Methods for Identifying Versioned and

Plagiarized Documents

Timothy C. Hoad and Justin Zobel

School of Computer Science and Information Technology, RMIT University GPO Box 2476V,
Melbourne 3001, Australia. E-mail: {hoad,jz}@cs.rmit.edu.au

The widespread use of on-line publishing of text pro-
motes storage of multiple versions of documents and
mirroring of documents in multiple locations, and greatly
simplifies the task of plagiarizing the work of others. We
evaluate two families of methods for searching a collec-
tion to find documents that are coderivative, that is, are
versions or plagiarisms of each other. The first, the rank-
ing family, uses information retrieval techniques; ex-
tending this family, we propose the identity measure,
which is specifically designed for identification of co-
derivative documents. The second, the fingerprinting
family, uses hashing to generate a compact document
description, which can then be compared to the finger-
prints of the documents in the collection. We introduce a
new method for evaluating the effectiveness of these
techniques, and demonstrate it in practice. Using exper-
iments on two collections, we demonstrate that the
identity measure and the best fingerprinting technique
are both able to accurately identify coderivative docu-
ments. However, for fingerprinting parameters must be
carefully chosen, and even so the identity measure is
clearly superior.

Introduction

The Internet is the largest public repository of informa-
tion ever created. Much of this information is published in
more than one location. For example, an internet search
using the phrase “Linux Documentation Project” results in
dozens of almost identical Web pages held at different
locations, copied from each other, and revised slightly. A
related issue is that many digital documents are dynamic,
continually changing and evolving. It is common practice to
keep multiple versions of documents at different stages of
development, so it can be necessary to determine whether
two documents are different versions of the same text or are
different texts altogether.

Received June 18, 2001; revised April 4, 2002; accepted June 3, 2002.

© 2003 Wiley Periodicals, Inc.

Another problem is plagiarism. Many documents that are
published on the Internet are copies or plagiarisms of other
documents. Because a plagiarism may not be identical to the
original document, using conventional search techniques it
can be difficult to distinguish plagiarized documents from
those that are simply on the same topic.

The aim of this research is to develop and evaluate
methods for identifing documents that originate from the
same source, which we call coderivatives. Existing tech-
niques that can be used to address these problems include
fingerprinting, a technique developed specifically for detect-
ing coderivatives (Brin, Davis, & Garcia-Molina, 1995;
Broder, Glassman, Manasse, & Zweig, 1997; Heintz, 1996;
Manber, 1994; Shivakumar & Garcia-Molina, 1995), and
ranking, a technique developed for information retrieval
(Witten, Moffat, & Bell, 1999; Zobel & Moffat, 1998).
String matching has been proposed for small collections
(Monostori, Zaslavsky, & Schmidt, 2000; Wise, 1993). In
this article we extend ranking by developing a new identity
measure, and explore variants of the fingerprinting method;
a contribution of this article is a synthesis of many variants
of fingerprinting into a common framework.

We evaluate and compare these techniques for detection
of coderivative documents using two document collections,
a small collection seeded with test documents, and a large
collection of documentation. We demonstrate that both the
identity measure and the anchor strategy (which is the best
of the fingerprinting techniques) are suitable for identifica-
tion of coderivatives and are both able to correctly identify
such documents, and greatly outperform the other tech-
niques. Even so, the identity measure is markedly superior
to the anchor strategy.

Underlying these results is the need for a way of com-
paring the effectiveness of coderivative detection tech-
niques. As our results show, the standard measures of ef-
fectiveness used in information retrieval, recall and pre-
cision, are not sufficient. We introduce two additional
measures, highest false match, and separation, and show in
practice how they discriminate between methods.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 54(3):203-215, 2003

Preliminaries

The aim of this research is to develop and evaluate
techniques for identifying plagiarisms, revisions, and dif-
ferent versions of documents. We consider two documents
to be coderivative if they both originated from the same
source, following a definition by Manber of plagiarism
(Manber, 1994). It is not required that the documents use the
same words, the same structure, or the same format for them
to be considered coderivative. For example, this document
is a coderivative of all previous versions, any subsequent
revisions, any substantial plagiarisms of this document, and
the same document in a different format such as a Web
page. It is not a coderivative of other documents on the same
subject or of previous articles in the same area. As another
example, in the Linux documents we discuss later, there are
many instances of documents that resemble each other due
to sharing of format and standardized information, but are
not coderivatives.

Although the reasons for creating coderivatives vary, in
our experience they share similar features. A student who
plagiarizes existing work when writing an essay will often
copy verbatim long blocks of text, then may (but often does
not) superficially edit the resulting document to make it look
original. Then the student may add further original text to
complete the work. An author revising a document will take
the original version, add blocks of new material and delete
obsolete material as required, and edit the remaining mate-
rial to remove errors. The effect is similar: long blocks of
text are largely preserved, but possibly with intermittent
modifications, and some original text is added.

There are several properties that can be used by a human
observer to determine whether two documents are coderiva-
tive. Words that are common to both documents are indic-
ative of coderivation, especially when those words are rare
or misspelled. Similarly, grammatical errors and unusual
usages of words, such as the incorrect use of “that” rather
than “which,” can be a good indication. In plagiarized
assignments, it is common to find that some errors or
atypical usages have been copied verbatim. Identical blocks
of words can also be a strong indicator, especially if the
blocks are of significant length, or contain unusual words.

Although it is possible that formatting may be used as an
indication of coderivation, it is our experience that it is
unlikely to be valuable. It is common practice in many
situations to use standard document formatting for unrelated
documents, for example office memos, Web pages, techni-
cal reports, and even some student assignments. For this
reason, in common with the previous investigations of this
problem, we concentrate on the use of textual content to
detect coderivation, rather than document formatting.

There are two separate problems of interest with regard
to detection of coderivatives (Brin et al., 1995). The first
involves comparison of every pair of documents in the
collection to detect sets that are coderivative, which we refer
to as the n-to-n problem. The second is the one-to-n prob-

lem, which involves the comparison of a single document—
the query document—to a collection to find its coderiva-
tives. We focus on the one-to-n problem, and, while the
algorithms used may be naively applied to the n-to-n prob-
lem, such an approach may not be the most efficient.

We investigate two approaches to the one-to-n problem.
One, ranking, is based on information retrieval methodolo-
gies. The other, fingerprinting, was developed specifically
for detection of coderivatives (Manber, 1994). The finger-
printing and ranking methods are very different, but have
elements in common, in particular, preprocessing of docu-
ments prior to indexing. One of the simplest problems is that
of query terms having different case to the terms in a
document (Witten et al., 1999). Generally, it is sufficient for
two strings to have the same characters in the same order for
us to consider them the same word; case-folding is therefore
used in all the experiments reported in this article.

