
Methods for inferring regional surface-mass anomalies from

Gravity Recovery and Climate Experiment (GRACE)

measurements of time-variable gravity

Sean Swenson and John Wahr
Department of Physics and Cooperative Institute for Research in Environmental Sciences, University of Colorado,
Boulder, USA

Received 8 May 2001; revised 9 March 2002; accepted 14 March 2002; published 19 September 2002.

[1] The Gravity Recovery and Climate Experiment, GRACE, will deliver monthly
averages of the spherical harmonic coefficients describing the Earth’s gravity field, from
which we expect to infer time-variable changes in mass, averaged over arbitrary regions
having length scales of a few hundred kilometers and larger, to accuracies of better than
1 cm of equivalent water thickness. These data will be useful for examining changes in
the distribution of water in the ocean, in snow and ice on polar ice sheets, and in
continental water and snow storage. We describe methods of extracting regional mass
anomalies from GRACE gravity coefficients. Spatial averaging kernels were created to
isolate the gravity signal of individual regions while simultaneously minimizing the effects
of GRACE observational errors and contamination from surrounding glacial,
hydrological, and oceanic gravity signals. We then estimated the probable accuracy of
averaging kernels for regions of arbitrary shape and size. INDEX TERMS: 1836 Hydrology:

Hydrologic budget (1655); 4283 Oceanography: General: Water masses; 1655 Global Change: Water cycles

(1836); 1243 Geodesy and Gravity: Space geodetic surveys; 1640 Global Change: Remote sensing;
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1. Introduction

[2] Time-variable gravity changes are caused by a combi-
nation of postglacial rebound, fluctuations in atmospheric
mass, and the redistribution of water, snow, and ice on land
and in the ocean. The spatial resolution of gravity data
obtained from satellite measurements has not yet been
sufficient to separate the effects of these processes from
one another. Data from GRACE, launched in 2002 should
provide dramatically improved time-variable gravity meas-
urements. GRACE will deliver monthly averages of the
spherical harmonic coefficients describing the Earth’s grav-
ity field at scales of a few hundred kilometers and larger.
[3] From the gravity field estimates, we expect to infer

time-variable changes in mass, averaged over arbitrary
regions having length scales of a few hundred kilometers
and larger, to accuracies of better than 1 cm of equivalent
water thickness. These data will be useful for examining
changes in the distribution of water in the ocean, in snow and
ice on polar ice sheets, and in continental water and snow
storage. These quantities can then be used to assess and
improve climate models, to better understand large-scale
hydrological processes, and to monitor the distribution of
land-based water for agricultural and water resource appli-
cations. Combined with radar altimetry over the oceans,
these data can improve estimates of the time-varying ocean

heat storage, as well as deep ocean currents. In polar regions,
GRACE data can be used to study postglacial rebound and,
in conjunction with laser altimetry, to constrain the mass
balance of ice sheets.
[4] Because the spatial resolution of GRACE is on the

order of a few hundred kilometers, an estimate of a surface-
mass anomaly will not be a point measurement, but rather a
spatial average. Wahr et al. [1998] introduce an averaging
method based on a simple Gaussian filter. However, this
method does not isolate a specific region. In order to use
GRACE to estimate regional changes in surface mass,
techniques must be developed which extract regional mass
anomalies from GRACE gravity coefficients. In this paper,
we describe methods of creating spatial averaging kernels
which isolate the gravity signal of individual regions while
simultaneously minimizing the effects of GRACE observa-
tional errors and the contamination from surrounding gla-
cial, hydrological, and oceanic gravity signals. We then
estimate the probable accuracy of averaging kernels for
regions of arbitrary shape and size.

2. Inferring Surface Mass Changes From the
Time-Variable Gravity Field

[5] It is usual to represent the Earth’s gravity field in
terms of the shape of the geoid, the equipotential surface
that most closely coincides with mean sea level over the
ocean. The geoid, N, can be expanded as a sum of
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normalized associated Legendre functions, ~Plm [see, e.g.,
Chao and Gross, 1987]:

N q;fð Þ ¼ a
X1
l¼0

Xl

m¼0

~Plm cos qð Þ Clm cos mfþ Slm sin mff g ð1Þ

where q is colatitude, f is longitude, a is the mean radius of
the Earth, and Clm and Slm are dimensionless Stokes coef-
ficients. GRACE Project personnel will use the GRACE
measurements to solve for the Stokes coefficients up to
degree l � 100 every 30 days, and these coefficients will
be made available to users. The spatial scale, l, associated
with a particular Stokes coefficient is inversely proportional
to its angular degree, l, and can be found approximately by
the relation l = 20,000 km/l, so that l 	 100 correspond to
length scales of �200 km and larger.
[6] Using these coefficients, it will be possible to infer

changes in the gravity field from one 30-day period to the
next, and so to study processes involving the redistribution
of mass within the Earth and on or above its surface.
GRACE will be accurate enough to be sensitive to changes
in the Earth’s gravity field caused by fluctuations in con-
tinental water storage and the polar ice sheets, as well as by
changes in atmospheric and oceanic mass distribution. The
contributions from the atmosphere can be estimated from
independent atmospheric data and largely removed [Velico-
gna et al., 2001; Swenson and Wahr, 2002]. Because most of
the remaining sources of time-variable mass change are
confined to a thin layer at the Earth’s surface, one can
approximate the vertically integrated water and ice mass as
a surface mass density. With this approximation, Wahr et al.
[1998] show that a local change in surface mass density,
�s(q, f), can be related to changes in the Stokes coeffi-
cients, �Clm and �Slm, by

