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This paper is the second of a two-part review of methods for automated fault detection and diag-
nostics (FDD) and prognostics whose intent is to increase awareness of the HVAC&R research
and development community to the body of FDD and prognostics developments in other fields
as well as advancements in the field of HVAC&R.   The first part of the review focused on
generic FDD and prognostics, provided a framework for categorizing methods, described them,
and identified their primary strengths and weaknesses (Katipamula and Brambley 2005). In this
paper we address research and applications specific to the fields of HVAC&R, provide a brief
discussion on the current state of diagnostics in buildings, and discuss the future of automated
diagnostics in buildings.

INTRODUCTION
Poorly maintained, degraded, and improperly controlled equipment wastes an estimated 15%

to 30% of energy used in commercial buildings. Much of this waste could be prevented with
widespread adoption of automated condition-based maintenance. Automated fault detection and
diagnostics (FDD) along with prognostics provide a cornerstone for condition-based mainte-
nance of engineered systems. Although FDD has been an active area of research in other fields
for more than a decade, applications for heating, ventilating, air conditioning, and refrigeration
(HVAC&R) and other building systems have lagged those in other industries. Nonetheless, over
the last decade there has been considerable research and development targeted toward develop-
ing FDD methods for HVAC&R equipment. Despite this research, there are still only a handful
of FDD tools that are deployed in the field. 

This paper, which is the second of two parts, provides a review of fault detection, diagnostics,
and prognostics (FDD&P) research in the HVAC&R field and concludes with discussions of the
current state of applications for buildings and likely contributions to operating and maintaining
buildings in the future. In the first paper (Katipamula and Brambley 2005), we provided an over-
view of FDD&P, starting with descriptions of the fundamental processes and some important
definitions, and then identified the strengths and weaknesses of methods across the broad spec-
trum of approaches. 
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FDD RESEARCH IN HVAC&R
In this section we review FDD research relating to refrigerators, air conditioners, chillers, and

air-handling units (AHUs), which represent most of the HVAC&R FDD research completed to
date.   This review is an update to the review previously published by Katipamula et al. (2001)
and includes recent FDD publications. For information on FDD for other building systems refer
to Pape et al. (1990), Dexter and Benouarets (1996), Georgescu et al. (1993), Jiang et al. (1995),
and Han et al. (1999) for HVAC&R plants; Fasolo and Seborg (1995) for HVAC&R control
systems; Li et al. (1996, 1997) for heating systems; Isermann and Nold (1988) and Dalton et al.
(1995) for pumps; Noura et al. (1993) for large thermal plants; Isermann and Ballé (1997) for
applications for motors; and Dodier and Kreider (1999) for whole-building systems.

Refrigerators
One of the early applications of FDD was to vapor-compression-cycle-based refrigerators

(McKellar 1987; Stallard 1989). Although McKellar (1987) did not develop an FDD system, he
identified common faults for a refrigerator based on the vapor-compression cycle and investi-
gated the effects of the faults on the thermodynamic states at various points in the cycle. He con-
cluded that the suction pressure (or temperature), discharge pressure (or temperature), and the
discharge-to-suction pressure ratio were sufficient for developing an FDD system. The faults
considered were compressor valve leakage, fan faults (condenser and evaporator), evaporator
frosting, partially blocked capillary tubes, and improper refrigerant charge (under and over
charge). 

Building upon McKellar’s work, Stallard (1989) developed an automated FDD system for
refrigerators. A rule-based expert system was used with simple limit checks for both detection
and diagnosis. Condensing temperature, evaporating temperature, condenser inlet temperature,
and the ratio of discharge-to-suction pressure were used directly as classification features. Faults
were detected and diagnosed by comparing the change in the direction of the measured quanti-
ties with expected values and matching the changes to expected directional changes associated
with each fault.

Air Conditioners and Heat Pumps
There are many applications of FDD to air conditioners and heat pumps based on the vapor-

compression cycle. Some of these studies are discussed below (Yoshimura and Ito 1989;
Kumamaru et al. 1991; Inatsu et al. 1992; Wagner and Shoureshi 1992; Rossi 1995; Rossi and
Braun 1996, 1997; Breuker 1997; Breuker and Braun 1998b; Ghiaus 1999; Chen and Braun
2000). Breuker and Braun (1998a) summarized common faults in air conditioners and their
impact on performance. In addition, the frequency of fault occurrence and the relative cost of
service for various faults were estimated from service records.

Yoshimura and Ito (1989) used pressure and temperature measurements to detect problems
with condenser, evaporator, compressor, expansion valve, and refrigerant charge on a packaged
air conditioner. The differences between measured values and expected values were used to
detect faults. Expected values were estimated from manufacturers’ data, and the thresholds for
fault detection were experimentally determined in the laboratory. Both detection and diagnosis
were conducted in a single step. No details were provided as to how the thresholds for detection
were selected.

Wagner and Shoureshi (1992) developed two different fault detection methods and compared
their abilities to detect five different faults in a small heat pump system in the laboratory. The
five faults included abrupt condenser and evaporator fan failures, capillary tube blockage, com-
pressor piston leakage, and seal system leakage. The first method was based on limit and trend
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checking (qualitative model-based), and the second method was a simplified physical
model-based approach. In the second approach, differences between predictions from a simpli-
fied physical model and the monitored observations are transformed into useful statistical quan-
tities for hypothesis testing. The transformed statistical quantities are then compared to
predetermined thresholds to detect faults. 

