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Abstract 

The 3D folding of interphase chromosomes inside the nucleus regulates important nuclear 

functions, such as transcription and replication, and once disrupted can lead to the 

manifestation of disease. Different techniques can be used to map 3D genome folding and 

detect pairwise and multiway interactions of the genome, or map the positions of DNA with 

respect to subnuclear compartments or the nuclear lamina. Here, I use GAM and Hi-C to 

explore two aspects of 3D genome topology, the allele specificity of chromatin contacts and 

long-range contacts between chromosomes, respectively. I detect specific contacts of the 

parental alleles in mouse embryonic stem cells and interactions between chromosomes in the 

context of congenital disease and study them with regard to their functionality and importance 

in mammalian gene regulation.  

 

For detecting chromatin contacts with allele specificity, I produced a GAM dataset containing 

thousands of nuclear slices, which is part of the research of the 4D nucleome consortium. The 

collection of this data was accompanied by the development of a high-throughput version of 

GAM that allows the generation of large datasets. I show that GAM can determine haplotype-

specific chromatin contacts with high efficiencies. First explorations of allele-specific 

chromatin topologies reveal many differences between the parental alleles, including allele-

specific compartments A and B, and specific chromatin contacts, for example at the imprinted 

H19/Igf2 locus.  

 

For the exploration of inter-chromosomal contacts in disease, I mapped chromatin interactions 

with Hi-C in the context of a CNV at the human 16p11.2 locus, associated with autism 

spectrum disorders. Here, I show that the recurrent deletion at the 16p11.2 locus results in the 

rearrangement and loss of specific inter-chromosomal contacts between the 16p11.2 locus and 

chromosome 18 and propose a role for these inter-chromosomal contact changes in the 

upregulation of the nearby Pcdhb gene cluster, which comprises protocadherin genes with 

important functions in neuronal connectivity during development. 
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Zusammenfassung 

Die 3D Struktur von Chromosomen im Zellkern reguliert verschiedene Funktionen in der 

Zelle, wie Transkription oder DNA Replikation, und Fehler in der 3D Faltung des Genoms 

können pathogen sein. 3D Genomfaltung kann mit verschiedenen Methoden untersucht 

werden um paarweiser und komplexerer Chromatinkontakte, sowie die Position von DNA in 

Relation zu sub-nuklearen Bereichen oder der Kernmembran zu detektieren. Hier verwende 

ich GAM und Hi-C um zwei Aspekte der 3D Genomtopologie zu untersuchen, die 

Allelspezifität von Chromatinkontakten und Kontakte zwischen Chromosomen. Ich 

untersuche allelspezifische Kontakte in murinen embryonalen Stammzellen und Interaktionen 

zwischen Chromosomen im Zusammenhang mit Autismus Spektrum Störung auf ihre 

Funktionalität und Relevanz in der Regulation von Genen. 

 

Zur allelspezifischen Detektion von Chromatinkontakten generierte ich einen GAM Datensatz 

der tausende von nuklearen Cryodünnschnitten enthält. Diese Arbeit gehört zur Forschung des 

4D Nucleome Konsortiums. Die Generierung dieser Daten beinhaltete die Entwicklung einer 

verbesserten Version der GAM Methode zur Produktion von großen Datensätzen in 

Hochdurchsatz. Hier zeige ich, dass GAM effizient Haplotyp-spezifische Chromatinkontakte 

bestimmen kann. Erste Untersuchungen von allelspezifischer 3D Genomtopologie zeigten 

weitreichende Unterschiede zwischen den Allelen, welche „A/B compartments“ und 

spezifische Chromatinkontakte beinhalten, wie zum Beispiel am Imprinting Locus H19/Igf2. 

 

Zur Untersuchung von interchromosomalen Kontakten detektierte ich Chromatinkontakte mit 

Hi-C im Kontext einer genomischen Deletion am humanen 16p11.2 Locus, assoziiert mit 

Autismus Spektrum Störung. Ich zeige hier, dass die häufigste Deletion am 16p11.2 Locus zu 

der Reorganisation und dem Verlust von spezifischen interchromosomalen Kontakten 

zwischen 16p11.2 und Chromosom 18 führt, und stelle eine Hypothese auf wie diese 

interchromosomalen Kontakte zur ektopischen Aktivierung von Pcdh Genen auf Chromosom 

18 führen. Protocadherins haben wichtige Funktionen in neuronaler Konnektivität, ein 

Prozess dessen Störung zur Manifestierung von Autismus Spektrum Störung beitragen 

könnte.  
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1. Introduction 

The materials in sections 1.1, 1.3 to 1.7, 1.10, and 1.11 of the introduction are from my 

previously published literature review (Kempfer and Pombo, 2019) 

 

1.1 Summary and aim of the literature review 

The nucleus of human cells harbours 46 densely packed chromosomes. Chromosomes are 

folded into hierarchical domains at different genomic scales, which likely enable efficient 

packaging and organize the genome into functional compartments. Chromosomes occupy 

distinct positions within the nucleus, called chromosome territories, which are partitioned into 

chromosomal compartments, and further into topologically associating domains (TADs) and 

chromatin loops which are mediated by either CCCTC-binding factor (CTCF) or enhancer-

promoter contacts. Chromatin folding is a major feature of gene regulation and it dynamically 

changes in development and disease and potentially allele-specific. Transcriptional control is 

mediated through physical contacts between enhancers and target genes, which occurs via 

loop formation between the respective DNA elements. Functional loops between regulatory 

regions and genes are thought to occur predominantly within TADs. The expression of genes 

can also be influenced by their position relative to spatial landmarks inside the nucleus that 

are enriched for specific biochemical activities, such as the nuclear lamina. The disruption of 

enhancer-gene contacts and alteration of nuclear sub-compartments play important roles in 

disease, including congenital disorders and cancer. Importantly, many disease-associated 

mutations of the linear genomic sequence, particularly in non-coding regions, can only be 

understood by considering their 3D conformation in nuclear space.  

 

Advances in our understanding of chromosome folding have been limited by a lack of 

approaches that can map chromatin contacts genome-wide while simultaneously retrieving 

spatial information, such as molecular distances between different genomic regions or 

between genomic regions and distinct nuclear compartments. Until recently, studies of 3D 

genome folding have been limited to two main technologies: imaging, particularly 

fluorescence in situ hybridisation of DNA (DNA-FISH), and approaches based on 

chromosome conformation capture (3C), namely Hi-C. DNA-FISH was a revolutionary 

approach which allowed visualisation of the spatial organisation of chromosomes and genes 

in the nucleus (Gall and Pardue, 1969; Speicher et al., 1996); it provides single cell 

information, but  typically has limited throughput which only allows a small number of 
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genomic loci to be analysed at a time. 3C-based approaches, which depend on proximity 

ligation of DNA ends involved in a chromatin contact, have helped identify enhancer-

promoter contacts; their high-throughput derivatives, such as Hi-C, map chromatin contacts 

genome-wide at a length scale ranging from hundreds of kilobases to a few megabases.  

