scale structures at each scale, we can determine
which spatial regions strongly characterize a place tag (step 5). In fact, we
can then characterize the tag, or rather the tag’s place semantic, at multiple
scales.

3.2.2 Scale-Structure Identification 2. For this method, the partial compu-
tation step (step 3 given previously) computes the threshold scale value, denoted
by k̂, that marks the point where the largest set of tag occurrences in Rk becomes
“stable,” that is, the set is stable for any scale value larger than k̂. “Stable” is
quantified as not changing in size by more than 10% at any point along scale
dimension. This method performs the scale specification step (step 1) by finding
all the spatial distances D = {d1, . . . , dn}, and the corresponding scale values
K = {k1, . . . , kn}, such that

|Rki
| > |Rk j

| ∀ ki < k j ;

in other words, all the scale values k which result in a change in the graph
structure captured by Rk relative to smaller scale values.

To compute the threshold scale value k̂, we first initialize its value to zero:
k̂ = 0. Then, we walk through the scale values in K and assess whether each
subset in Rk remained stable. To illustrate this step, let us assume that R1

merges with R2 at scale value k. Furthermore, let us assume that |PR1,x | ≤

|PR2,x |. Since R1 is not the largest existing set of tag occurrences, its stability is
irrelevant (in fact, since

|PR2,x |

|PR1,x |
≥ 1, which is larger than 10%, R1 is not stable).

For R2, if
|PR1,x |

|PR2,x |
≥ 0.1 then we would know that the threshold scale value is at

least as large as k, and so we would set k̂ = k. This process continues for each
k ∈ K . The final value of k̂ is that scale value marking when the largest set of
tag occurrences became stable.

The intuition behind this method is that tags whose spatial distributions tend
to look like a strong single cluster (i.e., look like they reference a place from their
usage) should have a core set of tag occurrences that is stable over a large range
of scales. In other words, place tags should have a smaller threshold scale value,
k̂, compared to nonplace tags. Nonplace tags will likely have multiple strong
clusters. When these clusters finally merge, at some scale, this merger will be
significant for every cluster (assuming they are of about equal size). Hence, the
threshold scale value computed by this method will be large.

For the significance test (step 4), k̂ is tested against a threshold to deter-
mine if the tag is a place tag. Like the Scale-Structure Identification 1 method,
the Scale-Structure Identification 2 method is interested in tags whose par-
tial computation statistic value, in this case k̂, falls below a threshold. And, by
recording the scale structures at each scale, we can determine which spatial
regions strongly characterize a tag’s place semantic (step 5). In fact, we can
then characterize the tag’s place semantic at multiple scales.

3.2.3 Scale-Structure Identification 3. For this method, we combined the
ideas behind scale-structure identification 1 and 2. The partial computation
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step (step 3) for this method is based on the following calculation.
∫ ∞

0

Ek,xdk =

∫ ∞

0

∑

R∈Rk

|PR,x |

|Px |
log2

(

|Px |

|PR,x |

)

dk

As discussed earlier, entropy is a measurement of how similar the data is to a
single cluster, since it increases as the data becomes more distributed. Notice
that Ek,x is a step-wise constant function that changes value at a finite set
of spatial distances D = {d1, . . . , dn}, with corresponding scale values K =

{k1, . . . , kn} such that

|Rki
| > |Rk j

| ∀ ki < k j .

Note: This is the same set of scales used in the aforesaid Scale-Structure Iden-
tification 2 method. If we include the extreme point d = 0 in D, and in the
corresponding set of scales K , then we can use the equation

∫ ∞

0

Ek,xdk =

n
∑

i=2

(di − di−1) · Eki ,x

to solve for the partial computation statistic.
As with the scale-structure identification 2 method, this method simply

walks through the ordered scale values in K to compute the value used in
the significance test.

The intuition behind this method is that tags whose spatial distributions
tend to look like a strong single cluster (i.e., look like they reference a place
from their usage) should reach an entropy of zero (i.e., be merged into a single
scale) fairly quickly. In other words, place tags should have a small partial
computation value compared to nonplace tags. Nonplace tags will likely have
multiple, nontrivial clusters. Hence, nonplace tags will have a high entropy
value over a large range of scales.

Like previously described methods, the partial computation value is tested
against a threshold to determine if the tag is a place tag (step 4). Like the scale-
structure identification 1 and 2 methods, the scale-structure identification 3
method is interested in tags whose partial computation value falls below a
threshold. And, as with all the other methods, by recording the scale structures
Rk at each scale, we can determine which spatial regions, R ∈ Rk , strongly
characterize the tag’s place semantic (step 5).