The two fault detection strategies were operated in parallel on a heat pump in a psychrometric
room. The qualitative method was able to detect four of five faults that were introduced
abruptly, while the simplified physical model-based method was successful in only detecting
two faults. Because the selection of thresholds for both methods is critical in avoiding false
alarms and reduced sensitivity, Wagner and Shoureshi (1992) provide a brief discussion of how

Table 1. Symptom Patterns for Selected Faults (Grimmelius et al. 1995)
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↓ → → → → ↓ → → ↓ ↓ → → → → → ↑ ↑ ↓ → →

Compressor, 
Discharge Side, 
Increase in Flow 
Resistance

↑ → ↑ → → ↑ → → ↑ → → → → → → ↑ ↑ ↓ → →

Condenser, Cooling 
Water Side, Increase 
in Flow Resistance

→ → ↑ → → → → → → ↑ ↓ → ↑ → → → → → → →

Fluid Line Increase in 
Flow Resistance → → → → → → → → → ↓ → → → ↓ → → ↑ ↑ → →

Expansion Valve, 
Control Unit, Power 
Element Loose from 
Pipe

↑ → → → → ↑ → → ↑ ↑ → → → → → ↑ ↓ ↑ → →

Evaporator, Chilled 
Water Side, Increase 
in Flow Resistance

↓ → → → → ↓ → → ↓ ↓ → → → → → ↓ ↑ ↑ → →
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to trade off diagnostic sensitivity against false alarms. Their implementation is only capable of
detecting faults and does not include diagnosis, evaluation, and decision making.

Rossi (1995) described the development of a statistical rule-based fault detection and diag-
nostic method for air-conditioning equipment with nine temperature measurements and one
humidity measurement. The FDD method is capable of detecting and diagnosing condenser
fouling, evaporator fouling, liquid-line restriction, compressor valve leakage, and refrigerant
leakage. In addition to the detection and diagnosis, Rossi and Braun (1996) also describe an
implementation of fault evaluation. A detailed explanation of the fault evaluation method can be
found in Rossi and Braun (1997). The methods were demonstrated in limited testing with a roof-
top air conditioner in the laboratory. 

Breuker (1997) performed a more detailed evaluation of the methods developed by Rossi
(1995). The detailed evaluation relied on steady-state and transient tests of a packaged air condi-
tioner in a laboratory over a range of conditions and fault levels (Breuker and Braun 1998b).
Seven polynomial models (ranging from first to third order) were developed to characterize the
performance of the air conditioner (evaporating, condensing, and compressor outlet tempera-
tures, suction line superheat, liquid line subcooling, temperature rise across the condenser, and
temperature drop across the evaporator) using steady-state data representing normal (unfaulted)
operations. The steady-state normal data are also used to determine the statistical thresholds for
fault detection, while transient data with faults were used to evaluate FDD performance. Breuker
and Braun (1998b) concluded that refrigerant leakage, condenser fouling, and liquid line restric-
tion were detected and diagnosed before 8% reduction in capacity or COP occurred. The tech-
nique, however, was less successful in detecting evaporator fouling and compressor valve
leakage. The authors also concluded that increasing the measurements from 6 (2 inputs and 4
outputs) to 10 (3 inputs and 7 outputs) and using higher order polynomial models improved the
performance by a factor of two.

Ghiaus (1999) presented a bond-graph model for a direct-expansion vapor-compression sys-
tem and applied it to diagnosing two faults in an air conditioner. The author states that this qual-
itative approach of modeling faults does not need a priori knowledge of possible faults as long
as the bond model is complete and accurate.    

Chillers
Several researchers have applied FDD methods to detect and diagnose faults in vapor-com-

pression-based chillers; some of the studies are summarized below (Grimmelius et al. 1995;
Gordon and Ng 1994, 1995; Stylianou and Nikanpour 1996; Tsutsui and Kamimura 1996; Peits-
man and Bakker 1996; Stylianou 1997; Bailey 1998; Sreedharan and Haves 2001; Castro 2002).
Comstock et al. (1999) and Reddy et al. (2001) provide a detailed review of FDD literature relat-
ing to chiller systems up to their respective times. Comstock et al. (2002) presented a list of
common chiller faults and their impacts on performance.

Grimmelius et al. (1995) developed a fault diagnostic system for a chiller, in which fault
detection and diagnostics are carried out in a single step. The FDD method uses a reference
model based on multivariate linear regression that was developed with data from a properly
operating chiller to estimate values for process variables for a healthy (unfaulted) chiller. These
estimates are subsequently used to generate residuals (i.e., differences between actual measured
values and the values from the reference model). Patterns of these residuals are compared to
characteristic patterns corresponding to faulted conditions, and scores are assigned indicating
the degree to which the patterns match the pattern corresponding to each fault mode. Fault
modes with good fits (high scores) are judged as probably existing in the chiller. Fault modes
with poor fits (low scores) are judged as unlikely to exist in the chiller, and faults with interme-
diate scores are labeled as possibly existing. Twenty different measurements are used including
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temperatures, pressures, power consumption, and compressor oil level. In addition to the mea-
sured variables, some derived variables, such as liquid subcooling, superheat, and pressure drop,
are used. The inputs to the model also include the outdoor ambient temperature and load condi-
tions. 

