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Methods for kinetic analysis of thermally 
stimulated processes 

REUVEN CHEN 
Department of P h y s i c s  and Astronomy, TeI-Aviv University, TeI-Aviv, Israel 

Several methods are known for the evaluation of the main kinetic parameters related to a 

thermoluminescence (TL) curve, namely the activation energy, the pre-exponential factor 

and the kinetic order. These methods can easily be applied under certain conditions to a 

series of related thermally stimulated phenomena which are governed by similar 

differential equations. These include thermally stimulated conductivity (TSC), thermally 

stimulated electron emission (TSEE), ionic thermocurrent (ITC), derivative thermo- 

gravimetry (DTG), differential thermal analysis (DTA), thermal desorption and other 

phenomena. The similarities and differences between these phenomena are considered and 

the applicability of the various methods to the different cases is discussed. 

1. Introduction 

In a number of phenomena, a certain property of a 

sample is measured as a function of temperature, 

when the sample is heated under a given heating 

scheme from a certain "low" temperature. In some 

of these phenomena the effect of interest appears 

only after the sample has been excited in oiae of 

various ways, while being held at the "low" tem- 

perature or during its cooling to  this low tempera- 

ture, prior to heating. 

The following phenomena will be discussed: 

thermoluminescence (TL); thermally stimulated 

conductivity (TSC); thermally stimulated electron 

emission (TSEE); ionic thermoconductivity (ITC); 

thermal annealing; partial thermoremanent mag- 

netization (PTRM); thermal desorption; evolved 

gas analysis (EGA); derivative thermogravity 

(DTG); differential thermal analysis (DTA); dif- 

ferential scanning calorimetry (DSC). 

Some emphasis will be placed on thermo- 

luminescence (TL), sometimes called thermally 

stimulated luminescence (TSL). A TL curve may be 

obtained when a solid sample, usually an insulator 

or semiconductor, is heated after having been 

exposed to various irradiations such as nuclear 

irradiation (a, /3, 7 irradiations and particle bom- 

bardment), X-rays, ultraviolet light and sometimes 
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visible and infra-red light at low temperature. 

Energy absorbed by the sample is emitted, during 

the heating, as light in the form of a "glow curve". 

The position, shape and intensity of the glow 

peaks are related to the various parameters of the 

trapping states which are responsible for the TL. 

The first theoretical treatment for a well iso- 

lated TL peak was given by Ranuall and Wilkins 

[ 1 ] who suggested the following equations 

I = - -C(dn/dO = C.s.n e x p ( - - E / k T )  (1) 

where I is the TL intensity, s the frequency factor 

(the pre-exponential factor) (sec -1 ), n the concen- 

tration of trapped electrons (cm -3) ,  T the absolute 

temperature, k Boltzmann's constant (eVK-~), 

and C a proportionality factor which can be set 

equal to unity without any loss of generality as 

long as it remains constant with temperature (see 

below). 

The solution of this equation gives, for the TL 

intensity, assuming C = 1 and using a linear heating 

scheme 

I = nos exp(--E/kT) 

e x p [ - - ( s / ~ ) f ~ e x p ( - - E / k T ' ) d T ]  (2) 
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where no is the initial concentration of the 

trapped electrons, To the initial "low" tempera- 

ture, and /3 is the constant heating rate (Ksec -1), 

i.e. T = To + fit. 

Garlick and Gibson [2] suggested another 

approximation, more suitable for some of the glow 

peaks, which is represented by 

I = - d n / d t  = s'n 2 e x p ( - - E / k r )  (3) 

where s', the pre-exponential factor, is a constant 

with dimensions of cm 3 sec -1 which should, there- 

fore, not be referred to as the "frequency" factor. 

This case is usfially called "second order kinetics", 

whereas the previous case is "first order kinetics". 

The solution of Equation 3 is 

I = n2os ' e x p ( - - E / k T )  

1 + (noS'/~) e x p ( - - E / k r ' ) d r  . (4) 

Equations 1 and 3 do not cover every possible 

isolated peak; this is apparently covered by a set of 

three simultaneous differential equations (see 

Section 2). Many authors [3-10] found it attract- 

ive and very useful to assume a "general" order 

kinetics, namely, assuming that the glow curve is 

governed by 

I = - - d n / d t  = s'n b e x p ( - - E / k T )  (5) 

where b is the kinetic order, and s' the pre- 

exponential factor in sec -1 cm 3(b-1). 

The pre-exponential factor s', while sometimes 

considered to be temperature independent, may in 

other cases be slightly dependent on temperature 

(e.g. T 2) [11-13] .  Under appropriate conditions, 

thermally stimulated conductivity (TSC) (see 

Section 3) peaks would follow the same equation 

with s' proportional to T a and where a is not 

necessarily 2 but rather has various values in the 

range --2 ~<a~<2 [14-15] .  These values result 

from the various dependences on temperature of 

the cross-section for recombination [16-17] .  

Equation 5 and the dependence of s' on tempera- 

ture were summed up by Razdan et  al. [18] as 

follows: 

I = - C ' d n / d t  = Cs"Tan b e x p ( - - E / k T )  (6) 

where s' = s "T  ~, s" being a constant. 

Many methods for evaluating the activation 

energy of a glow curve were developed. Shalgaonkar 

and Narlikar [19] gave a review summing up many 

of these methods (see also [20]). Some methods 
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for evaluating the pre-exponential factor and the 

kinetic order were also given [4, 21] (for details 

see Section 2.1). Some of these methods were 

independently developed for other thermally 

stimulated processes. The main purpose of the 

present paper is to indicate the similarities (and 

differences) between the various phenomena, and 

especially to show that methods known to be 

suitable for analysis of TL peaks can quite easily 

be applied to many of the other cases. Thus, the 

analysis of a thermally stimulated peak would be 

the same, no matter what specific phenomenon 

is being investigated. In addition, some properties 

of the individual effects will be discussed. 

2. T h e r m o l u m i n e s c e n c e  

2.1. General  t h e o r y  

Halperin and Braner [12] wrote a set of three 

linear simultaneous equations to account for a 

single TL peak as follows 

I = - - d m / d t  = A m m n  e (7) 

- - d n / d t  = sn e x p ( - - E / k T ) - - A n ( N - - n ) n c  (8) 

d n J d t  = d m / d t - - d n / d t ,  (9) 

where N is the concentration of traps (cm-3); n 

the concentration of electrons in traps (cm-3);nc 

the concentration of free electrons in the con- 

duction band (cm-3); Am and A n the recom- 

bination and retrapping probabilities (cm 3 sec -1), 

respectively; and m is the concentration of holes in 

recombination centres (cm-3). Here, the pro- 

portionality factor between the intensity I and 

- d m / d t  was set arbitrarily to unity, I ( T ) w o u l d ,  

therefore, be given in arbitrary units. These 

equations still deal with a single TL peak but are 

much more general than the Randall-Wilkins or 

Garlick-Gibson cases which assumed negligible 

and dominating retrapping, respectively. It is to be 

noted that the same equations are valid for the 

"inverse" case where the TL results from holes 

thermally released from hole traps into the valence 

band and subsequently recombining with electrons 

in centres. A by-product of a solution of this set 

of differential equations is n e - n e ( t ) ,  which is 

closely related to the conductivity (TSC) curve 

(see below). A slightly different set of equations 

has also been given by Halperin and Braner [12] 

for the case of electrons (or holes) which are 

thermally elevated to an excited state in the for- 

bidden gap rather than the conduction (valence) 

band. 



Halperin and Braner [12], as well as other 

workers [13, 2 2 - 2 5 ] ,  looked for a solution to 

these equations, by assuming that 

[dne/dtl  ~ [dn/dt[; n o ~ n (10) 

which are reasonable in many cases. By doing so, 

Halperin and Braner found that 

I = - - d m / d t  

= sn e x p ( - - E / k T ) A { n "  m / [ A m  m + A n ( N - -  n)].  

(11) 

It is important at this point to note the con- 

ditions for obtaining the first and second order 

kinetics equations from Equation 11. The Randall 

and Wilkins [1] case is known to be the case of 

negligible retrapping; under the present notation 

this would mean A m m ~ A n ( N - - n ) ,  by which 

Equation 11 reduces to 

I = - - d m / d t  = sn e x p ( - - E / k T ) .  (12) 

Using Conditions 10, Equation 9 reduces to 

dn/d t  = d m / d t ,  and therefore Equation 12 becomes 

the regular first order case, namely Equation 1 

with C =  1 as assumed above. The second order 

kinetics can result from Equation 11 by either of 

two sets of assumptions. A necessary condition in 

both cases is n = m, which is a quite restrictive 

condition by itself. In addition, Garlick and 

Gibson [2] assumed predominating retrapping 

which in our notation would be A n ( N  -- n)  >> A m m .  

If we assume, in addition, that we are far from 

saturation, i.e. N >> n, we get 

I = - - d n / d t  = ( s A m / U A n ) n  2 exp( - -E/kT)  (13) 

which is Equation 3 with s' = s A m / N A  n. Alterna- 

tively, if we assume in addition to n = m, equal re- 

combination probabilities for centres and traps 

[26] (i.e. Am =An) ,  an equation equivalent to 

Equation 3, with s' = s / N ,  is again obtained. 