More recently, improvements in imaging techniques have increased the number of loci that 

can be analysed in parallel (Wang et al., 2016a) and extended the approach to live-cell 

imaging (Ma et al., 2013; Ma et al., 2016). Orthogonal ligation-free approaches have also 

emerged, namely genome architecture mapping (GAM; Beagrie et al., 2017), split-pool 

recognition of interactions by tag extension (SPRITE; Quinodoz et al., 2018), and chromatin-

interaction analysis via droplet-based and barcode-linked sequencing (ChIA-Drop; Zheng et 

al., 2019) have started to reveal novel aspects of chromatin organisation. GAM, SPRITE and 

ChIA-Drop map chromatin contacts genome-wide and identify topological domains, but also 

robustly detect a previously unappreciated level of high complexity chromatin contacts that 

involve three or more DNA fragments and uncover specific contacts that span tens of 

megabases. 

 

In this literature review I summarize the current knowledge of 3D genome topology at all 

genomic scales from structural conformation of entire chromosomes to local DNA looping 

and the impact of these topologies on nuclear functions, such as gene regulation. I describe 

differences in chromatin folding between the alleles of diploid organisms, and discuss the 

functionality of chromatin contacts discovered by studying congenital diseases. Further, I 

describe the main approaches currently used in 3D genome research, highlighting their major 

advantages and caveats. To recognise the strengths of each technique, it is important to 

understand the principles and experimental details underlying each method, their intrinsic 

biases and power to capture specific aspects of 3D genome architecture. I discuss major 

features of 3D genome organisation which have emerged, at the kilobase scale and above, 

through the application of these different technologies, while highlighting discrepancies 

between approaches.  

 

1.2 Epigenetic gene regulation 

The precise spatio-temporal regulation of genes is key to every multicellular organism to 

develop specialised cell types and tissues. Thus, many layers of gene regulation are necessary 

to orchestrate the complex task of precisely activating and silencing the transcription of genes. 

For example, the product of transcription, RNA, can be modulated by alternative splicing and 
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post-transcriptional processing to affect its stability, or the efficiency of RNA transport to the 

cytoplasm, thereby influencing the translation rate of the RNA into protein. Other 

mechanisms for tuning gene expression occur at the level of transcription itself, via the 

recruitment of RNA polymerase II to the gene’s promoter. This process it enabled and 

regulated by transcription factors (TFs) which recognise and bind to specific DNA sequences 

to initiate transcription. The sequences that recruit TFs to the gene are cis-regulatory 

elements, including promoters, enhancers, silencers, and insulators. Amongst these, enhancers 

play a crucial role in activating transcription, and since their discovery (Banerji et al., 1981) 

have been studied extensively to explore underlying mechanisms of enhancer-mediated gene 

activation (Levine, 2010; Ong and Corces, 2011). In most cases, to activate gene expression, 

the enhancer, which can be located far away from its target gene on the linear DNA sequence, 

is recognised by the TF and loops out of its linear genomic surrounding to physically contact 

the target promoter, resulting in the recruitment of RNA polymerase II to the target gene 

(Schoenfelder et al., 2010a). 

 

1.3 Chromatin contacts between cis-regulatory elements  

The physical contacts between enhancers and promoters are essential for the transcription of 

genes (Chen et al., 2018a) and can occur over distances ranging from less than one kilobase 

up to several megabases (Javierre et al., 2016; Lettice, 2003; Nobrega et al., 2003; Qin et al., 

2004; Tolhuis et al., 2002) (Figure 1.1). Genome-wide maps of candidate promoter-enhancer 

contacts can be created using high-resolution C-methodologies that enrich for contacts 

mediated by RNA polymerase II or promoter histone marks, or that preferentially capture 

promoter-based contacts (Fang et al., 2016; Mifsud et al., 2015; Mumbach et al., 2016). 

Direct pairwise contacts between gene promoters and enhancers have become the most 

prominent concept of enhancer function, possibly as a result of the increased power of C-

technologies to detect local pairwise contacts rather than higher-order conformations. 

However, other mechanisms of enhancer functions are also emerging, which can involve 

formation of chromatin hubs, tethering of genes to active chromatin or nuclear environments 

(Finlan et al., 2008; Kumaran and Spector, 2008; Reddy et al., 2008; Zullo et al., 2012), and 

phase separation (Nott et al., 2015; Strom et al., 2017). Interestingly, a study in budding yeast 

suggests homolog pairing as a mechanism for gene activation (Kim et al., 2017). In the 

diploid yeast genome, upon glucose deprivation of the cell, both copies of the genomic locus 

containing the gene TDA1 are relocalized to the nuclear periphery, where the homologues 

associate with each other and TDA1 expression is activated. A more classical concept in gene 
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regulation can be observed at developmental loci, where cis-regulatory contacts between 

enhancers and promoters are thought to occur most commonly within TADs (Chetverina et 

al., 2014; Lupianez et al., 2015; Symmons et al., 2016). Although regulatory landscapes 

within TADs seem to be a common mechanism, genes themselves also contact each other 

across TAD boundaries over large genomic distances (Bantignies et al., 2011; Beagrie et al., 

2017; Schoenfelder et al., 2015a; Tiwari et al., 2008). Ligation-free methods, such as FISH, 

GAM and SPRITE, all detect long-range contacts across TAD borders (Beagrie et al., 2017; 

Fraser et al., 2015; Quinodoz et al., 2018), and detailed analyses of Hi-C ligation frequencies 

also identify ligation events across TADs, over tens of megabases, that are statistically 

different from random contacts (Fraser et al., 2015). The functional relevance of these 

contacts is a compelling question that is beginning to be addressed by developments that 

allow ectopic chromatin contacts to be engineered in the cell (Deng et al., 2014; Kim et al., 

2019). The spatial and functional relationship between gene promoters that contact each other 

also remains poorly understood. Deletions of several gene promoters in the mouse ESC 

genome altered the expression of nearby genes (Engreitz et al., 2016). This observation 

suggests that genes themselves may act as enhancers for other genes, possibly by recruiting 

cis-regulatory signals, and supports the concept that clustering of genes in transcription 

factories has regulatory functions.  

 

Figure 1.1: Enhancer-promoter contacts and their detection with different methodologies.  

(a) Contacts between a gene and its cis-regulatory elements occur via loop formation between the enhancer 

bound by RNA polymerase II and the gene promoter. (b) Snapshot of live cell imaging of contacts between 

enhancer (green) and promoter (blue) of eve with simultaneous imaging of eve mRNA expression (red) in the 

Drosophila embryo (Chen et al., 2018a). (c) The 4C-sequencing track shows the interactions of the ZRS, a limb-

specific enhancer of the Shh gene, with the Shh promoter in the anterior forelimb in mice (Symmons et al., 

2016). (d) GAM data can be processed using a mathematic model, statistical inference of co-segregation 

(SLICE), to extract the most significant enhancer-promoter contacts from the dataset, resulting in a contact 

matrix with only the high-probability interactions (Beagrie et al., 2017). The most significant interaction at the 

Sox2 locus can be found between the Sox2 gene and one of its well-studied enhancers (Li et al., 2014). Diagram 

adapted from Kempfer and Pombo (2019). 