To identify potential fault modes, the chiller is classified into seven components: compressor,
condenser, evaporator, expansion valve, liquid line immediately downstream of the condenser
and including a filter drier, liquid line with solenoid and sight glass between the other liquid line
and the evaporator, and the crankcase heater. Fault modes are associated with any component
that is serviceable, which leads to 58 different fault modes. A cause and effect study of the 58
fault modes helped establish the expected influence of the faults on the components, measured
variables, and subsequent chiller behavior. Symptoms are defined as a difference in any mea-
sured or derived variable from its expected value for normal unfaulted operation (i.e., the value
given by the reference model). Symptoms associated with all 58 fault modes were generated and
arranged into symptom patterns. Fault modes having identical symptom patterns were aggre-
gated into a single fault mode, reducing the total number of fault modes from 58 to 37. These
symptom patterns are arranged in a symptom matrix as shown in Table 2, with each row giving
the symptom pattern associated with a particular fault.   A symptom (cell in the matrix) shown
by an arrow pointing up, ↑, indicates a value for the variable greater than that given by the refer-
ence model. Likewise, an arrow pointing down, ↓, indicates a symptom corresponding to a value
for the variable less than the value from the reference model, and a horizontal arrow, →, indi-
cates the fault has no effect on the corresponding variable.

To diagnose a fault, a symptom pattern corresponding to a set of measurements is compared
to the symptom patterns for all of the fault modes. Scores are assigned to each fault mode indi-
cating the probability that its symptom pattern matches the measured symptom pattern as fol-
lows. For each fault mode, each symptom is compared to its corresponding measured symptom
and assigned a score between 0 and 10. If the symptom for the fault mode matches the measured
symptom very well, it is assigned a high score (close to 10). If it weakly matches, it is assigned a
score around 5, and if it does not match well at all, it is assigned a score close to zero. A total
score for each fault mode is generated by adding the individual scores of all symptoms and
dividing the total by the maximum possible score per pattern (i.e., the number of symptoms in
the pattern multiplied by 10) to obtain a normalized score. These normalized scores are then
classified into three categories. A normalized score of 0.9 or higher indicates a probable fault, a
score between 0.5 and 0.9 indicates a possible fault, and scores lower than 0.5 indicate that the
fault is likely not present. 

A highly simplified example is shown in Table 2.   Symptom patterns for two faults, F1 and
F2, are shown along with a symptom pattern derived from measurements. Each pattern consists

Table 2. Scoring of Fault Modes for a Highly Idealized Example

Fault Mode/ 
Score

Symptom
1

Symptom
2

Symptom
3

Symptom
4

Total Score Normalized 
Score

F1 ↓ → ↓ ↑

Scores 10 10 10 10 40 1.0

F2 ↑ → ↑ →

Scores 0 9 0 3 12 0.3

Measurement-
Based Pattern

↓ → ↓ ↑
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of symptoms based on four variables. Scores have been assigned to the symptoms in each pat-
tern based on how well the symptom shown in the symptom matrix corresponds to the symptom
based on measurements. For example, Symptom 1 for fault mode F1 corresponds identically to
Symptom 1 in the pattern derived from measurements, so it is assigned a score of 10. The nor-
malized scores in this example lead to the conclusion that fault F1 with a score of 1.0 probably
exists in this system and fault F2 with a score of 0.3 is likely not present. In actual implementa-
tion, this methodology accounts for uncertainty in measurements by establishing threshold
bands around numerical values of measured and derived variables and using the proximity to
them in assigning scores to symptoms. The exact algorithm for assigning numerical scores, how-
ever, is not available in the paper.

Although the method proved effective in identifying faults in systems before the chiller sys-
tem failed completely, faults with only a few symptoms tended to get high scores more often.
Because the reference model is a simple regression model developed with data from a specific
test chiller, the same model cannot be used on other chillers but instead new models would need
to be developed for each chiller. Nonetheless, this generic approach provided a foundation for
diagnostic work that followed.

Stylianou and Nikanpour (1996) used the universal chiller model developed by Gordon and
Ng (1995) and the pattern matching approach outlined by Grimmelius et al. (1995) as part of
their FDD system. Like Grimmelius et al. (1995), Stylianou and Nikanpour also perform detec-
tion and diagnosis in a single step. The methods used in the FDD system included a thermody-
namic model for fault detection and pattern recognition from expert knowledge for diagnosis of
selected faults. The diagnoses of the faults are performed by an approach similar to that outlined
by Grimmelius et al. (1995). Seventeen different measurements (pressures, temperatures, and
flow rates) were used to detect four different faults: refrigerant leak, refrigerant line flow restric-
tion, condenser water-side flow resistance, and evaporator water-side flow resistance.

The FDD system is subdivided into three parts: one used to detect problems when the chiller
is off, one used during chiller start-up, and one used at steady-state conditions. The off-cycle
module is deployed when the chiller is turned off and is primarily used to detect faults in the
temperature sensors. The temperature sensor readings at different locations on the system are
compared to one another after the chiller is shut down and reaches steady state (under the
assumption that the temperature of refrigerant will reach equilibrium conditions and reach the
ambient state when the chiller is shut down overnight). The differences are then compared to the
difference observed during commissioning (if the sensors are calibrated during commissioning,
the differences should be zero). The monitored rate of change of a sensor value is used to check
whether a particular sensor has reached steady state or not before comparing measurements
across sensors. 

The start-up module is deployed during the first 15 minutes after the chiller is started. The
module uses four measured inputs (discharge temperature, crankcase oil temperature, and refrig-
erant temperatures entering and leaving the evaporator) scanned at five-second intervals to
detect refrigerant flow faults, which are easier to detect before the system reaches steady state.
To detect faults, the transient trends in measured variables during start-up are compared to the
baseline trend from normal start-up. For example, a shift (in time or magnitude) in the peak of
the discharge temperature may indicate liquid refrigerant flood back, refrigerant loss, or a refrig-
erant line restriction. Because ambient conditions affect the baseline response, the baseline
response has to be normalized before a comparison is made. 