�s q;fð Þ ¼ arE
3

X1
l¼0

Xl

m¼0

2l þ 1ð Þ
1þ klð Þ

~Plm cos qð Þ �Clm cos mff ð2Þ

þ �Slm sin mfg

where rE is the average density of the solid Earth and kl are
the load love numbers representing the effects of the Earth’s
response to surface loads. The love numbers can be
obtained from Wahr et al. [1998].
[7] The Stokes coefficients produced by GRACE will

contain measurement errors, �dclm and �dlm
s , such that

�CGRACE
lm ¼ �Ctrue

lm þ�dclm

�SGRACElm ¼ �Struelm þ�dslm:
ð3Þ

Satellite measurement errors include system noise error in
the intersatellite range rate, accelerometer error, error in the
ultrastable oscillator, and error in the orbits.
[8] If the coefficients of the satellite errors and the surface

mass anomaly at n times t1, t2,. . .tn are uncorrelated for
every (l, m) and (l0, m0),

1

n

Xn
i¼1

�Ctrue
lm tið Þ�dcl0m0 tið Þ ¼ 1

n

Xn
i¼1

�Ctrue
lm tið Þ�dsl0m0 tið Þ ¼ 0

1

n

Xn
i¼1

�Struelm tið Þ�dcl0m0 tið Þ ¼ 1

n

Xn
i¼1

�Struelm tið Þ�dsl0m0 tið Þ ¼ 0;

ð4Þ

then two terms comprise the expression for the variance of
the inferred surface mass anomaly at the point (q, f):

var sð ÞGRACE¼ var sð Þtrue þ var sð Þsat; ð5Þ

where the contribution to the variance due to satellite
measurement error is

var sð Þsat¼
X
l;m

X
l0;m0

KlKl0
~Plm cos qð Þ ~Pl0m0 cos qð Þ ð6Þ

� �cc
ll0mm0 cos mf cos m0fþ �cs

ll0mm0 cos mf sin m0f
�

þ �sc
ll0mm0 sin mf cos m0fþ �ss

ll0mm0 sin mf sin m0f
�
: ð7Þ

Kl ¼
arE
3

2l þ 1ð Þ
1þ klð Þ ð8Þ

converts the geoid coefficients to surface mass coefficients,
and �ll0mm0 are the covariance matrices of the GRACE
measurement errors. If, for example, the statistical proper-
ties of the measurement errors were the same for each of the
n months ti, i = 1, n, then

�cc
ll0mm0 ¼

1

n

Xn
i¼1

�dclm tið Þ�d cl0m0 tið Þ; ð9Þ

�cs
ll0mm0 ¼

1

n

Xn
i¼1

�dclm tið Þ�dsl0m0 tið Þ; ð10Þ

�sc
ll0mm0 ¼

1

n

Xn
i¼1

�dslm tið Þ�dcl0m0 tið Þ; ð11Þ

�ss
ll0mm0 ¼

1

n

Xn
i¼1

�dslm tið Þ�dsl0m0 tið Þ: ð12Þ

While calculations utilizing the full covariance matrices are
outlined in Appendix A, the calculations in this paper are
made with certain assumptions which greatly simplify the
covariance matrices. First, we assume �dlm

c and �dl0m0
s are

uncorrelated for all values of l, l0, m, m0; equations (10) and
(11) therefore vanish. Second, we assume �dclm and �dcl0m0

are uncorrelated, and �dslm and �dsl0m0 are uncorrelated,
unless l = l0 and m = m0, so that equations (9) and (12) vanish
in those cases. Last, errors are assumed to depend on spatial
scale but not orientation; that is, �dlm

c = �dlm
s and these

coefficients depend on l but not m. With these assumptions,
equation (7) becomes

var sð Þsat¼
X
l;m

K2
l B2

l ; ð13Þ

where

B2
l ¼

1

n

Xn
i¼1

Xl

m¼0

�dclm tið Þ
� �2þ �dslm tið Þ

� �2h i
: ð14Þ
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Because of our assumptions concerning �dlm
c and �dlm

s, the
contribution of the satellite measurement errors to the
variance of the surface mass anomaly estimate (equation
(13)) is independent of location. Bl are the degree
amplitudes of the variance of the satellite errors and
describe the contribution of the error at a particular
wavelength to the variance of the geoid. In this paper we
use preliminary estimates of Bl as a function of l provided
by B. Thomas and M. Watkins at the Jet Propulsion
Laboratory (personal communication, 1996) that are con-
sistent with those described in Jet Propulsion Laboratory
[2001].
[9] Figure 1 shows the square root of var(s)sat as a

function of l. For values of l greater than about 5, the
GRACE satellite error estimates increase rapidly with
increasing l. In principle, the summations in equations
(2) and (13) include contributions from all wavelengths,
up to l = 1, and the satellite errors will lead to extremely
inaccurate results. Because GRACE will deliver �Clm and
�Slm only to l � 100, the sums will in practice be
truncated at ltrnc = 100. Although neglecting the contri-
butions of coefficients with l > 100 will reduce the
amount of satellite error present in the estimate of
�s (q, f), the error from the larger remaining values of
l will still seriously degrade the solutions. In addition,
using a truncated sum in equation (2) is not equivalent to
a point measurement, �s (q, f) because it lacks compo-
nents having length scales less than �200 km.
[10] These issues can be avoided by averaging �s (q, f)

over a region. Spatial averaging reduces the contributions
from large l to the summation in equation (2), reducing the
effects of both satellite error and misrepresentation of the
gravity field due to the absence of short-wavelength compo-
nents.