It is evident that first and second order kinetics 

are only special cases whereas many TL single 

peaks are neither of  first nor of second order. One 

way of analysing a TL peak, obtained using a 

linear heating function, is by considering its sym- 

metry properties. The second order peaks are 

characterized by a practically symmetrical peak, 

whereas the first order peaks are asymmetrical, 

where r - the half-width at the low temperature 

side of the peak - is almost 50% bigger than 8 - 

the half-width towards the fall-off of the glow 

peak (see Fig. 1). An empirical way to deal with 

) -  

l-- 

Or} 
Z 
IM 

I-- 
z 

[m 

TI Tm T2 

TEM P E RATURE 

Figure 1 An isolated glow peak showing the parameters 

o 3 = T  2 - T I , r = T  m - T 1 , 6  = T  2 - T  m. 

intermediate cases is "general order" kinetics 

mentioned in Equation 5 with b being different 

from 1 or 2. This empirical approach [3-10]  was 

found to be satisfactory for explaining the occur- 

rence of various symmetry factors, /~g =6/00 ,  

where co = r + 6  is the total half-width. The 

activation energies found by using this approach 

[4] were also satisfactory [27] (for details see 

Section 2.2). 

It is of interest to note that equations identical 

with Equation 1 can be found where s is replaced 

by other constants having different physical 

meanings [28]. One possibility is to take Equation 

7, which has quite general meaning (see Section 3), 

and to assume that the concentration of the con- 

duction electrons depends exponentially on tem- 

perature and is only slightly affected by the 

excitation. This should fit the case of n-type semi- 

conductors when the electrons from donor levels 

are released thermally into the conduction band 

and emit light, on recombination, at luminescence 

centres emptied during excitation. The analogous 

case of p-type semiconductors might fit the glow 

peaks obtained in semiconducting diamonds. In 

this case, measurements of conductivity as a 

function of temperature show that the concen- 

tration of free carriers (free positive holes) rises 

exponentially with temperature [29, 30], namely, 

n o = a e x p ( - - E / k T ) ,  where the factor a is directly 

connected with the concentration of holes in 

acceptor levels. Therefore, from Equation 7 

I = - - d m / d t  = a ' A m r n e x p ( - - E / k T )  (14) 

This is the Randall-Wilkins equation with the fre- 

quency factor s replaced by a �9 A m . 

Another possibility is when the transition is 

within one localized centre [13, 28].  In other 

words, traps and recombination centres form 

associated pairs, and thermal excitation raises the 
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trapped electrons to an excited level from which 

they may either be retrapped or emit luminescence 

by falling down to the ground level of the centre. 

The kinetics in this case are formulated by the 

following equations 

I = - - d r n / d t  = Pn  e 

- -  d n / d t  = s exp ( - - E / k T ) n  - -  sne 

m = n + ne (15) 

where P(sec -1 ) is the probability for recombination 

of an excited electron and ne is the concentration 

of excited electrons. We again assume ne < n and 

hence n = m .  From Equations 15 we now have 

ne = s exp(- -E/kT)n/ (P  + s), and inserting this 

expression into the first of Equations 15 we obtain 

I = - -  d m / d t  = [Ps / (P  + s)] m exp ( - - E / k T ) .  (16) 

This is again the Randall-Wilkins equation, but 

with ~-= P s / ( P  + s) replacing s. It is obvious that 

for very high recombination probabilities (P >> s), 

g reduces to s. On the other hand, for relatively 

low recombination rate (s >>P), ?-reduces to P. 

This can explain the appearance of the relatively 

low effective frequency factor s. 

Coming back to the solution of Equations 7 - 9 ,  

these have been numerically solved without 

Conditions 10; Kelly e t  al. [31] used the Runge-  

Kutta-Gill  fourth order process and by properly 

choosing the step size, obtained the exact 

solutions for given sets of  parameters. The validity 

of the approximations given in Conditions 10 were 

found by Kelly e t  aL to depend critically on N, the 

number of active traps. For N <  10 is cm -3 they 

found that the conventional approximations are 

inadequate. Shenker and Chen [27] used a change 

of variable by which the high sensitivity of the 

solution to small numerical errors is overcome; 

another version of the Runge-Kutta method has 

been employed. The symmetry parameters of the 

calculated peaks were used to calculate the acti- 

vation energy of the peak. Although a method 

derived from an approximate empirical model 

(Equation 5) is used for an exact solution peak, 

the results of E (see Section 2.2) were found to be 

correct within 5% of the given activation energy. 

It is to be mentioned here that as a by-product 

of either the approximate or the exact solution, 

one obtains the values of ne as a function of T. 

This enables the calculation of the corresponding 

TSC peak by a ( T ) =  ep.n e provided that /~(T)is 
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known (see Section 3). This mobility is usually 

known from separate measurements and is some- 

what temperature dependent, like T - s ,  a being 

typically between 1.5 and 3. 

Kelly e t  al. [25,31 ] claim that dealing with the 

general three equations model, one cannot extract 

any information other than the value of E from 

TL and TSC data (and simultaneous measurement 

of both) unless one knows at least the luminous 

efficiency and the mobility. As is shown in Section 

3.2, we can evaluate another important parameter, 

the recombination probability (and the recom- 

bination cross-section therefrom) knowing only 

the mobility, which, as mentioned above, can be 

found separately. 

It is relevant at this point to mention the main 

difficulties in analysing a glow curve; some of 

these difficulties occur in the other thermally 

stimulated processes as well. A crystal usuafly 

has several kinds of defects and impurities and, 

therefore, it may possess various traps and centres. 

This usually produces a number of  glow peaks; as 

long as these peaks are far apart, each of them can 

be considered to be a single peak. The situation 

becomes more difficult when two or more peaks 

overlap. This can be partly improved by thermal 

cleaning of a peak, heating the sample up to a 

certain temperature so as to thermally bleach all 

the components except for one, then cool the 

sample and reheat it in order to examine the re- 

maining clean (or, at least, partially clean) peak. 

Another possible method to distinguish between 

neighbouring peaks is to take spectrally separated 

emitted fight in cases where different recom- 

bination centres are involved. Another problem is 

that in addition to the possibility of several peaks 

resulting from several electron traps and recom- 

bination centres, other peaks may occur in the 

same temperature range resulting from holes 

released from hole traps and subsequently re- 

combining into electron centres. These two cases 

can be discerned by the TSEE effect (see Section 

4). The possible case of a TL peak resulting from 

thermal elevation into an excited state which is 

not a band, then recombining into a centre in the 

close vicinity, can be perceived by the lack of both 

TSC and TSEE peaks. 

Recent work by Wintle [32, 33] should be 

mentioned here. Wintle introduces the possibility 

of a recombination probability which depends, in 

a certain temperature range, exponentially on the 

t e m p e r a t u r e ,  A m o z e x p ( W / k T ) ,  where W is an 



energy depth characterizing a non-radiative 

process. Under these special circumstances, the 

glow intensity for the first order kinetics would be 

given by altering Equation 2 to give 

I = Ksno exp [(W--E)/kT]  

exp[--(S/(3)fTT exp(--E/kT')dT']. (17) 

The activation energies calculated by certain 

methods (see Section 2.2) would yield the value E 

whereas by other methods the value E-W will be 

found. 

2.2. Methods for evaluating the activation 

energy 

The various methods for evaluating the activation 

energies will be mentioned here only briefly, 

reference is made to the review article by 

Shalgaonkar and Narlikar [19, 20]. The methods 

to be mentioned in this section can be classified as 

follows: (1)Methods based on the temperature ai 

the maximum. (2) the initial rise method. (3) 

Methods employing the shape parameters of the 

peak. (4) Numerical curve fitting. (5) Various 

heating rates. (6) Isothermal decay. 

The first method for calculating activation 

energies by TL curves was given by Urbach [34] 

who found empirically that a reasonable estimate 

for the trap energy, E, in eV is given by E = Tin~ 

500 where Tm is the temperature of the glow 

maximum in K. Garlick and Gibson [2] suggested 

the method, usually considered to be more general 

than others, known as the initial rise method. 

Studying Equation 5 (which includes as special 

cases Equations 1 and 3 for b = l  and b = 2  

respectively), we can see that at the beginning of 

the glow peak n changes only slightly with tem- 

perature and, therefore, I ~  exp(--E[kT). Thus, 

plotting hal as a function of lIT should yield a 

straight line in this region, the slope of which is 

--Elk. The method has further been developed by 

Gobrecht and Hofmann[35] who used sub- 

sequent heating and cooling cycles to obtain the 

"spectroscopy of the traps". Another improve- 

ment, by Halperin et aL [36, 37] suggests the 

plotting of ln(I/n b) versus lIT where the kinetic 

order b is known, thus obtaining a broader range 

in which the curve is a straight line. When the 

kinetic order is not known, several lines are drawn 

with various values of b (1, 2 and intermediate 

values) and the best straight line is chosen. Thus, 
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Figure 2 An isolated glow peak. The shaded area is pro- 

port ional  to the concent ra t ion  of  carriers in the  trap 

at the  tempera ture  T i. 

the best value for E is found as well as an evaluation 

of the kinetic order b. The value of n is estimated 

by the area of the glow peak from a given point 

Ti in the initial rise region to the end of the peak 

as shown in Fig. 2. One should have from I =  

2 n = Id t  = (1/~) IdT  (18) 

where T~ is the end of tile glow peak (theoretically 

r~ = oo). 

