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Methods for Large-Scale Monitoring of District
Heating Systems using Airborne Thermography

Ola Friman, Peter Follo, Jörgen Ahlberg, Stefan Sjökvist

Abstract—District heating is a common way of providing heat
to buildings in urban areas. The heat is carried by hot water
or steam and distributed in a network of pipes from a central
power plant. It is of great interest to minimize energy losses
due to bad pipe insulation or leakages in such district heating
networks. As the pipes generally are placed underground, it may
be difficult to establish the presence and location of losses and
leakages. Towards this end, this work presents methods for large-
scale monitoring and detection of leakages by means of remote
sensing using thermal cameras, so-called airborne thermography.
The methods rely on the fact that underground losses in district
heating systems lead to increased surface temperatures. The main
contribution of this work is methods for automatic analysis of
aerial thermal images to localize leaking district heating pipes.
Results and experiences from large-scale leakage detection in
several cities in Sweden and Norway are presented

I. INTRODUCTION

A district heating system uses a centralized power plant

from which heat is distributed to a number of buildings. This

solution is commonly found in urban residential and commer-

cial areas on the northern hemisphere as it offers advantages in

terms of energy efficiency, pollution control and administrative

effort compared to more localized heat generation solutions

[1]. The heat is carried from the central power plant by hot

water or steam with temperatures in the range 90-150◦C (200-

300◦F). The distribution pipes degenerate with time [2], e.g.,

due to corrosion, degradation of the insulation material or

motions in the ground. As district heating systems in some

cities have been in use for many decades, it is of economic

and environmental interest to monitor these networks to detect

energy losses due to poor insulation or broken pipes where

toxic water or steam leaks [3]. Major leakages of 50 m3 to

150 m3 of water or more per day may also cause the ground

to collapse due to erosion, whereby large amounts of water at

boiling temperature are exposed.
Coarse monitoring to find losses in district heating systems

is possible by measuring how much water leaves the central-

ized power plant and how much arrives at each building, but

exact localization of leakages is difficult because the pipes

are generally placed underground. Leakages can therefore go

unnoticed for long times, or the existence of a leakage may

be suspected but its exact location has not been identified.

Searching for leakages manually requires digging up the pipes

for inspection, a costly and tedious procedure, especially if it

has to be repeated several times in order to locate the leakage.
This work presents methods for large-scale monitoring of

district heating systems by means of remote sensing from an

aircraft using a thermal camera [4], [5], [6]. Such airborne

or aerial thermography has found many applications in which

the ground temperature is of interest, e.g., search and rescue

operations, fire fighting, mining and geophysical applications

[7], [8], studies of urban heat islands [9] and inspection of

building insulation and rooftop conditions [10]. In the context

of district heating, underground leakages of hot water or steam

cause increased temperatures at the surface level that can

be measured with the thermal camera, i.e., warmer regions

manifest themselves as bright regions in the thermal images

[11]. Increases of the surface temperature with more than 20
◦C over major leakages have been observed in the thermal

images in the present work, but the increase is dependent on

the size of the leakage. It has been shown that it is possible to

register the surface temperature differences around a leakage

using a hand held thermal camera at the ground level [12],

[13], but access to non-public areas such as residential gardens

and industrial sites may be restricted. In contrast, imaging

from an airplane gives both the necessary overview and the

possibility to perform large-scale monitoring.

Large-scale monitoring means that an entire city is traversed

by the airplane in a predefined pattern while acquiring the

thermal images. This results in tens of thousands of aerial

images, see Fig. 1. The main contribution of this work is

methods for automatic analysis of such images to localize

leaking district heating pipes. Results and experiences from

large-scale leakage detection in several cities in Sweden and

Norway are presented.

II. DATA

This section describes the data acquisition process and pre-

processing of the thermal images.

A. Image acquisition

Thermal images covering the district heating system of

interest are acquired from an airplane that follows a predefined

trajectory, see Fig. 1e. The images in this work were acquired

from an altitude of about 800 meters. The camera is triggered

at GPS control points so as to ensure full coverage of the area.