3.3 Hybrid Methods

Finally, we can combine the methods described previously into hybrid place
semantic identification methods. The basic process for combining methods is to
take a weighted sum of the normalized significant test statistics. We illustrate
this process with an example.

Suppose, for each of tag x ∈ X, each of the methods described earlier produces
a real-valued significance test statistic: sm(x), where m references the method.
Further, we assume that every method has been arranged so that a tag x is
more likely to be a place tag the smaller sm(x) is, for every method m; note
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that some of the aforementioned methods preferred larger values, and we can
reverse this preference by multiplying each score by −1.0.

Before combining the statistics from different methods, we normalize them.
Normalization is performed according to the following equation.

s̄m(x)
△
=

sm(x) − (minz∈X sm(z))

max y∈X(sm( y) − (minz∈X sm(z)))

Now, we can take the weighted average of two or more methods, and treat it
as a new method. For example, given non-negative weights w1 and w2, we can
create a new method which produces statistics, ŝ(x), according to

ŝ(x)
△
= w1s̄1(x) + w2s̄2(x).

To simplify, we assume that the weights sum to 1.0. Note that we could take
any nondecreasing transformation of each method’s tag scores before combin-
ing them, and/or we could combine them nonlinearly. However, for the present
article, it suffices to demonstrate a hybrid approach using a simple, linear com-
bination of the previously described methods.

In the evaluation section, we provide results from a number of hybrid meth-
ods. Ultimately, we demonstrate that hybrid methods outperform the others
methods described before.

4. EVALUATION

We implemented the methods described earlier, and performed a direct evalua-
tion of each method’s performance over part of the Flickr dataset. The goals of
the evaluation were to establish whether any of the methods can reliably iden-
tify place tags, compare the performance of the different methods, and evaluate
the performance with varying parameters. Finally, we seek to understand the
type of errors made by the different methods.

We begin by describing the Flickr data used in our evaluation. We then
provide details on how we generated the ground truth for the tags in the dataset.
Finally, we discuss the results.

4.1 The Flickr Dataset

The data we use in this study consists of geotagged photos from Flickr and their
associated tags. Location metadata was available for roughly fourteen million
public Flickr photos at the time we collected our data. Currently, over forty
million photos on Flickr now have location metadata. While the photo location
could also be provided by the camera, it is more likely to be entered by the user
using maps on the Flickr Web site, or possibly obtained from an external GPS
device via synchronization software.

We applied several filters to improve the metadata correctness and to ensure
sufficient data for the analysis. Specifically, Flickr allows an accuracy level
to be assigned to the location metadata for each photo. We only used photos
whose location resolution was in the two most precise levels of the 1–16 scale.
In addition, to ensure sufficient tag occurrence data, we only considered tags
used more than 25 times, and by more than one user. (These thresholds are
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Fig. 2. Spatial distribution of all San Francisco geotagged photos in our dataset (white markers).

arbitrary and reflect simple heuristics to ensure reasonable data coverage. We
did not perform any testing to assess the impact of these threshold values on
the results presented in this article.)

In this work we focus our evaluation on photos from the San Francisco Bay
area. We plot the location for every geotagged photo in our dataset in Figure 2.
In Figure 3, we plot the location usage distribution for the tag Hardly Strictly

Bluegrass. The San Francisco Bay area is one of the best-represented geo-
graphic regions in Flickr, increasing the likelihood of finding significant pat-
terns at subcity and subneighborhood scales. We note, however, that restricting
the dataset to a specific geographic area did not require any alterations to the
methods or the evaluation computations.

After applying the filters to ensure sufficient data for each tag, our dataset
consists of 49897 photos with an average of 3.74 tags per photo (standard de-
viation 2.62). These photos cover a total temporal range of 1015 days, starting
from January 1, 2004. From these photos we extracted 803 unique tags (ac-
cording to the filters described before). As expected, and similar to previous
work [Dubinko et al. 2006; Golder and Huberman 2006], the number of photos
for each tag (Px) was Zipf-distributed. The maximum number of photos associ-
ated with a single tag was 34590 (for San Francisco), and the mean was 232.26
(standard deviation 1305.40). Figure 4 shows the most common tags used in our
dataset.
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Fig. 3. Location usage distributions for the tag Hardly Strictly Bluegrass in the San Francisco
Bay area. The zoomed-in map view shows the details of the larger location cluster from the zoomed-
out view.

