
Methods for large scale SVD with missing values∗

Miklós Kurucz András A. Benczúr Károly Csalogány
Data Mining and Web search Research Group, Informatics Laboratory

Computer and Automation Research Institute of the Hungarian Academy of Sciences
{realace, benczur, cskaresz}@ilab.sztaki.hu

ABSTRACT
We compare recommenders based solely on low rank ap-
proximations of the rating matrix. The key difficulty lies in
the sparseness of the known ratings within the matrix that
cause expactation maximization algorithms converge very
slow. Among the prior publicly known attempts for this
problem a gradient boosting approach proved most success-
ful in spite of the fact that the resulting vectors are non-
orthogonal and prone to numeric errors. We systematically
explore expectation maximization methods based both on
the Lanczos algorithm and power iteration; novel in this pa-
per is the efficient handling of the dense estimate matrix
used as input to a next iteration. We also compare sequence
transformation methods to speed up convergence.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences; G.1.3 [Mathematics of Computing]: Numerical
Analysis—Numerical Linear Algebra

General Terms
recommender systems, singular value decomposition

Keywords
dimensionality reduction, missing data

1. INTRODUCTION
Recommender systems predict the preference of a user on

a given item based on known ratings. In order to evaluate
methods, in October 2006 Netflix provided movie ratings
from anonymous customers on nearly 18 thousand movie
titles [3].

∗This work was supported by the Mobile Innovation Cen-
ter, Hungary, a Yahoo Faculty Research Grant and by grant
ASTOR NKFP 2/004/05

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDDCup.07, August 12, 2007 , San Jose, California , USA. 2007
Copyright 2007 ACM 978-1-59593-834-3/07/0008 ...$5.00.

In this paper we concentrate on recommenders based solely
on low rank approximation and compare various implemen-
tations and parameter settings. The low rank approximation
of the rating matrix as a recommendation is probably first
described in [5, 24, 17, 27] and many others near year 2000.

The key difficulty in computing the low rank approxima-
tion lies in the abundance of missing values in the rating
matrix: the Netflix matrix for example consists in 99% of
missing values. While several authors describe expectation
maximization based SVD algorithms dating back to the sev-
enties [13] and [7, 28, 30] describes the method for a recom-
mender application, we aware of no systematic studies on
large scale problems. In particular all these results consider
small, few thousands by few thousands submatrices of the
EachMovie or Jester databases, of several orders of magni-
tude smaller than handled by our algorithms.

A successful approach to a low rank recommender is de-
scribed by Simon Funk in [12] is based on an approach rem-
iniscent of gradient boosting [11]. The algorithm opens a
number of theoretic questions including its relation to pub-
lished results that solve SVD with missing values as well as
the effect of the parameters on convergence speed and over-
fitting. One of the main intents of this paper to understand
the relation of his method to existing missing value SVD
approaches.

Our main contributions are:

• The implementation of SVD based recommenders for
large scale problems with specific attention to the scal-
ability issues of handling full matrix imputation values.
Note that previous results except for [12] handle data
of several orders of magnitude smaller than ours.

• The comparison of various methods in terms of recom-
mendation accuracy and convergence rate, with em-
phasis on the explanation of parameters that speed up
convergence.

1.1 Our results and organization
The rest of the paper is organized as follows. In the rest of

the Introduction we describe related approaches, the experi-
mental setup, and the SVD algorithm implementation used.
In Section 2 we measure the effect of filling missing values
by zeroes, by averages and finally be the output of an item-
item similarity based recommender, a challenging task since
the full recommendation matrix has several billion entries.

After imputation by external values we turn to expec-
tation maximization approaches that compute a low rank
approximation in one iteration and impute the outcome for

31

a next iteration. In Sections 3 and 4 we use the Lanczos al-
gorithm and power iteration, respectively. In both cases we
resolve the implementational challenge of handling the full
matrix arising by the previous iteration. We observe slow
convergence of the methods; we evaluate methods to speed
up by combining partial results.

Finally in Section 5 we describe a least squares based ex-
pectation maximization approach to directly optimize a low
rank solution for small error. In this algorithm we optimize
each user vector separately, thus enabling a user-by-user
adaptive control on the number of dimensions used. Our
key observation is that for a user with r ratings, roughly
r/25 dimensions should be used.