The initial rise method is expected to be valid 

beyond the limitations of Equation 5. Considering 

the set of Equations 7 to 9, one should note that 

in the initial rise range, n e should behave like 

exp(--E/kT) (therefore, the method can be used 

for TSC and TSEE as well). Equation 7 guarantees 

that as long as m ~ mo, which occurs in the initial 

rise range, I o: exp(--E/k T). 

Some theoretical [38, 39] as well as experi- 

mental [40] reasons limit the use of the initial rise 

method. Thus, Br~iunlich [39] showed that if a 

trap is filled to saturation, too small values of the 

activation energy will be found. One should also 

note that in Wintle's case [32, 33], the initial rise 

method should yield E -  W rather than E (Equation 

17). In cases where the pre-exponential factor is 

temperature dependent as T a [38] the initial rise 

range would behave like I o: T ~ exp(--E/kT). The 

initial rise method would mean finding 

Ei.r. = --k d(lnI)/d(1/T) (19) 

which in the present case is 

Ei.r. = E + a k T - ~ E  = Ei.r .--akT. (20) 

This may amount to a few percent correction in 

the value of E. 
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TABLE I Coefficients appearing in Equation 24 for the various methods of calculating activation energies 

First order Second order 

e r 6 to r 8 co 

e a 1 .51  0 . 9 7 6  2 . 5 2  1 .81  1 .71  3 . 5 4  

ba 1.58 + (a/2) a/2 1 + (a/2) 2 + (a/2) a/2 1 + (a/2) 

Another method, based on the Randall-  

Wilkins [1 ] solution involves the measuring of Tin. 

Differentiating Equation 2 and equating to  zero 

one gets 

[3E/kf~ = s exp ( - -E /kTm) .  (21) 

If one assumes a certain value for s, this transcen- 

dental equation can serve for calculating E. An 

interesting feature, unique to the first order case 

results from Equation 19; the initial concentration 

no does not appear in this equation, therefore, the 

first order peak is not expected to shift with 

various doses of excitation. An explicit expression 

for the evaluation of E was found by numerical 

calculations [26, 41] as follows 

E(eV) = [T m - -  To([J/s)]/K(s/[3) (22) 

where To and K are numerical factors given in 

tables as a function of (~/s). This equation, which 

is an improvement of Urbach's method, still has 

the disadvantage that one has to assume the value 

of the frequency factors beforehand. 

A number of methods have been developed 

which do not require an a priori assumption on the 

pre-expenential factor. Grossweiner [42] gave the 

following approximate equation for the first order 

case 

E = 1.51 ~rm r l / r  (23) 

where T~ is the lower half intensity temperature 

and r = Tm--7"1. The numerical factor 1.51 has 

been replaced by 1.41 [15] following a more 

detailed numerical study. 

Lushchik [43] suggested methods based on the 

measurement of 6 = T 2 -  Tm for the first and 

second order cases, where 7"2 is the higher half 

intensity temperature. Halperin and Braner [12] 

suggested a method based on the measurement of 

r for both the first and second order cases. They 

also introduced the symmetry factor #g = 8/w, 

where co = T2 --T1.  Chen [15] presented a 

method based on the measurement of Tm and co 

and suggested numerical corrections to the method 

of Lushchik and Halperin and Braner. It is to be 

noted here that once we find the value of E by any 

method, its substitution in Equation 21 would 

yield the frequency factor s. 

The r, 6 and co methods can be summed up in 

the following formula 

E a = Cc~(kT2m/cO--ba(2kTm) (24) 

where a is r, 6 or co. The values of ca and b e for 

the three methods and for the first and second 

order processes are given in Table I. The factor a 

appearing in ba is related to the possible depen- 

dence of the pre-exponential factor on tempera- 

ture, like T a. The addition of a/2 is equivalent to 

the subtraction of a k T  from the otherwise cal- 

culated value of E a. This is the equivalent to the 

subtraction of a k T  under the same condition 

while using the initial rise method (Equation 20). 

Chen [15] has also discussed the comparative 

merits of the three kinds of methods (r, 8, co) for 

various cases and also showed that for a first order 

peak /lg = 0.42 whereas a second order peak is 

characterized by /lg =0 .52 .  In another paper, 

Chert [4] showed that when one has a "general 

order" case (Equations 5 and 6), one can evaluate 

the kinetic order by the value of/lg. A calculated 

graph of/lg,  ranging from 0.36 to 0.55 for values 

of b between 0.7 and 2.5 is given, which can be 

used for the evaluation of b from a measured gg. 

The coefficients ca and ba in Equation 24 are cal- 

culated by interpolation as follows 

c r = 1.51 +3.0( jug--0 .42) ;  

br = 1.58 + 4.2 ~g  -- 0.42) + (a/2) (25) 

c~ = 0.976 + 7.3 (/1g -- 0.42); b~ = a/2 (26) 

coo = 2.52 +10 .2  (/~g -- 0.42); b w =  1 +(a /2)  

(27) 

These methods were applied to calculated general 

order peaks and yielded activation energies 

deviating only by a few percent from the known 

o n e s .  

TO conclude the discussion about the general 

order kinetics, it seems fit to write explicitly the 

solution of Equation 5 in this general case [4] 
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,b [ 
I = s no exp(--E/kT).  [(b - 1)s'n(ob-a)/[3] 

k ]-b/(b-1) fr~ exp( - -E /kT ' )dr '+  l j  . (28) 

This, certainly, includes the better known second 

order case (b = 2) given in Equation 4. s'nbo -1 has 

the units of sec -1 and in this sense it is similar to s 

in the first order case. If one writes s instead of 

s'n~ -l  , one has 
/ 

sno exp(- -E/kT) .  { [(b -- 1)sfl3] I 

k 

T } -b/(b-1) 

f%exp( --E/kr ')dT'+ 1 (29) m 

Although Equation 29 is not valid for the case 

b = 1, it can easily be shown that it reduces to 

Equation 2 when b ~ 1. 

The condition for maximum is found by 

equating the derivative of Equation 29 to zero 

T m  

[(b--1)s/t31 f exp(--E/kT)dT+ 1 

O T  o 

(sbkT2m/13E) exp(--E/kTm). (30) 

Owing to the dependence of s on no for b 4: 1, and 

through it, on the excitation dose, one should 

expect Tm, as found from Equation 30 to be dose 

dependent. For the case of b = 2 this dependence 

has further been investigated ]2, 44]. Once the 

activation energy E is calculated and the kinetic 

order b is evaluated, Equation 30 can be used for 

finding s = s'nbo -1 . The constant s' can be found 

only if information on no is available independently. 

Another class of methods is the numerical 

curve fitting, which was shown to be more 

accurate (although somewhat tedious) than 

previous methods. Curve fitting was used for the 

initial rise region [45] and for the entire curve. 

First order [46, 47], second order [48] and 

general order [21] cases were studied. In the 

latter, the activation energy, Pre-exponential 

factor and the kinetic order could thus be 

evaluated. The use of these methods was facili- 

tated by employing a computer. 

Another group of important methods is that of 

various heating rates. Bohun [50] and Parfianovitch 

[51] suggested that if a sample is heated at two 

different linear heating rates, t31 and ~2, the peak 

temperature Tm will be different. Equation 21 

can, therefore, be written once for/31 and once for 

/32 with their corresponding Tml and Tm2. Dividing 

these equations one by the other, one gets an 

explicit equation for the calculation of E: 

E = [kTml Tm2/(Tml - -  Tin2)] 

In [(fll/~2)(Tm2/Tml)2]. (31) 

Hoogenstraaten [52] suggested the use of 

several (linear) heating rates; plotting ln(Tm2/~) 

versus 1/Tm should yield, according to Equation 

21, a straight line from whose slope Elk, E is 

found. It is to be noted that even in Wintle's case 

[32, 33] mentioned above, using this method 

would yield E rather than E -  W which is found by 

the initial rise method. This is so, since the 

equation corresponding to Equation 21 in this case 

is 

(3(E-- W)/kT2m = s exp(--E/kTm). (32) 

Thus, by finding E by one method and E - W  by 

another, a good estimate of W can be found. Osada 

[53] proved that Equation 21 is true for an 

exponential heating function, T = T= -- (T= -- To) 

exp(--at)  where e(sec -1) is a constant. The linear 

heating rate 13 should be replaced here by the 

instantaneous heating rate/3 m at Tm. Haering and 

Adams [54] have shown that for first order TSC 

peaks the maximum intensity is proportional to 

exp(--E/kTm) (which is also true for first order 

TL peaks). Thus, plotting ln(om) (or ln(Im)) as a 

function of 1~Tin should give a straight line with 

a slope of --Elk. Another approximate method 

using various linear heating rates [22, 55] suggests 

the plotting of ln(lh3) versus 1/T m which should 

yield a straight line whose slope is Elk. 