Fig. 4. Top ten tags by usage frequency in our San Francisco Bay area dataset.

The Flickr dataset is rather exciting in that it possesses many of the expected
challenges for this type of computation. While Flickr popularity is rising, the
number of geo-referenced photos is still relatively low. For every tag in the
dataset, the spatial usage could be sparse. For example, even the set of photos
tagged Golden Gate Bridge does not demonstrate an even distribution; some
days have no Golden Gate Bridge photos; and there are progressively fewer
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photos uploaded as you go back to the earlier data (e.g., photos from 2004).
Moreover, photos with the tag Golden Gate Bridge tend to cluster into a num-
ber of spatially disjoint regions corresponding to popular viewing points. An-
other complicating factor is the fact that the data is often uneven: More photos
are likely to be uploaded with the tag Golden Gate Bridge than Bay Bridge, for
example. Nevertheless, we expect these types of challenges in every real-life,
user-generated dataset.

In addition to sparseness and popularity, the Flickr dataset exhibits other
interesting patterns. For example, local residents in a certain location, like San
Francisco, are more likely to take pictures of events while tourists are more
likely to take pictures of landmarks. More pertinent to the place semantic iden-
tification problem, Flickr is far more likely to contain geotagged photographs
in major urban areas than in small cities or rural areas. The notable exception
to this are famous landmarks like Stonehenge or Mount Rushmore.

4.2 Ground Truth

To generate the ground truth for our evaluation we manually annotated each
of the 803 tags. Specifically, we looked at a sample of pictures associated with
each tag in our dataset, including their locations and times of capture, to de-
termine whether the tag is a place tag. This in-depth analysis was needed to
accurately assess obscure tags (e.g., the tag Yodamentioned earlier that referred
to the statue in the San Francisco Presidio) and tags subject to polysemy and
homonymy (e.g., Apple in San Francisco was mostly assigned to photos of the
Apple Computer store). Examining the content of the photographs was often
required; from the photo and caption content we were often able to assess the
intended semantics of the tags associated with the photo, and hence whether
they were associated with specific geographical locations.

To measure the discrepancy between common-sense interpretations of the
tags in our dataset and the ground truth, we also collected a set of labels for the
tags generated by having four judges vote, without access to the photos or their
metadata, on whether the tag referred to a place. Our goal was to assess whether
the tag name by itself, that is, without any details on the photos or locations
where that tag was applied, was sufficient for determining if the tag was a place
tag. Interestingly, the vote-based data exhibited systematic errors relative to
the ground-truth data: (1) Obscure or unpopular place tags were often false
negatives (i.e., incorrectly labeled as not being place tags); (2) generic tags like
park were often false positives (while they have clear place semantics within
a limited scope, over the whole dataset they did not refer to specific spatial
regions); and (3) tags that superficially refer to temporal events like Future of

Web Apps were often not labeled as place tags, even though many such events
also occur in specific regions of space. In terms of interjudge agreement, 503
tags were voted as nonplace tags by all judges, 50 (6.2%) tags were voted as
place tags by only one judge, 39 (4.9%) tags were voted as place tags by only
two judges, 58 (7.2%) tags were voted as place tags by three judges, and the
remaining 103 tags were voted as place tags by all of the judges.
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Fig. 5. Precision vs. recall for Naı̈ve Scan 1 and 2 as well as Scale-Structure Identification 1.
Scale-Structure Identification 1 is used as a baseline for comparison between the results figures.
Note that the two naı̈ve scan methods produced curves that are almost identical.

4.3 Results

Since all of the methods produce ranked results, we can use standard IR met-
rics to evaluate performance. For each tag, the methods produce a score that
indicates how likely the tag is to be a place tag. Rather than choosing a single
threshold for each method to categorize the tags, we can vary the threshold
dynamically and examine the trade-off in terms of recall and precision for each
method.

Plots of the precision versus recall curves are shown in Figures 5–10. The
x-axis represents a recall value: the percentage of place tags (according to the
ground-truth labels) that are identified as place tags by the algorithm in ques-
tion. The thresholds for each method were adjusted to produce the recall values.
The y-axis shows the precision: the percentage of tags identified as place tags
by the algorithm that are actually place tags (according to the ground-truth
labels). For example, Figure 5 demonstrates that when the threshold for scale-
structure identification 1 is set so that the algorithm identifies half of the place
tags (recall is 50%), then 76% of the identified place tags are correctly labeled
as place tags according to our ground truth (76% precision).