Other preprocessing elements are stopping, stemming,
and term parsing. Languages such as English make use of
closed-class words—for example, “the,” “of,” and “may”—
that indicate the structure of a sentence and the relationships
between the concepts presented, but do not have any mean-
ing on their own. For the purpose of approximate querying,
these stopwords can usually be ignored (Witten et al., 1999),
and are typically removed from queries. The advantage of
doing so is that the query processing time can be dramati-
cally reduced, without any noticeable degradation in the
quality of the results returned (Witten et al., 1999). These
stopwords, however, may be a useful indicator of coderiva-
tion. It is plausible that they occur in similar frequencies in
documents that are copied. It is also possible that they add
little value, and can be removed without repercussion.

Many words in the English language have multiple vari-
ant forms, distinguished by suffix, but, in the context of
querying, the form of a word is often unimportant. The
suffixes from variant forms can be removed by stemming.
Use of stemming can have several effects. The size of an
inverted index will be slightly smaller, but query times may
be increased marginally (Witten et al., 1999). For ad hoc
queries, stemming can improve recall, but it is not obvious
what the effect is likely to be on detection of coderivatives.
The effect of stemming and stopping is measured in our
experiments.

All the techniques in this article rely on the parsing of the
documents into words or terms. This is a relatively simple
process, but the question of what is considered to be a word
must be addressed. For this article, a word is considered to
be any string of alphanumeric characters. Words can be
separated by punctuation, white space, or control characters
(Broder et al., 1997; Heintze, 1996; Witten et al., 1999). For
ad hoc querying, it is also necessary to remove document
markup such as HTML tags, as we do in our experiments;
however, whether such markup can be of use for detection
of coderivatives is an open question.

204 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003

Ranking

The ranking techniques we use are derived from infor-
mation retrieval. Ranking is used to find approximate
matches to queries on text databases, and is widely used in
Internet search engines and other text retrieval systems
(Witten et al., 1999). It is a two-stage process. In the first
stage, the collection is indexed (Witten et al., 1999). The
second stage of the ranking process is when a query is
presented to the collection. The query is used to drive
computation of a similarity score for each document stored
in the collection, using a function known as a similarity
measure (Witten et al., 1999). The documents are sorted by
decreasing score, and the top-ranked documents are re-
turned to the user. This technique does not give a “yes or
no” answer to the question of whether the documents are
relevant to the user’s need, but orders them by estimated
likelihood of relevance. Sanderson (1997) used a form of
this technique to identify identical documents, but does not
provide any technical information.

The information required to evaluate the query depends
on the similarity measure being used. By altering the sim-
ilarity measure, the effectiveness of the ranking engine can
be drastically altered. The following notation and statistics
are used in the similarity measures we test. N—the number
of documents in the collection; n—the number of distinct
terms in the collection; f,—the number of documents con-
taining term ¢; f,; —the number of occurrences of term ¢ in
document d; f,—the number of terms in document d;
W ,—the weight (or length) of document d; D—the docu-
ment collection; g—the query document; d—a document in
collection D.

Two families of similarity measures were implemented
for this article: standard measures—including the inner
product, a normalized inner product, and the cosine mea-
sure—and our identity measures, described in the next sec-
tion.

Inner Product

The inner product similarity measure is one of the sim-
plest practical similarity measures (Witten et al., 1999). It is
a product of two components—the term frequency and the
term weight—and is calculated for each term that appears in
both the query and the document. The term frequency is an
expression representing the importance of each term in the
document, calculated as 1 + log, f,; ;. The term weight is an
expression of the overall importance of the term, calculated
as log,(1 + N/f,). The inner product is calculated by:

> 1+ IOgEfd,,)-10g6<l +j(v)

t€qNd

The inner product gives high weight to documents in which
the query terms appear a large number of times. The side

effect of this is that longer documents tend to be more
highly ranked (Witten et al., 1999). The advantage of the
inner product measure is its speed of computation. The inner
product similarity measure is not expected to perform well
in detecting coderivatives due to the fact that it favors long
documents, but is an interesting baseline.

Normalized Inner Product

The normalized inner product is intended to address the
problem of long documents being favored by the standard
inner product measure (Witten et al., 1999). The inner
product is initially calculated as above, but the similarity is
normalized after the query terms have been processed, by
dividing the similarity score by the square root of the
document length. The complete expression is

: > (1 +logfﬁf,,>-logf(1+;v)

I
\‘/-fd t€qnd

The normalized inner product measure is still sensitive to
variation in document length, however, and can favor short
documents (Witten et al., 1999).

Cosine Measure

The cosine similarity measure is used widely in infor-
mation retrieval applications for processing ad hoc queries.
The core of the cosine measure is the inner product, which
computes the product of vectors representing the query and
document. Document and query lengths are calculated as

W, = 2
T 2wy
ted

for document or query x, and are used to normalize the inner
product. The query weight W, is constant, and can therefore
be omitted, and thus the cosine measure can be represented
as (Witten et al., 1999):

1 N
cos 6 = W > a+ log, f1.) -loge<1 +)

d tEqNd f;

Although this measure is known to be effective when
searching for documents using short ad hoc queries, it is not
designed for detecting coderivatives. In particular, the co-
sine measure is intended to compensate for differences in
length, but in detection of coderivatives the absolute lengths
of query document and stored document are of importance.
We developed the identity measure specifically to address
this issue.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003 205

Identity Measures

The similarity measures described above are intended for
ad hoc querying. Our aim in developing the identity mea-
sure was to produce a similarity measure that is effective at
comparing pairs of full-length documents for coderivation.
The design of the identity measure is based on the intuition
that similar documents should contain similar numbers of
occurrences of words. Therefore, pairs of documents with
this property are given a high similarity rating, while dif-
ferences in the number of occurrences are penalized.

We have explored several variations of the identity mea-
sure. All are based on the principles of document matching
exemplified in the cosine measure, and all share the same
asymptotic complexity as the cosine measure. The complex-
ity is linear in the number of search terms 7 and number of
documents d, that is, O(td). Ranked queries can be evalu-
ated extremely rapidly even on very large collections, as is
amply demonstrated by search engines such as Google.
Because evaluation time is not substantially affected by the
form of the similarity measure (Zobel and Moffat, 1998), it
is possible to apply the similarity measures described here
to very large collections while maintaining a satisfactory
execution time.

Variation 1. The first variation makes use of the term
weight, the difference between the term frequencies in
query and document, and the document lengths. The term
weight, w,, is an expression of the importance of a term.
Generally, the more frequent a term is in the collection, the
less useful it is as a discriminator; hence, the expression of
the term weight used in the inner product and the cosine
measure.