To minimize the number of irrelevant temperature contrasts,

the image acquisition is preferably performed at night or

dawn. At this time, the effect of sun heating is minimal and

most ground objects have adopted a homogeneous background

temperature. For example, cars are generally parked and cool,

compare Fig. 1a and Fig. 1d. Some heat sources not related to

the district heating system are unavoidable, such as chimneys

and heat leakage from houses, see Fig. 1c. At dawn, even

before the sun has risen above the horizon, building walls

will be heated due to atmosphere scattering. These sources
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a)

b)

c)

d)

Fig. 1. a) An example leakage in an aerial thermal image is marked by the yellow arrow. The temperature profile across the leakage is shown in the inset
plot. This thermal image was acquired during daytime and one can note that the parked cars in the image are warm. b) A photograph of the leakage area in
a). The surface is dry due to the underground leakage. c) Another example leakage. The bright regions indicated by the red arrow are heat leakages from a
building. d) Another example leakage. This image was acquired during night and one can note that the parked cars are cool, as opposed to the cars in a). e)

The thermal images are acquired along a predefined trajectory (purple line) over a city. After georectification of the images, image mosaics of thousands or
tens of thousands of images are generated for simple navigation and exploration of the data. The area shown in red-yellow colorscale shows the size of one
image.

of heat may cause false alarm detections. Furthermore, the

ground should be free of any insulating layer of snow and

there should be no leaves or foliage covering the line of sight

to the ground surface. Over the northern hemisphere, where

district heating is mostly used, this means that there are two

time windows during the spring and the fall where there is no

snow and no foliage. Ideally, the ground should also be dry

and the wind speed low.

If the area of interest is large, it may not be possible to cover

it in one night. Several acquisitions are then made over several

nights. As the environmental conditions will be different for

these acquisitions, e.g., different background temperatures,

each acquisition must be treated separately in the ensuing

automatic analysis. In the inset mosaic image in Fig. 1e, the

striping effect stems from different acquisitions with slightly

different image contrasts.

At the beginning of each acquisition, the airplane passes

over calibration panels placed on the ground. The emissivity of

the panels is known and their surface temperature is measured

with a contact method. Weather parameters such as temper-

ature, humidity and wind speed are also measured. Using

this information, atmospheric effects can be estimated and the

image intensities can be translated to a temperature scale1.

While the methods for leakage detection presented below are

invariant to intensity scaling, such calibration enhances the

interpretability of the image contrasts and it facilitates change

detection and quantification between several overflights of the

1The software Altair from FLIR Systems, Inc was used for this purpose in
this work.

same area.

The thermal camera used in this work is a cooled FLIR

SC7000 Titanium which operates in the mid-wave IR domain

(3.0 µm – 5.0 µm). The sensor size is 640×512 pixels and

the FOV 11◦. At an acquisition altitude of 800 m, this yields

a pixel footprint size of 24 cm.

B. Georeferencing

The thermal images are georectified using standard methods

based on GPS and IMU measurements acquired simultane-

ously with the images. An image mosaic is built from the

georectified images. This mosaic is stored in a scale-space

fashion to facilitate interactive exploration by allowing quick

navigation and zooming in the images. Detection of leakages

is always performed in the original images, however, as they

have the highest resolution and quality.

C. Auxiliary GIS data of the district heating network

Cities with district heating systems usually maintain a

blueprint of the pipes in a Geographic Information System

(GIS) format. This information greatly facilitates the detection

of leakages as the search area can be narrowed down to an area

above the pipes. A large portion of the false alarm detections is

thereby rejected. Using the georeferencing information of the

images, the pipes can be projected into the original images and

the search area defined by rasterizing an image mask around

the pipes that extends 5 pixels on each side, see Fig. 2.
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Georectified thermal image District heating pipe mask

Fig. 2. An example of a georectified thermal image and a pixel mask of
the district heating pipes obtained by rasterizing a GIS layer of the district
heating system.

III. METHODS

A. Modeling leakages

The detection of district heating leakages relies on a surface

temperature contrast induced by the underground leakages. It

is possible to model the temperature field and heat flux around

a buried heating pipe, and thereby predict the temperature

profile at the surface level above a leakage [11]. Such mod-

elling and empirical observations show that an underground

heat loss manifests itself as an area with a smooth bell-shaped

temperature variation profile at the surface level, see Fig. 1a.

This information is potentially useful as a distinguishing

feature of district heating leakages. However, the exact tem-

perature profile shape depends on a number of parameters and

assumptions, such as the thermal conductivity and humidity

of the soil, a homogeneous ground volume around the pipe,

and surface conditions such as air temperature, wind and

surface cover. In addition, atmospheric effects and the surface

emissivity affect the radiance measured by the thermal camera.