In all cases we investigate the effect of the dimensional-
ity of the low rank approximation; we observe best perfor-
mance at a few dimensions and overtraining as the number
of dimensions approaches 100 with good performance on the
training but deterioration on the test (probe) set. All meth-
ods are compared in Section 6.

1.2 Data set, evaluation and experimental setup
Netflix provided over 100 million ratings from n over 480

thousand randomly-chosen, anonymous customers on m nearly
18 thousand movie titles [3]. The company withheld certain
portion of the ratings as a competition qualifying set that
we will not use in this report. Netflix also identified a probe
subset of the complete training set; we refer the remaining
known ratings as the training data.

We use the root mean squared error

rmse2 =
X
ij∈R

(wij − ŵij)
2

as the single evaluation measure, where wij is the actual
rating, an integer in the range 1–5, given by user i to movie j,
and ŵij is the prediction given by the recommender system.
We present rmse values for the train and the separated test
set but not the qualifying set.

The experiments were carried out on a cluster of 64-bit
3GHz P-D processors with 4GB RAM each and a multipro-
cessor 1.8GHz Opteron system with 20GB RAM.

1.3 Related work
Recommenders based on the rank k approximation of the

rating matrix based on the first k singular vectors are prob-
ably first described in [5, 24, 17, 27] and many others near
year 2000.

The Singular Value Decomposition (SVD) of a rank ρ ma-
trix W is given by W = UT ΣV with U an m× ρ, Σ a ρ× ρ
and V an n× ρ matrix such that U and V are orthogonal.
By the Eckart-Young theorem [16] the best rank-k approxi-
mation of W with respect to the Frobenius norm is

||W − UT
k ΣkVk||2F =

X
ij

(wij −
X

k

σkukivkj)
2. (1)

where Uk is an m× k and Vk is an n× k matrix contain-
ing the first k columns of U and V and the diagonal Σk

containing first k entries of Σ.
The rmse differs from the above equation only in that

summation is over known ratings

rmse2 =
X
ij∈R

err2ij where errij = wij −
X

k

σkukivkj (2)

where R denotes either the training or the test set. To sim-
plify notation we extend errij with value 0 for ij /∈ R.

As already emphasized in one of the early works [27], the
crux in using SVD for recommenders lies in handling miss-
ing values in the rating matrix W . Goldberg et al. [15] for
example require a gauge set where all ratings are known, an
assumption clearly infeasible on the Netflix data scale. Azar
et al. [2] prove asymptotic results on replacing missing values
by zeroes and scaling known ratings inversely proportional
to the probability of being observed.

The expectation maximization (EM) algorithm proceeds
as follows. Given the output Uk, Σk and Vk matrices of
sizes m× k, k × k and n× k, respectively, produced by SVD
in the maximization step, the expectation step produces a
matrix with entries

ŵij =

(
wij if ij ∈ R

[UkΣkVk]ij otherwise

= errij + [UkΣkVk]ij (3)

where the last equality follows by the definition of err as in
(2). The algorithm alternates between SVD computation
(maximization) and the expectation equation (3) until con-
vergence. It is easy to see that U , Σ and V minimizing (2) is
a fixed point of this iteration; up to our best knowledge, this
is the only theoretical result known about the convergence
properties of the above EM missing value SVD algorithm.
While in our implementation k is typically fixed as input
parameter, variants of this algorithm may increase or even
decrease k as the iterations proceed.

This algorithm is perhaps first used for recommenders by
Canny [7] and then several others [28, 30]. Canny [7] con-
centrates on privacy issues; he reports experiments on much
smaller scale such as a subset of the EachMovie data. Srebro
and Jaakkola [28] compare methods that fill missing entries
by zeroes, also by scaling known entries as in [2], using a
gauge set as in [15] as well as a variant of the EM procedure.
They also give a number of hints related to the convergence
of the EM method. First of all they observe the algorithm
may reach local optimum; it is unclear whether this may
happen in the missing value case as well. They also show
that different rank solutions are non-orthogonal; for this end
they propose starting out with a large rank approximation
and gradually reduce the rank in the EM iterations.

The EM algorithm for solving SVD with missing values
dates back to the seventies; [14] gives a more recent descrip-
tion. In early results, the generic idea of filling missing values
by expectation maximization to our knowledge appears first
in [19] and is perhaps best described by [9] with the explicit
mention of factor analysis as an application but apparently
no references between another line of work [25, 13]. To our
knowledge, the first paper that presents the missing value
problem is [25]; [13] generalizes the missing value problem
to a weighted regression and solves it by EM.