In every figure, we include the curve for the Scale-Structure Identification
1 (SSI1) method as a reference for comparison, since plotting every curve in a
single figure would be illegible. Figure 5 plots both naı̈ve scan (NS1 and NS2)
methods as well as the SSI1 method. Both NS1 and NS2 perform worse, in
terms of precision, for every possible recall value. Figure 6 plots both spatial
scan (SS1 and SS2) methods as well as the SSI1 method. While both SS1 and
SS2 outperform SSI1 at low recall values (less than 4%), meaning that the top
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Fig. 6. Precision vs. recall for Spatial Scan 1 and 2 as well as Scale-Structure Identification 1.
Scale-Structure Identification 1 is used as a baseline for comparison between the results figures.

Fig. 7. Precision vs. recall for TagMaps and Scale-Structure Identification 1. Scale-Structure Iden-
tification 1 is used as a baseline for comparison between the results figures.

few tags scored by SS1 and SS2 are correctly labeled as place tags relative to
the group-truth data while the top few tags of SSI1 are false positives, SSI1
outperforms both SS1 and SS2 over the remaining recall values. Figure 7 plots
the TagMaps (TM) method results relative to SSI1. Like NS1 and NS2, the
TM method consistently performs worse than the SSI1 over all recall values;
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Fig. 8. Precision vs. recall for Scale-Structure Identification 1, 2, and 3. Scale-Structure Identifi-
cation 1 is used as a baseline for comparison between the results figures.

Fig. 9. Precision vs. recall for hybrid methods that combine TagMaps with Scale-Structure Iden-
tification 1, 2, and 3. Scale-Structure Identification 1 is used as a baseline for comparison between
the results figures.

however, the TM method results are much closer to SSI1’s than either NS1 or
NS2.

Figure 8 plots the results for all three scale-structure identification methods
(SSI1, SSI2, and SSI3). Interestingly, there is a large variation in the perfor-
mance of these three methods. SSI2 and SSI3, like SSI1, perform rather poorly
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Fig. 10. Precision vs. recall for hybrid methods optimized for P-R area (the first curve in the legend)
and for maximum F1 value (the second curve in the legend). The actual P-R area and F1 values are
shown in Table II. Scale-Structure Identification 1 is used as a baseline for comparison between
the results figures.

over small recall values, indicating that the top-scoring tags in these methods
are false positives (i.e., labeled as place tags when the group-truth data indi-
cates that they are not actually place tags). Over the middle range of recall
values, 20%–70%, SSI2 performs the best; but its performance falls below that
of SSI1 for high recall values. SSI3, on the other hand, performs the best over
high recall values, greater than 70%. The SSI1-3 results, demonstrating vari-
able performance over different ranges of recall values, indicate that some form
of hybrid, mixture method should be superior.

Figure 9 plots the results of hybrid methods that each combine TagMaps and
a scale-structure identification method. Again, SSI1 is shown for reference.
Interestingly, by combining TagMaps with the scale-structure identification
methods, we can consistently improve the performance of each SSI method for
mid to high recall values, greater than 25%. However, over smaller recall values,
the hybrid methods perform worse than the SSI methods (with the exception
of SSI3, whose performance at low recall values is greatly improved).

Finally, Figure 10 plots the results of hybrid methods combining TagMaps,
scale-structure identification methods 2 and 3, and Spatial Scan 2. The mixture
weights of these hybrid methods were chosen to maximum the P-R curve area
in one hybrid, and to maximize the F1 test statistic in the other hybrid (see the
discussion to follow for definitions of P-R area and the F1 test statistic). The
weights were found using randomized cross-validation. Ten training-testing
datasets were created from the original dataset; each training-testing dataset
was created by randomly splitting the original dataset into two equal halves.
Using an iterative, refinement search, the mixture weights were chosen that
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Table I. (Precision, Recall) Values for Different Numbers of Returned Tags

top 50 top 100 top 200

Naı̈ve Scan 1 (NS1) 0.58, 0.12 0.52, 0.21 0.47, 0.39
Naı̈ve Scan 2 (NS2) 0.58, 0.12 0.52, 0.21 0.47, 0.39