For measuring likelihood of coderivation, however, a
further valuable discriminator is the difference in term fre-
quencies: for many terms ¢ in coderived documents, [fd,,
- fq,t| should be small. Likewise, coderivatives should be
of similar length, so the value |f, — f,| should also be small.
The complete measure is:

| (N
1 "gff,)
T2

1+ lfd _fq reqnd + Ifd,r _fq,t|

Variation 2. The first variation uses the inverse of the
difference in document lengths as a discriminator. This has
the potential to make the measure too sensitive to differ-
ences in document lengths. For example, consider a pair of
documents of 1,000 and 1,005 words in length. The lengths
of these documents differ by only 0.5%, but the document
length discriminator above would cause the similarity score
for these two documents to differ by a factor of 5. To
overcome this, the document length discriminator can be
tempered by taking the log of the difference. The rest of the

similarity measure is the same as Variation 1, and the
complete formulation is:

N
| E loge<1 +f,>
1+ log (1 +|f; — £, ot foe = Fol

Egn

Variation 3. By multiplying the term weight by the sum of
the frequency of the term in the document and the frequency
of the term in the query, a higher rank is given to documents
in which the term is rare in the collection but common in the
query or the document.

N
1+ log,(1 +[f, — £,]) U+ 1fy, = 1

teEqnNd

Variation 4. This variation is a slight alteration to variation
2, used to assess the impact of changing the term weight

discriminator.
og,| =
1 ey,

T los 0 T - f) 2 T 1l

Egnd

Variation 5. Rather than using the log of the term weight,
as in all of the previous variations, in this variation the
emphasis on the term weight is increased, by simply using
NIf,. This means that rare terms have a much larger weight
than common terms.

1)

T e (U F = f) 2 T+~ fil

Egqn

Fingerprinting

Another approach to detection of similar documents is a
technique known as fingerprinting, based on the work of
Manber (1994) and subsequent work by Garcia-Molina and
Shivakumar (1995). Rather than using term occurrences and
frequency information, fingerprinting aims to produce a
compact description, or fingerprint, for each document in
the collection (Broder et al., 1997; Manber, 1994). The
fingerprint represents the content of the document, and, by
comparing these fingerprints, it is possible to determine the
likelihood that the documents are (in our terminology) co-
derivatives (Manber, 1994).

A document fingerprint is a collection of integers that
represent some key content of the document. Each of these

206 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003

integers is referred to as a minutia. Typically, a fingerprint
is generated by selecting substrings from the text and ap-
plying a mathematical function to each selected substring.
This function, similar to a hashing function (Brin et al.,
1995; Manber, 1994), produces one minutia. The minutiae
are then stored in an index for quick access when querying.

When a query document is compared to the collection,
the fingerprint for the query is generated. For each minutia
in the fingerprint, the index is queried, and a list of matching
fingerprints is retrieved. The number of minutiae in com-
mon between the query fingerprint and each fingerprint in
the collection determines the score of the corresponding
document (Broder et al., 1997; Heintze, 1996; Shivakumar
& Garcia-Molina, 1998).

The complexity of the query process is linear in the
number of documents d and the number of minutiae, m.
Depending on the strategy used to select the substrings in
the document, the number of minutiae can either be con-
stant, in which case the query complexity is O(d), or it can
be proportional to the size of the document (mat). In this
case, the asymptotic complexity is the same as that in a
ranked query evaluation, O(td).

In designing a fingerprinting process, there are four areas
that need consideration. The first is the function used to
generate a minutia from a substring in the document. The
second is the size of the substrings that are extracted from
the document (the granularity). The third is the number of
minutiae used to build a document fingerprint (the resolu-
tion). Fourth is the choice of the algorithm used to select
substrings from the document (the selection strategy). There
have been several proposed methods for fingerprinting,
based on variation in these four design parameters. These
are discussed below. We now discuss the four parameters.

Fingerprint Generation

The process used to convert a string to an integer (a
minutia) can have a significant impact on the effectiveness
of the fingerprinting method. To ensure that fingerprinting is
fast and accurate, the fingerprint generation process must
display several key properties. It needs to be reproducible
(Manber, 1994); every time a given string is processed, the
resulting integer must be the same. The fingerprint genera-
tion function should produce as close as possible to a
uniform distribution of integers (Heintze, 1996). The minu-
tiae produced lie between two bounds— generally 0 and an
arbitrarily high number such as 2°2. With any fingerprint
generation function or hashing function where the set of
possible strings is unknown, it is inevitable that some pairs
of different strings share the same integer representation,
but a uniform distribution ensures that the probability of two
different phrases sharing the same integer representation is
as low as theoretically possible. Also, the function selected
must be fast: when processing the collection to create the
index, and when querying the collection, a large number of
minutiae must be generated.

Any hashing function satisfies the first of these criteria,
and many satisfy the first two, but few satisfy all of them
(Ramakrishna & Zobel, 1997). Unlike many functions that
use multiplication extensively, the following algorithm is
efficient as well as reproducible and acceptably uniform
(Ramakrishna & Zobel, 1997).

Consider a string, coc; ... ¢, and a function, A(c,),
which converts a character, c¢;, to an integer (by taking its
ASCII value). For each character c; in the string,

h(c) = h(c;-)) @ (Alc) + hlc;y) <6+ h(c;y) >2)
ey

where < and > represent left and right shift respectively.
Then, if the maximum hash value is m, the hash value for
the string is given by

h(string) = h(c,)modm 2)

This is the function that was used for minutiae generation
throughout this article.

Fingerprint Granularity

The size of the substring used to generate a minutia is
known as the fingerprint granularity. This variable can have
a significant impact of the accuracy of fingerprinting (Shi-
vakumar & Garcia-Molina, 1998). There are many ways
that the granularity can be specified, but the difference is
conceptual rather than practical. It is possible to specify the
granularity by the number of characters in the string (Man-
ber, 1994), or the number of sentences (Shivakumar &
Garcia-Molina, 1995), but it is arguably easier to concep-
tualize as the number of words in the string (Heintze, 1996);
the notation used in this article.

By selecting a fine granularity, the fingerprint becomes
more susceptible to false matches, but if the granularity
selected is too coarse, the fingerprinting becomes too sen-
sitive to change (Heintze, 1996; Shivakumar & Garcia-
Molina, 1995). Consider a coarse granularity of 100 words.
The number of distinct 100-word phrases is much larger
than the number of distinct minutiae (which are generally
stored as 32-bit integers). If we compare two documents that
have a minutia in common, then we must assume that these
documents share the same 100-word phrase, but many 100-
word phrases map to the same minutia. As the granularity
becomes larger, the likelihood that two documents sharing a
minutia actually share the same phrase becomes smaller.
With a coarse granularity, a large proportion of matches
happen by chance.

By contrast, if we consider a granularity of one word and
two documents that share a minutia, it is probable that these
documents do actually share the substring used to generate
the minutia. However, this substring is likely to be relatively
common, so the fact that the documents share this substring

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003 207

is not strongly indicative. In our experiments we explore
granularity.