3. Spatial Averaging to Improve Accuracy

[11] The accuracy of estimates of surface mass anoma-
lies can be improved by spatial averaging, at the expense
of spatial resolution. An exact averaging kernel, J (q, f),
is a function which describes the shape of the basin (e.g.,
a river basin, a region of the ocean floor, an ice sheet, a
political boundary) according to

J q;fð Þ ¼ 0 outside the basin

1 inside the basin

�
ð15Þ

The change in vertically integrated water storage averaged
over an arbitrary region is

�sregion ¼
1

�region

Z
�s q;fð Þ J q;fð Þd�; ð16Þ

where d� = sin q dq df is an element of solid angle.
Integrating J(q, f) over the sphere gives �region, the angular
area of the region of interest. Using equation (2), equation
(16) can be reexpressed by a sum of Stokes coefficients as

�sregion ¼
a rE

3 �region

X1
l¼0

Xl

m¼0

2l þ 1ð Þ
1þ klð Þ Jc

lm�Clm þ Js
lm�Slm

� �
;

ð17Þ

where Jlm
c and Jlm

s are the spherical harmonic coefficients
describing J(q, f):

J q;fð Þ ¼ 1

4p

X1
l¼0

Xl

m¼0

~Plm cos qð Þ Jc
lmcos mfþ Js

lm sin mf

 �

ð18Þ

Jc
lm

Js
lm

8<:
9=; ¼

Z
J q;fð Þ~Plm cos qð Þ

cos mf

sin mf

8<:
9=; d�: ð19Þ

One effect of the basin coefficients in equation (17) is to
reduce the contribution to �sregion from the Stokes
coefficients for large l. For example, Figure 2 shows the
degree amplitude spectrum,

Jl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

m¼0

Jc 2
lm þ Js 2

lm

� �vuut ; ð20Þ

for disc-shaped basins having radii of 1000, 500, and 100
km. The spectrum has been normalized by dividing by J0
for each case. As the basin size increases, its degree
amplitude is concentrated at relatively smaller l, correspond-
ing to longer wavelengths. Averages over larger regions
therefore are influenced less by poorly known short-
wavelength signals than are smaller regions.
[12] Basin averages calculated using Stokes coefficients

provided by GRACE will differ from the true basin
average due to the presence of satellite measurement

Figure 1. Estimates of the square root of the contribution
to the variance of the inferred surface mass anomaly due to
GRACE satellite measurement error, as a function of
spherical harmonic degree, using equation (13) and values
of Bl from B. Thomas and M. Watkins (JPL) consistent with
the GRACE SMRD.
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errors and the absence of coefficients for l > 100. Failure to
include all Jlm

c and Jlm
s results in an inaccurate representation

of the basin shape. Figure 3 shows cross sections of J
reconstructed from Jlm

c and Jlm
s for different values of ltrnc,

the value of l at which the summation in equation (18) is
truncated. The ringing present in these reconstructions near
the boundaries of the basin mask, called the Gibbs phenom-
enon, is due to the absence of basin coefficients with l > ltrnc.
Ringing increases as ltrnc decreases, resulting in a basin
average which samples more of the region outside the basin.
[13] With these errors in mind, we write the basin average

computed using Stokes coefficients provided by GRACE as
the sum of the true basin average, satellite error, and
truncation error:

�s
GRACE

region ¼ �s
true

region þ �s
satellite error

region þ �s
truncation error

region ; ð21Þ

where

�s
GRACE

region ¼
Xltrnc
l¼0

Xl

m¼0

Kl

�region

Jc
lm�CGRACE

lm þ Js
lm�SGRACElm

� �
;

ð22Þ

�s
satellite error

region ¼
Xltrnc
l¼0

Xl

m¼0

Kl

�region

J c
lm�d clm þ Js

lm�dslm
� �

; ð23Þ

�s
truncation error

region ¼ �
X1

l¼ltrncþ1

Xl

m¼0

Kl

�region

Jc
lm�Ctrue

lm þ Js
lm�Struelm

� �
:

ð24Þ

Figure 2. Degree amplitudes of the exact averaging
kernels for disc-shaped basins of (a) 1000 km radius, (b)
500 km radius, and (c) 100 km radius. The maximum
amplitude has been normalized by 1/J0.

Figure 3. Cross sections of reconstructed basin mask for various values of ltrnc.
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4. Reducing Satellite Measurement Error

[14] Because GRACE will provide Stokes coefficients
only to degree and order �100, components of surface-
mass variability corresponding to l > 100 will be absent
from the calculation of the basin average. The contribution
of high l Stokes coefficients to large basin averages may
be unimportant, because, as shown in Figure 2, the basin
coefficients become quite small for high l, but as basin
size decreases their contribution becomes more significant.
In addition to error due to truncation, GRACE data will
contain satellite measurement errors. The simplest way to
reduce these errors would be to truncate the sum in
equation (23) at some ltrnc < 100. However, decreasing
the value of ltrnc increases equation (24), the amount of
truncation error. We would like to find a method of
decreasing the satellite errors in the estimates of basin-
averaged surface mass change without increasing the error
due to truncation.
[15] The exact averaging kernel equation (15) changes

discontinuously from a value of 1 to 0 at the basin
boundaries, resulting in the presence of short-wavelength
Jlm
c and Jlm