The steady-state module is deployed after the chiller reaches steady state (steady-state condi-
tion is established by monitoring the rate of change of the sensor values just as in off-cycle anal-
ysis) and stays deployed until the chiller is turned off. In this mode, the module performs two
functions: (1) verifies performance of the system and (2) detects and diagnoses selected faults.
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Performance is verified using the thermodynamic models developed by Gordon and Ng (1995).
For fault diagnostics, linear regression models are used to generate estimates of pressure and
temperature variables that are then compared to actual measurements in an approach similar to
that described by Grimmelius et al. (1995). The estimated variables are compared to the mea-
sured values, and the residuals are matched to predefined patterns corresponding to the various
faults using a rule-base (as shown in Table 3). 

Although Stylianou and Nikanpour (1996) extended the previous work of Gordon and Ng
(1995) and Grimmelius et al. (1995), their evaluation of the FDD systems was not comprehen-
sive and lacked several key elements including sensitivity and rate of false alarms. In addition, it
is not clear whether the start-up module can be generalized easily.

Stylianou (1997) replaced the rule-based model used to match the patterns shown in Table 3
with a statistical pattern recognition algorithm. This algorithm uses the residuals generated from
comparison of predicted (using linear regression models) and measured pressures and tempera-
tures to generate patterns that identify faults. Because this approach relies on the availability of
training data for both normal and faulty operation, it may be difficult to implement in the field.
Only limited testing of the method was presented in the paper.

Tsutsui and Kamimura (1996) developed a model based on a topological-case-based reason-
ing (TCBR) technique and applied it to an absorption chiller. Case-based reasoning is a knowl-
edge-based problem-solving technique that solves new problems by adapting old solutions. It is
based on defining neighborhoods that provide the needed measure of similarity between cases.
In contrast, TCBR defines “the neighborhood theoretically, based on the assumption that the
input/output relationship is locally continuous” (Tsutsui and Kamimura 1996). Tsutsui and
Kamimura (1996) also compared the diagnostic capabilities of TCBR with a linear regression
model. The authors state that although the linear regression model had a better overall modeling
error (mean error) than the TCBR model, the TCBR model was better at identifying abnormal
conditions. 

Table 3. Fault Patterns Used in the Diagnostic Module (Stylianou and Nikanpour 1996)
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Peitsman and Bakker (1996) used two types of black-box models (artificial neural networks
[ANNs] and auto regressive with exogenous inputs [ARX1]) to detect faults in the system and at
the component level of a reciprocating chiller system. The inputs to the system models included
condenser supply water temperature, evaporator supply glycol temperature, instantaneous power
of the compressor, and flow rate of cooling water entering the condenser (for the ANN only).
The choice of the inputs was limited to those that are commonly available in the field. Using
these inputs with both the ANN and ARX models, 14 outputs were estimated. For the ANN
models, inputs from the current and the previous time step and outputs from two previous time
steps were used. 

Peitsman and Bakker (1996) compared diagnostic capabilities of two types of models—a
multiple input/output ARX model and ANN models. They used a two-level approach in which
system-level models were used to detect “faulty” operation and component-level models were
used to diagnose the cause of the fault.   They developed 14 system-level models and 16 compo-
nent-level models to detect and diagnose faults in a chiller; however, only one example (air in
the system) is described in their paper. ANN models appeared to have a slightly better perfor-
mance than the ARX models in detecting faults at both the system and the component levels.
The authors also note that it is critical to find a global minimum when using ANN models. If an
incorrect initial state is chosen, it may lead to a local minimum rather than the global minimum. 

Bailey (1998) also used an ANN model to detect and diagnose faults in an air-cooled chiller
with a screw compressor. The detection and diagnosis were carried out in a single step. The
faults evaluated included refrigerant under- and overcharge, oil under- and overcharge, con-
denser fan loss (total failure), and condenser fouling. The measured data included superheat for
heat exchanger circuits 1 and 2, subcooling from circuits 1 and 2, power consumption, suction
pressure for circuits 1 and 2, discharge pressures for circuits 1 and 2, chilled water inlet and out-
let temperatures from the evaporator, and chiller capacity. Each heat exchanger circuit has its
own compressor. The ANN model was applied to normal and “faulty” test data collected from a
70-ton laboratory air-cooled chiller with screw compressor. 

Sreedharan and Haves (2001) compared three chiller models for their ability to reproduce the
observed performance of a centrifugal chiller. Although the evaluation was meant to find the
most suitable model for chiller FDD, no FDD system was proposed or developed. Two models
were based on first principles (from Gordon and Ng [1995] and a modified ASHRAE Primary
Toolkit from Bourdouxhe et al. [1997]) and the third was an empirical model. While each model
has some distinct advantages and disadvantages, they concluded that the accuracies of all three
models were similar. Hydeman et al. (2002) reported that the three models compared by
Sreedharan and Haves (2001) were not accurate in predicting the power consumption of chillers
with variable condenser water flow and centrifugal chillers operating with variable-speed drives
at low loads. They reformulated the Gordon and Ng model and found that it performed better
than the three models described above.

Castro (2002) used a physical model developed by Rossi (1995) along with a k-nearest neigh-
bor classifier to detect faults and a rule base to diagnose five different faults (condenser and
evaporator fouling, liquid line restriction, and refrigerant under- and overcharge) in a reciprocat-
ing chiller. The FDD implementation detected and diagnosed condenser fouling, refrigerant
undercharge at faults level of 20% or greater, and evaporator fouling and liquid line restriction at
fault levels of 30% or greater.