Fingerprint Resolution

The fingerprint size, or resolution, is the number of
minutiae used to represent the document. Conceptually, the
more information that we store about a pair of documents,
the easier it should be to make a decision as to whether they
are coderivatives. However, the processing required to eval-
uate the query, and the space required to store the index,
increase proportionally with the fingerprint resolution.

The fingerprint resolution may be fixed or variable. It
may, for example, be determined by the size of the docu-
ment (Heintze, 1996). There is no algorithmic limitation
that dictates that each document must have the same reso-
lution or that the resolution of the query fingerprint must
match those in the collection. A variable resolution, how-
ever, may result in longer documents being favored during
querying: a longer document may have more minutiae, and
so may match more queries.

Substring Selection Strategy

With the question of fingerprint resolution comes the
question of the substring selection strategy. If r minutiae are
to be produced, then r substrings must be selected from the
document to be passed to the fingerprint generation function
(Heintze, 1996). There are many ways that these substrings
could be selected. Some of these strategies are suited to
variable fingerprint resolution, and some to fixed resolution.
The choice of a selection strategy can have a dramatic effect
on both the accuracy and efficiency of the fingerprinting
process (Shivakumar & Garcia-Molina, 1996).

There are four classes of selection strategies considered
here: full fingerprinting, positional strategies, frequency-
based strategies, and structure-based strategies.

Full fingerprinting. In what is perhaps the simplest selec-
tion strategy, every substring of size g in the document is
selected (where g is the fingerprint granularity). This strat-
egy produces the largest possible fingerprint resolution for
the document—every minutia is included. Although this is
expensive for the fingerprints for stored documents, it is a
valid option for the query, because only one fingerprint must
be produced for the query, and this fingerprint does not need
to be stored permanently. Because it uses every substring of
the document, full fingerprinting could be expected to be a
best-case for effectiveness.

Positional selection. This is a class of simple strategies that
select phrases based on the offset from the beginning of the
document.

Random substring selection is not expected to be an
effective selection strategy—in fact, it is expected to be a

worst case. It is suited to fixed resolution fingerprinting. A
fixed number of substrings are selected at random from the
document.

All-substrings selection is similar to full fingerprinting,
but does not select overlapping substrings. Rather, it selects
all non-overlapping substrings of size g from the document.
For example, if the granularity is 3, this strategy selects the
3-word phrases that begin at position 0, 3, 6, 9, ..., f,.
This strategy is suited to variable resolution.

First-r selection is suited to a fixed resolution. This
strategy selects the first » nonoverlapping substrings of
length g from the document, where r is the resolution and g
is the granularity. For example, if the granularity is 3, this
strategy selects the 3-word phrases that begin at position 0,
3,6,9,..., 3r.

First-r-sliding selection is similar to the first-r strategy,
with the difference that it is based on overlapping phrases.
For example, if the granularity is 3, this strategy selects the
3-word phrases that begin at position 0, 1, 2, 3, ..., r.

Frequency-based strategies. These select phrases based on
their frequency. The intuition is that phrases that are less
common are more effective discriminators when comparing
documents for similarity.

Rarest-in-document selection chooses the substrings that
produce the rarest minutiae in the document. This means
that all of the minutiae must be calculated and sorted ac-
cording to the frequency in the document, then the rarest r
of them selected. This strategy suffers from the problem that
many of the minutiae will appear only once in any one
document, resulting in only the most common substrings
being eliminated; the selection would then fall to the first r
substrings that are not repeated in the document. We have
not tested this strategy.

Rarest-in-collection selection requires generation of all
the minutiae for all documents. They are then sorted ac-
cording to the frequency of the minutia in the collection,
rather than the frequency in the document. The rarest r
minutiae are selected. This strategy is intended to reduce the
number of coincidental matches caused by the matching of
common phrases. We have not tested this strategy.

Rarest prefix selection begins by finding all distinct p-
character strings that form the start of a word. For each of
these strings, the number of occurrences in the document is
counted. The r substrings beginning with the rarest prefixes
in the document are selected. This approach is suited to a
fixed fingerprint resolution.

Structure-based strategies. These strategies use the struc-
ture of the document. This allows detection of coderivatives
after changes in word positions that can affect the positional
strategies, and changes in word or minutia frequencies that
can affect the frequency-based strategies.

Anchor selection works by locating specific, predefined
strings, or anchors, in the text of the document. The anchors

208 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003

are chosen to be common enough that there is at least one in
almost every document, but not so common that the finger-
print becomes very large (Manber, 1994). Thirty-five two-
character anchors were used for the results in this article.
They were selected at random, but extremely common
strings such as “th” and “it” were rejected. The anchor
strategy is suited to variable resolution.

Kth-in-sentence selection chooses phrases beginning at
the Kth word in each sentence. This strategy is suitable for
either fixed or variable fingerprint resolution.

Kth-sentence selection chooses phrases beginning at the
start of every Kth sentence in the document. It can be used
for both fixed and variable fingerprint resolution.

Kth-in-paragraph selection chooses phrases beginning at
the Kth word of each paragraph in the document. It can be
used for either fixed or variable resolution.

Previous Work on Fingerprinting

Manber (1994) applied the fingerprinting approach to the
n-to-n problem using a fixed resolution fingerprint for the
index to the collection, and full fingerprinting for the query
document. Manber achieved impressive results in a collec-
tion of over 20,000 “readme” documents, identifying 3,620
groups of identical files and 2,810 groups of similar files.
Manber also proposed, but did not test, the anchor selection
strategy.

Manber’s work was followed up by Brin, Davis, and
Garcia-Molina (1995). A system called COPS was devel-
oped, using three selection strategies, all of which produce
variable-resolution fingerprints. Full fingerprinting was
tested, as well as the all-phrases strategy, both of which
used a granularity of one sentence. Another strategy, hashed
breakpoints, was also tested. This method extends the
phrase if the hash value is equal to a multiple of a constant,
k. This approach produced promising results, with correct
documents scoring an average of 52.9 * 25.16% similarity
in their experiments, and incorrect results scoring below
3%.

Garcia-Molina and Shivakumar (1995) continued this
research with SCAM, which used a granularity of one word,
as opposed to the sentence-based granularity used in the
COPS system. This, in effect, appears to be a simple form
of inner product. SCAM used a variable resolution finger-
print; it is not clear what selection strategy was employed.
This approach showed some improvement over the COPS
system. In later work, they focused on the performance of
various approaches to fingerprinting (Shivakumar & Garcia-
Molina, 1996) and the problem of scaling up to multigiga-
byte databases (Shivakumar & Garcia-Molina, 1996).