s in the expansion of J(q, f). Because the
satellite errors are greatest at large l, the contribution from
these short-wavelength coefficients dominates equation
(23), the basin-averaged satellite measurement error. The
expansion of an averaging kernel which varies smoothly
across the basin boundary has less power in its short-
wavelength coefficients than does the exact averaging
kernel. However, the basin average computed using a
smoothed averaging kernel will less accurately represent
the true basin average. This approximate average will be
influenced by mass signals outside the basin, referred to as
leakage, as well as over- or under-estimating the contri-
bution of the signal inside the basin. While the approx-
imation error cannot be eliminated, we will show that one
can create smoothed averaging kernels which produce a
reduction in satellite measurement error while keeping the
amount of leakage error in the basin-averaged estimates of
surface-mass change to an acceptable level for basins
having length scales of a few hundred kilometers and
larger. We describe two types of averaging kernels. The
first kind, described in section 4.1, incorporates a Gaussian
filter, and is relatively simple to visualize and compute.
The second kind, described in section 4.2, is more com-
plicated but provides a means of minimizing either the
leakage error or the satellite measurement error, or the sum
of the two.
[16] An approximate basin average can be obtained by

replacing the exact averaging kernel, J(q, f), by an approx-
imate averaging kernel, W (q, f), in equation (16):

f�sregion ¼
1

�region

Z
�s q;fð ÞW q;fð Þ d�; ð25Þ

where f�sregion denotes the approximate basin average.
Expanding W as

W ðq;fÞ ¼ 1

4p

Xltrnc
l¼0

Xl

m¼0

~Plm cos qð Þ Wc
lmcos mfþWs

lmsin mf

 �

;

ð26Þ

the approximate basin average can be expressed in terms of
Stokes coefficients as

f�sregion ¼
X
l;m

Kl

�region

Wc
lm�Clm þWs

lm�Slm
� �

: ð27Þ

When computed using this approximate averaging kernel,
the contribution of satellite measurement error to the
variance of the average surface mass anomaly becomes

var esatð Þ ¼ 1

�2
region

X
l;m

K2
l B2

l

2l þ 1
Wc 2

lm þWs 2
lm

� �
: ð28Þ

4.1. Gaussian Smoothing

[17] A smooth averaging kernel, W (q, f), may be created
in a straightforward way by convolving the basin function,
J(q, f), with a Gaussian filter:

W q;fð Þ ¼
Z

W q;f; q0;f0ð ÞJ q0;f0ð Þ d�0; ð29Þ

where equation (29) is integrated over solid angle and,
following Jekeli [1981], the Gaussian filter, W(q, f, q0, f0),
depends only on the angle g between two points (q, f) and
(q0, f0), i.e., cos g = cos q cos q0 + sin q sin q0 cos(f � f0),

W q;f; q0;f0ð Þ ¼ W gð Þ ¼ b

2p
exp �b 1� cosgð Þ½ �

1� e�2b
; ð30Þ

b ¼ ln 2ð Þ
1� cos r1

2
=a

� �� �
:

ð31Þ

r1
2
=a is the half width of the Gaussian smoothing function;

when g = r1
2
=a, W ðgÞ ¼ 12W ð0Þ. The new averaging

kernel, W , changes smoothly from a value of 1 inside the
boundary to a value of 0 outside the boundary over a
horizontal distance of approximately r1

2
. For this type of

averaging kernel, the weighting coefficients in (26) are
defined according to

Wc
lm

Ws
lm

� �
¼ 2p Wl

Jc
lm

Js
lm

� �
; ð32Þ

where

Wl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2l þ 1
p

Z p

0

W gð Þ ~Pl0 cos gð Þsin g dg: ð33Þ

Wl may be computed recursively by the following relation:

W0 ¼
1

2p
;

W1 ¼
1

2p
1þ e�2b

1� e�2b
� 1

b

� �
; ð34Þ

Wlþ1 ¼ � 2l þ 1

b
Wl þWl�1

[18] Figure 4 shows the result of using a Gaussian filter to
smooth the exact averaging kernel, in this case that of the
Missouri river basin. Changing the half width of the
Gaussian filter allows one to control the relative amounts
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of satellite and leakage error. Small values of r1
2
=a lead to an

approximate averaging kernel which changes rapidly at its
boundaries; the weighting coefficients therefore contain
power at short-wavelengths and the error budget is domi-
nated by satellite error. Large values of r1

2
=a reduce the

amplitude of the short-wavelength weighting coefficients,
but increase the amount of error due to leakage from regions
surrounding the basin of interest.
[19] Figure 4a shows the exact averaging kernel. It has a

value of 1 inside the basin and 0 outside the basin. As
previously noted, the ringing at the boundaries is due to the
finite upper limit (ltrnc = 100) in the summation in equation
(26) used to calculate W (q, f). Figures 4b and 4c show the
effects of smoothing using 200 and 400 km Gaussian filters,
respectively. At 200 km, the averaging kernel changes
continuously across the basin edge, while at the same time
nearly reproducing the basin shape. When a 400 km filter is
applied, the averaging kernel becomes much smoother than
that in Figure 4b and samples a larger portion of the
surrounding regions.

4.2. Optimizing the Averaging Kernel

[20] While smoothing the exact averaging kernel with a
Gaussian filter provides a simple and intuitive way of
creating an averaging kernel with decreased short-wave-
length components, it may not provide the most accurate
estimate of the basin average. We outline two minimization
techniques which incorporate measures of satellite and
leakage errors to create an optimal averaging kernel. In
the first case we minimize the sum of the satellite and
leakage errors, while in the second case we fix one type of
error to a specific value and minimize the other type.
[21] If J is the exact averaging kernel, then the total

approximation error, or leakage, in our estimate of the mass

anomaly of the basin at time ti is the difference between
equations (16) and (25):

e tið Þ ¼
Z

W q;fð Þ � J q;fð Þ
� �

s q;f; tið Þ d�: ð35Þ

The variance of the leakage is then

varðelkgÞ ¼
1

n

Xn
i¼1

e tið Þ½ �2

¼
Z

W q;fð Þ � J q;fð Þ
� �

W q0;f0ð Þ � J q0;f0ð Þ
� �

� 1

n

Xn
i¼1

s q;f; tið Þs q0;f0; tið Þ
" #

d� d�0: ð36Þ

While the construction of an optimal averaging kernel can
incorporate a signal covariance function having any angular
dependence (described in Appendix A), the expression for
var(elkg) is greatly simplified if we assume that there exists a
correlation which depends only on the angular distance, a,
between (q, f) and (q0, f0), so that

