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Abstract. An outline of a few methods in an emerging field of data analysis, 

“data interpretation”, is given as pertaining to medical informatics and being 

parts of a general interpretation issue. Specifically, the following subjects are 

covered: measuring correlation between categories, conceptual clustering, and 

generalization and interpretation of empirically derived concepts in taxonomies. 

It will be shown that all of these can be put as parts of the same inquiry. 
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1 Introduction 

In spite of the fact that medical informatics is one of the fastest growing areas both in 

research and in practice, as of this moment, there is no well developed system for the 

medical informatics domain. However, a number of focus areas are of interest to med-

ical informatics:  

- patient-centered systems: medical records and images;  

- patient safety: error prevention and handling;   

- clinical research informatics including new drugs and treatment methods; 

- healthcare organization and administration;  

- knowledge organization, updating and use.    

So far most efforts and results have been related to the personal health support sys-

tems. However, each of the subjects is important in the health related efforts and can 

benefit significantly of informatics tools. Moreover, one cannot help but see the med-

ical informatics as a pathfinder, a leader, in such computer-intensive areas of current 

interest as knowledge organization, updating, and use (see SNOMED CT ontologies 

development [12] and related efforts). 

Currently, the issues of organization and maintenance of e-records are of urgent 

priority in medical informatics. Possibly, even more urgent are matters of reorganiza-

tion of health services such as developing classifications of diseases and disorders 
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matching the common treatment practices. Yet there is a permanent need in automat-

ing of all aspects of data interpretation, which will become much apparent after the 

organizational issues have been addressed. 

These are the subject of this presentation. Data of a set of patients may comprise 

tables, texts, and images. This paper refers mostly to the tabular data format corres-

ponding to results of various tests over a set of patients, and, further down, to the 

author’s attempts at developing methods for data interpretation. The current level of 

digitalization leads to growing popularity of exploratory data analysis and data mining 

approaches oriented towards finding patterns in data rather than testing hypotheses; 

the latter are prevailing in classical statistics frameworks still dominating many areas 

of the medical informatics discourse. Yet finding patterns is just an intermediate goal, 

the real challenge lies in developing data analysis methods in such a way that the 

result can be formulated in a way that a medical practitioner may find acceptable, 

understandable and reasonable. This is the niche I like to focus at. 

I am going to present here a few data analysis methods oriented towards data inter-

pretation issues:  

(a)  measuring correlation between categories,  

(b) conceptual clustering and  

(c) generalization and interpretation of empirically derived concepts in taxonomies.  

It will be apparent in the end that these three are not as diverse as they seem to be. In 

fact, they are parts of the same inquiry. 

2 Exploring Correlation between Categories: Interpretation 

Versus Statistics 

This subject is of finding those sets of categories that are most correlated with each 

other. A simplest would be finding just pairs of correlated categories. First of all, I’d 

like to bring in an example showing the difference between the mathematical statistics 

and data interpretation approaches.  A case for mathematical statistics: a lung cancer 

sufferer making a claim against an industrial company plant that they are responsible 

for the condition. To support their claim, the lung cancer sufferer’s team refer to a 

statistical table (in the left part of Table 1).This table brings forward statistical testing 

of the plant company claim that the proportions of the condition near the plant and 

faraway from it, 0.05 and 0.03 on the sample, differ only because of the sampling bias 

and are, in fact, equal in the population. A two-sided z-test, like that in [4], would 

show that, under the assumption that the sampling has been random and independent, 

the hypothesis that the proportions are equal should be rejected, at 95% confidence 

level. Data analysis relates to a very different data and problem setting. The data 

comes from a database which has been collected from various sources, not necessarily 

independent or similar. There are many features in the database of which those men-

tioned in Table 1 could be just a couple. Moreover, the data may be much less ba-

lanced than in a goal-oriented sample. This is the case of data on the right in Table 1: 

only 60 cases from near the plant are in the dataset while the number of far-away-

from-plant cases remains a thousand. Because of such a bias in the sample, the very 
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same z-test now decidedly supports the idea that the hypothesis that the proportions of 

the condition on the sample are the same cannot be rejected anymore, even in spite of 

the fact that they remain very much the same: 0.05 and 0.03. This is because the  

near-plant dwellers sample size is greatly reduced here so that the uncertainty of the 

situation increases. 