Spatial Scan 1 (SS1) 0.82, 0.17 0.68, 0.28 0.60, 0.49
Spatial Scan 2 (SS2) 0.80, 0.16 0.69, 0.28 0.61, 0.50

TagMaps (TM) 0.80, 0.16 0.76, 0.31 0.67, 0.55
Scale-Structure Ident. 1 (SSI1) 0.88, 0.18 0.83, 0.34 0.70, 0.58
Scale-Structure Ident. 2 (SSI2) 0.90, 0.19 0.94, 0.39 0.84, 0.69
Scale-Structure Ident. 3 (SSI3) 0.64, 0.13 0.75, 0.31 0.80, 0.65

Vote-Based 0.84, 0.17 0.83, 0.34 0.70, 0.58
0.5*SSI1 + 0.5*TM 0.86, 0.18 0.85, 0.35 0.74, 0.60
0.5*SSI2 + 0.5*TM 0.90, 0.19 0.91, 0.37 0.87, 0.72
0.5*SSI3 + 0.5*TM 0.90, 0.19 0.89, 0.37 0.80, 0.65

0.233*SSI2 + .488*SSI3 + .140*TM + .140*SS2 0.94, 0.38 0.86, 0.70 0.56, 0.91
0.257*SSI2 + .271*SSI3 + .414*TM + .057*SS2 0.91, 0.38 0.89, 0.73 0.56, 0.92

The mixture weights of the last two hybrid methods were set using randomized cross-validation. The

values in the table for these methods are averages over the testing portion of cross-validation datasets.

The standard deviations for these values range from 0.014625–0.047378.

maximized the averaged results over all training sets. The results presented in
the tables that follow are from the testing portion of the datasets.

The first hybrid demonstrates superior performance to SSI1 over the en-
tire range of recall values, especially over low recall values. The second hybrid
method, while underperforming over low recall values, achieves the highest
combination of precision and recall (i.e., is the closest to the top-right corner
of the precision-recall plot). The top-right corner of the precision-recall plot,
corresponding to 100% precision at 100% recall, would be perfect performance
for a classification method. The second hybrid achieves about 85% precision at
81% recall.

As an alternative to searching for optimal threshold values for the methods,
we can simply take the top N results from the ordered lists produced by the
methods (where N is variable). Table I shows precision and recall values for
N = 50, 100, and 200.

From the precision-recall curves we computed: (1) the area under the curve
(P-R Area); (2) the maximum value of the F1 statistic5 for each method (Max F1),
a metric that balances precision and recall values; and (3) the minimum total
classification error6 (Min CE) (see Cai and Hofmann [2003] for more discussion
of these metrics). The results are shown in Table II. These metrics demonstrate
the superior performance of the hybrid methods.

We also studied the sensitivity of the scale-structure identification 1 method
to the scale specification step (step 1 in Section 3.1). We varied the exponential
base in the scale sampling scheme from 1.1 to 5.0 (i.e., scale ki corresponds
to a spatial distance of αi, where α ranged between 1.1 and 5.0). The results

5The F1 statistic is defined as 2pr
p+r

, where p is the precision and r is the recall.
6The total classification error is defined as (

Np

N
) · (1+ r

p
−2r), where Np is the total number of place

tags (according to the group-truth data), N is the total number of tags, and p and r are precision
and recall, respectively.
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Table II. Precision-Recall Area, Maximum F1, and Minimum CE Values for the
Various Methods

P-R Area Max F1 Min CE

Naı̈ve Scan 1 (NS1) 0.4455 0.5279 0.2914
Naı̈ve Scan 2 (NS2) 0.4458 0.5279 0.2914

Spatial Scan 1 (SS1) 0.6028 0.5907 0.2441
Spatial Scan 2 (SS2) 0.6134 0.5955 0.2416

TagMaps (TM) 0.6050 0.6018 0.2130
Scale-Structure Ident. 1 (SSI1) 0.7034 0.6655 0.1930
Scale-Structure Ident. 2 (SSI2) 0.7888 0.7692 0.1196
Scale-Structure Ident. 3 (SSI3) 0.7073 0.7937 0.1295

Vote-Based 0.6797 0.6586 0.1843
0.5*SSI1 + 0.5*TM 0.7229 0.6770 0.1806
0.5*SSI2 + 0.5*TM 0.8048 0.7908 0.1133
0.5*SSI3 + 0.5*TM 0.7938 0.7976 0.1283