1Refer to Box and Jenkins (1976) for more details on ARX type models.
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Air-Handling Units
There are several studies relating to FDD methods for air-handling units (both the airside and

the waterside); some of these are summarized in this section (Norford and Little 1993; Glass et
al. 1995; Yoshida et al. 1996; Haves et al. 1996; Lee et al. 1996a, 1996b; Lee et al. 1997; Peits-
man and Soethout 1997; Brambley et al. 1998; Katipamula et al. 1999; House et al. 1999; Ngo
and Dexter 1999; Yoshida and Kumar 1999; Seem et al. 1999; Karki and Karjalainen 1999;
Morisot and Marchio 1999; House et al. 2001; Dexter and Ngo 2001; Kumar et al. 2001; Sals-
bury and Diamond 2001; Carling 2002; Norford et al. 2002; Wang and Chen 2002; Pakanen and
Sundquist 2003).

Norford and Little (1993) classify faults in ventilating systems, consisting of fans, ducts,
dampers, heat exchangers, and controls. They then review two forms of steady-state parametric
models for the electric power used by supply fans and propose a third, that of correlating power
with a variable-speed drive control signal. The models are compared based on prediction accu-
racy, sensor requirements, and their ability to detect faults. 

Using the three proposed models, four different types of faults associated with fan systems are
detected: (1) failure to maintain supply air temperature, (2) failure to maintain supply air pres-
sure setpoint, (3) increased pressure drop, and (4) malfunction of fan motor coupling to fan and
fan controls. Although the paper by Norford and Little (1993) lacks details on how the faults
were evaluated, error analysis and associated model fits were discussed. The results indicate that
all three models were able to identify at least three of the four faults. The diagnosis of the faults
is inferred after the fault is detected.

Glass et al. (1995) use a qualitative model-based approach to detect faults in an air-handling
unit. The method uses outdoor, return, and supply air temperatures and control signals for the
cooling coil, heating coil, and the damper system. Although Glass et al. (1995) mention that the
diagnosis is inferred from the fault conditions, no clear explanation or examples are provided.
Detection starts by analyzing the measured variables to verify whether steady-state conditions
exist. Then, the controller values are converted to qualitative signal data and, using a model for
expected values and measured temperature data, qualitative signals are estimated. Faults are
detected based on discrepancies between measured qualitative controller outputs and corre-
sponding model predictions based on the temperature measurements. Examples of qualitative
states for the damper signal include “maximum position,” “minimum position,” “closed,” and
“in between.” When the quantitative value of the damper signal approaches the maximum value,
the corresponding qualitative value of “maximum” is assigned to the measured controller out-
put. The results of testing the method on a laboratory AHU were mixed because the method
requires steady-state conditions to be achieved before fault detection is undertaken. Fault detec-
tion sensitivity and ability to deal with false alarms are not discussed.

Yoshida et al. (1996) use ARX and the extended Kalman filter approach to detect abrupt
faults with simulated test data for an AHU. Although the fault diagnosis approach is clearly
described, the authors note that diagnosis is not feasible with the ARX method but that the Kal-
man filter approach could be used for diagnosis. Fault detection sensitivity and ability to deal
with false alarms are not discussed.

Haves et al. (1996) use a combination of two models to detect coil fouling and valve leakage
in the cooling coil of an AHU. The methodology was tested with data produced by the HVAC-
SIM+ simulation tool (Clark 1985). A radial bias function (RBF) models the local behavior of
the AHU and is updated using a recursive gradient-based estimator. The data generated by exer-
cising the RBF over the operating range of the system are used in the estimation of the parame-
ters for the physical model (UA and percent leakage) using a direct search method. Detection is
accomplished by comparing estimated parameters to fault-free parameters. 
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Lee et al. (1996a) used two methods to detect eight different faults (mostly abrupt faults) in a
laboratory test AHU. The first method uses discrepancies between measured and expected vari-
ables (residuals) to detect the presence of a fault. The expected values are estimated at nominal
operating conditions. The second method compares parameters estimated using autoregressive
moving average with exogenous input (ARMX) and ARX models with the normal (or expected)
parameters to detect faults. The faults evaluated included complete failure of the supply and
return fans, complete failure of the chilled-water circulation pump, stuck cooling-coil valve,
complete failure of temperature sensors, complete failure of the static pressure sensor, and fail-
ure of the supply and return air fan flow stations. Because each of the eight faults has a unique
signature, no separate diagnosis is necessary. 

Lee et al. (1996b) used an ANN to detect the same faults described previously (Lee et al.
1996a). The ANN was trained using the normal data and data that represented each of the eight
faults. Inputs to the ANN were values for seven normalized residuals, and the outputs were nine
values that constitute patterns that represent the normal mode and the eight fault modes. Instead
of generating the training data with faults, idealized training patterns were specified by consider-
ing the dominant symptoms of each fault. For example, supply fan failure implies that the sup-
ply fan speed is zero, the supply air pressure is zero, the supply fan control signal is maximum,
and the difference between the flow rates in the supply and return ducts is zero. Using similar
reasoning, a pattern of dominant training residuals was generated for each fault (see Table 4). A
dominant symptom residual is assigned a value of +1 if the residual is positive and –1 if the
residual is negative; all other residuals are assigned a value of 0. The ANN was trained using the
pattern shown in Table 4. Normalized residuals were calculated for faults that were artificially
generated in the laboratory AHU. The normalized residuals vector at each time step was then
used with the trained ANN to identify the fault. Although the ANN was successful in detecting
the faults from laboratory data, it is not clear how successful this method would be in general
because the faults generated in the laboratory setting were severe and without noise.