Both SCAM and COPS differ from our work and that of
Heintze (Heintze, 1996), in that they stored not only the
hash value for the phrases selected, but the actual phrases as
well. This allowed reduction in hashing collisions, but re-
quired nearly 100 times the storage space. Heintze took the
approach of storing just the hash value (Heintz, 1996), using

full fingerprinting as well as the random strategy with a
fixed resolution. He also used the rarest prefix strategy, and
another selection strategy, which produces fixed resolution
fingerprints by selecting phrases producing the lowest hash
values. His experiments used a resolution of 100 for the
index and 1,000 for the query.

Broder et al. (1997) used full fingerprinting with a gran-
ularity of 10 words, and tested on a collection of 150 Gb.
This produced impressive results, but it is not clear how
these results were obtained. It is apparent from the results
that the figures quoted are estimates.

Chowdhury, Frieder, Grossman, and McCabe (2002) ex-
tended this work by intelligent preprocessing of the data.
Their system, called I-Match, filters out terms based on
inverse document frequency. The most common terms and
the rarest terms are both removed. A key advantage of the
ranking method is that it weights the importance of docu-
ment terms according to the frequency. I-Match provides a
method to apply this to fingerprinting. Their technique was
successful, but focussed on detecting near-exact copies. As
each document is represented by only one hash value, the
method would be unable to locate the kinds of coderivatives
we have identified in our test collections. Whether removal
of terms is of value to other coderivative matching methods
is a topic for further research.

The performance of some of these methods are discussed
in the context of our experimental results. We are not aware
of previous work on use of ranking techniques for detecting
coderivatives, or of previous work comparing a large range
of coderivative detection techniques.

Measuring Effectiveness

The similarity methods described above assign a score to
each document in a collection and thus a ranking of the
documents. Using human assessments of whether docu-
ments are coderivatives, it is possible to measure the effec-
tiveness of different similarity methods. However, it is not
always satisfactory to have a list of documents in order of
similarity to the query. It can be preferable to have an
indication of the degree of similarity on an absolute scale
(Brin et al., 1995; Shivakumar & Garcia-Molina, 1995).
This objective is achievable for the task of detecting co-
derivatives.

In standard querying, a query is typically a short list of
words, of the same topic (hopefully) as a relevant document
but not otherwise similar to it. For coderivatives, however,
there can be no document more pertinent to a query than the
query document itself. When searching for coderivatives, no
document should be ranked more highly than one that is
identical to the query. We refer to a similarity measure for
which this property holds as ideal.

If the query document is scored against itself prior to the
query being executed, the score given to the query by an
ideal similarity measure is guaranteed to be the highest
possible score for that query in the given collection. If the

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003 209

score for each document is divided by this highest possible
score, these are normalized to a value between 0 and 1,
which can be multiplied by 100 to give a percentage. This
is an indicator that is simple for a human operator to
understand and provides an absolute similarity score. An
absolute similarity score is not possible with ordinary
ranking.

For estimating system performance, recall and precision
are widely used as metrics for information retrieval systems
(Witten et al., 1999). Precision is the proportion of the
returned documents that are correct answers; recall is the
proportion of the correct answers that are returned. Both of
these metrics can be calculated after any number of docu-
ments retrieved. We measured the precision after s docu-
ments retrieved, where s is the number of correct matches
for the query (known as R-precision or missed-at equiva-
lence). We measured the recall after 20 documents re-
trieved, or, when less than 20 documents were returned, we
measured the recall after all the documents were retrieved.

These metrics are useful for measuring the effectiveness
of standard information retrieval systems (Zobel, 1999);
however, they are not well-suited to this task. Many of the
methods used rank all of the correct documents ahead of all
other documents. If we consider a query ¢, to which there
are s similar documents in the collection and we measure
precision and recall after s results, both the precision and
recall are 1.00.

A better metric is the combination of highest false match
and separation, both of which require an absolute score for
returned documents. The highest false match (HFM) is the
highest percentage given to an incorrect result. A low score
is desirable for HFM. The separation is the difference be-
tween the lowest correct result and the HFM. This score
gives a measurement of how much distinguishes a correct
result from an incorrect one, and is only meaningful if all
the correct documents have been identified, that is, if pre-
cision and recall are both 1.0.

Both the HFM and separation are useful indicators of
query effectiveness, but they need to be considered together.
A high HFM is acceptable if the separation is high. Simi-
larly, low separation is acceptable if the HFM is also low.
The ratio of HFM to separation provides a useful indicator
of overall effectiveness.

Figure 1 is an example of the output of a query on the
XML data (described below). The first row shows the query
number. The following 20 rows show the results of the
query in descending order of similarity. The first result is
document 1. It has a similarity score of 53.57, or, as a
percentage in the final column, 100.00%; it is a copy of the
query document. The correct results for this query are
documents 1-10. None of the first s results are incorrect, so
this query achieved a precision at s results of 1.0. The 20
results shown list all of the 10 correct results, so the recall
at 20 is also 1.0. The first document on the list that is not a
correct result is document 3,064, which scored a similarity
of 11.86, or 22.14%. Hence, the HFM is 22.14%. The

Evaluating query 1

Document 1 Similarity 53.57 (100.00%)
Document 5 Similarity 53.04 99.01%)
Document 3 Similarity 45.96 85.79%)
Document 6 Similarity 44.95 83.91%)
Document 8 Similarity 44.37 82.82%)
Document 4 Similarity 43.12 80.49%)
Document 10 Similarity 41.21 76.93%)
Document 2 Similarity 36.01 67.22%)
Document 7 Similarity 35.93 67.07%)
Document 9 Similarity 21.93 40.93%)
Document

(
(
(
(
(
(
(
(
(
(
3064 Similarity 11.86 (22.14%)
Document 520 Similarity 11.06 (20.64%)
(
(
(
(
(
(
(
(

Document 1298 Similarity 10.75 20.07%)
Document 509 Similarity 10.67 19.91%)
Document 2892 Similarity 10.12 18.89%)
Document 1578 Similarity 9.86 18.41%)
Document 3272 Similarity 9.54 17.80%)
Document 1721 Similarity 9.48 17.70%)
Document 30 Similarity 9.31 17.37%)
Document 494 Similarity 9.26 17.29%)

FIG. 1. Example ranking, illustrating HFM and separation.

difference between this and the lowest correct match (doc-
ument 9) is the separation, in this case 18.79%. Dividing the
separation by the HFM, we get the ratio, which in this case
is 0.85.

Experiments

Test Data

Two document collections were used to evaluate the
algorithms described above. The first, XML data, was a
collection of 3,300 documents seeded with 10 documents
that were known to be similar, all modifications of a single
original document. Each was produced by a different author
and has significant differences, but, when compared, it is
clear that they were derived from the same source. The
remainder of the documents in this collection are articles
from the Internet, extracted from the TREC Web data (Har-
man, 1995). The queries used for this collection were the 10
documents. Both the query documents and the documents in
the collection were reduced to strings of words with all
formatting information removed.