Finally, a leakage may be partially occluded by a car or

any other object, introducing discontinuities in the measured

temperature profiles from the airborne platform.

For the above reasons, it is very difficult to formulate a

useful compact model of the spatial shape and temperature

profile induced by a real leakage, and to use it to discriminate

against other warm areas seen in the images. The problem

of detecting leakages is therefore treated as an anomaly

detection problem instead. In this approach, a model of normal

temperature variations is created from the acquired images and

outliers with respect to this model are detected as potential

leakages that should be investigated further. The pixel intensity

probability distribution pT (x), i.e., the probability that the

pixel value T falls in an infinitesimal interval around the value

x, for the ground surface above the district heating pipes is

used as a model of normal variations, see Fig. 3. For the

purpose of detection, it does not matter if pT (x) is expressed

in the raw radiance unit delivered by the camera or if the

intensity scale of the images has been calibrated to apparent

temperature.

To estimate pT (x), the aerial thermal images and a pixel

mask of the pipe locations are required. The latter is obtained

by projecting the GIS layer of the district heating system into

the acquired images as described in Section II-C. Real leak-

ages are rare events so that pT (x) can be non-parametrically

estimated, without significant bias, by the histogram of all

Fig. 3. Distributions of all pixel intensities (dash-dotted blue line) across
thousands of images in one acquisition, and the distribution pT (x) of the
pixels in a mask above the district heating pipes (solid red line). Thresholds
to detect candidate leakages are found as percentiles of pT (x), i.e., as
abnormal temperatures, which is illustrated by the filled areas. Histograms
for acquisitions on two consecutive nights are shown and the thresholds are
adapted to the acquisition conditions.

pixels under the pipe mask across all images in one acquisition.

As it is generally not possible to hold all thousands of images

in the computer memory simultaneously, the histogram is

estimated iteratively in a two-pass process: In a first pass over

the images, the pixel intensity mean and standard deviation are

determined iteratively using one image at the time. Based on

this information, suitable histogram bin centers are derived. In

this work, 1000 bins evenly distributed in a range ±5 standard

deviations from the mean are defined. The second pass over the

images then accumulates the total histogram image by image.

The estimation of pT (x) should be made using images

acquired under similar conditions. A city is typically imaged

in a number of acquisitions over several days. Each acquisition

requires its own pT (x) as the atmospheric conditions and air

temperature generally will differ, leading to different distri-

butions of the normal surface temperature. If the conditions

change within an acquisition, it is possible to estimate different

pT (x) for images within the acquisition, but this is usually

not necessary. As a final note, pT (x) will differ somewhat

from the distribution of all pixel intensities, as pT (x) is

restricted to the area above the district heating pipes, and some

dissipation from the pipes is unavoidable and normal, and

because the pipes are usually drawn under streets which tend

to be somewhat warmer than vegetation and building roofs.

This is illustrated in Fig. 3.

B. Detecting leakages

District heating leakages are assumed to cause surface

temperatures that are larger than normal surface temperatures,

i.e., leakages are found in the upper tail of pT (x). To detect

potential leakages, a threshold defined by a certain percentile

of pT (x) is therefore used. For example, one may mark the

warmest 1% of all pixels over the pipes as outliers, represent-

ing candidate leakage regions. The threshold obtained in this

fashion is objective and adapted to the imaging conditions,

which is exemplified in Fig. 3. This is in contrast to human

screening of individual images, which is superior in terms of

recognition of local context and scene analysis, but which

lacks the objective information across all tens of thousands

of images that is encoded in pT (x).
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The pixels with extreme temperatures identified with the

percentile threshold are typically clustered in regions. Further

region-based analysis is therefore applied to filter out warm

regions that are unlikely to stem from leakages. One may

incorporate discriminating features describing the temperature

profile over each detected region using for example shape,

blobness and intensity gradient features. However, as discussed

in Section III-A, due to the large variation of leakage shapes

and locations, e.g., a leakage under a parked car will appear to

have both an uncharacteristic shape as well as apparent steep

edge in the temperature profile, it is difficult to find features

that uniquely characterize real leakages. To avoid that real

leakages are filtered out, the only additional feature considered

in this work is the area of the detected candidate leakage

regions. A ranking of the candidate regions is produced as the

product of the region intensity and region area, which gives a

notion of the energy loss in the region.