More recently several authors reinvented EM for SVD. In
[6] the idea of representing the missing data imputation ma-
trices by their known SVD U and V appears that is key
in our sparse implementation. Zhang et al. [30] give an ap-
proximate SVD algorithm with theoretical analysis, however
tests are only shown on small scale data.

Theoretical works on SVD based recommenders exist [10]
but we are aware of none that address the missing value
problem. In particular we aware of no results on the conver-

32

Algorithm k = 10 k = 15 k = 20 k = 25 k = 30 k = 50
Lanczos 1:58 7:40
Power 1:57 5:50

Adaptive 33.7 33 31 29 28 25

Table 1: Running times in the form of minutes or
hours:minutes for a single iteration over the Netflix
Prize matrix with n over 480 thousand, m nearly 18
thousand and over 100 million non-zeroes. For Lanc-
zos and Power the top column k gives dimensionality
while for Adaptive the dimensionality is 1 + r/k for
a user with r ratings, i.e. here unlike for the other
two algorithms the running time decreases with k.
For Lanczos we use 40 iterations altogether and for
Power we use 100 for a single dimension, hence here
we get linear dependency on k for Power.

gence except for the negative experimental findings of Srebro
and Jaakkola [28].

Dimensionality reduction is investigated for gene expres-
sion data as well. Several authors [20, 29] compare imputa-
tion methods including nearest neighbor as well as the EM
approach with controversial findings for accuracy but a def-
inite identification of the very slow convergence for EM.

1.4 SVD implementation
In our implementation we used the Lanczos code of svd-

pack [4] and compared it with a power iteration developed
from scratch. Lanczos appears precise and efficient; in con-
trast power iteration used by several results [21, 8] is slightly
faster but much less accurate; computing more than two di-
mensions is numerically very unstable due to the orthogonal
projection step. Running times are shown in Table 1.

We implemented a key modification over svdpack that
enables missing data imputation as well as very large in-
put handling. After removing the obsolete condition on the
maximum size of an input matrix, we abstracted data ac-
cess within the implementation to computing the product of
a vector with either the input matrix or its transpose.

While implementation issues of SVD computation are be-
yond the scope of the paper, we compare the performance
of the Lanczos and block Lanczos code of svdpack [4] and
our implementation of a power iteration algorithm. Hagen
et al. [18] suggest fast Lanczos-type methods as robust basis
for computing heuristic ratio cuts; others [21, 8] use power
iteration.

We also measure the number of dimensions of the ap-
proximation. Typically in SVD use the dimensionality is
restricted by efficiency considerations and for example for
spectral clustering [1, 23] suggest more eigenvalues produce
better quality cuts. However we observe that as the num-
ber of dimensions increase beyond roughly 10, we overtrain
and prediction quality deteriorates; for this reason we also
test an algorithm that adaptively selects more dimensions
for users with more ratings in Section 5.

2. MISSING DATA IMPUTATION FROM EX-
TERNAL RESULTS

In the simplest approach we use external sources of data to
fill missing ratings and optimize for error in Frobenius norm
as in equation (1) in the hope that external data fit well and
optimization for Frobenius yields good approximation for

Figure 1: The rmse as the function of the iterations
for the simple Lanczos EM algorithm, the missing
values are filled with zeros in the initial matrix.

the rmse equation (2) as well. First, as expected, we show
filling missing data with zeroes as suggested for example by
[2] badly fail over the rare Netflix data by providing recom-
mendations near 0 due to the abundance of zeroes in the
matrix after imputation. We improve performance first by
using averages, then by the outcome of a more sophisticated
recommender based on item-item similarities. Surprisingly
user averages perform better than the output of the recom-
mender in this case.

Imputation by zeroes and averages are fairly straightfor-
ward given control over data access within the SVD algo-
rithm as described in Section 1.4. It is however a challenging
question for a full recommendation matrix that we describe
in Section 2.1.

We show rmse values for imputation with zeroes and av-
erages as the first iterations in Fig. 3. We observe very poor
performance; in particular by filling with zeroes we are so far
off from optimum that even a large number of EM iterations
remain insufficient to converge.