 



1. Introduction 

 5 

1.4 Folding of chromatin into TADs and loop domains  

At smaller scales, chromosomes fold into self-associating chromatin domains, termed TADs 

(Figure 1.2) (Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012). Chromatin domains 

had been previously identified by microscopy, but their detailed genomic composition was 

unclear. Since the discovery of TADs, the segmentation of the genome into megabase-sized 

domains has been extensively studied in several organisms and with different methodologies, 

leading to major breakthroughs in the discovery of mechanisms of disease caused by 

congenital genomic rearrangements (Franke et al., 2016; Hnisz et al., 2016; Lupianez et al., 

2015; Spielmann et al., 2018). TADs often enclose clusters of co-regulated enhancers and 

promoters (Shen et al., 2012; Symmons et al., 2014). Their size has been re-examined with 

the increasing resolution afforded by improved 3C-based assays, and found to vary from 

40 kb to 3 Mb in the human genome (Rao et al., 2014), leading to the proposal of smaller loop 

domains as a sub-structure of TADs. Loop domains had been detected by microscopy before 

the emergence of C-technologies as DNA loops between transcriptionally active regions 

(Jackson et al., 1996). Loop domains derived from 3C-based technologies often coincide with 

pairs of convergent CTCF binding sites, indicating that CTCF binding can contribute to the 

partition of specific regions of the genome into self-associating domains (de Wit et al., 2015; 

Gomez-Marin et al., 2015; Rao et al., 2014; Vietri Rudan et al., 2015). Higher-order contacts 

between TADs have also been investigated, leading to the identification of metaTADs, which 

bring together distant TADs in cell-type specific patterns that relate to gene activity (Fraser et 

al., 2015; Weinreb and Raphael, 2016). 

 

It has been debated whether TADs represent domains that exist predominantly across the cell 

population, or represent an average of individual preferred contacts. Although interactions 

observed in single cells by single-cell Hi-C and imaging do not often identify whole TADs, 

the contacts detected frequently occur within the TAD coordinates defined by population Hi-

C (Bintu et al., 2018; Nagano et al., 2013; Stevens et al., 2017). However, this preference 

might not be as strong as anticipated. Imaging of chromatin contacts in mouse ESCs and 

oocytes showed that 3D physical distances between regions that flank TAD borders are 

shorter in 40% of the cases than distances between regions within TADs (Flyamer et al., 

2017), leading to highly variable contact clusters in individual cells, that do not coincide with 

the positions of TADs in the cell population. This observation agrees with the detection of 

chromatin contacts between regions separated by TAD borders in single cells, which are often 

found at similar frequencies as contacts within TADs (Finn et al., 2019). However, it is 
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particularly noteworthy that combining the single-cell Hi-C data results in the same TAD 

coordinates observed in bulk population Hi-C, which supports the idea that TADs represent 

contact preferences of a cell population, rather than compact domains of chromatin in single 

cells (Flyamer et al., 2017; Fudenberg et al., 2016). 

 

Figure 1.2: TADs and loop domains.  

(a) Chromatin folds into topologically associating domains (TADs), which overlap with domains of early and 

late replication, and DNA loops, that arise from cohesin-mediated interactions between paired CTCF proteins. 

(b) Multiplex-FISH of consecutive DNA segments in a 2 Mb region in the human genome shows the emergence 

of TADs in the population-average distance map (Bintu et al., 2018). (c) and (d) In Hi-C and GAM contact 

maps, TADs are represented by regions of high internal interaction frequencies and demarcated by a drop of 

local interactions at their boundaries. (c) HiGlass (Kerpedjiev et al., 2018) was used to generate contact maps of 

previously published Hi-C data from mouse ESCs (Bonev et al., 2017); (d) Heatmaps for GAM were generated 

from normalised published matrix files for mouse ESC data (Beagrie et al., 2017). Figure adapted from Kempfer 

and Pombo (2019). 

 

 

1.5 Organisation of DNA at nuclear bodies 

Nuclear bodies are membrane-free organelles enriched for specific nuclear proteins and 

RNAs, which often have preferred associations with specific genomic regions, thereby 

influencing the large-scale organisation of chromosomes during interphase (Figure 3). They 

include the nucleolus, nuclear lamina, splicing speckles, paraspeckles, Cajal bodies, 

promyelocytic leukemia bodies, Polycomb bodies, replication factories, and transcription 

factories, all of which have been initially described using microscopy (Dundr and Misteli, 

2010; Mao et al., 2011). For example, active ribosomal gene clusters are localized in the 

nucleolus, where the large ribosomal RNAs are transcribed, processed and assembled into 

pre-ribosomes (Pederson, 2011). Splicing speckles occupy internal nuclear positions, separate 

from the nuclear lamina and nucleoli, and bring together gene-dense regions (Brown et al., 

2008; Shopland et al., 2003; Spector and Lamond, 2011). Association of specific genes at 

splicing speckles has not only been shown using imaging techniques, but has been confirmed 

with SPRITE at the genome-wide level, revealing that regions from different chromosomes 

come together on the same speckles (Beagrie et al., 2017; Fraser et al., 2015; Quinodoz et al., 
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2018). Genome-wide mapping of genes associated with speckles has also recently been 

achieved by TSA-seq (Chen et al., 2018b). Imaging using fluorescence and electron 

microscopy showed that transcription itself occurs at discrete sites in the nucleus, termed 

transcription factories, which may organise active transcription units (Iborra et al., 1996; 

Pombo et al., 1999; Xie et al., 2006), with only a small proportion of transcriptional activity 

(~5-10%) being found immediately adjacent to the most prominent splicing speckles (Xie et 

al., 2006). Interestingly, TSA-seq allows the fraction of the genome that associates closely 

with slicing speckles to be defined, and it revealed genomic regions that contain highly 

transcribed genes and super-enhancers (Chen et al., 2018b), in agreement with previous 

imaging data (Shopland et al., 2003). Co-expressed genes can share the same transcription 

factory, which may coordinate with mechanisms of coordinated gene regulation via chromatin 

folding (Ferrai et al., 2010; Osborne et al., 2004; Osborne and Eskiw, 2008; Schoenfelder et 

al., 2010b), but it remains unclear whether transcription factories are strictly specialised. 

Recent findings show that several factors involved in the transcription process, such as RNA 

polymerase II (Boehning et al., 2018), or transcriptional co-activators BRD4 and MED1 

(Sabari et al., 2018), can form condensates by liquid-liquid phase separation, a process that 

may allow for concentration of TFs and generate transcription factories. Moreover, the 

formation of nuclear condensates has been suggested as a general principle of nuclear body 

formation (Banani et al., 2016). Clustering of distant genomic regions is not only mediated by 

transcription, but also occurs in the context of gene repression. Chromatin contacts at 

Polycomb bodies, which are repressive nuclear compartments, are a prominent example of 

gene clustering. In Drosophila, Polycomb-repressed Hox genes come together over a genomic 

distance of 10 Mb when they interact with a Polycomb body (Bantignies et al., 2011). Other 

studies have reported long-range intra- and inter-chromosomal contacts between Polycomb-

bound genes in human teratocarcinoma cells (Tiwari et al., 2008) and in mouse ESCs (Mifsud 

et al., 2015).  