Lee et al. (1997) extended the previous work described in Lee et al. (1996b). In the 1997 anal-
ysis, Lee et al. (1997) used two ANN models to detect and diagnose faults. The AHU is decom-
posed into various subsystems such as the pressure control subsystem, the flow-control
subsystem, the cooling-coil subsystem, and the mixing-damper subsystem. The first ANN
model is trained to identify the subsystem in which a fault occurs, while the second ANN model
is trained to diagnose the specific cause of a fault at the subsystem level. An approach similar to
the one used in Lee et al. 1996b is used to train both ANN models. Lee et al. (1997) note that this
two-stage approach simplifies generalization by replacing a single ANN that encompasses all
considered faults with a number of less complex ANNs, each one dealing with a subset of the
residuals and symptoms. Although 11 faults are identified for detection and diagnosis, fault
detection and diagnosis are presented for only one fault in the paper.

Peitsman and Soethout (1997) used several different ARX models to predict the performance
of an AHU and compared the predictions to measured values to detect faults. The training data
for the ARX models were generated using HVACSIM+. The AHU is modeled at two levels. The
first level is the system level, where the complete AHU is modeled with one ARX model. The
second level is the component level, where the AHU is subdivided into several subsystems such
as the return fan, the mixing box, and the cooling coil. Each component is modeled with a sepa-
rate ARX model. The first level ARX model is used to detect a problem and the second level
models are used to diagnose the problem. Most abrupt faults were correctly identified and diag-
nosed, while slowly evolving faults were not detected. There is a potential for a conflict between
the two levels with this approach; for example, the top-level ARX model could detect a fault
with the AHU, while the second-level ARX models do not indicate any faults. Furthermore,
there is a potential for multiple diagnoses at the second level. Peitsman and Soethout (1997)
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indicated that some of this multiple diagnosis could be discriminated by ranking of diagnoses
according to their improbability; however, no details were provided on how to implement such a
scheme.

House et al. (1999) compared several classification techniques for fault detection and diagno-
sis of seven different faults in an AHU. The data for the comparison were generated using an
HVACSIM+ simulation model. Using the residuals, as defined in Lee et al. (1996a, 1996b), five
different classification methods are evaluated and compared for their ability to detect and diag-
nose faults. The five classification methods include: ANN classifier, nearest neighbor classifier,
nearest prototype classifier, a rule-based classifier, and a Bayes classifier. 

Based on the performance of classification methods, the Bayes classifier appears to be a good
choice for fault detection. For diagnosis, the rule-based method proves to be a better choice for
the classification problems considered, where the various classes of faulty operations were well
separated and could be distinguished by a single dominant symptom or feature. 

Table 4. Normalized Patterns for AHU Fault Diagnosis
Used in ANN Training (Lee et al. 1996b)
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Return Fan 0 1 0 0 0 –1 0 0 0 1 0 0 0 0 0 0
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Pressure 
Transducer

–1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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Return Fan 
Flow Station

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1



180 HVAC&R RESEARCH

Ngo and Dexter (1999) developed a semi-qualitative analysis of measured data using generic
fuzzy reference models to diagnose faults with the cooling coil of an AHU. The method uses
sets of training data with and without faults to develop generic fuzzy reference models for diag-
nosing faults in a cooling coil. The faults include leaky valve, waterside fouling, valve stuck
closed, valve stuck midway, and valve stuck open. The fuzzy reference models describe in qual-
itative terms the steady-state behavior of a particular class of equipment with no faults present
and when each of the faults has occurred. Measured data are used to identify a partial fuzzy
model that describes the steady-state behavior of the equipment at a particular operating point.
The partial fuzzy model is then compared to each of the reference models using a fuzzy match-
ing scheme to determine the degree of similarity between the partial model and the reference
models. Ngo and Dexter (1999) provide a detailed description of fault detection sensitivity and
false alarm rates. 

Yoshida and Kumar (1999) evaluated two model-based methods to identify abrupt (sudden)
faults in an AHU. They report that both ARX and adaptive forgetting through multiple models
(AFMM) seem promising for use in on-line fault detection of AHUs. They report that ARX
models require only a minimal knowledge of the system, and the potential limitation of the tech-
nique is that it requires long periods to stabilize its parameters. On the other hand, Yoshida and
Kumar (1999) report that the AFMM method requires long moving averages to suppress false
alarms. When this is done, faults of lesser magnitude cannot be easily detected. Implementation
details are not provided, and only one example of fault detection is provided. 

Morisot and Marchio (1999) use an ANN-based approach to detect degradation of perfor-
mance of a cooling coil in an AHU. The ANN network includes an input layer (six inputs), a
hidden layer (four nodes), and an output layer (two outputs). The inputs include entering air
temperature and humidity, entering and leaving water temperatures, fan-control signal, and
cooling-coil-valve-control signal. The outputs are the leaving air temperature and humidity. The
authors highlight the difficulties of using ANNs with real measured data, which include a need
for an exhaustive training data set and the inability of the ANNs to extrapolate values outside the
range of the training data. The proposed alternative is to use a simulation model to generate the
training data for the ANN. Using this alternative approach, the authors test the ability of the
ANN to detect two faults (air-side fouling and a sensor fault).

Dexter and Ngo (2001) outline a multi-step fuzzy model-based FDD approach to detecting
and diagnosing faults with AHUs. This approach involves classifying measured data with fuzzy
rules and comparing them to a set of fuzzy reference models for normal and faulty operations.
The fuzzy reference models for a specific system are developed from data that are generated
from simulations. Each rule is assigned a rule-confidence in the range from zero to one, where
zero indicates no confidence and one indicates complete confidence in the rule correctly describ-
ing the behavior. Rule-confidence values are estimated from the data. The authors state that this
method prevents false alarms because it accounts for major sources of uncertainty. The
multi-step approach is shown to be capable of detecting and isolating faults in a cooling coil
(leaking valves and fouling).