0.233*SSI2 + .488*SSI3 + .140*TM + .140*SS2 0.8664 0.7998 0.1166
0.257*SSI2 + .271*SSI3 + .414*TM + .057*SS2 0.8335 0.8258 0.1021

The best values for each metric are in bold. The mixture weights of the last two hybrid methods

were set using randomized cross-validation. The values in the table for these methods are averages

over the testing portion of cross-validation datasets. The standard deviations for these values range

from 0.009734–0.025120.

were robust to these changes. One point to note, however, is that performance
slightly but consistently improved as the exponential base decreased (0.035
increase in the P-R area). In other words, the scale-structure identification 1
method performed better with denser samplings of the space of scale values,
but only slightly.

Results of the region identification step (step 5 in Section 3.1) are straight-
forward. To summarize, the regions of space that were associated with identified
place tags were accurate. The only systematic errors found were due to sparse,
wrong, or missing data. For example, tags like Bay to Breakers had spatial
usage distributions that were not representative of the true spatial expanse
of the referenced social gathering: Pictures tended to be taken more at the
beginning and end of the race, leaving the middle parts too sparse to accurately
identify as a single, connected place.

In terms of error analysis, we identified common errors with the methods.
We will discuss the false positive and false negatives of many of the methods
described in this article. For the TM-SSI1 (TagMaps, Scale-Structure Identi-
fication 1) hybrid, the false positives were all due to missing or sparse data.
Interestingly, this “lack of data” problem appears in two forms. First, there are
tags that refer to specific events like August 2006, which, due to the limited
amount of data, appear to occur in a specific spatial region, when in fact more
data would demonstrate that this specific event actually occurs in multiple re-
gions. Second, generic tags like orchids and baby shower are only represented
in single spatial regions in our data, whereas more data would demonstrate
that these tags refer to generic entities that can, and do, occur in multiple spa-
tial regions. In terms of false negatives, the TM-SSI1 hybrid missed specific
place tags (e.g., Coit Tower and Chinatown) in the San Francisco Bay area for
one of two reasons. Either there was not enough data, so the spatial usage

ACM Transactions on the Web, Vol. 3, No. 1, Article 1, Publication date: January 2009.



Methods for Extracting Place Semantics from Flickr Tags • 1:25

distribution of the tag appears as a number of disjoint clusters which would be
connected if more data was available, or the place referenced by the tag was
visible from a number of locations (e.g., Coit Tower or Golden Gate Bridge),
making it impossible to automatically identify as a single spatial region. The
other hybrid methods, TM-SSI2, TM-SSI3, and TM-SSI2-SSI3-SS2s, exhibit
very similar false positive and false negative error characteristics.

Interestingly, TM, NS1, NS2, SS1, and SS2 all exhibited another type of
false negative error (relative to the SSI and hybrid methods). Specifically, tags
whose spatial usage distributions deviated significantly from a single circular
or square region (which are the types of regions that these methods search over)
were incorrectly labeled as not being place tags. Examples include Golden Gate

Park, which is basically a long rectangle, and Embarcadero, which is a curved
street on the waterfront which many people walk along. In addition to the
clustering mechanism in SSI, which extends the nearest-neighbor or single-
linkage hierarchical clustering algorithm, further research has been done to
handle nonconvex regions [Ng et al. 2001], and could be incorporated into new
place semantic identification methods.

Additionally, TagMaps has some false negatives which result from its clus-
tering mechanism to specify possible spatial regions of interest. The problem
is that the cluster locations will be dominated by popular places. Since many
clusters will have a number of tags that are specific to them, inverse docu-
ment weighting will not be able to reveal small, relatively unknown tags like
Club Neon and Bring Your Own Big Wheel. They will be hidden at all but the
smallest scales, and hence receive relatively low overall scores. However, this
problem can be overcome by mixing the TagMaps methods with other methods,
as demonstrated in this article.

Overall, we believe that hybrid methods hold the most promise for automatic
extraction of place semantics. The simple, linear mixtures between TagMaps,
scale-structure identification 2 and 3, and Spatial Scan 2 are the best for our
dataset. We speculate that nonlinear combinations of the methods described in
this work could yield even better results; however, linear mixtures are sufficient
to demonstrate the potential benefit of a hybrid method.

5. RELATED WORK

We address related work from a number of relevant research areas, including
event detection in time-stamped data, location-based analysis of spatially dis-
tributed data (often referred to as spatial analysis), and analysis of tagging
systems.