Chen and Winer [44] proved that Equation 21 

is correct for any heating rate where t3m, again 

replaces t3. This leads directly to the validity of 

Equation 31 for this general case as well as to 

the method of Hoogenstraaten. They also showed 

that for the general order case, one can plot 

In [Ibm-X(T2m/(3) b] versus 1/Tm and get a straight 

line with a slope of 1/Tm. Moreover, they showed 

that even for cases other than first order (including 

b = 2) and for non-linear heating rates, plotting 

lnI m or ln(/3m/Tm 2) versus 1~Tin would yield a 

straight line having a slope o f - -E /k  to a very good 

approximation. 

A number of other methods are briefly to be 

mentioned here (see also Shalgaonkar and 

Narlikar's review article [19, 20]). Another 

method based on the measurement of T1, Tm and 
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T2 is that of Keating [14]. Land [13] suggested 

a method which uses, in addition to Tin, the two 

inflection points in the TL curve rather than the 

half intensity temperatures T~ and T2. Maxia et al. 

[56] suggested a somewhat complicated method 

for evaluating the activation energy and frequency 

factor. They deal with a multiple peak glow curve 

and assume that the various peaks result from the 

evaluation of electrons from a single trap and their 

recombination into various recombination centres. 

Onnis and Rucci [57] discussed an alternative 

explanation of obtaining several glow peaks, 

namely, having several traps and a single recom- 

bination centre. A shortcoming of this method is 

the assumption that the electrons can be retrapped 

only in the levels from which they have been 

released. Moreover, the possible general case of a 

series of peaks resulting from several traps as well 

as various recombination centres (in the same 

sample), has not been considered. Under these 

assumptions, they could find, in addition to E and 

s, the ratio between the probabilities for recom- 

bination and retrapping. 

Last to be mentioned is the method of iso- 

thermal decay [58] which is not exactly a TL 

method but enables, however, the measurement 

of E and s in the first order case. If one holds a 

sample at a constant temperature in a range where 

TL appears during heating, one can measure the 

isothermal decay (phosphorescence) which is given 

as the solution of Equation 1 for the T =  const. 

case as follows 

I(t) = ns exp (--E/kT) exp [ - s t  exp (--E/kT)] . 

(33) 

Plotting In [I(t)] as a function of t would give a 

straight line (the occurrence of a straight line 

ensures the first order property) the slope of 

which is 

M = s exp(--E/kT). (34) 

Repeating the measurement at various tempera- 

tures, one gets various values of M. Plotting In(M) 

as a function of 1/Tshould give a straight line with 

the slope --Elk, thus enabling the evaluation of E, 

and by substituting into Equation 34, the value of 

s. As mentioned by Wintle [32, 33],  this method 

should yield the value of E (rather than E-W) in 

the case of exponentially temperature dependent 

recombination probability (see above). 

Tables of experimental values obtained by 

applying some of these methods to TL curves in 
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KC1 and KBr can be found, for example in the 

papers by Ratnam and Gartia [59]. Similar tables 

for ITC curves appear in [153]. 

2.3. The integrals appearing in TL theory 
The problem of evaluating the integrals appearing 

in the theory of glow curves will be discussed in 

this section. The solutions of, for example, 

Equations 1, 3 and 5 involves the integral 

J = exp(--E/kT)dO (35) 
o 

when one deals with temperature independent pre- 

exponential factor. A number of authors [60-63] 

suggested the use of hyperbolic heating func- 

tions to facilitate the evaluation of J in Equation 

35. The hyperbolic heating function defined by 

T-oo 1 -- T -acc t is characterized by dT/dt ec T 2 

which transforms Equation 35 into 

f; J =  (3`/T'2)exp(--E/dT')dT ' (36) 

o 

where 3' is a constant. This is an elementary integral 

giving 

J = (3`k/E) [exp(-- E/kT) -- exp(-- E/kTo)]. 

(37) 

When the more frequently used linear heating rate 

T -= To + j3t is taken, one gets 

J = (1/~) exp(--E/kT' )dT' .  (38) 

To 

The integral in Equation 38 can be written as  

f T  exp ( -E / kT ' )  d T' = F(T,E)- -F(To,  E) 
o (39) 

where F(T, E) is defined as 

�9 

F(T, E) = exp(-- s  dT'. (4O) 

Since F(T, E) is a very strongly increasing func- 

tion of T, it is conventional to neglect F(To, E) 

in comparison to F(T, E). In the theory of ther- 

mally stimulated processes, E/kT is practically 

always of the order of 10 or more; for this range 

of values, a very useful method for evaluating 

F(T,E)  is by the asymptotic series found by 

successive integrations by parts [40, 42, 64] 

F(T, E) = T exp(-- E/kT) 

(kT/E)n(--1)n-tn! (41) 
n = l  



The series on the right hand side of Equation is 

divergent, but may give a good approximation 

for the value of the integral as follows. If one 

takes N terms in this asymptotic series, 

N 

su=Y~ 
n = l  

the absolute value 

(kT/E)" ( - l ) " - l n ! ,  (42) 

of the maximal error I RNI 
would not exceed the absolute value of the 

(N + 1)th term, aN+l, thus 

IRNI = laN.l[ = (kT/E)N+I(N+ 1)! (43) 

Chen [64] showed that an optimal value of F(T, E) 
is found when one takes the terms in the series 

down to the smallest one (in which (kT/E~-- 1) 

and adding one half of the following term. Follow- 

ing Dingle [65], Chen [66] showed that the adding 

of one half of the next term, reduces the possible 

error to (1/100) laN+l r, namely 

(l /100) (kT/E)N+I(N -t- ])r. 

It has also been shown [64, 66] that a convenient 

expression for the relative possible error is 

IRN/F(T,E)I ~ (1/lO0) x/[Z,r(E/kr) 3] 

exp(-- E/kT). (44) 

For E/kT = 10 one can thus calculate F(T, E) to a 

relative error of "- 3 • 10 -s [67] ; for E/kT = 15 

the relative possible error would be 4 • 10 -7. As 

seen from Equation 44, the bigger E/kT, the 

smaller the relative error. 

Alternative methods for the evaluation of 

F(T,E) were given by Squire [68] and Paterson 

[69]. Sullivan [70] extended the method to the 

case of non-linear heating rates. Another extension 

was given [71] for the cases of temperature depen- 

dent pre-exponential factors, s = s"T a, where s" is 

a constant. Here 

fo F(T, E, a) = T '~ exp ( -  E/kT ' )  aT' (45) 

is evaluated using the asymptotic series 

F(T, E, a) = (kTa+~/E) exp(--E/kT)" 

{ 1-[1/F(a+2)ly'(kT[E)n-~(-1)"-lp(a+n+l)},,+2 

(46) 

where F(x) is the gamma function. Again, one takes 

the terms down to the smallest one in which N 

E/kT-- a and adds one half of the following term. 

The possible relative error in this case is 

[RN/F(T, E, a) l = (1/lO0)x/(21r) (E/kT) a+3/2 

exp(--E/kT)/F(a + 2). (47) 

3. Thermally stimulated conductivity (TSC) 
3.1. Analysis of TSC measurements 
A TSC curve is observed when a sample having two 

electrical contacts is excited by any of the ways 

described in the TL case (nuclear radiation, X-rays, 

etc) at a certain "low" temperature and sub- 

sequently heated when a constant voltage is applied 

between the terminals. In certain temperature 

ranges, changes in the conductivity occur in the 

form of "electrical glow curves". The conductivity 

o is directly related to no, the concentration of 

electrons in the conduction band (or holes in the 

valence band) through the equation 

o = el.m e (48) 

where e is the electronic charge and p the mobility. 

Since/.t is usually only slightly temperature depen- 

dent (the possible dependence on temperature will 

be separately discussed in Section 3.2) this means 

that o is almost exactly proportional to n c. 

Several investigators [14, 46, 54, 72-79]  

assumed a constant lifetime r; in our notation this 

would mean that m in Equation 7 is practically 

constant. The meaning of r in this case is (1~mAre). 
Making this assumption, one gets TSC curves 

which are exactly the Same as the TL curves dis- 

cussed above. Most of these authors measured TSC 

peaks that looked like first order curves and used 

the various methods known from TL theory for 

the evaluation ofs  andE for the TSC curves. These 

include the initial rise method, the various shape 

methods and the methods based on various heating 

rates. 

Haering and Adams [54] investigated two 

extreme cases, slow retrapping and fast retrapping. 