 

Understanding how the preferential associations of genomic regions with specific nuclear 

domains relate with 3C-derived chromatin contacts remains a major challenge. Comparisons 

of genome-wide maps of lamina-associated domains (Guelen et al., 2008) and Hi-C contacts 

show a strong coincidence between the transcriptionally inactive B compartment and the 

nuclear lamina (Dixon et al., 2012; Fraser et al., 2015; Rao et al., 2014) or late replication 

domains (Pope et al., 2014). Repressive histone marks that define the heterochromatic B 

compartment are also strongly enriched at genomic regions that associate with the nucleolus 
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(Nemeth et al., 2010), suggesting that the compacted B-compartment is situated both at the 

nuclear periphery and clustered around the more central nucleoli, separated by the active, 

open A-compartment. However, the bimodal separation of A and B compartments derived 

from C-technologies should not be naively inferred as strictly active or silent chromatin. 

Genes can be activated in all areas of the nucleus, including at the nuclear lamina (Kumaran 

and Spector, 2008) or at centromeric regions (Sabbattini et al., 1999), and gene positioning at 

the periphery does not always result in gene inactivation (Finlan et al., 2008; Wang et al., 

2018). Heterochromatin domains also contain active sites of transcription (Grewal and Elgin, 

2007). Consequently, a strict separation of compartments A and B, as defined by C-

approaches, seems unlikely, especially considering that contacts between compartments can 

be found in Hi-C maps (Dixon et al., 2012), and that these contacts are even more robustly 

identified with use of orthogonal methods such as GAM, that do not rely on weak fixations 

(Beagrie et al., 2017). These observations suggest that long-range gene regulation 

mechanisms are complex, and not only depend on pairwise contacts between genomic 

regions, but may also be influenced by the local nuclear environment where each region is 

located (Pombo and Branco, 2007). The ongoing challenge of disentangling the direct 

functional relationships between the positioning of genomic regions in the nucleus, their local 

and long-range contacts, and the state of gene activity is being addressed by analysing 

chromatin contacts at the single-cell level and with allele specificity, for example using DNA-

FISH (Finn et al., 2019) or single-cell Hi-C (Flyamer et al., 2017; Nagano et al., 2017). 
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1.6 Chromatin folds into hubs and compartments 

The organisation of chromosomes into sub-chromosomal domains has been extensively 

studied. For example, in mammalian cells, chromatin domains were observed in relation to 

replication origins, which contain many replicons and maintain their domain co-association 

across subsequent cell cycles (Jackson and Pombo, 1998). The compartmentalization of 

chromosomes into early and late replicating domains (Ferreira et al., 1997; Visser et al., 1998; 

Zink et al., 1999) was also shown to be linked to transcriptional activity, with sites of active 

transcription occurring predominantly in early replicating domains (Sadoni et al., 1999). More 

recently, these observations have been largely confirmed by genome-wide assays to map 

replication and transcription, in which transcriptionally active and early replicating chromatin 

domains organise into separate sub-compartments, distinct from late replicating domains 

(Hiratani et al., 2008; Pope et al., 2014; Schwaiger et al., 2009). Early analyses of nuclear 

organisation by electron and confocal microscopy had shown that chromatin occurs in highly 

condensed (heterochromatic) and less condensed (euchromatic) states (Monneron and 

Bernhard, 1969), and revealed that transcription occurs in euchromatic areas of the nucleus 

(Verschure et al., 1999). With the emergence of whole genome C-methodologies, such as Hi-

C, the mapping of active and repressed chromatin states has become possible at the genome-

wide scale, providing powerful insights into how gene expression relates to chromatin 

compaction. Application of principal component analysis to Hi-C data revealed a strong 

segregation of ligation events into two distinct compartments (A and B compartments) 

according to the activity state of the genomic regions (Lieberman-Aiden et al., 2009). These 

compartments can also be seen in contact maps generated by ligation-free approaches 

(Beagrie et al., 2017; Quinodoz et al., 2018) (Figure 1.3). Comparisons with linear maps of 

protein occupancy on chromatin helped reveal a strong relationship between compartment A 

and transcriptionally active, open chromatin, as defined by DNase hypersensitivity, and 

compartment B with closed chromatin, defined by repressive epigenetic marks on 

heterochromatin (Lieberman-Aiden et al., 2009). Increased depth of Hi-C datasets has since 

allowed smaller sub-compartments to be detected, which capture finer differences in 

replication timing as well as preferred associations with the nucleolus or the nuclear lamina 

(Rao et al., 2014). 
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Figure 1.3: Nuclear bodies and compartments.  

(a) DNA inside the nucleus separates into hubs of active (compartment A) and inactive (compartment B) 

chromatin, clustering around the nucleolus, splicing speckles, transcription factories, and other nuclear bodies 

not represented here. (b) Electron spectroscopy imaging of the mouse epiblast shows distribution of 

heterochromatin (yellow) around the nucleolus (light blue) and at the nuclear periphery. Decondensed 

euchromatin (dark blue) is positioned more centrally in the nucleus. Nucleic acid-based structures are stained 

yellow, protein-based structures blue (Ahmed et al., 2010). (c) and (d) Hi-C and SPRITE contact maps of mouse 

chromosome 11 show the separation of chromatin into discrete contact hubs (A and B compartments), which are 

visible as checkerboard-like contact patterns. (c) HiGlass (Kerpedjiev et al., 2018) was used to generate contact 

map for previously published Hi-C data from mouse ESCs (Bonev et al., 2017);  (d) SPRITE contact map was 

generated from normalised published matrix files from mouse ESCs (Quinodoz et al., 2018). Figure adapted 

from Kempfer and Pombo (2019). 

 

 

1.7 Chromosome territories and inter-chromosomal contacts.  

FISH imaging shows that specific chromosomes occupy discrete non-random nuclear spaces 

during interphase, termed chromosome territories (Cremer and Cremer, 2010) (Figure 1.4). 

Chromosome territories show cell-type dependent preferences in terms of both their radial 

position within the nucleus and their position relative to other chromosomes (Branco et al., 

2008; Branco and Pombo, 2006; Parada and Misteli, 2002). Specific contacts can be detected 

at the interface between chromosome territories (Hacisuleyman et al., 2014; Maass et al., 

2018a; Maass et al., 2018b); overall, an estimated 20 % of the volume of chromosome 

territories intermingles with other chromosomes, often at their peripheries, both in human 

primary lymphocytes and in Drosophila melanogaster cells (Branco and Pombo, 2006; Rosin 

et al., 2018). The extent of intermingling between chromosome territories directly correlates 

with translocation probabilities upon ionizing radiation damage, highlighting that the physical 

proximity between chromosomes affects their stability in response to DNA damage (Branco 

and Pombo, 2006; Maharana et al., 2016; Zhang et al., 2012). The organisation of 

chromosomes into discrete territories is also inferred from 3C-based and ligation-free 

approaches, as higher interaction frequencies are detected within chromosomes than between 
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them (Figure 1.4). 3C-based technologies have also detected contacts between chromosomes, 

and these have been successfully validated by imaging (Cairns et al., 2016; Fanucchi et al., 

2013; Hacisuleyman et al., 2014; Lomvardas et al., 2006; Mifsud et al., 2015; Nagano et al., 

2017; Schoenfelder et al., 2010b; Spilianakis et al., 2005). 

 

Figure 1.4: Chromosomes occupy discrete territories in the nucleus, which were first detected using 

imaging techniques.  