The second collection, Linux data, was a larger collec-
tion known to contain multiple versions of many docu-
ments. It consists of over 80,000 documents totalling 462
megabytes, drawn from RedHat Linux distributions. Docu-
mentation in PostScript, troff, HTML, and info formats
were extracted from 11 versions of RedHat Linux and were
preprocessed to convert them to plain text; documents of
less than 50 words were discarded. The 53 queries were
chosen for their variation in size, content, document format,

210 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003

TABLE 1.

Results of ranked queries on XML data using traditional similarity measures.

Precision(s) Recall(20) HFM Sep. Sep./HFM
Inner product 0.39 0.73 98.82% —34.43% —-0.35
Normalised i.p. 1.00 1.00 21.61% 46.68% 2.16
Cosine measure 1.00 1.00 18.96% 48.57% 2.56

All results are averages over 10 queries.

and release date. By manual inspection, correct matches
were identified for each of these queries. As with the XML
collection, all formatting information was removed from
both the documents in the collection, as well as the query
documents.

XML Experiments

Our initial experiments were on the XML data. Due to
the small size of this collection and the fact that the correct
results are clearly identified, this collection was used for
much of the initial experimentation and for development of
the methods, but it is artificial.

Table 1 shows the outcome of queries on the XML data
using traditional ranking methods: the inner product, nor-
malized inner product, and cosine similarity measures. The
first column shows the method used. The second shows the
precision, measured after s query results. For all of the
queries in the XML collection, s is equal to 10. The third
column shows the recall achieved for the query, measured at
20 documents retrieved. The fourth column shows the
HFM, the fifth shows separation between the HFM and the
lowest correct match, and the last shows the ratio between
the separation and HFM.

The results for the inner product similarity measure are
uninspiring. On average, the inner product achieved a pre-
cision of only 0.39, meaning that only 39% of the first 10
matches were correct. The recall value of 0.73 shows that on
average only 7 to 8 of the 10 correct matches were identified
in the top 20 results. For each query, separation is negative
if the highest false match is above the lowest correct match,
and thus may be negative overall.

For the normalized inner product and the cosine measure,
the precision and recall for all queries is 1.00. This means
that the 10 correct documents were ranked highest, demon-
strating a dramatic improvement due to normalizing for
length. The HFM and separation for both measures were
surprisingly good. The separation score shows that not only
do these measures rank the correct documents first, but they
are clearly differentiated from the incorrect documents.

Table 2 shows the results for the XML data using the
variants of the identity measure. Variation 1 of the identity
measure was disappointing, much inferior to the results
shown by the traditional similarity measures. Analysis of
the documents that were ranked highly shows that they are
close in length to the query, suggesting that this variation is

too sensitive to changes in document length. For variation 2,
which uses the log of the difference in document length as
a discriminator, results are much more encouraging, but still
poor compared to the standard similarity measures. Varia-
tion 3 is less effective, suggesting that the use of the sum of
term frequencies is not effective as a discriminator. Varia-
tion 4 finds all but one of the correct documents first, and is
close in performance to variation 2, suggesting that the use
of log(N/f,) rather than log(1 + N/f,) for the term weight
discriminator does not have a significant impact on effec-
tiveness.

Variation 5 is much the most effective. The HFM is
below 12%—easily the best of any of the similarity mea-
sures tested so far—and there is high separation—nearly
25%. However, the separation-to-HFM ratio is lower than
for cosine.

The final experiment using ranking on the XML data set
was designed to ascertain the effect of stopping and stem-
ming on similar document detection, with variation 5 of the
identity measure. Results are shown in Table 3. This exper-
iment shows an unexpected result. For querying via a search
engine, stemming generally increases the effectiveness of
query evaluation, while stopping generally only effects the
efficiency (Witten et al., 1999). These results, however,
show a different result in the context of similar document
detection.

The first line, where there is no stopping or stemming,
shows a significant improvement over the earlier results,
where stopping and stemming were both used, repeated for
convenience in the last line. Just stopping, without stem-
ming, gives even better results; overall, it is clear that
stemming degrades performance, while stopping improves
it. It is evident that word suffixes hold information that is
useful in finding coderivatives, while stopping reduced the
incidence of false matches caused by similar frequencies of
common words.

TABLE 2. Results of ranked queries on the XML data using variations of
the identity measure.

Precision(s) Recall(20) HFM Sep. Sep./HFM
Var. 1 0.47 0.64 4.34% n/a n/a
Var. 2 0.99 1.00 21.19% 14.25% 0.67
Var. 3 0.97 0.99 18.46% 6.70% 0.36
Var. 4 0.99 1.00 20.62% 14.88% 0.72
Var. 5 1.00 1.00 11.16% 24.64% 2.21

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003 211

TABLE 3. The effect of stopping and stemming on the effectiveness of ranked queries on the XML data, based on variation 5 of the identity measure.

Precision(s) Recall(20) HFM Sep. Sep./HFM
Original data 1.00 1.00 8.74% 29.44% 3.37
Stopped 1.00 1.00 8.09% 30.07% 3.72
Stemmed 1.00 1.00 11.95% 24.75% 2.07
Stopped and stemmed 1.00 1.00 11.16% 24.64% 2.21

We found that fingerprinting can also be successful in
identifying similar documents. The first experiments with
fingerprinting were designed to evaluate the selection strat-
egies described above. All of the queries in these experi-
ments have been evaluated using a fingerprint granularity of
three words. The fixed resolution selection strategies used
15 minutiae. Table 4 shows the results.

Full fingerprinting listed the correct documents first for
most of the queries. The HFM averaged just over 33%, but
the separation was almost zero. We had expected that full
fingerprinting would be the most accurate of the fingerprint-
ing methods, but this was not the case. This may be due to
the many false matches that are introduced as the resolution
of the fingerprint increases.

The next strategies, all substrings and first-r, were not
inspiring. Because the phrases that they select do not over-
lap, these two strategies are both very sensitive to word
insertions and deletions. For example, consider the docu-
ment “ABCDEF,” where each letter represents a word. With
a granularity of 3, the all-substrings strategy would select
phrases beginning at A and D. Consider another document
“XABCDEF,” from which the phrases beginning at X, C,
and F would be selected. Despite the fact that these two
documents are almost identical, the all-substrings strategy
would not select any common phrases.

The last line of the second block of Table 4 shows results
for the first-r sliding strategy. This strategy is not as sensi-
tive to insertions and deletions as the previous two, as is
reflected in the better results: this is the only method that
produced no false matches at all for any of the queries. This
is a remarkable result, but a careful inspection of the correct

documents reveals that they are all very similar at the
beginning—all have the same heading, for example. If the
same documents were used with different headings, this
result would not occur.