The ranked candidate leakage regions are manually screened

by a human operator who is familiar with the district heating

system at hand. Most of the candidate detections will be false

alarms but these are generally easily rejected by a human

using the scene context, e.g., heat leakage from houses, wells,

garages etc. The expert operator also has background knowl-

edge of where leakage detections are normal and expected

(culverts, constructions sites etc.) and where they can be

suspected due to the age of the pipes or losses indicated

by coarse monitoring systems. It should be emphasized that

the automatic leakage detection is a support tool for an

efficient detection process compared to visually screening tens

of thousands of images without any hints of the locations of

potential leakages.

C. Automatic building segmentation

Many false alarm detections arise around buildings, for

example from warm chimneys, vents and entrances. Buildings

are therefore important context carriers for a human operator

when rejecting false alarms, and an important step to further

improve the automated analysis is to segment buildings in

the images. Automatic building segmentation in remote sens-

ing images has been investigated previously in the research

literature [14], frequently with the aid of an additional 3D

laser scan that provides an accurate digital surface model [15].

An additional 3D scanning sensor facilitates the segmentation

greatly but also incurs higher costs and complexity of the data

acquisition.

Here, an approach to segmenting buildings based only

on the airborne thermal images is presented. The building

rooftops cool off faster than the ground at night and therefore

appear dark in the images, see Figs. 1, 2, 4 and 7. The overall

approach to the building segmentation is to first divide an

image into homogeneous regions and then to classify each

region as representing a building or not. The algorithm consists

of the following three basic steps:

1) Calculate an edge image.

2) Apply a Watershed transform to produce image regions.

3) Extract features and classify the regions.

Fig. 5. Histograms of the image gradient magnitude for all pixels in two
acquisitions. Adaptive thresholds are found at the 75% percentiles as shown
by the shaded areas.

The steps are visualized in Fig. 4. In step 1, there are many

different methods for calculating an edge image, e.g., gradient-

based methods, the Canny edge detector or phase congruency

methods [16]. Any of these methods would be applicable. In

this work, the magnitude of the image gradient calculated

using a Derivative of Gaussian filter is used to find edges.

The main problem in step 1 is to automatically decide when

the gradient in a pixel is large enough to stand out from

the noise, i.e., when a pixel should be classified as an edge.

Using same idea as for the image intensity above, this is

solved by calculating the histogram of the gradient magnitude

across all thousands of images in an acquisition, see Fig. 5.

The temperature difference between buildings and the ground

is larger than most other gradients in the images, so that a

threshold can be derived automatically from this histogram,

e.g., as the 75% percentile. This approach also adapts to

scaling and the unit of the pixel intensity in the images.

In step 2, a Watershed transform is applied to the edge

image to decompose it into a large number of regions [17]. In

the last step 3, the goal is to classify each region as a building

or not. To this end, the following image intensity and shape

features are extracted from each region:

• Median pixel intensity in the region

• Standard deviation of the pixel intensities in the region

• Area of the region

• Region compactness

• Border regularity

Buildings in the thermal images are characterized as larger

homogeneous areas (i.e. low intensity variation) with low

intensity and a high border regularity. The region compactness

is the area of the region divided by its squared perimeter

length, also known as the isoperimetric quotient. This shape

feature has it maximum for a circular region, but also quadratic

building regions respond strongly compared to vegetation

regions, which typically are more irregular and less compact.

The border regularity feature is based on the curvature of

the region perimeter. Buildings generally consist of straight

walls with a few corners, so that the edge curvature is low

except at a few places. The feature is calculated by considering

edge normal direction (i.e., the image gradient direction)

ĝi, i = 1, . . . , N at N regularly spaced points along the region

contour. Let the angle between two vectors be denoted by
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Original image Edge image Watershed regions Segmented buildings

Fig. 4. Overview of the steps from the original thermal image to a building mask. The first step is to calculate an edge image of the original image. A
Watershed transform is then applied to the edge image to divide the image into homogeneous image regions. Features are extracted from each of these regions
and they are classified into the categories building or non-building.

6 (ĝi, ĝj) and define the indicator function

I (ĝi, ĝj) =

{

1 if 6 (ĝi, ĝi) < α,

0 otherwise.
(1)

The parameter α defines how much two neighboring edge

gradients along the region border are allowed to differ and

still be considered as regular. In this work we use α = 10◦.