Table 1. An illustrative example of contingency data in health statistics: (a) testing proportions, 

on the left side; (b) as happens in a data base, on the right side 

 Classical statistics case Data interpretation case 

Residence No LC LC Total No LC LC Total 

Near plant   950 50 1000 57  3 60 

Far from plant   970 30 1000 970 30 1000 

Total 1920 80 2000 1027 33 1060 

In contrast, the data interpretation view pays no attention to the classical mathe-

matical statistics cause (except sometimes for the lip service only). The goal here is to 

capture the extent of correlation on the sample, rather than to see how the sample 

differs from the population – the latter is of no concern at all. The conditional proba-

bilities, like those mentioned, 0.05 and 0.03 could be a good choice sometimes. Yet 

they can be used only in the case at which one subsample is compared to the other. A 

more universal measure has been proposed by the founding father of statistics A. 

Quetelet almost 200 years ago. Quetelet index compares the conditional probability of 

the event l at a given category k, with that on the entire set, not at a different subsam-

ple ([8,9]:  
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That is, Quetelet index expresses correlation between categories k and l as the relative 

change in the probability of l when k is taken into account. In our case, 

q(LC/Near_Plant) = 3*1060/ (33*60) -1 = 0.606. That means that living near the plant 

increases the chances of acquiring LC by 60.6% - this should be taken into account in 

the court whatever considerations of the statistical significance are! (As one can no-

tice, both parts of Table 1 are subject to this interpretation device, not just the part on 

the left!) 

It appears, the average Quetelet index, that is, the sum of q(l/k) weighted by their 

probabilities, P(k,l), coincides with the value of the well-known Pearson’s chi-square 

coefficient which is widely used for assessing statistical independence, but not associ-

ation, between categorical features (e.g., Daniel 1998 [1]). This sheds a different light 

over the Pearson’s coefficient – that is an association measure, after all – and this is 

exactly the criterion for deriving a decision classification tree in some packages such 

as SPSS. A similar meaning can be assigned to other popular association measures 

such as Gini index. 
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3 Hierarchical Grouping: Conceptual Clustering 

Hierarchical grouping with conceptual clustering was developed in 80es and recently 

has enjoyed some revival due to the emergence of ontologies and other conceptual 

structures (see, for example, Fanizzi et al. 2009 [2]). Our experience is based on the 

original developments in Russia in 80es for the analysis of data of large-scale socio-

logical and health related surveys [7].  

 

Fig. 1. An illustrative example of a conceptual grouping hierarchy 

The result of application of a hierarchical grouping algorithm can be represented 

by a hierarchy resembling that of a decision tree [6]. Yet it is built automatically by 

sequential divisions of clusters, starting from the entire dataset, over features from a 

specified subset according to a criterion that is much similar to those used in cluster-

ing.  Yet, in contrast to the classical cluster analysis, the clusters are split not over a 

multidimensional distance between entities but rather over just one of the features. If 

the feature x is quantitative, then the two split parts correspond to predicates “x>a” 

and “x≤a” for some feature value a. For a categorical feature, the split parts corres-

pond to predicates “x=a” and “x≠a” for a category а. The algorithm tests all the can-

didate clusters and all the candidate features and chooses the split maximizing the 

summary association of that with all the features or, equivalently, the Ward’s distance 

between the split parts’ centroids [Mirkin 2011]. The obtained conceptual tree is 

much intuitive and, also, serves as an informative features selector (those actually 

used in the splits). The association of the hierarchic partition with the features is 

measured with the so-called correlation ratio, for quantitative features, or the Pearson 

chi square association coefficient, for categorical features [9].  The latter is to be mod-

ified to Gini coefficient depending on the data normalization, to keep the mathemati-

cal equivalence of the criterion to the so-called quadratic error criterion of k-means 

and similar clustering approaches. This is based on representation of the categories by 

the corresponding dummy variables with a follow-up standardization of them [8, 9].  

In a large-scale survey conducted at Novosibirsk area (Russia) in early 80-es with 

regard to pneumonia, tuberculosis and other respiratory diseases, more than a dozen 

altogether, P. Rostovtsev and I built a hierarchical classification of the sample of more 

than 50000 individuals over the respiratory diseases and related features to find a final 
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conceptual clustering respiratory disease partition of about 20 clusters/disease types 

[11]. This partition was further used to find those features of the individuals’ condi-

tions that have been most correlated with it. The medical researchers were thinking of 

alcohol consumption and smoking as the two most important risk factors. In fact, the 

found partition of the individuals over respiratory conditions had no correlation with 

these whatsoever, which was very unfortunate because our findings could not be pub-

lished at that time as being at odds with the dominating paradigm. Instead, we found 

two other features: “bad housing” and “the same disease in the family”, as the real 

risk factors. The Quetelet coefficient for the former was about 600%. 