2.1 Output of an item-item similarity based
recommender

We implemented the adjusted cosine similarity [26] for an
item-item similarity based recommender that recommends
an unrated movie j to a given user i by the weighted average
of the nearest N movies to i rated by the user. Here N is
a parameter; roughly speaking, this approach increases the
fraction of known values by a factor of N .

The Lanczos implementation of svdpack [4] accesses the
matrix by in one step computing a product of a vector with
either the matrix or its transpose. The SVD implementation
may hence access the nearest neighbor lookup table when-
ever a matrix multiplication is needed. The implementation
requires space to store the rating matrix and the nearest
neighbor index. In the running time however the matrix
multiplication time becomes dependent on the size of the
full matrix mn instead of the much smaller number of known
ratings. While this implementation is memory efficient, it is
so slow that we had to give up tests in this direction.

We may however give an efficient item-item similarity
based imputation by slightly regressing the item-item simi-
larity based output towards the user average ûi, as follows.
We form the submatrix S of the item-item similarities where
for efficiency considerations we only keep the top 100 largest

33

Figure 2: The rmse as the function of the number of
iterations for the simple Lanczos EM algorithm with
the first iteration imputed with the output of the
simplified item-item similarity based recommender.

entries in each row. We even discard those of the values be-
low 0.5. When predicting a rating for user i and movie j, we
then compute the sum of wij′−ûi weighted by the similarity
of j and j′ for all j′ where both the similarity and the rating
wij′ are known. Next in order to give a prediction we have
to add the normalized value to ûi. In order to be efficiently
computable, we simply normalize by 100, even though typ-
ically there are less than 100 j′ terms in the sum and their
similarity values may be as low as 0.5.

The algorithm proceeds as follows. We let H be an n ×
m matrix where each row contains the user averages ûi as
identical values and

Fij =

(
(wij − ûi)/100 if (ij) ∈ R

0 otherwise.

The product of vector x with the imputed matrix W ′ can
be efficiently computed as

x ·W ′ = x ·H + x · F · S + x · E

where

Eij =

(
W ′ −H − F · S if (ij) ∈ R

0 otherwise

removes the effect of the similarity based recommendation
where the actual rating is known. In Fig. 2 we see the rmse
for a 10-dimensional SVD started by these values.

3. SPARSE LANCZOS IMPLEMENTATION
WITHIN AN EM FRAMEWORK

When using the Lanczos algorithm after an expectation
step, we face the same difficulty of imputing a full matrix
as in Section 2.1. We provide a similar solution below, with
careful analysis of the number of operations used. Note that
unlike in the previous section, we need a large number of
iterations until convergence hence not just the space but
also the speed of handling the dense input is crucial.

Since in a Lanczos iteration we require the product of vec-
tor x = (x1, x2, . . .) with ŵ (or similarly with its transpose),
by the EM algorithm equation (3) we compute

err · x + UkΣkVk · x.

The space required by this algorithm is equal to O(kn+km)
for multiplying x with the imputed low rank approximation
term by term from right to left, in addition to the number
of non-missing values in the rating matrix. Hence the addi-
tional work due to imputation is negligible in the Lanczos
computation.

3.1 Speeding up convergence
In order to speed up convergence we apply the generic

method of finding an optimal linear combination of the val-
ues ŵ =

P
k σkukivkj in the current and w(t−1) in the pre-

vious iterations: we minimize the quadratic expression of λ
in the rmse equation (2):X

ij∈R

(wij − λŵij − (1− λ)w
(t−1)
ij)2.

We then let w(t) = λŵ− (1−λ)w(t−1) for the λ value at the
minimum.

In the above naive form however matrix values in the next
iteration will arise as a linear combination of a rank k matrix
and the previous w(t−1), which in turn depends on w(t−2)

and inductively on all previous partial results. Since it is
infeasible to store either full matrices or all partial results,
we have to relax the above algorithm. We give two versions
next that obey the scalability requirements.