Finally, the border regularity feature is calculated as

1

N

N
∑

i=1

I (ĝi, ĝi+1) . (2)

Put in words, the border regularity feature is a number between

0 and 1 that equals the fraction of the region border that is

considered regular.

Finally, a classifier must be trained to classify the regions

based on the extracted features. Training data was obtained

by manually delineating about 500 buildings in a batch of

training images. Regions in the Watershed transform of these

images that coincide with the manually drawn areas were taken

as examples of building regions. Training examples for non-

building regions were similarly taken as Watershed regions

outside the manually drawn areas. There were many more

examples of non-building regions than of buildings, and this

imbalance was accounted for in the training of the classifier.

Distributions of some of the features for the building and non-

building training examples are shown in Fig. 6. There are

several possible non-linear classifier types that can be trained

using this data, e.g., Support Vector Machines, neural networks

and boosting-based methods [18]. There is no particular reason

to believe that either of these should perform significantly

better or worse. After some experimentation with Random

Forest and Adaboost classifiers [19], with similar results,

the Adaboost classifier was used due to its slightly simpler

construction.

IV. RESULTS

Airborne thermography acquisitions over 15 cities in Swe-

den and Norway were performed to optimize the acquisition

methodology and develop the algorithms presented in this

work. The image analysis methods presented above were

implemented in standalone software for image analysis, pre-

sentation and interaction. The imaged cities were of different

sizes with populations between 5,000 to 500,000. The district
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Fig. 6. Distributions of feature values for buildings and other regions
respectively. Buildings generally have a low homogeneous temperature and
high regularity compared to other objects in the images.

heating systems in these cities comprise tens of kilometers

of pipes each. Up to 50,000 thermal images were acquired

to cover the district heating system in the larger cities. Com-

prehensive ground truth results to validate candidate leakage

detections in the images are not available for all cities, as

this requires extensive digging and feedback from network

operators and city planning departments which are not part of

the current research project. Partial ground truth results are

available though, as presented below.

A. Leakage detection

Figures 7 and 8 illustrate typical detection results. The

experience has shown that three detection thresholds corre-

sponding to the 0.005%, 0.05% and 0.5% of the warmest

pixel percentiles are suitable for the interactive exploration

of the images. Table I presents results for three cities from

which detailed feedback and ground truth analysis have been

obtained. There are about 1 to 2 candidate detections per

kilometer pipe at the 0.05% significance level. Most of these

are either false alarms or detections caused by bad pipe

insulation that may need repair but which do not represent
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Thermal image with pipe overlay Magnification of area in yellow box Detections

a) b) c)

Fig. 7. a) A thermal image (640 × 512 pixels) of a typical city block. The blue overlay indicates a mask above the district heating pipes obtained from a
Geographic Information System. At night, buildings and cars are generally colder than streets. b) Magnification of the region marked with yellow in a). c)

Detected areas. The gray scale mapping in b) and c) is different than in a) to better highlight warm regions.

Fig. 8. Another detection example over a larger area visualized as an image mosaic. Candidate detections are shown in red and district heating pipes as blue
lines. One major leakage is found in the image with a brighter color scale. A few false alarms are also present, typically around buildings.
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TABLE I
DETECTION RESULTS IN THREE CITIES AT THE 0.05% LEVEL.

City A City B City C

Network length (km) 400 150 150
Nbr. detections 549 193 283
Nbr. detections / km 1.4 1.3 1.9
Nbr. confirmed leakages 20 7 7

immediate danger. In the cities in Table I, between 7 and

20 previously unknown leakages requiring immediate action,

i.e., large amounts of water were leaking from the pipes,

were confirmed by digging at locations indicated as candidate

leakages.

B. Building segmentation

The AdaBoost classifier that classifies image regions as

buildings or non-buildings was trained on 250 of the 500 man-

ually delineated buildings and evaluated using the remaining

250 examples. A classification accuracy of 97% on the training

data and 86% on the test data was obtained. Some example

segmentations are shown in Fig. 9. A few buildings or building

parts are not detected, either because they were not identified

as one object by the Watershed transform or because they were

falsely classified by the AdaBoost algorithm. A ranking of the

importance of the extracted features can also be obtained by

studying the trained AdaBoost classifier. Overall, the median

intensity of a region, its compactness and its border regularity

are the most characteristic features. However, all extracted

features add to the classification accuracy.