4 Interpretation of Clusters over a Hierarchical Ontology of the 

Domain   

Hierarchical ontologies, or taxonomies, are currently becoming a major format for 

computationally handling, maintaining and updating knowledge. A very recent inter-

national effort is being resulted in a set of hierarchical ontologies for the medicine 

SNOMED CT [12]. In fact, this is the very first example of the concept of ontology 

being developed as a device for practical purposes.   

A hierarchical ontology is a set of concepts related by a tree-like hierarchical rela-

tion such as “A is a B” or “A is part of B”. Of course, ontology of a domain may con-

tain a rather small number of the domain concepts while many others, especially those 

new ones, remain out of the tree. The concept of ontology is much relevant to the 

medicine domains because it can encompass the mechanism of a disease and related 

disorders. The medical diagnostics process can frequently be put in terms of a deci-

sion tree related to a hierarchical ontology. The Manual [6] is an example of such an 

approach applied in the mental health domain. 

Therefore, a problem of interpretation of concepts -“outsiders” in terms of the  

“insider” concepts emerges. Take, for instance, the International Association for 

Computing Machinery (ACM) classification of computing subjects – a hierarchical 

four-layer taxonomy of the computing world ACM-CCS. I realize that this may be 

considered as somewhat far from the medicine, but at this moment I have no applica-

tion of the approach to be presented in the medical domain.  

A recently emerged concept P, say “intuitionist programming”, does not belong to 

the current ACM_CCS. To interpret that in terms of ACM_CCS take a look through a 

search engine like Yahoo! (because Yahoo was so much research-friendly) to find a 

profile of P. 

Fuzzy profile of P (illustrative): 

F.1 Computation by abstract devices - 0.60 

F.3 Logics and meaning of programs - 0.60 

F.4 Mathematical logic and formal languages - 0.50 

D.1 Programming languages - 0.17.  
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(A fuzzy set, unconventionally normed in Euclidean metric so that the squares of the 

membership values sum to unity, because of another development by the author and 

S. Nascimento.)  

 

Fig. 2. A fragment of ACM-CCS taxonomy, along with the contents of a fuzzytopic set mapped 

to it (yellowish) 

Mapped to ACM-CCS taxonomy as is (see Fig. 2), the contents of the fuzzy profile 

can be looked at through the taxonomy structure. Yet, when the contents counts a 

dozen or more topics well dispersed through the taxonomy tree, the mapping has 

some obvious drawbacks as being: (a) fragmentary, (b) not scalable, and (c) not quite 

cognition-friendly. 

This is why we propose to interpret such a profile (fuzzy topic set) by lifting it to 

higher ranks of the hierarchy to minimize the number of subjects it embraces (Fig. 3). 

However, the lifting may make apparent some discrepancies, namely, gaps and off-

shoots. Therefore, the lifting penalty function should involve three types of elements: 

the “head subjects”, the “gaps” and the “offshoots” so that their total, appropriately 

weighted, should be minimized at the interpretable result.  

An algorithm, PARL, has been developed for optimally lifting a fuzzy topic set 

over a hierarchical ontology by recursively moving from the leaves to the root [10]. 

At each tree node, the algorithm specifies parsimonious events according to each of 

the two different scenarios: (a) the head subject has been inherited from the node’s 

parent; (b) the head subject has not been inherited from the node’s parent. The parsi-

mony criterion is but an operational expression of the celebrated Occam’s Razor prin-

ciple of simplicity. To make the choice of the weights of different elements of the 

optimal scenario meaningful in a substantive domain, as many as possible concepts 

should be interpreted via the lifting process so that the probabilities of “gain” and 

“loss” of head subjects could be derived for the nodes. Then the “maximum parsimo-

ny” criterion can be changed for a “maximum  likelihood” criterion at which the 

weights are defined by the maximum likelihood principle.  
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Fig. 3. Interpretation of the topic set by lifting it to “Head subject” F. Theory of computation 

(highlighted by a darker filling), with the price of having a “gap”, F2, and an “offshoot”, D1. 

5 Conclusion 

The discipline of computationally handling both data and knowledge is emerging as 

driven, to a large extent, by the medical informatics needs. The models and methods 

for interpretation of various patterns and facts will be an integral part to it.  A few 

topics I just outlined are related quite closely: a topic set to be interpreted by lifting in 

a hierarchical ontology (section 4) can be derived with a conceptual clustering ap-

proach (section 3) which itself heavily relies on the ways for scoring category-to-

category correlation (section 2). 
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