Slow retrapping is characterized by (Ni--ni)  

Sv ~ r -I where Ni is the concentration of trapping 

states, n i the concentration of electrons in traps, 

S the cross-section for trapping an electron and v 

the thermal velocity of electrons in the conduction 

band. Under these conditions and assuming a linear 

heating rate T = To +/3t, one gets 

o(T) = NeSvellrno e x p ( -  E/kT) 

exp[--(NcSV/[3) fT~exp(--E/kT')dT' } 

(49) 
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where Arc ~ is the density of thermally available 

states in the conduction band. The product NeSv, 
which has the dimensions of sec -a, replaces here 

the frequency factor s in the TL case. Otherwise 

this is a simple first order function that can be 

treated as any first order TL peak. The other case 

is fast trapping in which (N i --ni)Sv>~ "i "-1.  The 
conductivity curve is given here as 

o(T) = (Nc/Ni) peno exp(-- E/k T) 

exp {-- [Nr l" T exp(--E/k T')dT'l 
~ T  o J 

(50) 

In this equation Nc/(Nir) replaces the frequency 

factor, the curve being still of the first order kind. 

Both NeSv in Equation 49 and Ne/(Nir ) in Equa- 

tion 50 may be slightly temperature dependent 

and, therefore, should not be taken out of the 

integrals as constants. This dependence is expec- 

ted, however, to behave like T a and, therefore, 

the same treatment as in the TL temperature 

dependent frequency factor, can be given. This 

case for a = 2 was discussed by Buehler [76]. 

Nicholas and Woods [72] examined first and 

second order TSC curves and used many of the 

methods previously developed for TL glow curves, 

for the TSC peaks. Among other things, they 

evaluated the cross-section for retrapping from the 

effective frequency factors found for several peaks 

in CdS. A recent paper by Rabie and Rumin [80] 

discussed first order TSC peaks assuming a constant 

lifetime for a given sample. In their samples of  Zn 

compensated Si, however, the lifetime r depended 

strongly on the concentration of negatively 

charged Zn ions. Thus they got a series of samples 

having the same activation energy E, but various 

values of  ~-. Assuming fast retrapping, a condition 

for the maximum, similar to Equation 21 would 

be in this case 

exp(E/kTm) = NekT2m/Ni~rE) (51) 

and thus, the maximum temperature would 

depend on ~-. This effect cannot be seen in the 

slow retrapping case. Equation 51 can be written 

as 

l/Tin = (k/E) In (T~/r) + A. (52) 

In  a way somewhat similar to the various heating 

rates method, one can plot In (T2m/r) versus (1 ~Tin) 
and get a straight line, the slope of which yields 

the value of E. The various values of ~- are separ- 
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ately determined from steady state photocurrcnt 

measurements. In a series of papers, Simmons 

et al. [81-86]  investigated various aspects of TSC, 

in particular in metal-insulator-semiconductor 

(MIS) systems. For evaluating the activation 

energy they used an approximate equation by 

which E is found. 

E = T m  [1.92 x 10-41oglo(S//3) 

+ 0 . 3 2 x 1 0  -3 ] - - 0 . 0 1 5 5 e V .  (53) 

Here too, one has to have a priori a good estimate 

on the value of s for obtaining accurate values of  E. 

Taylor [73] discussed the case of a general 

kinetic order assuming a constant life time r, 

and found orders ofb = 1.; 1.3; and 1.6 in different 

TSC peaks in KBr. The assumption that ~- remains 

always constant has been questioned by Saunders 

[87] who claimed that since ~-= 1~(Atom), it 

should increase with temperature as m decreases. 

For the second order case, (which includes the 

assumption n = m), he obtained the expression 

for the conductivity, 

o = eprI = (Sl/S)peN e exp(--E/kT). 

[ s; ]1 1 + (sdD exp(--E/gT')dT (54) 
o 

where s is the regular frequency factor, sl = nos/N, 
no and N were defined in Section 1. Chen [88] 

further investigated this expression and showed 

that it is characterized by very slow fall-off at the 

high temperature region, namely, that characteristic 

values of pg = 6/6o are in this case about 0.8. 

Manchanda and Mathur [89] studied this case 

when the hyperbolic heating function is used. The 

simplification, as mentioned before for other cases, 

is due to the simple expression for the integral 

in Equation 54. 

A similar treatment was given [90] (see also 

[25] ) to a TSC peak corresponding in a similar 

manner, to a first order TL peak. The TSC peak 

was found to appear at a lower temperature than 

its TL counterpart (see Section 3.2). The ex- 

pression for o in this case is 

o ( T )  = ( s / A m  ) exp (--E/kT)] 

{I + c~ exp[(s/[J) fTT exp(--E/kT')dT']} 

(55) 

where a =c /no  and where c is the number of  

trapped electrons in traps deeper than the one 

emitting electrons thermally at the range of appear- 



ance of  the peak. This means that in this range 

n + c = m. For very high values of a, Equation 55 

reduces to the simple first order case, but it differs 

from it for a ~ 1. In these cases one gets very low 

values of/~g; for a = 10 -4, for example, a value of 

/ag = 0.267 was found. An approximate method 

for finding the activation energy was found 

empirically 

E = 2.8 kT2m/O (56) 

where 0 = r#g = rco/8. Quite surprisingly, it has 

been found [91] that this equation gives a reason- 

able, although rough, estimate (within an accuracy 

of 15%) for the activation energy in all the above- 

mentioned cases. These include the Saunders TSC 

case given in Equation 54, the first order, second 

order and general order TL cases. It is to be noted 

here that the initial rise method is also applicable 

for the cases in Equations 54 and 55. 

3.2. Simultaneous measurements of TSC 
and TL 

As mentioned above ,while calculating theoretically 

a TL peak for a given set of  parameters 22 -25 ,  

27, 31 ,92] ,  the TSC peak (or more exactly the 

function no(T)) is found as well. In all these cases, 

the calculated TSC peak lagged, to some extent, 

behind its TL counterpart as shown in Fig. 3. A 

similar feature was found, theoretically, in the 

cases mentioned in Section 3.1 [87-90] .  Several 

investigators [93-102] performed simultaneous 

measurements of  TL and TSC (some included 

simultaneous measurements of  thermally stimu- 

lated electron emission, TSEE, see Section 4), and 

found in many cases a shift between a TL peak 

and the corresponding TSC peak. Usually, but not 

l ne ( t 2 c ~  
n j'tn2r {t} dt 

nc tl 

I "t t 

t I t 2 t 
Figure 3 Quantities measured to find the recombination 
probability A m (see Equation 58). 

always, this shift was in the "right" direction, 

namely, that the TL maximum preceded that of 

the TSC. Chen [103] investigated the relation 

between the TL curve I(T) and the curve of con- 

centration of free carriers no(T) which can be 

found from the experimental conductivity curve 

using Equation 48, no(T) = a(T)I [e#(T)]. 

In this section we will denote the recombination 

probability by A. One can immediately see that 

Equation 7, I = -- dm/dt = Atone, has much more 

general meaning than just describing the situation 

(together with Equations 8 and 9) when only one 

trap and one centre are involved. As long as only 

transitions into one recombination centre are 

measured, one does not mind whether there are 

transitions into other centres. Such transitions 

may change the number of electrons in the con- 

duction band, but Equation 7 holds true for the 

net concentration n e .  Moreover, no information 

about the traps contributing to ne is needed as 

long as ne = no(t) can be measured by conductivity 

measurements. Assuming that no(t) is known and 

that A is temperature independent, the solution 

of Equation 7 is 

I = Amone(t) exp --A Jo ne(t)dt' ; (57) 

no specific heating scheme T =  T(t) has to be 

assumed in this treatment. Writing Equation 57 

for two arbitrary points tl and & and dividing 

one by the other, we have 

I(&)/I(&) = [nc(&)/ne(tO] exp --A . 

(58) 

All the quantities in this equation except for A 

are measurable and thus A can be evaluated. Fig. 3 

shows schematically a peak of nc =no( t )  its 

counterpart I = fit)  and the quantities I(tO, I(&), 
nc(tO, n~(&) and f )  nc(t)dt. It is to be noted that 

only relative value~ of 1(0 are needed whereas 

absolute values of n~(t) are necessary. Since the 

recombination probability A is known [12] to be 

the product of  the thermal velocity v and the 

cross-section for recombination am, one can easily 

evaluate the latter by the values of  A and w Such 

evaluations have been given by Chen [103] for 

insulating and semiconducting diamonds. 

By equating the derivative of Equation 57 to 

zero, one gets 

(dnc/dt)max = A [ne(tmax)] 2 (59) 

1531 



where the subscript "max" indicates that values 

are taken at the maximum of the luminescence 

peak. The right hand side of Equation 59 is always 

positive, and, therefore, the left hand side should 

also be positive. This means that when the TL 

peak reaches the maximum point, the curve of 

ne(t) is still increasing or in other words, that ne(t ) 

maximizes later (at a higher temperature) than I(t). 

Since the dependence of the mobility on tem- 

perature is weak, the TL peak will usually also (but 

not always) precede the TSC maximum. The same 

conclusion was arrived at by Fields and Moran 

[104] using a slightly different line of thought. It 

has also been shown [103] that even if recom- 

binations into more than one centre are involved, 

the appearance of the TL peak at a lower tem- 

perature than the corresponding TSC one, still 

prevails. 