V. DISCUSSION

The methods presented above have been applied to find

district heating leakages in a number of cities, and they have

helped locating numerous of real leakages. The cost of the

data collection and analysis is currently of the order of $500

per kilometer pipe, which well offsets the costs generated by

leakages. The stand-alone software makes it possible for city

representatives and operators of the district heating systems

to efficiently browse the large amount of image data and

to evaluate candidate leakages detected by the automatic

algorithm. This approach saves tremendous amounts of time

compared to screening each individual image manually.

The automatic detection of candidate leakage regions is

purposely kept quite simple, relying mainly on intensity (tem-

perature) and area characteristics. The reason for this is to

keep the automatic analysis as transparent as possible to the

user. This means that the user understands why regions are

highlighted as candidate detections and he or she can quickly

classify them as suspected leakages or false alarms based

on contextual scene information or on additional background

knowledge about the district heating network. Thus is the

objective analysis of the computer, which ensures that no

warm regions are missed, combined with the superior cognitive

skills and background knowledge of the human expert. The

automatic image analysis system could try to further reject

false alarms through more complex scene analysis or by

extracting more intricate features from the candidate regions

Fig. 9. Example detections of buildings in four images. The yellow arrows
show missed building parts.
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and try to train a classifier to recognize them. However, such

solutions tend to become a black-box to the human operator,

who may not understand why some warm regions are detected

as possible leakage candidates while others are not. Such

obscurity affect the acceptance and trust in the system. There is

also an asymmetric cost of a false positive and a false negative

detection that must be considered: a false leakage detection

generally only incurs a small cost in terms of the time it takes

for the human operator to reject it, whereas a missed real

leakage will incur a large economic costs in terms of energy

losses and potentially also damages to the environment and

persons.

One relatively transparent way of trying to reduce the num-

ber of false alarms is to remove candidate leakage detections

that border to buildings. A rough estimation is that 20% of

the false alarms are found next to buildings. A method for

automatically segmenting buildings have been presented to

this end. In general, building segmentation in remote sensing

images is a challenging task as it requires understanding of

the scene, e.g., the relation between buildings, roads, cars,

vegetation, for a correct result. Even a human cannot always

delineate building structures in the thermal images used in

this work. It can be noted that a perfect segmentation is not

required for the current application: if a building is missed it

may possibly generate an extra false alarm detection due to

some heat leakage from that building. Single additional false

alarms add only little extra time in the screening of the images,

as discussed above. In contrast, it is more important not to

misclassify a non-building as a building, because this may

remove a real leakage from the candidate detection map. It

should also be stressed that one cannot exclude the possibility

of a real leakage next to a building, sometimes the district

heating pipes even run under buildings. It is therefore advisable

that a human expert looks also at candidate detections close to

buildings to decide whether they should be further evaluated

or not. The building segmentation is for this reason currently

intended as a priority indicator in the visual screening process

that can be used in conjunction with the ranking of the

candidate regions based on image intensity and area. It should

be emphasized that the building segmentation can be improved

by acquiring an additional 3D laser measurement that maps

the surface height for each pixel. Some cities also maintain

a GIS map of all buildings that can be projected as masks

into the images in the same way as the district heating pipes.

Compared to this solution, however, a reliable segmentation

based on the images themselves has the advantage that there

are no registration errors.

The main hurdle towards a fully automatic leakage detection

system is improved analysis and understanding of context and

patterns in the scene. In computer vision and image analysis

research in general, this has proven a very difficult problem.

It should be stressed that the camera hardware, e.g., in terms

of resolution, temperature sensitivity or signal-to-noise, is

currently not a limiting factor. More near-time goals are to

include additional GIS sources, such as layers of roads and

buildings, as they are becoming commonplace in city planning.

Another relevant problem is to estimate the energy loss at a

leakage based on the image information.

VI. CONCLUSIONS

Computerized image analysis methods for the detection of

leakages in district heating networks by means of airborne

thermography have been presented. Leakages are detected

as temperature anomalies, i.e., as regions with unusually

high temperature compared to other regions in the images.

A method to adaptively set the threshold temperature for

detecting leakages has been presented. This is important as

the image contrasts depend on the environmental conditions

during the acquisition. Several large-scale real life studies with

image acquisitions covering entire cities have been carried

out, and the presented methods have proven valuable tools

when screening the large amounts of acquired images, both

by pinpointing real leakages and by saving large amounts

of tedious manual work. A method for segmenting buildings

in the thermal images has also been suggested as a way of

reducing false alarms.
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