1

n

Xn
i¼1

s q;f; tið Þ s q0;f0; tið Þ ¼ s20 G að Þ; ð37Þ

where s0
2, the variance of the surface mass signal at any

point, is assumed to be uniform over the basin and its
surroundings, and G(a) is an appropriate function for
describing the correlation (in section 5, G(a) will be chosen
to be a Gaussian function of a). Replacing W and J with

Figure 4. Examples of changing the half width of the Gaussian filter used to smooth the basin mask.
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their respective spherical harmonic expansions, the variance
of the basin average leakage becomes

var elkg
� �

¼ s20
�2

region

X1
l¼0

Xl

m¼0

Gl

2
Wc

lm � Jc
lm

� �2þ Ws
lm � Js

lm

� �2h i
;

ð38Þ
where

Gl ¼
Z

G að ÞPl cos að Þ sin a da: ð39Þ

4.2.1. Minimization of total error
[22] To find averaging kernel coefficients which minimize

the total error, we set the partial derivatives with respect to
Wlm

c and Wlm
s of the sum of the error variances to zero,

@

@Wc;s
lm

var esatð Þ þ var elkg
� �
 �

¼ 0; ð40Þ

which produces the following set of equations:

Wc
lm

Ws
lm

� �
¼ 1þ 2 K2

l B2
l

s20 Gl 2l þ 1ð Þ

� ��1
Jc
lm

Js
lm

� �
: ð41Þ

Equation (41) makes it possible to find optimal averaging
coefficients for a specific basin, from knowledge of the
signal variance (s0

2), the signal correlation function (Gl) and
the degree variances of the GRACE measurement errors
(Bl

2).
4.2.2. Lagrange multiplier method
[23] While the previous method fulfills the goal of

minimizing the total error, it requires a priori estimates of
both the amplitude and angular dependence of the cova-
riance function to do so. If these estimates are unavailable or
unreliable, it may desirable to create an averaging kernel
which does not depend on a foreknowledge of the signal
characteristics. An alternative definition of leakage, inde-
pendent of the signal, is the ratio of the spatial variance of
the difference between the exact and approximate averaging
kernels to that of the exact averaging kernel,

varðelkgÞ ¼
R

W q;fð Þ � J q;fð Þ
� �2

d�R
J q;fð Þ½ �2 d�

¼ 1

4p�region

X
l;m

Wc
lm � Jc

lm

� �2þ Ws
lm � Js

lm

� �2h i

One may use the method of Lagrange multipliers to create an
averaging kernel which minimizes this leakage error subject
to a constraint on the value of satellite measurement error.
Let d2 be the desired variance of the average satellite
measurement error equation (28) and let �2 = d2 �region

2.
Denoting the Lagrange multiplier by l, we determine the
values of Wlm

c , Wlm
s , and l that minimize the quantity

x ¼
X
l;m

Wc
lm � Jc

lm

� �2þ Ws
lm � Js

lm

� �2n o
ð43Þ

þ l
X
l;m

K2
l B2

l

2l þ 1
Wc 2

lm þWs 2
lm

� �
��2

( )
;

where we have absorbed the 4p�region in equation (42) into
l. Setting the partial derivatives of xwith respect toWclm and
Wslm equal to zero gives the set of equations

Wc
lm

Ws
lm

� �
¼ 1þ l

K2
l B2

l

2l þ 1

� ��1
Jc
lm

Js
lm

� �
: ð44Þ

Setting the partial derivative of x with respect to l equal to
zero returns the requirement that the effects of the satellite
measurement error be equal to �2:

X
l;m

K2
l B2

l

2l þ 1
Wc 2

lm þWs 2
lm

� �
¼ �2; ð45Þ

which can be combined with (44) to give an equation for l

X
l;m

K2
l B2

l

2l þ 1

Jc 2
lm þ Js 2

lm

1þ l K2
l
B2
l

2lþ1

h i2 ¼ �2: ð46Þ

Once l is determined from equation (46), it can be used in
equation (44) to solve forWlm

c andWlm
s . In general, there are

approximately ltrnc
2 values of l which are solutions to

equation (46). However, there exists only one solution
which is positive, and it is this root which provides the true
leakage minimum; the negative roots are only local extrema.
If one inadvertently specifies a value for�2 which is greater
than that obtained by using the exact averaging kernel
coefficients, Jlm

c and Jlm
s in equation (28), then no positive

roots of equation (46) exist.
[24] To create an averaging kernel which fixes the leak-

age error (42) to a specific value while minimizing the
satellite error, one still uses equation (44). l, however, is
determined from

X
l;m

Jc 2
lm þ Js 2

lm

� � 1

1þ l K2
l
B2
l

2lþ1

� 1

24 352

¼ R 4p�region; ð47Þ

where R is the desired leakage ratio defined in equation
(42).