The possible dependence of the recombination 

probability A on temperature has been studied 

[105] using the results of  Lax [16] and Bemski 

[17] who showed that the cross-section for recom- 

bination varies with temperature like T a where 

--4 ~< a ~< 0. Since the thermal velocity depends 

on T 1/2, we have A = A T "  with - -7 /2<a~<�89 

It has been shown [105] that the a(T) curve can 

precede the TL peak if the condition 

A m T m n e m  < a/~ m (60) 

is fulfilled. Here Tm is the temperature of TL 

maximum, ~m the heating rate at Tin, ncm the 

value of  ne at Tm and A m is the recombination 

probability at Tin. Equation 60 holds true under 

certain circumstances, provided a > 0 (i.e. if a = 

in this case). 

If  we now wish to compare peak temperatures 

of TL and TSC (rather than o(T)), we have to take 

into account the temperature dependence of the 

carrier mobility. According to Lax [16] this is 

given by 

/J = /a'T b (61) 

where /~' is a constant and b assumes usually a 

value o f - - ~  (sometimes --2.3). Chen and Fleming 

[105] have shown that the condition for the 

appearance of a TSC peak before the TL is 

Am Tm Umax < C/3ra (62) 

where Am = (.4'/l~'c)T~n and where e = a -- b 

and Om~ is the conductivity at Tin. We now have 

--2~<c~<2 and the inversion or the order of 

appearance may occur more easily, for 0 ~ c ~< 2. 
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As for the possibility of an exponentially tem- 

perature dependent recombination probability 

[32,33],  A = K e x p ( W / k T ) ,  we can use the 

general condition [105] related to he(Tin)which 

is 

(dne/dt)  m _ 2 (d In A / d T ) m .  -- Amnem -- ~m nero 

(63) 

Inserting the function A(T) we get 

(dno/dt)m = K exp (rv/krm)n~r.  + ~m ncm W/kV~. 
(64) 

The right-hand side is always positive, which again 

means that the TL peak occurs at a temperature 

lower than the ne(T) peak. 

4. Thermally stimulated electron emission 
(TSEE) 

The effect of thermally stimulated electron 

emission (TSEE) can be described as follows. A 

sample, usually an insulator or semiconductor, is 

connected to an electrode in a vacuum tube, 

another electrode is also present in the tube at a 

certain distance from the sample. A given potential 

difference is maintained between the two elec- 

trodes. The sample is excited in any of the ways 

described in the TL and TSC cases during which 

time, electrons are being trapped in trapping levels. 

The sample is heated, and when the electrons are 

thermally stimulated from the traps, they can be 

entirely emitted from the sample and accelerated 

to the other electrode. Peaks of  current as a func- 

tion of temperature may thus be recorded, the 

shapes of the peaks and their other properties 

revealing information on the trapping states. Ex- 

perimentally speaking, this effect differs from the 

TSC case by the fact that single particles can be 

detected. Thus, open point counters, Geiger- 

Mfiller counters as well as mulitipliers may be 

used instead of the collecting electrode. It is 

worthwhile mentioning that TSEE is used, in a 

way similar to TL [106] and TSC, for dosimetry 

purposes. In all these pehnomena, the intensity of  

the effect is directly related to the amount of  

radiation which excited the sample prior to the 

warm-up. 

An important feature of TSEE as compared to 

TSC is that, evidently, only electrons can be 

released from the sample whereas holes cannot. 

Thus, one can easily distinguish between electron 

and hole TSC peaks by performing a simultaneous 

TSEE measurement; only the electron peaks would 

appear in the latter. Another advantage of the 



TSEE is that the mobility of the sample does not 

have any role in this phenomenon and, therefore, 

its temperature dependence should not influence 

the results. 

One complication in interpreting the TSEE is 

that while TL and usually TSC as well are mainly 

bulk phenomena, in many cases TSEE is related 

to surface phenomena and is, therefore, not 

necessarily directly related to TL and TSC. It has 

also been shown [107,108] that in order to get 

the emitted current density from the concen- 

tration of electrons in the conduction band, one 

has to take into account the effective work func- 

tion of the sample r One gets 

J = ne(T) [kT/(27rm)] 1/2e-r (65) 

where rn is the effective mass of a conduction 

electron. If we ignore the slight additional T in 

dependence, we get a case which is similar to 

Wintle's case [32, 33] mentioned above. If, for 

example, he(T) has a regular order shape [109], 

the additional factor e -eplkT gives an equatidn 

similar to Equation 17 with --r replacing W. Thus, 

the initial rise method would yield a value of 

E + r for the activation energy, whereas the various 

heating-rate methods give a value of E. As for the 

temperature of appearance, the multiplication of 

no(T) by the increasing function Tlne -r 

should cause the TSEE to appear at higher tem- 

perature than the ne(T) peak. Finally, a small 

correction of --�89 can be made (Equation 20) 

while evaluating the activation energy, if one 

takes into account the T ~n dependence in Equa- 

tion 65. 

TSEE was first found by Kramer [110]. Many 

other investigators have dealt with this phenomenon 

since then, some of the more recent references 

are to be mentioned. Seidl [111] and Schlenk and 

Huster [112] have studied the first order TSEE 

peaks and evaluated the activation energy from 

the experimental curves by the shift of the maxi- 

mum temperature at various heating rates. De Muer 

et al. [113] have used methods based on the shape 

of the TSEE curve of ZnO powder. Laitano and 

Martinelli [114] investigated both TL and TSEE 

in CaSO4 and Li2B407. Bohun [115] has measured 

TSEE and TL in NaC1 and other materials. The 

work of the following groups who dealt with 

various aspects of TSEE are also to be mentioned: 

.Scharmann et al. [116-119] ,  Becker etal. [120-  

122], Holzapfel et al. [107, 123] and Huzimura 

and Matsumura [124]. 

5. Ionic thermoconductivity (ITC) 
Bucci et al. [125,126] introduced in 1964 the 

experimental technique of ionic thermoconduc- 

tivity (ITC). As described by them the experi- 

mental procedure is briefly as follows. 

(1) A sample is polarized in a static field Ep, 

for a time t, at a temperature Tp ; the temperature 

should be high enough to allow the orientation of 

dipoles in the sample, but not too high so that the 

space charge contribution will be avoided. 

(2) The solid is cooled to a temperature To 

Tp, where any ionic motion is hindered, then the 

external field is removed. 

(3) The solid is warmed up, usually at a constant 

heating rate/3, and the discharge current is recorded 

as a function of temperature. ITC "electrical 

glow" peaks may thus be observed, generally 

similar to TL, TSC and TSEE peaks. 

The simple explanation for the appearance of 

an ITC single peak was also given by Bucci et al. 
[126]. The relaxation time of a dipole, 7., at a 

given temperature is assumed to be 7.(T) = 7.0 exp 

(E/kT) where 7.0 is a constant. Let us consider an 

ideal dielectric containing only one type of non- 

interacting dipoles of moment P and relaxation 

time 7-. In the absence of an electric field the 

dipoles are oriented randomly, but if an electric 

field Ep is applied at the temperature Tp for a 

period of time tp >>7.(Tp). The dipoles will be 

polarized and an exponential current decay will 

be observed. The dielectric is now cooled to a tem- 

perature To so that the relaxation time 7.(To) is 

of the order of several hours or more. The field is 

now removed, and the dipoles remain oriented at 

the configuration obtained at T v. The dielectric 

is now warmed up; if this is done at a linear heating 

rate, with /3 = dT/dt, a depolarization current is 

obtained which behaves as 

i(7) = NaipP2aEp/(kTp Zo) exp (--E/kT) 

[exp--(1/flT.o) j~Sexp(--E/kT')dT']  

(66) 

where ~ is a geometrical factor depending on the 

possible dipolar orientation (for free rotating 

dipoles c~ = 1/3) and Naip is the concentration of 

dipoles. Equation 66 is exactly the same as Equa- 

tion 2 where s is replaced by l / to and the numeri- 

cal factor in front of the exponential functions 

has another meaning. The simple ITC peak is thus 

a first order peak and all the methods developed 

for finding E and s in first order TL peaks can 
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automatically be used here for evaluating E and 

to. These include the initial rise method, the shape 

methods and the various heating rates methods. 