Our two implementations of linearly combining current
and previous results use the last two low rank approxima-

tions U
(t)
k , Σ

(t)
k , V

(t)
k and U

(t−1)
k , Σ

(t−1)
k , V

(t−1)
k . In the first

algorithm we combine as

λU
(t)
k Σ

(t)
k V

(t)
k + (1− λ)U

(t−1)
k Σ

(t−1)
k V

(t−1)
k ,

i.e. using only the low rank matrix instead of the com-
bined iteration t − 1 approximation. The minimum of the
quadratic expression in λ is attained, with the notation of

A = U
(t)
k Σ

(t)
k V

(t)
k and A′ = U

(t−1)
k Σ

(t−1)
k V

(t−1)
k , at

λ = −
P

ij∈R(Aij −A′
ij)(A

′
ij − wij)P

ij∈R(Aij −A′
ij)

2
.

In the second variant we combine the low rank decomposi-

tion elements: from U
(t)
k , V

(t)
k and the previous result we get

Û
(t)
k and V̂

(t)
k . We ignore Σ

(t−1)
k based on the observation

that the Σk converges fast. With the simplified notation Ui

and U ′
i for the i-th row of U

(t)
k and U

(t−1)
k , respectively and

the same notation for the columns of the V , we minimizeX
ij∈R

`
(λ(Ui − U ′

i) + U ′
i)Σ(λ′(Vi − V ′

i) + V ′
i)− wij

´2
.

Here for each λ′ there is a corresponding optimum λ′ given
by

Xij = λ′(Ui − U ′
i)(Vj − V ′

j) + (Ui − U ′
i)V

′
j ,

λ = −
P

ij∈R λ′UiΣ(Vj − V ′
j) + U ′

iV
′

j − wij)XijP
ij∈R X2

ij

;

we select the best by substituting a low number of probe λ
values.

4. POWER ITERATION WITHIN AN EM
FRAMEWORK

34

Figure 3: The rmse as the function of the iterations for the simple Lanczos EM algorithm and the two
convergence boosting variants. Curves correspond to different dimensionality with V1 and V2 denoting the
two convergence boosting variants.

For a full matrix W , power iteration proceeds by repeat-
edly letting

u(t+1) = W T · v(t)/||v(t)||, (4)

v(t+1) = W · u(t)/||u(t)||. (5)

The algorithm converges to the first singular vectors also
called the “hub”and“authority”vectors [22]; due to numeric

errors this holds even if we start out with an initial v(0)

orthogonal to the first vector V.1 unless we orthogonalize, i.e.
project each or some v(t) onto the hyperplane orthogonal to
V.1. By orthogonalization to the first k − 1 singular vectors
Vk−1 however we may obtain the next V.k by iteration (4–5).

In the presence of missing data we may use (4–5) in the
expectation maximization framework by filling ij /∈ R by

wij = σ1u
(t)
i · v

(t)
j . First we observe that if v(t) is a good ap-

proximation of V.1, then ||v(t+1)|| ≈ σ1, hence the iteration
turns to

u
(t+1)
i =

X
j:ij∈R

wjiv
(t)
j /σ1 +

X
j:ij /∈R

v
(t)
j

2
· u(t)

i , (6)

v(t+1) = W · u(t)/||u(t)||. (7)

This approach is split into two different heuristic implemen-
tations in the next two subsections. The rmse for the basic
implementation (6–7) is shown in Fig. 4.

4.1 Method of individual increments
We rewrite (6) as

u
(t+1)
i =

X
j:ij∈R

`wji

σ1
− v

(t)
j · u

(t)
i

´
v
(t)
j +

X
j

v
(t)
j

2
· u(t)

i . (8)

Given the assumption that the v are normalized that we may

enforce in our algorithm, the second term is simply u
(t)
i . As

a heuristic speedup, we split (8) into increments over ui for
individual j, replacing ui by a new value in each step. This
yields an algorithm with a cycle over

ui ← ui + (wji/σ1 − vj · ui)vj (9)

very closely reminiscent of Simon Funk’s steps [12]

ui ← (1− lRate)ui + K(wij − σ1uivj)vj . (10)

We use an idea similar to the convergence acceleration in
Section 3: we multiply the increment in (9) by a factor δ that

Figure 4: The rmse as the function of the number
of iterations for the basic power iteration method
given by equations (6–7).

minimizes the rmse of the approximation with modified ui,

δ =
X

j′:ij′∈R

`
wij′ − σvj′(ui + δvjerrij)

´2
.

The minimum is easily computed as

δ =

P
j′:ij′∈R vj′errij′P

j′:ij′∈R v2
j′

σvjerrij .