(a) Illustration of chromosome territories. (b) The 3D-fluorescence in situ hybridisation (3D-FISH) image shows 

the positions of the chromosome territories of chromosome 2 (red) and chromosome 9 (green) within DAPI-

stained nuclei (blue) from mouse embryonic stem cells (ESCs) (Mayer et al., 2005). (c) Chromosome territories 

are also detected as regions of high frequency intrachromosomal interactions on contact maps generated by 3C-

based methods (such as Hi-C) and (d) ligation-free approaches (such as genome architecture mapping (GAM)). 

(c) HiGlass (Kerpedjiev et al., 2018) was used to generate contact maps for previously published Hi-C data from 

mouse ESCs (Bonev et al., 2017); (d) Heatmaps for GAM were generated from normalised published matrix 

files for mouse ESC data (Beagrie et al., 2017). Figure adapted from Kempfer and Pombo (2019). 

 

 

1.8 Allelic differences in 3D chromatin topology  

Diploid organisms carry two copies of each chromosome (with some exceptions, such as the 

sex chromosomes of male humans), one allele inherited from each parent. Genes can be 

expressed from both alleles (biallelic), or only from one of the two copies (monoallelic). 

When genes are expressed constitutively monoallelic, in all somatic cell types and tissues of 

the organism, they are called imprinted genes (Reik and Walter, 2001). While these are only 

100 to 150 genes in human and mice (Kelsey and Bartolomei, 2012), the majority of 

monoallelic gene expression is cell-type specific, and depending on the cell type monoallelic 

expression affects up to 10 % of all genes (Reinius and Sandberg, 2015). Thus, allele-specific 

gene regulation must take place to activate only one of the two copies of a gene. At imprinted 

genes, allelic regulation is thought to involve long non-coding RNAs, as well as allele-

specific DNA methylation at so called imprinting control regions (ICRs) (Bartolomei, 2009). 

Another proposed mechanism for allelic gene expression is differential chromatin folding 

between the maternal and the paternal allele, a phenomenon that could be observed for 
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example at the immunoglobulin heavy chain locus, where the allelic recombination of VH, DH 

and JH gene segments controls the expression of specific lymphocyte receptors (Holwerda et 

al., 2013).  

 

Several genome-wide studies of allelic chromatin folding have mapped chromosome 

structures of haplotypes. In Hi-C studies of human cells, only minor differences between the 

chromatin folding of alleles could be observed, however, these studies report examples of 

differential chromatin folding at imprinted loci (Dixon et al., 2015; Rao et al., 2014). The 

imprinted genes H19 and IGF2, transcribed maternally and paternally, respectively, display 

differential formation of CTCF-mediated loops at their genomic locus, an observation that 

was made in bulk Hi-C data (Rao et al., 2014), and was confirmed later in single cells (Tan et 

al., 2018a). Studies of CTCF-mediated chromatin contacts using ChIA-PET (Tang et al., 

2015) or contacts between transcriptionally active genomic regions (using Hi-ChIP with 

H3K27ac) (Mumbach et al., 2017) report larger differences in chromatin folding between 

alleles. In this case, bias is introduced when differences between alleles are directly connected 

to differential occupancy of CTCF or histone marks. This may not necessarily lead to changes 

in chromatin contact frequencies, but instead, only reflects changes in which genomic regions 

are being captured in that particular experiment. More unbiased studies have explored allelic 

chromatin folding, by using high-throughput imaging with Oligopaints (Nir et al., 2018). In 

this study, consecutive 8 Mb long stretches of chromatin are imaged at low resolution, 

reporting differences in the shape of the visualised genomic regions, reflected in differential 

ellipticity between the alleles. This implies that allelic differences in chromatin topology go 

beyond a few imprinted loci, as previous studies suggested. A study in mouse ESCs mapped 

chromatin contacts and found genome-wide changes in Hi-C compartments between each 

allele. The observed changes did not connect to imprinting or monoallelic gene expression, 

but rather to asynchronous replication timing between alleles (Rivera-Mulia et al., 2018). 

Summarising, most studies that explored allelic chromatin contacts have failed to find a 

connection between monoallelic expression and regulation via genome folding outside of 

imprinted loci. However, careful explorations of Hi-C data in human induced pluripotent stem 

cells (iPSCs) and iPSC-derived cardiomyocytes identified genome-wide changes in DNA 

loop formation between the alleles (Greenwald et al., 2019). Although these very subtle 

changes in interaction frequencies are magnitudes lower than the differential loops between 

cell types, they correlate with monoallelic gene expression, thus providing the first evidence 

for a global regulation of monoallelic gene regulation via chromatin loop formation.  
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1.9 3D genome folding in disease 

The functionality of different chromatin contacts is a key question when studying the 3D 

nucleus. Although several studies have suggested the importance of changes in chromatin 

structures throughout development and between different cell types (Bonev et al., 2017; 

Dixon et al., 2015; Fraser et al., 2015), direct and inevitable proof of the importance of 

chromosome folding for the development of an organism was found by studying topologies in 

the context of congenital disease. Structural rearrangements at the human EPHA4 locus that 

are associated with various limb malformations have been shown to cause alterations in 

chromatin folding at the genomic locus of Epha4, when remodelling the disease in mice 

(Lupianez et al., 2015). Here, disruption of TAD structures at the locus leads to ectopic 

interactions of Epha4 enhancers with genes located in the adjacent TADs, resulting in 

misregulation of developmental genes and consequently in limb malformations. A number of 

disease-associated studies of 3D chromatin folding have shed light into the importance of 

enhancer-promoter contacts by revealing mechanisms like enhancer adoption, meaning the 

exposure of a gene to the signal of an ectopic enhancer due to TAD disruptions, to be the 

cause of rare developmental disorders, such as adult-onset demyelinating leukodystrophy 

(Giorgio et al., 2015) or female to male sex reversal (Franke et al., 2016). TAD disruptions 

also play important roles in cancer, such as T cell acute lymphoblastic leukemia, where 

microdeletions at TAD boundaries lead to activation of proto-oncogenes (Hnisz et al., 2016). 

Removal of these TAD boundaries in human embryonic kidney cells was sufficient to activate 

the proto-oncogenes in healthy cells. The same mechanism could be observed when studying 

cancer-associated mutations at CTCF sites. Deletions of CTCF sites in human embryonic 

stem cells at the boundaries of TADs lead to ectopic interactions of key developmental 

enhancers and their target genes, causing misexpression of the genes inside these TAD (Ji et 

al., 2016). These findings indicate once more the importance of TAD structures for gene 

regulation and consequently the functionality of the cell. At smaller scales, the disruption of 

enhancer-promoter contacts has been shown for various disease studies, where translocations 

or copy number variations (CNVs) disrupt chromatin looping in the proximity to the 

mutation, thus resulting in aberrant gene expression by interrupting or altering promoter-

enhancer contacts (Hyon et al., 2015; Lettice et al., 2011; Schmitz et al., 2014; Watson et al., 

2016).  