The same experimental procedure has been 

followed by several investigators sometimes with 

minor differences in their details. The resulting 

effects were given various names and, as will be 

explained below, these include mainly two 13ro- 

cesses. One is the current due to the polarization 

of dipoles as described by Bucci e t  al. and the 

other is the effect usually called thermally stimu- 

lated capacitor discharge (TSCD) [ 127-129] .  This 

effect is much closer to thermally stimulated con- 

ductivity (TSC) and one author [130,131] even 

calls it TSC. The two electrodes, one of which is a 

semiconducting f'tim and the other ohmic, on the 

sample are considered to be a capacitor. The 

capacitor is charged at a high temperature to a 

certain battery voltage V, then cooled under 

equilibrium conditions to a sufficiently low tem- 

perature To; electrons fill at random the traps 

present in the sample (usually a semiconductor 

[127]. Now, the capacitor electrodes are short 

circuited and after a partial discharge of the 

capacitor, the semiconductor contains only those 

electrons which are captured by the traps. Sub- 

sequent heating of the semiconductor alters the 

free electron density because of the thermal 

liberation of carriers from the traps and their 

motion to the metal electrode, which acts as a 

recombination channel. As mentioned above, this 

is similar to the expected TSC peaks in the same 

sample. As opposed to the ITC dipole depolariza- 

tion case, the peaks in this case are not necessarily 

simple first order curves. The advantage of the 

present technique, as opposed to the TSC measure- 

ments, is in cases where the dark current, which is 

the background current in TSC measurements, is 

high. In the present technique, this is practically 

eliminated. MOiler et  al. [132-134] have investi- 

gated various aspects of TSCD which they, as well 

as other investigators, name thermally stimulated 

depolarization (TSD), and ITC. In these papers 

they have advocated the use of hyperbolic heating 

rates for these cases. In another paper, M(iller 

[135] discusses the relationship between TSD and 

TSC. Perlman e t  al. [136-141] have investigated 

ITC and TSCD, which they also called thermal 

currents, in various organic materials such as 

carnauba wax and mylar. Hickmott [142, 143] 

studied TSCD, which he called thermally stimu- 

lated ionic conductivity (TSIC), in SiO2, mainly 
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by the use of hyperbolic heating rates. Other 

names used were depolarization thermocurrents 

(DTC) [144], dielectric relaxation current (DRC) 

[145] or stimulated dielectric current (SDRC) 

[146]. In this measurement, a voltage Vd was 

applied to the sample at a high temperature. The 

sample was then cooled to low temperature and 

at this low temperature, the voltage bias was 

changed to another value Vi~ I'd; The tem- 

perature was not raised uniformly and the sample 

current was measured. A technique slightly dif- 

ferent in detail, though very similar in nature, was 

described by Podgor~ak and Moran [147, 148] 

who called it radiation induced thermally activated 

depolarization (RITAD). In this effect, investi- 

gated in LiF, a sample was irradiated at low tem- 

perature in relatively high externally applied 

electric fields (~103Vmm-l ) .  The subsequent 

heating of the crystals with the electrodes shorted 

through an electrometer, produced a series of 

depolarization current minima and maxima. 

All the above-mentioned authors, excluding 

Podgor~ak and Moran, reported first order ITC 

and TSCD peaks. Other than the possibility of 

having two or more overlapping peaks, the analysis 

of the observed curves is as simple as that of first 

order TL peaks. Moran e t  al. [147, 148] found a 

nearly symmetrical peak in CaF2 and suggested a 

second order process 

J ( t )  = - -  d o / d t  = 7(7)o 2 (67) 

where o is the polarization of the electret, J(t) the 

discharge current and 7(T) = 3'0 exp ( - - E / k T )  where 

70 is the pre-exponential factor. A solution similar 

to Equation 4 immediately follows and so does the 

analysis of second order TL peaks. Peaks that are 

of neither first nor second order kinetics have also 

been found experimentally by some investigators 

[149-152] most of whom adopted the "general 

order kinetics" method for analysis. They assumed 

an equation analogous to Equation 5 and thus 

could use the analysis related to Equation 5. 

Kristianpoller and Kirsh [153] have applied this 

analysis to ITC peaks in SrF2:Tb and found values 

of 1.5 and 1.6 for the kinetic order b for peaks at 

365 and 278 K, respectively. 

Tiller e t  al. [154] mention the possibility of a 

pre-exponential factor in ITC which is inversely 

proportional to temperature. While evaluating the 

activation energy in this case, one should use the 

correction given in Equation 20 and in Table I 

with a = -- 1. A few recent papers [155-159] on 



ITC as well as a recent book [160] dealing with 

thermally stimulated discharge of polymer elec- 

trets are also to be mentioned here. 

6. Thermal annealing 
When a solid sample is irradiated by X-rays or 

nuclear irradiation, defects may be produced. 

These are to be differentiated from the traps due 

to existing impurities or defects in the sample 

which can be filled by the irradiation. The energy 

stored (due to the production of new defects)can 

be released during the heating of the sample. This 

can sometimes be detected as TL as seen in Section 

2; in other cases, this thermal annealing of the 

defects can be measured using a calorimetric 

method. In this method [161-163] the rate of 

release of stored energy is directly measured as a 

function of temperature. This rate of release is 

analogous to the intensity of emitted TL. The 

general equation governing the process was given 

by Damask and Dienes [164] as 

-- dn /d t  = F(n)Ko  e x p ( - - E / k T )  (68) 

where n is the concentration of defects, F(n)  a 

continuous function of n, and Ko the pre- 

exponential factor. Cruz-Vidal et  al. [162] claimed 

that it is not only simplest but also most realistic 

to assume either a first or a second order kinetics, 

namely, F ( n )  ~ n and F(n)  ~ n 2 respectively. Once 

such a behaviour is established, by using the form 

factor of the peak/.re, for example, one can utilize 

all the above-mentioned TL methods for analysing 

these peaks. For example, Cruz-Vidal et  al. [163] 

calculated the activation energy by assuming a 

certain frequency factor for KC1 samples after 

4.6 K reactor irradiation. A better approach would 

be using one of the methods mentioned in Section 

2.2 to evaluate E, thereafter calculating the 

frequency factor. So, for example, for their peak 

at 34.5 K this would result in a lower value for E 

and a correspondingly lower value for the frequency 

factor fo. 

ltoh et  al. [165,166] assumed that F(n)  ~ n x 

where x is not necessarily 1 or 2. This brings us 

back to an equation equivalent to Equation 5 and 

to the treatment of general order kinetics. Saidoh 

and Itoh [66] discussed the annealing curve 

measured in an alternative way. When the defects 

are present in a transparent sample, the optical 

density can be measured which gives information 

on the concentration of the defects. During the 

heating of the sample, the absorption changes 

and thus n = n(T) can be evaluated. The deri- 

vation of this curve with respect to temperature 

gives an annealing curve analoggus to the glow 

curve. This has been mentioned by Balarin and 

Zetsche [167] who dealt with first and second 

orders only. 

Assuming that F ( n )  is a well-behaved function, 

Damask and Dienes [164] and other investigators 

[168,169] showed that Equation 31 gives a good 

approximation for the activation energy. The 

novelty here is that this is the case for all well- 

behaved functions including F(n)ec  n x ,  but it is 

defintely not limited to this case. This fact can 

be used for the other thermally stimulated 

phenomena as well. 

7. Partial thermoremanent magnetization 
(PTRM) 

The ITC mentioned above is a result of freezing 

the electrical polarization whilst cooling a sample 

under an electric field. In a similar way, magnetiza- 

tion can be frozen in a magnetic specimen whilst it 

is cooled in a magnetic field. This thermoremanent 

magnetization (TRM) can be measured as a func- 

tion of temperature whilst the sample is heated. 

Whereas in the electrical case, the ITC measured 

is directly proportional to the derivative of the 

polarization, one has to find the derivative curve, 

which is called partial thermoremanence magneti- 

zation (PTRM), from the TRM curve, in order to 

obtain the analogue of the ITC curve. Such 

measurements for synthetic and natural ilmenite- 

haematites gave been performed by Westcott-Lewis 

and Parry [170-173] .  The theory of TRM and 

PTRM has previously been established by Ndel 

[174] and Stacey [175]. According to Stacey, the 

magnetic behaviour is governed by the differential 

equation. 

-- dM/d t  = CM exp (-- E / k T )  (69) 

where M is the magnetization and C the frequency 

factor. As pointed out by Chen and Westcott- 

Lewis [176], this is analogous to the Randall- 

Wilkins TL eqaution (Equation 1) and, therefore, 

the methods of analysis known for the latter are 

applicable to the former. According to Stacey 

[175], C is proportional to T. Here, too, one can 

use the appropriate corrections developed for TL 

curves. For example, if one uses the r, 6 or co 

methods (Equation 24) with the parameters given 

in Table I, a value of a = 1 should be employed. 

Thus, for example, the activation energy can be 
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found from the total width of the PTRM curve 

by 

E = 2.52kTZm/m -- 3kTrn. (70) 

8. Thermal desorption and evolved gas 
analysis (EGA) 

The phenomenon of  thermal desorption, some- 

times called flash desorption (a somewhat different 

version of which is referred to as evolved gas 

analysis (EGA) [177]) was described by Redhead 

[178] as follows. A sample, usually a metal is 

rigorously cleaned in vacuum, a known gas is then 

introduced and allowed t o  adsorb on the sample. 

The gas is then desorbed by heating the sample 

while the pressure in the system is recorded; the 

resulting pressure-time curve is called the "des- 

orption spectrum". If the temperature-t ime 

relation for sample heating is suitably controlled, 

the desorption spectra can be analysed, usually 

employing linear or hyperbolic heating rates. The 

closely related evolved gas analysis (EGA) is the 

technique of determining the nature and amount 

of  any volatile products formed during thermal 

analysis. The analysis of  the curves can yield infor- 

mation on the number of various desorption 

phases, the population of the individual phases, 

the activation energies of desorption, the pre- 

exponential factors and the order of the desorption 

kinetics. 