Unfortunately this algorithm appeared to diverge due to nu-
meric errors for ratings with very small errij . Best results
are obtained by using a median value near σ/100 very close
to that suggested by [12].

4.2 Repeated hub and authority steps
If we repeat the “hub” iteration (4) more than once before

an “authority” iteration (5), we observe no change in the full
matrix case since the right hand side of (4) is independent
of u. This is no longer the case for missing values however
since imputation values depend on u. If we let

∆ =
X

j:ij∈R

(wij/σ − uivj)vj , v =
X

j:ij∈R

v2
j

35

Figure 5: The rmse as the function of the number
of iterations for power iteration with individual in-
crements given by equation (9).

Figure 6: The rmse as the function of the number
of iterations for power iteration with repeated hub
and authority steps given by equation (12).

then t iterations of (6) give

ui ← (1− h)tui + (1− (1− v)t)v−1∆. (11)

Best results are obtained in Fig. 6 if we use values k = 5
for the first singular vector computation and then decrease
to 3, 2 and finally 1 for next dimensions. In addition we
also combined this technique with individual increments as
in (8):

ui ← (1− v2
j)tui + (1− (1− v2)t)v−2∆, (12)

a formula again reminiscent of (10) of [12].
We may repeat the idea of the previous subsection and

compute these steps individually for each i and j

5. A LEAST SQUARES APPROACH WITH
ADAPTIVE DIMENSIONALITY

We give an algorithm that alternatedly computes and op-
timal Uk for a fixed Vk and then exchanges the role of U and
V , similar to the “hub” (4) and “authority” (5) steps of the
power iteration. For fixed Vk, optimizing the rmse equation
(2) can be done separately for the columns of Uk asX

j

(wij∈R −
X

k

σkukivkj)
2 (13)

as n regression problems.
The key idea in our algorithm is that once the regression

is made separate for each user, we may adaptively select the
right dimensionality for user i depending on the amount of
ratings r given by her. Fig. 7 depicts rmse for different val-
ues of constant K where we use the first 1+r/K dimensions
in the above expression. We observe overfitting on the train-
ing set: the more dimensions used, the better is the rmse;
however over the probe set values of K between 25. . . 30 per-
form the best; for a large number of iterations apparently
K = 25 takes lead.

6. COMPARISON OF METHODS AND CON-
CLUSION

In our findings the best method is Lanczos with 10 di-
mensions. Unfortunately the iterations are relative costly
and convergence boosting approaches tend to give minor
improvements only. Power iteration based methods, though
performing very similar steps as Funk’s algorithm [12], tend
to overfit the training set. We believe more careful tuning
could improve performance. The runner up is the adaptive
dimensionality least squares approach.

The most carefully tuned implementation of Funk’s al-
gorithm (10) [12] reaches an rmse slightly below 0.92 on
the probe set with 95 dimensions in over 100 iterations and
K = 0.015, lRate = .001. By setting K = 0 performance
similar to ours is reported. We believe a thorough measure-
ment over our algorithms might find improvements, however
our main goal here was to understand the behavior of the
missing value problem by investigating a large number of
related algorithms.

For further work we propose the implementation and com-
parison of fast SVD approximations and experiments with
graphs of even larger scale. We also plan to mix results, a
method that is known to yield significant improvement and
in addition sometimes prefer weaker recommenders and thus
slightly redraw the picture.

7. REFERENCES
[1] C. J. Alpert and S.-Z. Yao. Spectral partitioning: the

more eigenvectors, the better. In DAC ’95:
Proceedings of the 32nd ACM/IEEE conference on
Design automation, pages 195–200, New York, NY,
USA, 1995. ACM Press.

[2] Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, and
J. Saia. Spectral analysis of data. In Proceedings of the
33rd ACM Symposium on Theory of Computing
(STOC), pages 619–626, 2001.

[3] J. Bennett and S. Lanning. The netflix prize. In KDD
Cup and Workshop in conjunction with KDD 2007,
2007.

[4] M. W. Berry. SVDPACK: A Fortran-77 software
library for the sparse singular value decomposition.
Technical report, University of Tennessee, Knoxville,
TN, USA, 1992.

[5] D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In ICML ’98: Proceedings of the
Fifteenth International Conference on Machine
Learning, pages 46–54, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc.