 

However, above the level of TADs chromosomes fold into larger scale chromosomal 

compartments and establish contacts between genomic regions bridging tens of megabases 
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(Beagrie et al., 2017; Fraser et al., 2015; Quinodoz et al., 2018), or even crossing 

chromosome territories (Cairns et al., 2016; Fanucchi et al., 2013; Hacisuleyman et al., 2014; 

Lomvardas et al., 2006; Mifsud et al., 2015; Nagano et al., 2017; Schoenfelder et al., 2010b; 

Spilianakis et al., 2005). While the reports about such contacts are increasing, the question 

about the functionality and importance of long-range chromatin contacts above the TAD level 

is still debated. While there are some examples about the role of inter-chromosomal contacts 

in gene expression (Apostolou and Thanos, 2008; Horta et al., 2018; Lomvardas et al., 2006; 

Spilianakis et al., 2005), so far there is no causal relationship known between alterations in 

inter-chromosomal contacts and the misregulation of genes. Studying long-range and inter-

chromosomal contact changes in disease is the first step towards a better understanding of 

these contacts. So far disease-related changes in contacts between chromosomes have been 

discovered in epithelial and breast cancer cells (Barutcu et al., 2015) and in human cells 

harbouring large CNVs, such as the 2q37 deletion (Maass et al., 2018b), the genetic cause of 

brachydactyly mental retardation syndrome , 22q11.2 and 1q21.1 CNVs, associated with 

neurological disorders (Zhang et al., 2018a), and 16p11.2 CNVs, associated with autism 

spectrum disorder (ASD) (Loviglio et al., 2016). While all those studies report changes in 

inter-chromosomal contacts as well as genome-wide changes in gene expression, those two 

events could not be directly connected. The question therefore is if these contacts are 

regulating genes and if they, when disturbed, are causal for the manifestation of the disease. 

 

1.10 Techniques to study 3D genome folding 

Here, I discuss methods to detect chromatin contacts in fixed and live cells, bulk experiments 

and single cell, using genome-wide sequencing approaches or single-locus imaging 

techniques. Further, I explain experimental differences and limitations of the currently used 

techniques to map chromosome topology. An overview of all described methods can be found 

at the end of this chapter (Table 1.1). 

 

1.10.1 Imaging-based detection of contacts  

The visualisation of nuclear structures and specific genomic sequences is key to 

understanding how chromatin is organised in the nucleus. A variety of light and electron 

microscopy techniques can be used to identify nuclear compartments or image the physical 

positions of specific genomic loci in the nucleus of fixed or live cells. The most commonly 

used techniques for detecting chromatin contacts are DNA-FISH in fixed cells, Lac and Tet 

operator systems or, more recently, CRISPR-based imaging in live cells (Figure 1.5). 
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Figure 1.5: Imaging-based approaches to visualise chromatin contacts.  

(a) DNA- fluorescence in situ hybridisation (DNA-FISH) uses fluorescently labelled probes that hybridise to 

specific genomic loci in the nucleus. Typically, cells are fixed and permeabilised, and upon denaturing of the 

DNA, FISH probes hybridise to their complementary target region. The FISH procedure can be performed in 

whole cells, embryos, thick tissue slices (3D-FISH) or in thin cryosections of cells (cryo-FISH). (b) CRISPR-

based live cell imaging can be performed in the intact, living cell. Typically, a dead Cas9 (dCas9) is fused to 

green fluorescent protein (GFP) and the fusion protein is recruited to the target region by small guide (sg) RNAs, 

which are complementary to the region of interest. (c) For all the techniques, chromatin contacts are assessed by 

the spatial distances between the fluorophores targeting the regions of interest. To determine the specificity of a 

contact, spatial distances between interacting loci should be compared to distances between non-interacting loci 

in a number of cells. The distribution of distances, the mean distance and median distance can all inform about 

the quality and abundance of the contact in a cell population. Figure adapted from Kempfer and Pombo (2019). 

 

1.10.1.1 Measuring contacts with DNA-FISH  

FISH uses fluorescently tagged DNA sequences (such as oligonucleotides) as probes to 

hybridise to complementary target regions of interest in the genome (Figure 1.5). For 

hybridisation to occur, a single-stranded probe needs to be able to enter the nucleus, which is 

usually achieved by permeabilising the cell with a detergent or organic solvent such as 

methanol. To ensure the probe can bind to its target, the DNA is most often denatured by heat 

and formamide treatment. The genomic regions highlighted by the hybridised fluorescent 

probes are then visualised under a microscope.  

 

DNA-FISH is typically used to measure the physical distances between two or a few 

differentially labelled genomic regions of interest. A chromatin contact is often defined by a 

distance threshold, which is usually set arbitrarily according to the scale of genomic distances 

between the regions of interest and the resolution of the microscope. Thus, chromatin contacts 
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have been inferred when fluorescent signals co-localise within a spatial distance of 50 nm to 

1µm (Barbieri et al., 2017; Barutcu et al., 2018; Finn et al., 2019; Maass et al., 2018a), 

although it is unclear whether the larger separations, close to the diameter of a whole 

chromosome, represent true interactions or non-random positioning. DNA-FISH can also be 

used to visualise chromatin compaction (Boettiger et al., 2016) or positioning of genomic 

regions with respect to nuclear structures, such as the nuclear lamina (Luperchio et al., 2017). 

The overall distributions of spatial distances between loci or relative to the nuclear periphery 

found across the cell population are usually summarised by the frequency of co-localisation 

(that is, the frequency with which chromatin contacts are detected across the cell population), 

but other metrics, such as mean or median distances, are also used. The data is compared to 

the physical distances between other (control) genomic regions (which are often separated by 

similar genomic distances) or, in some cases, to nuclear diameter or volume. These metrics 

can help distinguish specific chromosomal conformations but can also be ambiguous, 

depending on the choice of control probes or if allelic differences or other forms of 

heterogeneity are present within the cell population.  

 

The accuracy and power to detect different nuclear structures or contacts also depend on how 

well the organisation of the target DNA and nuclear compartments are preserved during the 

FISH procedure, on the resolution of the microscope and on the size of the target genomic 

sequence. FISH experiments use probes made of a collection of small DNA fragments that are 

either synthesized (oligos) or produced from larger DNA molecules (plasmids, fosmids, 

bacterial artificial chromosomes or whole mammalian chromosomes) by nick-translation, 

resulting in overlapping fragments of 100-500 bp. The probes often cover genomic sequences 

ranging in length from 30 kb up to entire chromosomes. Targeting larger genomic regions has 

the advantage of giving higher signal-to-noise ratios in locus detection, due to increased local 

fluorescence and higher target specificity. This allows accurate detection of contacts between 

larger genomic regions, such as TADs (Beagrie et al., 2017; Nora et al., 2012) and 

chromosomes (Branco and Pombo, 2006). However, with standard FISH techniques short-

range interactions between chromosomal regions that are less than 100 kb apart are hard to 

detect, making it difficult to quantify the finer-scale chromatin folding below the TAD level, 

such as enhancer-promoter interactions. 