5. Gaussian Smoothing Versus Minimization

[25] To assess the probable accuracies of the approximate
averaging kernels, we first examine the one-dimensional
case of a disc-shaped basin. To compute the leakage error,
one requires an estimate of the length scale, d, of the spatial
correlation of the surface-mass change signal. One source of
surface-mass variability is terrestrial water storage. While
surface water, snow water, and groundwater are all sources
of water storage variability, Rodell and Famiglietti [2001]
determined that the largest component of variability in the
American Midwest is soil moisture. We assume that this
relationship characterizes all of the basins examined in this
study. Studies such as Entin et al. [2000], Vinnikov et al.
[1996], and Cayan and Georgakakos [1995] have shown
the spatial coherence of soil moisture to have a length scale
ranging from 200 to 800 km. While Entin et al. [2000]
employ a covariance function which decays exponentially

ð42Þ
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with distance, we have chosen to use a Gaussian distribution
(equation (30)) to describe the correlation between surface-
mass variability at different locations. This assumption is
based on the ease of manipulation of the Gaussian function
in the spherical harmonic domain. In this case, the coef-
ficients Gl, of the spatial covariance function (equation (37))
are computed in the same manner as the smoothing coef-
ficients Wl, using the recursion relation (34) where d, the
spatial correlation length scale, replaces r1

2
.

[26] To compare the Gaussian smoothing process to the
minimization process, we first create Gaussian kernels for
disc-shaped basins with filters of various half widths. For
each kernel, we compute the satellite error using equation
(28). Next, we use the Lagrange multiplier method to create
an optimal averaging kernel for that value of satellite error,
and compare the leakage ratios for the two types of
averaging kernel. We define the leakage ratio, Rlkg, as the
square root of the ratio of the variance of the error caused by

Figure 5. Leakage as a function of the specified RMS of the satellite measurement error, �, for a disc-
shaped, 500 km radius basin for different surface-mass anomaly correlation lengths, d. Dots denote the
Lagrange multplier minimization method, and asterisks denote the Gaussian smoothing method. (a) d =
10 km, (b) 100 km, (c) 200 km, and (d) 500 km. Dashed line represents truncation error.

Figure 6. Same as Figure 5, but for a disc-shaped basin having a radius of 200 km.
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the approximate averaging kernel to the variance of the true
basin-averaged signal. Rlkg is thus independent of the
amplitude of the covariance function. Because the leakage
contains the effects of both the approximate averaging
kernel and the finite upper limit in the summations in the
expressions for the basin averages, we split the sum in
equation (42) at ltrnc. Dividing by the expression for the
correct surface-mass variance gives

R2
lkg ¼

Pltrnc
l¼0

Pl
m¼0 Gl Wc

lm � Jc
lm

� �2þ Ws
lm � Js

lm

� �2h i
P1

l¼0

Pl
m¼0 Gl Jc 2

lm þ Js 2
lm

� �
þ
P1

l¼ltrncþ1

Pl
m¼0 Gl Jc 2

lm þ Js 2
lm

� �P1
l¼0

Pl
m¼0 Gl Jc 2

lm þ Js 2
lm

� � :

ð48Þ

The first term on the right-hand side of equation (48)
describes the approximation error made by replacing the
true basin function, J(q, f), by the approximate averaging
kernel, W (q, f). In this paper we assume GRACE will only
supply Stokes coefficients to degree ltrnc = 100. The second
term describes the truncation error due to neglecting terms
l > 100 when calculating the basin average. While the
approximation error depends on the form of a particular
averaging kernel, the truncation error has a constant value
fixed by the value of ltrnc and, through the Gl, the value of
d. The maximum value of satellite error for a given basin
shape can be found by setting wc

lm and ws
lm to Jlm

c and Jlm
s in

(28) when solving for var esatð Þ. The exact averaging kernel,
J, has an additional property: because its approximation
error is identically zero, its leakage ratio is entirely due to
truncation error. Figure 5 shows the leakage ratio as a
function of satellite error and spatial correlation scale of
the signal, d, for a 500 km radius, disc-shaped basin.
The level of truncation error can be seen in Figure 5 as the
value taken by Rlkg as the satellite error approaches its
maximum value (dashed line). From Figure 5a it can be seen
that when surface-mass anomalies are correlated to about 10
km, truncation error is about 30% of the signal variance, and
dominates Rlkg for satellite errors greater than about 3 mm.
As the signal correlation length, d, increases, the amplitude
of the short-wavelength components of the surface-mass
signal decrease, and therefore the truncation error decreases.
As the truncation error diminishes, the difference between
the minimization method and the Gaussian smoothing
method becomes more apparent. For example, the leakage
due to the Gaussian method at 1 cm satellite error and 200
km correlation length is almost double that due to the
minimization method. The effectiveness of the minimization
method in reducing leakage error is even more pronounced
in the case of a 200 km radius disc (Figure 6).
[27] Figure 7 shows the reconstructed cross sections of

the Gaussian and optimal averaging kernels designed to
produce a satellite error of 1 cm for two disc-shaped basins.
Each plot assumes a correlation length, d, of 200 km.
Figure 7a shows a 500 km disc. In order to achieve a 1
cm satellite error, the Gaussian averaging kernel has a roll-
off, r1

2
, of 125 km. A visual comparison of the two averaging

kernels confirms Figure 5c; the optimal kernel more closely
resembles the truncated basin shape (dashed line) and
therefore produces less leakage than the Gaussian averaging
kernel. The truncated basin shape lacks the short-wave-

length components needed to reproduce the exact basin
shape (solid line), but because the correlation length is
sufficiently large, the component of Rlkg due to truncation
error is �1.
[28] Figure 7b shows a 200 km disc. The Gaussian

averaging kernel in this case employs a roll-off of 215 km
to produce the required 1 cm satellite error. Again, the
truncated basin shape does not well represent the exact
basin shape, but Figure 6c shows the truncation error
component to be <5%. However, the leakage is greater than
for the 500 km disc because neither averaging kernel closely
resembles the truncated basin shape. At 1 cm satellite error,
the leakage ratio in Figure 6c is nearly 0.5. This large
approximation error is due to the smoothness in the averag-
ing kernels required by the condition that the satellite error
must be 1 cm.