Redhead as well as other investigators [179-  

189] have written an equation analogous to our 

Equation 5 which gives the rate of desorption as 

follows 

-- dO/dt = AO" e x p ( - - E / R T )  (71) 

where 0 is the surface coverage, A the pre-exponen- 

tial factor, E the activation energy, and n the order 

of the kinetics. It is customary to give the activation 

energy in the thermal desorption case, as well as in 

the thermogravimetry (TG) and differential 

thermal analysis (DTA) (see below) in kcal mo1-1 

rather than in eV. This is the reason why R, in 

kcalmol-~K q ,  replaces k in Equation 71, and in 

the following discussion, the ratios E / k T  and E / R T  

are the same. The units in modern use are kJ mo1-1 

for E, and kJ mo1-1K -1 for R. Some researchers 

dealt only with the cases of first and second order 

kinetics, namely, n = 1 and 2, whereas others 

assumed "general order" kinetics with values of n 

ranging up to 3 [190]. This can explain the 

occurrence of a peak with symmetry (measured by 
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/2g) different from that characteristic to the first 

and second orders. Equation 71 is an alternative to 

the assumption [191 ] that the activation energy is 

coverage dependent as E-~ Eo--xO(t)/O(O)where 

both Eo and x are constants and x ~> 0. As men- 

tioned by Chen [189], one can apply the methods 

developed for general order kinetics TL for the 

thermal desorption curves, assuming that Equation 

71 represents the situation. This seems to be the 

case according to the works mentioned above 

[178-188] .  For example, the method of various 

heating rates has been reported to be applicable 

for thermal desorption when linear heating rates 

were used [185,186].  As we know from TL 

theory, this can be done for any increasing heating 

function provided that the value of the heating 

rate at the maximum, 3m, replaces 3 in the plot of 

ln(TZm/[3) versus 1~Tin. McCarroll [191] has shown 

that the mass spectrometer signal intensity, which 

is the same as thermal desorption, is given by 

I(t)  = - -gO(t)T( t )  -1/2. (72) 

This is equivalent to the pre-exponential factor 

which depends on temperature like T a with 

a =--~.  The evaluated activation energies should, 

therefore, be amended by subtracting a value of 

�89 (analogous to �89 from the otherwise 

calculated energies. Finally, special attention 

should be paid to two recent review papers [186, 

187] dealing with various aspects of thermal 

desorption. 

9. Derivative thermogravimetry (DTG) 
Another important member of the group of 

phenomena entitled "thermal analysis" is thermo- 

gravimetry [192-197] .  In this technique, the 

weight of  a substance, in an environment heated 

at a controlled rate, is recorded as a function of 

time or temperature. The record of the weight as 

a function of t or T is the thermogravimetric (TG) 

curve. Derivative thermogravimetry (DTG) is the 

technique yielding the first derivative of  the 

thermogravimetric curve with respect to either 

time or temperature. Thus TG is analogous t o  

the curve of n, the concentration of carriers in 

trapping states in TL, whereas its derivative the 

DTG, is analogous to the TL intensity. Since it 

is conventional [195] to plot weight losses down- 

wards, a typical DTG curve looks like an upside- 

down TL curve. In processes such as oxidation, 

weight gains are involved and the curves resemble 

the TL peaks. 



As agreed by many investigators [198-201] 

the equation governing the TG and DTG curves is 

-- dW/dt  = A e x p ( - - E / R T ) W  n (73) 

where W is the fractional residue weight of the 

sample. This, again, is exactly analogous to our 

Equation 5. Certain non-integer values of the 

kinetic order n, such as 1, ~ [202], 0.4, 0.6, 0.7 

and 1.6 [203] have been mentioned for certain 

materials. As stated before [204], the methods 

developed for the analysis of TL curves, can be 

used to extract the activation energy, the kinetic 

order and the pre-exponential factor from the 

DTG curve. According to Zsak6 [205], the pre- 

exponential factor may be temperature dependent, 

behaving like T m. The corrections mentioned 

above, for the calculated activation energy when a 

temperature dependent pre-exponential factor is 

involved, should be applied. An important review 

paper on the general treatment of the thermo- 

gravimetry of polymers by Flynn and Wall [206] 

should be mentioned here. These authors discuss 

the use of the initial rise method and the various 

heating rates method for linear as well as non-linear 

heating rates. They also consider the dependence 

of the pre-exponential factor on temperature and 

suggest alternative numerical evaluations of the 

integral appearing in Equation 35 to that given in 

Section 2.3. 

It is to be noted that cases more complicated 

than those described by Equation 73 have also 

been considered for more complicated thermo- 

gravimetric results, gatava [207] and Zsak6 [205] 

wrote instead of Equation 73 the general equation 

-- dW/dt  = A f ( W )  e x p ( - - E / R T )  (74) 

where f(W) can be W i n ( 1 -  W) n or even more 

complex functions of 14/. Ozawa [208] suggested 

two activation energies which are active at the same 

temperature range, namely, an equation of the 

form 

dc/dt  = A1 exp ( - -E1 /RT)  (1 - -c)  

+ A2 exp (EJRT) (1 -- c) (75) 

and investigated the changes in the resulting curve 

under various heating rates. 

10. Differential thermal analysis (DTA) and 
differential scanning calorimetry (DSC) 

Differential thermal analysis (DTA) [192-197] is 

the thermal technique in which the temperature of 

a sample compared with the temperature of a 

thermally inert material is recorded as a function 

of the sample as it is heated (or cooled) usually 

at a uniform rate. Temperature changes in the 

sample are due to endothermic or exothermic 

transitions or reactions such as those caused by 

phase changes, fusion, crystalline structure inver- 

sions, boiling, sublimation, dissociation reactions, 

destruction of crystalline structure and other 

chemical reactions. The temperature changes 

occurring during these chemical or physical changes 

are detected by a differential method. 

A very closely related technique is differential 

scanning calorimetry (DSC), which consists of 

the recording of the energy necessary to establish 

zero temperature difference between a substance 

and a reference material against either time or 

temperature as the two specimens are subjected 

to identical temperature regimes in an environ- 

ment heated or cooled at a controlled rate [195]. 

Kissinger [209,210] wrote the following 

equation governing the process 

dx/dt  = A(1 - - a )  n e x p ( - - E / R T )  (76) 

where a is the fraction reacted. If we write y for 

1 - -  a we obtain 

- -dy /d t  = A y  n e x p ( - - E / R T )  (77) 

which is exactly the same as Equation 5 and has, 

therefore, the same implications regarding the 

possible uses of the various mentioned methods. 

For example, Kissinger [210] has developed the 

method of various heating rates for this case and 

proved that d[ ln ( [3 /T2m)] /d (1 /Tm)=,E /R  not 

only for the first order case but for the general 

order kinetics as well. The possibility of using a 

non-linear heating function [44] has not been 

mentioned. 

The validity of the Kissinger method has been 

challenged by Reed et al. [211] who showed that 

the maximum rate of reaction does not necessarily 

occur at the peak of the DTA curve and that 

Kissinger's method may lead to large errors in the 

values obtained for the activation energy and pre- 

exponential factor. Other investigators still tend to 

believe that Kissinger's method is applicable in 

certain cases, for example in the differential scan- 

ning calorimetry (DSC) of the crystalization pro- 

cess in As2Se3 [212]. 

Various methods of analysis of DTA curves 

were discussed by Sharp [213]. These include 

the important work of Borchart and Daniels 

[214] which is applicable to reactions in solution. 
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Under specific conditions, Equation 77 was arrived 

at and a method of trial and error based on the 

initial rise method was suggested for evaluating 

the activation energy, the pre-exponential factor 

and the reaction order. A refinement of this 

method was given by Weber and Greer [215] and 

an alternative method was suggested by Tateno 

[216]. 

The main experimental problem in DTA 

measurement (which actually occurs, to some ex- 

tent, in the other thermally stimulated processes 

as well) is to maintain a uniform temperature 

throughout the sample. The existence of a tempera- 

ture gradient in the sample can invalidate the 

methods mentioned of evaluating the reaction 

parameters in solids. It has also been pointed out 

that Equation 7 is merely a mathematically con- 

venient expression rather than one that expresses 

accurately a physical reality [217]. This point 

seems to be similar to the convenience of using 

Equation 5 as opposed to the difficulties arising 

in dealing with the accurate set of Equations 7 to 

9 in TL theory. 

The theory of Borchardt and Daniets has been 

modified to include diffusion-controlled reactions 

[217,218].  The diffusion equations can be 

written in the general form 

da/dt = kf(a) (78) 

where f(a) depends on the particular process. 

For the oxidation of many metals, one has the 

"parabolic law" in which f (a)= 1/(2a). For the 

equation of Gistling and Braunshtein [219] one 

hasf (a)  = 3/2 [(1 -- a) 1/3 -- 1]. 

1 1. Conclusion 
Methods developed independently for each of the 

processes discussed here are shown to be applic- 

able, under the appropriate conditions, to the 

analysis of the other thermally stimulated pro- 

cesses. Some of the methods were developed in 

parallel, since the investigators in one field were 

not aware of the advances in the other related fields. 

In other cases, certain methods reached a high 

degree of sophistication, which can now, by 

analogy, be almost automatically applied to the 

other phenomena as well. The stress in this work 

on the theory of TL is due, to some extent, to 

personal tendencies. 
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