 

Higher resolution imaging of chromatin contacts can be achieved using cryoFISH, in which 

standard FISH probes are hybridised to thin (~100-200 nm) cryosections from cells fixed 
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using conditions optimised to preserve nuclear ultrastructure; the signal is then visualised 

using fluorescence or electron microscopy (Barbieri et al., 2017; Beagrie et al., 2017; Branco 

and Pombo, 2006; Ferrai et al., 2010; Simonis et al., 2006). More recently, the short length 

and specificity of fluorophore-tagged oligonucleotides known as Oligopaints (Beliveau et al., 

2012) have made it possible to target 15 kb loci using conventional microscopy (Boyle et al., 

2011), or 5 kb regions using super-resolution microscopy (when combined with a second 

labelling step to enhance the fluorescence signal) (Beliveau et al., 2015). Oligopaints are not 

derived from cloned genomic regions, but are instead generated from synthetic libraries of 

short (~60-100 bp) oligonucleotides, which are produced by massively parallel synthesis 

(Gnirke et al., 2009). Once generated, the library pool can be amplified in a flexible manner, 

using different primer pairs to give rise to different sets of FISH probes. The ease of design of 

the Oligopaint probes has opened new possibilities to study chromatin folding, such as being 

able to visualise chromatin in different epigenetic states in the resolution of tens of 

nanometers (Boettiger et al., 2016). Oligopaint-based FISH has also been used in combination 

with high-throughput imaging to generate low-resolution contact maps (e.g. at the TAD level) 

of whole chromosomes (Wang et al., 2016a) and high resolution (30 kb) contact maps for 

stretches of DNA 1.2–2.5 Mb in length (Bintu et al., 2018). In addition, molecular beacon 

FISH probes have emerged as way to target genomic regions as short as 2.5 kb (Ni et al., 

2017). In an unbound state, these probes form a hairpin loop that minimizes off-target 

fluorescent signal by bringing together the fluorescent label and a quencher. Thus, the 

technique improves the visualisation of small genomic regions by reducing the background 

signal of the unbound probe.  

 

1.10.1.2 Live-cell imaging of nuclear structures  

Chromosome folding is a highly dynamic process that varies greatly throughout the cell cycle 

(Gibcus et al., 2018; Stevens et al., 2017). Our ability to study these chromatin dynamics have 

been revolutionised by technologies based on genome editing that allow specific genomic loci 

to be targeted in live cells. Early iterations of this approach were rather laborious; cell lines 

needed to be created in which the target locus was tagged with DNA binding site arrays that 

recruit a fluorescently-tagged cognate DNA-binding protein (such as the Lac operator-

repressor (Belmont and Straight, 1998; Robinett et al., 1996), Tet operator-repressor (Lucas et 

al., 2014) and ANCHOR (Germier et al., 2018) systems). Now, loci can be targeted in live 

cells with a version of the CRISPR (clustered regularly interspaced short palindromic repeats) 

system that uses an endonuclease-deficient form of Cas9 (dead-Cas9 (dCas9)) fused with a 
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fluorescent protein (Chen et al., 2013). The tagged dCas9 is recruited to the genomic locus of 

interest via its interactions with sequence-specific small guide RNAs (Figure 1.5). For 

simultaneous labelling of two genomic regions, small guide RNAs can be differentially 

modified to act as scaffolds that bring fluorescent proteins to the target loci. For example, 

fusion proteins that comprise a fluorescent protein and either tandem dimer MS2 coat-binding 

protein (tdMCP) or tandem dimer PP7 coat-binding protein (tdPCP) can be directed to target 

loci by guide RNAs containing MS2 or PP7 aptamers, respectively. Since both proteins have 

a comparably high exchange rate, this approach is also well suited to long term live cell 

imaging, as it compensates for photo bleaching (Fu et al., 2016; Shao et al., 2016; Wang et al., 

2016b). However, most CRISPR-based methods are currently limited to the detection of 

repetitive sequences because they rely on a single species of guide RNA, which hybridises to 

identical genomics sequences, to direct simultaneous binding of dozens of copies of the 

fluorescent protein to achieve a strong fluorescent signal. A notable exception is chimeric 

array of gRNA oligonucleotides (CARGO); by delivering 12 different guide RNAs into a 

single cell, this technique was able to efficiently label a non-repetitive 2-kb genomic region 

(Gu et al., 2018).   

 

1.10.2 Ligation-based detection of contacts 

 3C-based methods extract chromatin interaction frequencies between genomic loci via 

chromatin crosslinking and proximity ligation (Figure 1.6). Following formaldehyde fixation 

to capture protein- and RNA-mediated contacts, chromatin is fragmented using a restriction 

enzyme, and the crosslinked restriction fragments are ligated (Dekker et al., 2002). The 

purified ligation fragments are called a 3C library. The ligation frequency between two loci of 

interest can be quantified by PCR using appropriate primer pairs. Thus, 3C focuses on 

interactions between two loci (‘one versus one’) and requires prior knowledge of the targets 

of interest. However, the 3C library contains all ligation products for the genome investigated 

and the 3C workflow can therefore be adapted to enable genome-wide analysis of chromatin 

contacts. Chromosome conformation capture-on-chip (Simonis et al., 2006) or circular 

chromosome conformation capture (Zhao et al., 2006), both called 4C, enrich for interactions 

of one region with the remaining genome (‘one versus all’). Chromosome conformation 

capture carbon copy (5C) (Dostie et al., 2006) captures contacts of a larger genomic stretch at 

high resolution (‘many versus many’). Finally, Hi-C (Lieberman-Aiden et al., 2009) captures 

all ligation events across the entire genome (‘all versus all’). In the following, I focus on the 

most commonly used versions (Figure 1.6).  
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Figure 1.6: Chromosome conformation capture and its derivatives.  

Chromosome conformation capture (3C)-based assays measure contact frequencies of pairs of DNA loci by 

proximity ligation of crosslinked and fragmented chromatin. All 3C-based assays involve fixation of the 

chromatin, isolation of nuclei, and DNA fragmentation (e.g. with a restriction enzyme). The obtained crosslinked 

chromatin fragments are then processed for 3C, 4C or 5C, which map chromatin contacts for preselected regions, 

or for genome-wide assays, such as Hi-C and PLAC-seq. In 3C, 4C, and 5C, the crosslinked chromatin 

fragments are ligated and the DNA is purified. In 3C, the interactions between two chosen genomic regions are 

detected by amplification with primers for the two regions of interest. PCR products are analysed semi-

quantitatively on an agarose gel, or by real-time quantitative PCR. Interactions are defined by higher ligation 

frequencies compared to control regions of similar genomic distance. In 4C, interactions of one viewpoint with 

the whole genome are measured. The ligated and purified DNA is fractionated with a secondary restriction 

digest, and the digested, smaller DNA fragments are circularised, and amplified with primers facing outwards 

from the viewpoint (the restriction fragment containing the region of interest). The PCR products are sequenced 

by paired end sequencing, providing the sequence information and frequency of every chromatin contact of the 

viewpoint. In 5C, the ligated and purified DNA is directly amplified using primers for all restriction fragments 

within a consecutive genomic region, usually hundreds of kilobases, up to several megabases. The PCR products 

are sequenced and provide information about the ligation frequencies of all fragments within the region of 

interest. In Hi-C and PLAC-seq, prior to ligation digested DNA fragments are labelled with biotin. Then DNA 

fragments are ligated, and fragmented further by sonication. In PLAC-seq, DNA fragments bound to a protein of 

interest are pulled-down by immunoprecipitation. Then, in PLAC-seq and Hi-C the DNA is purified, 

biotinylated nucleotides are removed from unligated fragment ends, and all ligated DNA fragments are pulled 

down with streptavidin beads. After pull-down, DNA fragments are sequenced and provide information about 

the interaction frequencies of all pairs of loci in the genome (Hi-C), or specifically the interactions mediated by a 

protein of interest (PLAC-seq). Figure adapted from Kempfer and Pombo (2019). 
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1.10.2.1 Mapping all contacts at a single locus with 4C  

A straightforward and cost-effective method to obtain additional information from a 3C 

library is 4C. Here, primers for a region of interest (such as a promoter) are used to amplify 

all ligation partners of the locus under investigation (called the ‘viewpoint’) (Figure 1.6). The 

amplified ligation products are sequenced (to a depth of 1 to 5 million reads per library (van 

de Werken et al., 2012b)) and used to analyse genome-wide interaction partners of the region 

of interest at the resolution of a few kilobases. 4C has been widely used to investigate cis-

regulatory landscapes of genes, especially in development and disease (Franke et al., 2016). It 

is well suited for detecting short range regulatory interactions (Symmons et al., 2016), but has 

also been applied to detect contacts spanning long genomic distances, including whole 

chromosomes (Loviglio et al., 2016; Simonis et al., 2006).  