6. Comparison With Real Drainage Basins

[29] While the calculations in the previous section
employ disc-shaped basins in order to better understand

Figure 7. Cross sections of averaging kernels for (a) a 500
km radius basin and (b) a 200 km radius basin. The solid
line represents the true basin shape, and the dashed line
represents the basin shape computed using only basin
coefficients of l 	 ltrnc. The surface-mass anomaly
correlation length is d = 200 km. The averaging functions
are computed so that the RMS mass error due to the satellite
measurement error is 1 cm in each case.
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the effectiveness of each of the averaging kernels, a real
basin, whether it describes an oceanic region, a polar ice
stream, a river basin, or a political boundary, is rarely
shaped so simply. For six North American river basins
(Figure 8) of varying shapes and sizes, we calculate the
average satellite and leakage errors for each basin using
the Gaussian smoothing method and the Lagrange multi-
plier method. The river basin masks were extracted from
the HYDRO 1K Elevation Derivative Database main-
tained by the U.S. Geological Survey EROS Data Center.
[30] For a basin average with 1 cm satellite error, leakage

ratios obtained using a Gaussian averaging kernel range
from approximately 0.4 for the smallest basin (220,000 km2

in area) to 0.1 for the largest basin (1,400,000 km2 in area)
for a correlation length of 200 km (Figure 9). Leakage ratios
for the minimization method are about half this amount,
ranging from 0.2 to 0.05. Taking 4 cm as a typical value for
the RMS variation in midlatitude soil moisture [Entin et al.,
2000, Table 1], one would then expect leakage due to the
use of the Gaussian averaging kernel to account for about

Figure 8. North American river basins.

Figure 9. Leakage as a function of RMS satellite measurement error for six North American river
basins. d, the surface-mass anomaly correlation length, is 200 km. Dots denote the Lagrange multiplier
minimization method and asterisks denote the Gaussian smoothing method. (a) Interbasin, (b) Red River,
(c) Upper Mississippi River, (d) Arkansas River, (e) Ohio River, and (f) Missouri River.
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1.6 cm of error for basin (Figure 9a) and 0.4 cm of error for
basin (Figure 9f ). Use of the minimization method would
reduce the leakage to approximately 0.8 cm for basin
(Figure 9a) and 0.2 cm for basin (Figure 9f ). If the
correlation length of soil moisture variability is 500 km
(Figure 10), the leakage ratio for a basin with 1 cm satellite
error ranges from about 0.2 for the smallest basin to less
than 0.05 for the largest basin when the Gaussian smoothing
method is used. Applying the optimal kernel results in
leakage errors which are negligible for even the smallest
of these basins. In this case, one could set the satellite error
to as low as 0.2 cm without producing a significant amount
of leakage in the basin averaged estimates of surface mass
variability.

7. Summary

[31] GRACE, scheduled for launch in 2002, will deliver
monthly averages of the Earth’s geoid, in the form of
Stokes coefficients. The finite number of Stokes coeffi-
cients provided by GRACE prohibits the estimation of
surface mass anomalies at a point, but regional averages
can be made. Because the expected satellite measurement

errors increase rapidly for short wavelengths, an average
calculated using the exact representation of the basin
shape, the spectrum of which has power at all wave-
lengths, is influenced by all the errors associated with
these gravity data. A smooth averaging kernel contains
less power at short wavelengths, and its use in computing
basin averages will lead to a smaller satellite error.
However, any approximate averaging kernel will no
longer exactly sample the region of interest, and signals
from surrounding areas will leak into the estimate of the
basin average.
[32] We have outlined different methods for creating

approximate averaging kernels which extract the average
surface-mass anomaly of a desired region from the
GRACE geoid coefficients. Each of these methods reduce
the amount of satellite error present in the basin average.
One method uses a Gaussian filter (30) to smooth the
exact averaging kernel (equation (15)), providing a con-
ceptually and computationally simple means of creating a
new averaging kernel. In this case, Wlm

c and Wlm
s used in

equation (27), are given by equations (32)–(34). How-
ever, tuning the width of the Gaussian filter to change the
amount of satellite error in the average requires a certain

Figure 10. Same as Figure 9, but for a surface-mass anomaly correlation length, d, of 500 km.

SWENSON AND WAHR: METHODS FOR GRACE SURFACE MASS RECOVERY ETG 3 - 11



amount of trial-and-error. In addition, the leakage intro-
duced by this smoothed averaging kernel may not be
minimized.
[33] Two minimization techniques for finding Wlm

c and
Wlm

s were outlined, one of which created an averaging kernel
which minimized the total error (equation (41)). The other
technique used a Lagrange multiplier (equation (44)). The
Lagrange multiplier, l, either minimized the leakage for a
given value of satellite error (equation (46)) or minimized
the satellite error for a given leakage level (equation (47)).
Both methods, described in Appendix A, can incorporate
the full covariance matrices of satellite error and/or expected
signal. Full satellite error covariance matrices will be
provided by GRACE Project personnel when the Stokes
coefficients are made available to users. A priori signal
covariance matrices may be obtainable from hydrological
models or other data sets. However, both minimization
techniques simplify considerably under the assumption of
azimuthal symmetry.
[34] The method for developing weighting coefficients