Only one frequency-based strategy was explored in this
article, the rarest-prefix strategy, which we expected to
perform well. However, on average, this strategy listed less
than four of the correct documents in the top 10. This
strategy may be poor because insertion and deletion of
words can significantly alter the frequency of the prefixes,
meaning that different phrases are selected. The situation
may also arise when there are a large number of prefixes
that occur only once in the document. If this happens, then
the selection strategy becomes little better than random
selection. This result contrasts with the results obtained by
Heintze (1996), who achieved much better results with this
strategy, but the reason for this discrepancy is unclear.

The final group of selection strategies are structure-
based. The results for the anchor strategy are very good, and
the Kth-in-sentence strategy was also effective. These re-
sults are based on K = 5, meaning that phrases starting at
the fifth word of each sentence were selected. The two last
strategies did not work as well. For the Kth-sentence strat-
egy, only a small number of minutiae were produced, as
phrases were selected only at every fifth sentence; a docu-
ment of 20 sentences would produce only four minutiae.
Also, as for the “all substrings” and “first-r” strategies, this
strategy is also sensitive to alignment problems caused by
insertion and deletion. The results for the final strategy,
Kth-in-paragraph, are with K = 15. These results are also
somewhat disappointing, perhaps due to alignment prob-

TABLE 4. Results of queries on XML data using fingerprints generated with granularity of 3.

Precision(s) Recall(20) HFM Sep. Sep./HFM

Full fingerprinting 0.94 0.99 33.80% 0.26% 0.01
Positional selection

All substrings 0.73 091 15.72% —5.38% —0.34

First-r 0.73 0.76 6.67% n/a n/a

First-r-sliding 1.00 1.00 0.00% 20.00% n/a
Frequency-based selection

Rarest prefix 0.32 0.40 6.72% n/a 2.78
Structure-based selection

Anchor strategy 1.00 1.00 16.60% 13.36% 0.80

Kth in sentence 0.97 0.98 6.84% 5.50% 0.80

Kth sentence 0.30 0.30 13.58% n/a n/a

Kth in paragraph 0.58 0.58 5.66% n/a n/a

212 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February

1, 2003

TABLE 5. The impact of changing the fingerprint granularity on the effectiveness of fingerprint queries.
Granularity Precision(s) Recall(20) HFM Sep. Sep./HFM
1 0.85 0.93 66.06% —3.56% —0.05
2 0.99 1.00 30.23% 8.82% 0.29
3 0.99 1.00 19.60% 14.34% 0.73
4 0.99 1.00 16.59% 13.29% 0.80
5 0.98 1.00 15.60% 9.16% 0.59
6 0.93 0.99 16.72% 3.78% 0.23
7 0.89 0.97 17.46% —0.61% —0.03
8 0.86 0.93 17.13% —1.13% —0.07
9 0.78 0.89 18.86% —4.45% —0.24
10 0.68 0.85 17.51% —5.22% —0.30
15 0.38 0.46 16.61% —3.42% —0.21
20 0.27 0.31 17.50% n/a n/a

All of these queries have been evaluated using the anchor selection strategy.

lems, as a single change in each paragraph in the document
would prevent a match from being found.

The last experiments on the XML data tested the effect of
changing the fingerprint granularity, shown in Table 5. The
best results achieved were with a granularity of 4, but a
granularity of 3 or 5 also produced a good result. By way of
comparison, Manber (1994) used a granularity of 50 char-
acters, Brin et al. (1995) used a granularity of one sentence,
Shivakumar and Garcia-Molina (1996) had the best results
with a granularity of one sentence, and Heintze (1996) used
30—45 characters. All of these equate to around eight or
nine words. Our results suggest that all of these would
achieve a low HFM, but the separation would not be strong,
which is reflected in the results shown by Heintze (1996).
Overall, in none of our experiments did the methods tested
by other researchers work well.

Linux Experiments

From the results obtained using the XML data, it is clear
that some of the methods tested are not suitable for detect-
ing coderivatives. Only the methods found to perform well
in the XML collection were tested on the Linux documen-
tation. The size of this collection enabled an analysis of
these methods in a more realistic environment.

Queries on the Linux data set were evaluated using two
similarity measures and three fingerprinting techniques, as

TABLE 6. Results of queries on Linux data.

shown in Table 6. These queries were evaluated with stop-
ping but without stemming, following the results shown in
Table 3. For fingerprinting, following the results from the
XML data, we used a phrase granularity of four words. We
used the two most successful selection strategies from the
XML queries—the anchor strategy and the first-r-sliding
strategy. The first-r-sliding queries were evaluated using a
resolution of 15. We also used a full fingerprint query
against the index created using the anchor strategy.

The results for ranking show very different behaviour to
that obtained on the XML data. The identity measure is far
superior to the alternatives. It has the best precision, recall,
HFM, and separation—that is, it shows the best perfor-
mance by every metric. These results are a vindication of
the design philosophy that led to the identity measure.

Of the fingerprinting methods, the anchor strategy shows
the best results. All fingerprinting methods are superior to
cosine, but inferior to the identity measure. Interestingly,
the use of full fingerprinting for the query was not suc-
cessful.

Another consideration when evaluating such techniques
is consistency. Examining the results for individual queries,
the identity measure and the anchor strategy are much more
reliable than the alternatives. For the identity measure, there
were only seven queries with precision less than 1.00,
compared to 10 for the anchor strategy, 29 for the cosine
measure, 35 for the first-r-sliding strategy, and 23 for the

Precision(s) Recall(20) HFM Sep. Sep./HFM
Ranking
Cosine measure 0.68 0.77 73.46% n/a n/a
Identity measure var. 5 0.97 0.97 25.25% 51.75% 2.05
Fingerprinting
First-r-sliding 0.58 0.67 67.18% n/a n/a
Anchor strategy 0.92 0.92 40.14% 45.75% 1.14
Anchor strategy/full query 0.82 0.88 73.79% n/a n/a
These queries were evaluated with stopping but no stemming.
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003 213

full-query strategy. For both the identity measure and the
anchor strategy, there was only one case with negative
separation, but 20, 5, and 13 cases, respectively, for the
other techniques.

Further Experiments

Ranking and fingerprinting are not the only approaches
to detection of coderivatives. Greedy string tiling has been
applied to the task of detecting plagiarism in student pro-
gramming assignments (Wise, 1992, 1993, 1996), as well as
in textual assignments (Wise, 1993). However, in prelimi-
nary work applying this approach to student assignments,
we did not achieve good results; nor is it clear how the
approach could be efficiently applied to large collections.
In contrast, ranking and fingerprinting can be supported
through an index.

Further experiments were run on another collection,
which consisted of 145 individual essays produced by ter-
tiary level students. The assignments were free-form and the
students were permitted to choose from a variety of topics.
With the identity measure, n-to-n comparison of these doc-
uments found 36 matches that were highly ranked with good
separation. Manual inspection confirmed that all of these
highly-ranked matches were plagiarisms. However, we be-
lieved that there were further plagiarized assignments to be
found.