Many scientific domains have studied the general problem of time-based
event detection. Time-series analysis techniques such as ARIMA [Box and
Jenkins 1976; McDowall et al. 1980] analyze trends in time-series data with
the goals of: (1) explaining spikes and valleys over various time windows and
(2) producing future trend forecasts. While we are not addressing event detec-
tion in this article, we note that the general problem of explaining data trends
in the time domain can be extended to the spatial domain: Specifically, methods
that can effectively detect bursts in the temporal domain can often be extended
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to detect bursts over the spatial domain [Jones et al. 2001; Kleinberg 2003].
In particular, our naı̈ve scan methods (see Section 3) are similar to previous
work on global event detection in Web query logs [Vlachos et al. 2004] and ac-
cess logs [Guralnik and Srivastava 1999]. The general idea of the naı̈ve scan
methods is to assume that a coherent place semantic coincides with a burst of
data in the spatial domain (e.g., many people take pictures of the Ferry Build-
ing in San Francisco, generating a concentration of photos in that particular
location).

The primary issue that must be addressed in detecting bursts is how to de-
fine the spatial extent of the burst, namely its area. This issue is well known
in the spatial analysis and geography literature and is referred to as the Mod-
ifiable Areal Unit Problem, or MAUP [Openshaw 1984]. The basic concern is
that analytical results of spatially distributed data, in particular analyses that
produce aggregate descriptive statistics, are sensitive to the definition of spa-
tial units. For example, looking at burglary rates with counties as the spatial
unit is problematic because counties with higher populations should naturally
exhibit higher raw crime numbers. Common methods for dealing with this prob-
lem are to normalize the data by obvious independent variables like popula-
tion or population density. Another approach is to define the spatial units to
equalize these variables (e.g., breaking counties into smaller units with equal
populations).

A common technique for dealing with MAUP is to define multiple regular
grids over the total spatial extent of the dataset being analyzed, where each grid
differs by its scale. The analysis is then performed at every grid point [Open-
shaw et al. 1987]. This method is known as the Geographical Analysis Machine.
Our naı̈ve scan and spatial scan methods utilize this multiscale, regular grid
search method. To better deal with the MAUP problem, the spatial scan meth-
ods use the baseline data rates in each spatial unit, namely region, to calculate
the significance test statistics.

In terms of the specific problem of place semantic identification, recent efforts
in ubiquitous computing systems have attempted to identify meaningful loca-
tions and places from GPS and other location tracking data [Aipperspach et al.
2006]. The general approach in that work is to search for accumulations of data
points in fixed locations. These accumulations can be interpreted as bursts, rel-
ative to other locations that have few or no data points. In epidemiology, efforts
to identify and localize disease outbreaks [Kulldorff 1999] are closely related to
the place semantic identification problem we address in this article. Our spatial
scan methods described earlier borrow directly from disease/outbreak analysis,
where data is sparse and dependent on the underlying population statistics
(two properties exhibited by our Flickr tag data).

To specify the geographic locations of a tag’s place semantic we relied on
either the a priori specified regions (in the case of the naı̈ve scan and spatial
scan methods) or the clusters created by the tag occurence data points (in the
TagMaps and scale-structure identification methods). An alternative approach
would be to smooth the original data points to create potentially more robust
place semantic descriptions. Recent methods in the geographical information
systems literature have looked at methods for smoothing raw data points to
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create continuous distributions, with the advantage of creating summary statis-
tics that are less senstitive to high-frequency noise in the data [Brunsdon 1995;
Brunsdon et al. 2002]. The basic idea of these methods is to replace the data
points with continuous kernal functions, often Gaussian probability distribu-
tions, which are then summed to create a single distribution for the entire
dataset (basically a two-dimension convolution). Choosing an appropriate ker-
nal function radius is important because values that are too small will preserve
high-frequency noise, while values that are too large will hide the spatial struc-
ture of the data [Brunsdon 1995]. More recently, researchers have studied the
effects of changing the kernal function radius based on the actual data dis-
tribution to create more localized summary statistics [Brunsdon et al. 2002].
Data smoothing could be incorporated into place semantic identification meth-
ods as a preprocessing step, potentially improving problems arising from the
Modifiable Areal Unit Problem.

Other geographical information systems research has looked at defin-
ing place semantics using field-of-view information in addition to the GPS
location associated with photos [Epshtein et al. 2007]. The basic idea is
that most photos’ field of view covers some surface area heading in a spe-
cific direction from the location where the photo was taken. By overlapping
these areas from multiple photos, important locations (i.e., places) can be
identified.