[6] M. Brand. Incremental singular value decomposition
of uncertain data with missing values. In ECCV (1),

36

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 20 40 60 80 100 120

10
15
25
30
50

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0 10 20 30 40 50 60 70 80 90 100

10
15
25
30
50

Figure 7: The rmse as the function of the number of iterations for adaptive least squares given by equation
(13). Different curves correspond to values of K where we compute least squares over the first 1 + r/K
dimensions for a user with r ratings. Left: rmse over the test set. Right: rmse over the probe set.

pages 707–720, 2002.

[7] J. Canny. Collaborative filtering with privacy via
factor analysis. In SIGIR ’02: Proceedings of the 25th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 238–245, New York, NY, USA, 2002. ACM
Press.

[8] D. Cheng, S. Vempala, R. Kannan, and G. Wang. A
divide-and-merge methodology for clustering. In
PODS ’05: Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 196–205, New York, NY,
USA, 2005. ACM Press.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm.

[10] P. Drineas, I. Kerenidis, and P. Raghavan.
Competitive recommendation systems. In Proceedings
of the 34th ACM Symposium on Theory of Computing
(STOC), pages 82–90, 2002.

[11] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001.

[12] S. Funk. Netflix update: Try this at home.
http://sifter.org/˜ simon/journal/20061211.html,
2006.

[13] K. R. Gabriel and S. Zamir. Lower rank
approximation of matrices by least squares with any
choice of weights. Technometrics, 21:489–498, 1979.

[14] Z. Ghahramani and M. I. Jordan. Supervised learning
from incomplete data via an EM approach. In J. D.
Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems,
volume 6, pages 120–127. Morgan Kaufmann
Publishers, Inc., 1994.

[15] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Inf. Retr., 4(2):133–151, 2001.

[16] G. H. Golub and C. F. V. Loan. Matrix Computations.
Johns Hopkins University Press, Baltimore, 1983.

[17] D. Gupta, M. Digiovanni, H. Narita, and K. Goldberg.
Jester 2.0 (poster abstract): evaluation of an new
linear time collaborative filtering algorithm. In SIGIR

’99: Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 291–292, New York,
NY, USA, 1999. ACM Press.

[18] L. W. Hagen and A. B. Kahng. New spectral methods
for ratio cut partitioning and clustering. IEEE Trans.
on CAD of Integrated Circuits and Systems,
11(9):1074–1085, 1992.

[19] H. O. Hartley. Maximum likelihood estimation from
incomplete data. Biometrics, 14:174–194, 1958.

[20] T. Hastie, R. Tibshirani, G. Sherlock, M. Eisen,
O. Alter, D. Botstein, and P. Brown. Imputing missing
data for gene expression arrays. Technical report,
Department of Statistics, Stanford University, 2000.

[21] R. Kannan, S. Vempala, and A. Vetta. On clusterings
— good, bad and spectral. In IEEE:2000:ASF, pages
367–377, 2000.

[22] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632,
1999.

[23] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour
and texture analysis for image segmentation. Int. J.
Comput. Vision, 43(1):7–27, 2001.

[24] M. H. Pryor. The effects of singular value
decomposition on collaborative filtering. Technical
report, Dartmouth College, Hanover, NH, USA, 1998.

[25] A. Ruhe. Numerical computation of principal
components when several observations are missing.
Technical report, UMINF-48, Ume̊a, Sweden, 1974.

[26] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In WWW ’01: Proceedings of the 10th
international conference on World Wide Web, pages
285–295, New York, NY, USA, 2001. ACM Press.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Application of dimensionality reduction in
recommender systems–a case study. In ACM
WebKDD Workshop, 2000.

[28] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In T. Fawcett and N. Mishra, editors,
ICML, pages 720–727. AAAI Press, 2003.

[29] O. G. Troyanskaya, M. Cantor, G. Sherlock, P. O.

37

Brown, T. Hastie, R. Tibshirani, D. Botstein, and
R. B. Altman. Missing value estimation methods for
dna microarrays. Bioinformatics, 17(6):520–525, 2001.

[30] S. Zhang, W. Wang, J. Ford, F. Makedon, and
J. Pearlman. Using singular value decomposition
approximation for collaborative filtering. In CEC ’05:
Proceedings of the Seventh IEEE International
Conference on E-Commerce Technology (CEC’05),
pages 257–264, Washington, DC, USA, 2005. IEEE
Computer Society.

38