Another approach we have preliminarily tested is to
match, not whole documents, but passages, which are fixed-
sized chunks of documents (Kaszkiel & Zobel, 2001). We
broke each of the documents in the collection into a set of
subdocument chunks of 50 words, overlapping by 25 words
each. We did the same to the query document, then queried
the collection using each chunk, counting the number of
chunks that had high similarity in each pair of documents.
This led to 59 matches that were highly ranked, of which 55
were confirmed to be plagiarized: the original 36 and a
further 19 that contained significant plagiarised passages but
which overall had been edited sufficiently to conceal the
copying. On visual inspection, the remaining four matches
did not appear to be copies. Nonetheless, it is clear that
matching of parts of documents is a powerful tool for
increasing the sensitivity of these plagiarism detection
techniques.

A final consideration is efficiency, in space and speed.
With an efficient representation, the full-text index required
for the identity measure is expected to occupy less than 10%
of the space needed for the data itself (Moffat & Zobel,
1996; Witten et al., 1999). An index for the anchor strategy
is likely to be even more compact. In our experiments, using
code designed for flexibility (to test a range of coderivative
detection techniques) rather than efficiency, fingerprinting
queries took substantially longer to evaluate than did ranked
queries, but in a production implementation we estimate
that the speeds should be similar. An area for further re-

search is, when using the identity measure, reducing the set
of terms chosen for evaluation from a query document.

Conclusions

We have explored existing techniques for identifying
copies of documents, which we call coderivatives, and have
proposed a new identity measure explicitly designed for this
task. Existing methods include similarity measures—de-
signed for information retrieval, but suitable for identifying
coderivatives—and fingerprinting techniques, based on
hashing. Our presentation of fingerprinting techniques syn-
thesises a range of proposals into a single consistent frame-
work, allowing them to be directly compared.

Our identity measure is based on the observation that
identifying documents on the same topic—the standard task
of information retrieval—involves measuring how much
material the documents have in common; in contrast, iden-
tifying copies of documents involves measuring how much
they differ. The experimental results on a large data set with
53 queries show that the identity measure is much superior
to the alternatives. Only one previous technique, the anchor
strategy, has acceptable performance, but is nonetheless
much weaker than the identity measure. These results also
showed that the key to achieving an accurate result with
fingerprinting is the phrase selection strategy. Fingerprint-
ing is sensitive to the size of the phrases selected. A gran-
ularity of between three and five words produced the best
results, broadly confirming choice of parameters in earlier
work.

Both the identity measure and the anchor strategy are
able to identify all of the documents considered similar by
a human observer in a large collection, and both clearly
separate these similar documents from the rest of the col-
lection. In contrast, the cosine measure was able to perform
well when the similar documents contained subject matter
that was strongly distinct from the rest of the collection, but
was poor on the more realistic Linux collection. The identity
measure performed well in both of these situations, and is
clearly the best of the methods for identifying coderivative
documents.

Acknowledgments

This work was supported by the Australian Research
Council. We thank Hugh E. Williams and James A. Thom.

References

Brin, S., Davis, J., & Garcia-Molina, H. (1995). Copy detection mecha-
nisms for digital documents. In Proc. ACM SIGMOD Annual Confer-
ence, San Jose, CA.

Broder, A.Z., Glassman, S.C., Manasse, M.S., & Zweig, G. (1997). Syn-
tactic clustering of the web. Sixth International World Wide Web Con-
ference.

214 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003

Chowdhury, A., Frieder, O., Grossman, D., & McCabe, M. (2002). Col-
lection statistics for fast duplicate document detection. ACM Transac-
tions on Information Systems, 20(2).

Harman, D. (1995). Overview of the second text retrieval conference
(TREC-2). Information Processing & Management, 31(3), 271-289.
Heintze, N. (1996). Scalable document fingerprinting (extended abstract).

In Proc. USENIX Workshop on Electronic Commerce.

Kaszkiel, M., & Zobel, J. (2001). Effective ranking with arbitrary passages.
Journal of the American Society of Information Science and Technol-
ogy, 42(4), 344-364.

Manber, U. (1994). Finding similar files in a large file system. In 1994
Winter USENIX Technical Conference (pp. 1-10). San Francisco,
CA.

Moffat, A., & Zobel, J. (1996). Self-indexing inverted files for fast text
retrieval. ACM Transactions on Information Systems, 14(4), 349—
379.

Monostori, K., Zaslavsky, A., & Schmidt, H. (2000). Document overlap
detection system for distributed digital libraries. In Proceedings of the
fifth ACM conference on Digital Libraries (pp. 226-227).

Ramakrishna, M.V., & Zobel, J. (1997). Performance in practice of string
hashing functions. In Proc. Int. Conf. on Database Systems for Ad-
vanced Applications (pp. 215-223), Melbourne, Australia.

Sanderson, M. (1997). Duplicate detection in the Reuters collection. Tech-
nical Report TR-1997-5, Department of Computing Science, University
of Glasgow.

Shivakumar, N., & Garcia-Molina, H. (1995). SCAM: a copy detection
mechanism for digital documents. In Proc. International Conference on
Theory and Practice of Digital Libraries, Austin, Texas.

Shivakumar, N., & Garcia-Molina, H. (1996). Building a scalable and
accurate copy detection mechanism. In Proc. ACM Conference on
Digital Libraries, Bethesda, MD.

Shivakumar, N., & Garcia-Molina, H. (1998). Finding near-replicas of
documents on the web. In Proc. Workshop on Web Databases.

Wise, M.J. (1992). Detection of similarities in student programs: Yap’ing
may be preferable to plague’ing. In Twenty-Third SIGCSE Technical
Symposium (pp. 268-271). Kansas City, MO: ACM

Wise, M.J. (1993). String similarity via greedy string tiling and running
Karp-Rabin matching. ftp:/ftp.cs.su.oz.au/michaelw/doc/RKR GST.ps.

Wise, M.J. (1996). YAP3: Improved detection of similarities in computer
programs and othertexts. In Twenty-Seventh SIGCSE Technical Sym-
posium (pp. 130—134), Philadelphia.

Witten, I.H., Moffat, A., & Bell, T.C. (1999). Managing gigabytes: Com-
pressing and indexing documents and images (2nd ed.). San Mateo, CA:
Morgan Kaufmann.

Zobel, J. (1998). How reliable are the results of large-scale information
retrieval experiments? In R. Wilkinson, B. Croft, K. van Rijsbergen, A.
Moffat, & J. Zobel, (Eds.), Proc. ACM-SIGIR Conference on Research
and Development in Information Retrieval (pp. 307-314), Melbourne,
Australia.

Zobel, J., & Moffat, A. (1998). Exploring the similarity space. SIGIR
Forum, 32(1), 18-34.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 1, 2003 215