While the aforementioned work has mostly studied place semantic identifi-
cation using spatial distributions of data points, the field of GIR (Geographic
Information Retrieval) has studied how to derive place semantics using only
terms and place names. Two research directions from GIR are relevant to this
article. First, attempts were made (e.g., Amitay et al. [2004], Buyukokkten et al.
[1999], Ding et al. [2000], and Wang et al. [2007]) at extracting geographic infor-
mation for a Web page, based on the page links and network properties, as well
as geographic terms that appear on the page. Our system described here could
potentially help these systems by identifying additional geographic/location
terms. The second related research effort in GIR focuses on extracting the
scope of geographic terms or entities based on co-occurring text and derived
latitude-longitude information [Arampatzis et al. 2004; Purves et al. 2005; Zhou
et al. 2007]. With geo-annotated photos and tags, as well as any system with
direct location annotation, the potential exists not only to delineate known
geographic terms, but also to identify new regions of interest based on the
data.

Finally, we discuss related work on tagging systems. Most of the prior re-
search has looked at describing tagging systems [Ames and Naaman 2007,
Marlow et al. 2006], or studying trends and properties of various systems
[Golder and Huberman 2006]. Some efforts have looked at extracting ontologies
(or structured knowledge) from tags [Schmitz 2006]: a similar goal to ours, yet
using co-occurrence and other text-based tools that could augment the meth-
ods analyzed in this article. Other tagging work has looked at semi-automatic
photo annotation [Davis et al. 2004; Sarin et al. 2007].

More directly related to this work are research efforts that analyzed Flickr
tags (and other terms associated with Flickr photos) together with photo
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location and time metadata [Dubinko et al. 2006; Jaffe et al. 2006]. These
projects applied ad hoc approaches to determine “important” tags within a given
region of space based on intertag frequencies. However, no determination of the
properties or semantics of specific tags was provided. Naaman et al. [2003] cre-
ated spatial models for terms appearing in geo-referenced photograph labels,
but did not detect the location properties of specific terms.

6. CONCLUSIONS AND FUTURE WORK

In this work, we have taken a first step in showing that some semantics can be
assigned to free-form tags or text labels using the usage distributions of each
tag. The ability to extract semantics can improve current tagging systems, for
instance, by allowing more powerful search and disambiguation mechanisms.
Additionally, the knowledge that these methods extract can help with tasks
outside the scope of the specific system.

In particular, we have shown that location metadata associated with photos
and their tags enables the extraction of place semantics. This mapping of tags to
geographic locations could improve image search, serve as a basis for collection
visualization, and assist in other photo-related tasks. This type of knowledge
can also help create a gazetteer for places and landmarks that could be used for
various tasks beyond photo management [Jones et al. 2001]. We plan to revisit
the image search, visualization and gazetteer deployment in future work. We
show in Rattenbury et al. [2007] that similar techniques can be successfully
applied to extract event semantics using photos’ time-stamp patterns. Using
metadata distributions in other domains could potentially allow us to mine yet
other types of semantics from tags.

We would also like to extend our current system to handle multi-area prob-
lems. As mentioned previously, Palace may exhibit place semantics in London,
but perhaps not in most cities. To handle this characteristic of the data, we
stated earlier that the data analysis should be limited to specific geographic
areas. Ideally, we could simultaneously generate, store, and disambiguate tag
semantics for different areas throughout the world. A number of arbitrary area
specifications could be used: country boundaries, language geographies, city
boundaries, etc. We could also consider reversing the process and choose a tag
with a specific geographical place semantic and then extend the area around
this location until we encounter another place semantic for the tag.

Tags with multiple place semantics (i.e., associations with different geo-
graphical locations) in different areas present interesting disambiguation prob-
lems. Clearly, Palace means something different in San Francisco than it does
in London or Paris. We could use the co-occurrence of tags to create higher-order
place semantics to disambiguate (e.g., Fine Art, Buckingham, or Versailles).

It is worth noting that there is likely a difference between identifying place
semantics in urban areas like the San Francisco Bay area versus rural or less
populated urban areas. We did not test this in the current article. However, it
would be a logical step for future work.

Finally, we plan to deploy our methods to other temporally and spatially
encoded data, as it becomes pervasively available on the Web.
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