Kumar et al. (2001) propose a method based on an auto regressive exogenous model and a
recursive parameter estimation algorithm to detect faults with AHUs. They conclude that
changes in parameter estimates from real data cannot be directly used to detect faults; instead a
statistical analysis of the frequency response of the model parameters is needed to detect faults.

Salsbury and Diamond (2001) develop a simplified physical model-based approach to both
control and detect faults in AHUs. Results from a field test on a single AHU demonstrate the
fault detection capabilities but also highlight some of the practical implementation difficulties
including selection of model parameters, reliability of sensor signals, and difficulty in establish-
ing a baseline of “correct” operation of the AHU.
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Carling (2002) assesses the performance of three fault detection methods for AHUs: (1) qual-
itative model-based approach outlined in Glass et al. (1995), (2) rule-based approach outlined in
House et al. (2001), and (3) simplified steady-state model-based. The normal and “faulty” data
used for the assessment were collected from real systems for an offline analysis. The “faulty
data” were collected by introducing artificial faults in the AHU. The qualitative model was easy
to set up, generated few false alarms, but also detected fewer faults. The rule-based method
detected more faults but required some analysis and customization during setup. The third
method detected more faults but also generated more false alarms and took considerable time to
set up and customize. It also required installation of additional sensors.

Norford et al. (2002) present results from controlled field tests for detecting and diagnosing
faults in AHUs. These tests were part of an ASHRAE research project (RP-1020), which was to
demonstrate FDD methods for AHUs. The first FDD method used a first-principles model-based
approach, and the second one was based on semi-empirical polynomial correlations of subme-
tered electrical power with flow rates or process control signals generated from historical data.
Although data representing faulty operation were based on blind tests, the faults were selected
from a predefined set for an agreed set of conditions and magnitudes. The criteria used in the
evaluation of the two FDD methods were sensitivity, robustness, the number of sensors
required, and ease of implementation. 

Both methods were successful in detecting faults but had difficulty in diagnosing the actual
cause of the fault. The first principles-based method requires more sensors and more training
data and misdiagnosed more often than the semi-empirical method. 

CURRENT STATE FOR DIAGNOSTICS IN BUILDINGS
During the 1990s, significant growth occurred in research on the development of fault detec-

tion and diagnostic methods for HVAC&R systems. Still, very few commercial FDD products
exist today, and the ones that do are very specialized or not fully automated. There are several
reasons for lack of widespread availability and deployment of FDD systems: lack of demand by
the building operations and maintenance (O&M) community, possibly as a result of insufficient
information on the improvements possible from automated FDD, lack of adequate sensors
installed on building systems, reliable sensors being too costly, high perceived cost-to-benefit
ratio of deploying FDD systems with current sensor technologies, lack of acceptable bench-
marks to quantify the potential benefits from deploying FDD systems, lack of easy access to
real-time data unless FDD is built directly into building automation systems, and lack of infra-
structure to gather data from existing building automation systems (BASs) for add-on applica-
tions. 

Most papers reviewed for this study did not cover the evaluation and decision stages of a
generic O&M support system using FDD; yet to be useful in the field FDD must be embedded in
complete building management and decision support systems. Katipamula et al. (1999), Rossi
and Braun (1996), and Breuker and Braun (1998b) have addressed the evaluation aspect of the
O&M support system, and Katipamula et al. (2002) and Brambley and Katipamula (2003) pro-
posed a decision step for AHUs. Furthermore, many of the FDD methods have only been tested
in laboratory or special test environments (Castro et al. 2003). Some FDD tools have been tested
in the field (Katipamula et al. 2003; Castro et al. 2003; Braun et al. 2003). The detection sensi-
tivity of the methods and occurrence rates for false alarms have not been thoroughly investigated
in real buildings yet. Although the R&D reviewed is focused on methods for automating FDD,
most papers do not address the automation itself in sufficient detail. Efficiently and cost-effec-
tively creating the code that implements these methods represents an important aspect of creat-
ing usable tools based on these methods. 
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A significant number of papers address FDD methods based on process history. In most
cases, models based on process history are specific to the system from which the training data
are collected. In order to make these methods broadly applicable, the models need to be devel-
oped in factory settings for equipment model lines or automatically online in an as-installed set-
ting. Automation of the model development process is critical to controlling the costs of FDD
systems. Preliminary work on online modeling has been done by Reddy et al. (2001), but more
work is needed in this general area. 

Another major limitation of most FDD methods developed to date is that they work well
when a single dominant fault is present in a system, but if multiple faults occur simultaneously
or are present when FDD is done initially, many of the methods fail to properly detect or diag-
nose the causes of the faults. Braun et al. (2003) extended the previous work by Rossi and Braun
(1996) and Breuker and Braun (1998b) to diagnose multiple simultaneous faults. More work is
needed in development of methods that can reliably handle multiple faults.