derived by minimizing the equations describing the total
error requires an a priori description of the expected signal
covariance. Because of the additional complexities of ana-
lyzing these data, we will assess this method in further
studies. Instead, we used a Lagrange multiplier method to
create averaging kernels which were optimized without the
use of an expected signal variability. The Lagrange multi-
plier minimization method is somewhat more complicated
than applying a Gaussian filter, but it decreases the leakage
errors considerably. Calculations for a few drainage basins in
North America having areas ranging from 2.2� 105 to 1.4�
106 km2, indicate that surface-mass change signals, spatially
correlated at length scales of about 200 km, can be retrieved
using an averaging kernel which has been smoothed with a
Gaussian filter to an accuracy of 10–40% of the signal
amplitude plus <1 cm satellite measurement error. Using the
Lagrange multiplier minimization method reduces the
amount of leakage error by about half, so that mass anoma-
lies can be computed to an accuracy of 5–20% of the signal
amplitude plus <1 cm satellite measurement error. Surface-
mass change signals spatially correlated at longer length
scales can be retrieved with almost no leakage error and
satellite errors of less than a few millimeters.

Appendix A: Inversion With Arbitrary
Covariance Functions

[35] While more complicated than the case of an azimu-
thally symmetric covariance function, it is possible to use the
full signal and satellite error covariance matrices to construct
an optimized averaging kernel. Beginning with (36), W , J,
and s are replaced with their respective spherical harmonic
expansions. The variance of the leakage becomes

var elkg
� �

¼
X
l;m

X
l0;m0

Wc
lm � Jc

lm

� �
Wc

l0m0 � Jc
l0m0

� �
�cc
ll0mm0

þ Wc
lm � Jc

lm

� �
Ws

l0m0 � Js
l0m0

� �
�cs
ll0mm0

þ Ws
lm � Js

lm

� �
Ws

l0m0 � Js
l0m0

� �
�ss
ll0mm0

þ Ws
lm � Js

lm

� �
Wc

l0m0 � Jc
l0m0

� �
�sc
ll0mm0 ðA1Þ;

where �ll0mm0 are the covariance matrices of the signal:

�cc
ll0mm0 ¼

1

n

Xn
i¼1

sclmðtiÞscl0m0 ðtiÞ; etc: ðA2Þ

The variance of the basin-averaged satellite measurement
errors is

var esatð Þ ¼
X
l;m

X
l0;m0

KlKl0 W
c
lmW

c
l0m0�cc

ll0mm0 þWc
lmW

s
l0m0�cs

ll0mm0

�
þ Ws

lmW
s
l0m0�ss

ll0mm0 þWs
lmW

c
l0m0�sc

ll0mm0 �; ðA3Þ

where �ll0mm0 are the covariance matrices of the GRACE
measurement errors (see equations (9)–(12)).

A1. Minimization of Total Error

[36] Let

J ¼ Jc
lm

Js
lm

� �
; W ¼ Wc

lm

Ws
lm

� �
; ðA4Þ

� ¼ �cc
ll0mm0 �sc

ll0mm0

�cs
ll0mm0 �ss

ll0mm0

� �
; � ¼ KlKl0 �

cc
ll0mm0 KlKl0 �

sc
ll0mm0

KlKl0 �
cs
ll0mm0 KlKl0 �

ss
ll0mm0

� �
ðA5Þ

Then

varðelkgÞ ¼ J�W
� �T

� J�W
� �

ðA6Þ

varðesatÞ ¼ W
T
� W : ðA7Þ

To find the averaging kernel coefficients which minimize
the total error, we set the gradient with respect to W of the
sum of the error variances to zero,

rW J�W
� �T

� J�W
� �

þW
T
� W

h i
¼ 0; ðA8Þ

which produces

�þ �
h i

W � � J ¼ 0: ðA9Þ

Equation (A9) is a linear system, which can be solved
numerically for W.

A2. Lagrange Multiplier Method

[37] As an alternative to equation (A6) we may define the
leakage as the ratio of the spatial variance of the difference
between the exact and approximate averaging kernels to that
of the exact averaging kernel,

var elkg
� �

¼
R

W q;fð Þ � J q;fð Þ
� �2

d�R
J q;fð Þ½ �2 d�

¼ 1

4 p�region

J�W
� �T

J�W
� �

:

This definition of leakage is free from the assumptions
regarding the form of the expected signal required by
equation (A6). However, those assumptions provided a
means of directly comparing leakage error to satellite error.
In the absence of such a connection, one cannot minimize

ðA10Þ
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the total error. Instead, one may use a Lagrange multiplier
technique to minimize either leakage error or satellite error,
subject to a constraint on the other type of error. Denoting
the Lagrange multiplier by l, we determine the values of W
and l that minimize the quantity

x ¼ J�W
� �T

J�W
� �

þ l W
T
� W ��2

n o
; ðA11Þ

where �2 is the desired variance of the satellite measure-
ment errors, averaged over the basin. The 4p�region in
equation (A10) has been absorbed into l. Setting the
gradient of x with respect to W equal to zero gives

I þ l �
h i

W ¼ J; ðA12Þ

where I is the identity matrix. Setting the partial derivative
of x with respect to l equal to zero returns the requirement
that var(esat) = �2, which can be combined with to give an
equation for l

varðesatÞ ¼ J
T

I þ l �
h i�1 T

� I þ l �
h i�1

J; ðA13Þ

Once l is known, it can be used with equation (A12) to
solve for W.
[38] This method can also be applied to the converse of

this problem: minimizing satellite error for a given value of
leakage. In this case, equation (A12) still describes the
averaging kernel coefficients. However, l is determined
now by solving

J
T

I � I þ l �
h i�1

� �T
I � I þ l �

h i�1
� �

J ¼ R 4p�region;

ðA14Þ

where R is the desired ratio of the spatial variances
(equation (A10)).
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