FUTURE FOR AUTOMATED DIAGNOSTICS IN BUILDINGS
The application of automated FDD to building HVAC&R is still in its infancy. Key technical

problems still requiring solutions include:
• eliminating the need to handcraft FDD systems
• automating generation of FDD systems
• selecting the best FDD method for each type of HVAC&R application and the constraints

applicable to it
• developing the balance of system for operation and maintenance support tools—evaluation

and decision support
• development of prognostics to transform HVAC&R maintenance from corrective and preven-

tive to predictive condition-based maintenance
• lowering the cost of obtaining data for FDD and O&M support

To the extent that FDD requires handcrafting for each installation, costs will likely be prohib-
itive. Three generically different solutions for this problem exist: (1) deploy FDD in service
tools with databases sufficient to cover many equipment model lines, (2) deploy FDD as part of
on-board equipment control packages, and (3) develop methods for automatically generating
FDD tools. The first approach has already been introduced to the market in a hand tool for
air-conditioning service providers (Honeywell 2003). More tools of this type, embedding auto-
mated FDD, are likely to evolve. The second approach of embedding monitoring and safety con-
trols capabilities in on-board equipment control is already underway to some extent by
manufacturers of equipment and equipment control packages (such as chillers for safety reasons
but not for system performance). Capabilities deployed to date appear limited and details of
methods are difficult to obtain because of their proprietary nature, but FDD deployment is
beginning to emerge via this route. The third approach involving rapid generation, possibly in an
automated manner, requires further research not only into the methods for FDD but also for
automated code generation (in the fields of software development, adaptive systems, genetic
systems, etc.).

Additional R&D is needed in the field of FDD itself to further develop fundamental methods
for FDD, selection and specialization of methods to the constraints of the built environment
(e.g., pressure to keep costs low and a data-poor environment in buildings), application and test-
ing of FDD to the various systems, equipment, and components used in buildings, and develop-
ment and application of FDD for building systems of the future, which are likely to include
integration with on-site electricity generation, management of electric loads, real-time purchas-
ing of electricity, and other interactions with the electric power grid of the future, and transition
to new fuels (e.g., energy carriers such as hydrogen). All provide rich areas for research and
development that will improve the performance and efficiency of commercial and residential
buildings. 
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Prognostics are critical to transitioning building equipment maintenance as practiced today to
condition based so that it accounts for the expected remaining life of equipment and its perfor-
mance degradation over time. Only with this information can decisions be made regarding the
optimal scheduling of maintenance. The field of prognostics presents a rich area of investigation
and development for the HVAC&R research community. Little has been published to date on
prognostics for HVAC&R.

Beyond research into FDD methodologies and their application to building systems, the
HVAC&R field is faced with the opportunity to develop an entirely new class of tools and to
add them to building automation systems. FDD methods may provide a core capability for
enhanced operation and maintenance support systems of the future, but the balance of those sys-
tems must be developed. Packaging is critical to success in the market. Tools must be developed
that meet the needs and fit into the environment of building operators and maintenance service
providers and provide them value.

Probably the most constraining of all problems facing the application of FDD&P to
HVAC&R is the dearth of data. Relatively small numbers of sensors are generally installed in
building systems and the quality (accuracy, precision, and reliability) of the sensors that are
installed is inadequate for many uses. Sensors frequently fail or drift out of calibration and
remain that way for long periods of time until fortuitously discovered. Performance, cost, and
durability need to be addressed to promote better sensing in buildings.

With the development of low-cost reliable sensor technology (Kintner-Meyer and Brambley
2002; Kintner-Meyer et al. 2002), a major hurdle to commercial deployment of FDD systems
would be overcome. This would potentially speed the deployment of third party FDD tools and
integration of FDD into individual equipment controllers and building automation systems to
provide continuous monitoring, real-time fault detection and diagnostic information, and recom-
mendations for maintenance service and would lead to much improved maintenance of
HVAC&R systems. Ultimately, as networking infrastructure matures, the use of automated
FDD systems should enable a small support staff to operate, monitor, and maintain a large num-
ber of different systems from a remote, centralized location. Local FDD systems could commu-
nicate across a network to provide reports on the health of the equipment that they monitor.
Failures that lead to loss of comfort could be identified quickly before significant impacts on
comfort or equipment damage occurs. In many cases, degradation faults could be identified well
before they lead to loss of comfort or uneconomical operation, allowing more efficient schedul-
ing of (and lower costs for) maintenance service. 

At present, no fully automated FDD systems have been integrated into individual controllers
for commercial HVAC&R equipment. In general, larger equipment applications (e.g., chillers)
can absorb more add-on costs than smaller ones (e.g., rooftop units) and, therefore, automated
FDD will probably appear first in larger equipment.

Open communication standards for building automation systems are catching on, and use of
Internet and intranet technologies is pervasive. These developments enable FDD systems to be
deployed more readily. In addition, the structure of the industry that provides services for the
operations and maintenance of buildings is changing; companies are consolidating and offering
whole-building operations and maintenance packages. Furthermore, as utilities are deregulated,
they will begin to offer new services, including complete facility management. With complete
and distributed facility management, the cost-to-benefit of deploying FDD systems will improve
because the cost can be spread over a large number of buildings (Katipamula et al. 1999). To
benefit from these changes, facility managers, owners, operators, and energy service providers
are challenged to acquire or develop new capabilities and resources to better manage this infor-
mation and, in the end, their buildings and facilities. 
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Although the incentives for application of FDD systems for HVAC&R and other building
systems have never been greater, there still are several obstacles to their development and
deployment. Beyond research and development, there is a need to quantify the benefits, to estab-
lish benchmarks for acceptable costs, and to provide market information. Assessing and demon-
strating value for these technologies is an opportunity for public/private partnerships. Public
agencies can help reduce risk to facility owners and operators while promoting and accelerating
transition to a more efficient buildings sector by demonstrating the value of these technologies
and transforming the market to accelerate adoption where public benefits warrant. FDD&P
promises to help transform the buildings sector to a new level of energy and operational perfor-
mance and efficiency. 
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