 

1.10.2.2 Mapping all contacts occurring within a large genomic region with 5C 

 In 5C, large genomic regions spanning up to several megabases are amplified from the 3C 

library by using a complex mix of forward and reverse primers (Figure 1.6). For example, 5C 

analysis of a 4.5 Mb chromosomal region around the Xist gene revealed the presence of TADs 

(Nora et al., 2012). 5C has the advantage of producing high resolution data at an affordable 

sequencing depth (~60 million reads per library to obtain 15 – 20 kb resolution for a 1 Mb 

region (Kundu et al., 2017)). However, the resolution of 5C is dependent on the ability to 

design forward and reverse primers for all possible restriction fragments across a given locus; 

in the absence of appropriate primers some mappable fragments will be excluded from the 

contact map. 5C is often used for the analysis of large genomic regions of several megabases 

(Kundu et al., 2017; Nora et al., 2012).  

 

1.10.2.3 Mapping all contacts at one or more loci with capture-based methods 

Alternatively, a 3C library can be enriched for one or more genomic targets using capture-

based methods, such as Capture-C (Hughes et al., 2014), Capture Hi-C (Mifsud et al., 2015) 

and CAPTURE (Liu et al., 2017). In these approaches, biotinylated oligonucleotides 

complementary to a genomic region of interest are used to pull-down specific ligation 

products from the library, which are then amplified and sequenced. Capture-based methods 

allow the enrichment of interactions for one or more loci of interest from the same 3C library. 

As a result, these approaches can be used to detect interactions of one viewpoint, but also of 

entire genomic regions (Franke et al., 2016), or groups of targets (Andrey et al., 2017; 

Schoenfelder et al., 2018).  
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1.10.2.4 Mapping all genome-wide contacts with Hi-C and its derivatives  

Hi-C is the most commonly used genome-wide approach to map chromatin contacts from a 

3C chromatin preparation (Lieberman-Aiden et al., 2009). In this approach, the ends of cross-

linked DNA restriction fragments are labelled with biotin and then ligated. After ligation, the 

exonuclease activity of T4 DNA polymerase is used to remove the biotin label from the ends 

of unligated fragments. Ligated fragments, which retain the biotin label, are enriched using 

streptavidin beads, to minimize the number of unligated DNA molecules in the sequencing 

library (Figure 1.6). Depending on the enrichment efficiency, about 50 to 70% of sequencing 

reads map to pairs of ligated restriction fragments in Hi-C libraries (Belton et al., 2012). In 

tethered chromosome capture (TCC (Kalhor et al., 2011)), an early modification of Hi-C, the 

detection of unspecific ligation events between non-crosslinked material is minimized by 

tethering the crosslinked and biotinylated chromatin to streptavidin beads before ligation. This 

approach detects more long-range intra-chromosomal contacts and contacts between 

chromosomes than standard C-technologies (Kalhor et al., 2011). By contrast, genome 

conformation capture (GCC (Rodley et al., 2009)), an approach developed at the same time as 

Hi-C, sequences all DNA present in the 3C library, without preselection of ligated fragments. 

Although currently much more expensive, especially for large genomes, GCC has the 

advantage of allowing direct normalisation of DNA abundance, thereby controlling for biases 

in sequencing and for the presence of genomic alterations, such as CNVs. Methods for 

detection and normalisation of CNVs have also recently been developed for Hi-C (Dixon et 

al., 2018; Servant et al., 2018; Vidal et al., 2018). 

 

Many other variants of genome-wide C-methods have been reported, ranging from technical 

optimizations of the original Hi-C protocol (such as DNase Hi-C (Ma et al., 2015, 2018a) and 

in situ Hi-C (Rao et al., 2014)) and advances to improve resolution (such as Micro-C (Hsieh 

et al., 2019; Hsieh et al., 2015; Hsieh et al., 2016)), to protocols based on the enrichment of 

contacts mediated by specific proteins or open chromatin regions (open chromatin enrichment 

and network Hi-C (OCEAN-C (Li et al., 2018))). Currently, the most commonly used version 

is in situ Hi-C. In the original Hi-C protocol, SDS is used to disrupt the nuclear membrane 

and ligation of crosslinked DNA therefore occurs partially in solution. In situ Hi-C omits this 

SDS step, allowing ligation of chromatin fragments within the presumably more native 

environment of the intact nucleus. As a result, the number of random ligation events is 

reduced and signal-to-noise ratios are improved, thereby reducing the required sequencing 

depth for higher-resolution contact maps. However, detailed analyses of the nuclear fragments 
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that contribute to contacts in the original version of Hi-C showed that large portions of the 

chromatin were thought to remain inside the partially digested nucleus during ligation 

(Gavrilov et al., 2013). Nonetheless, the in situ Hi-C protocol is faster and easier than the 

original version (Rao et al., 2014), mainly because it does not require extensive dilution of the 

crosslinked chromatin prior to DNA ligation. Consequently, all subsequent steps can be 

conducted in smaller volumes, allowing more efficient ligation and DNA extraction. Easy Hi-

C is another recent approach to simplify Hi-C (Lu et al., 2018). It avoids biotin enrichment 

and can be used with lower cell numbers than standard Hi-C.  

 

1.10.2.5 Mapping genome-wide contacts in single cells with single-cell Hi-C 

Standard Hi-C generates average contact maps from millions of cells, without any possibility 

to understand heterogeneity of the cell population. Single-cell Hi-C overcomes this limitation 

by allowing Hi-C contact maps to be produced from individual cells isolated during the 

process of generating Hi-C libraries (Nagano et al., 2013; Nagano et al., 2015). This approach 

allows rare cell types to be studied (Flyamer et al., 2017) and helps chromosome structures to 

be determined at specific stages of the cell cycle (Nagano et al., 2017). The single-cell Hi-C 

protocol involves in-situ proximity ligation of crosslinked and digested chromatin, followed 

by isolation of single nuclei from the cell suspension and generation of sequencing libraries 

from each nucleus (Nagano et al., 2017; Nagano et al., 2015). Single-cell combinatorial 

indexed Hi-C (sciHi-C) adopts a different approach; instead of isolating single cells, DNA 

within each nucleus is tagged with a unique combination of barcodes (Ramani et al., 2017). 

First, cells are fixed, lysed and digested with a restriction enzyme. Then the cell suspension of 

digested, but intact, nuclei is split into 96-well plates, indexed with individual barcodes, 

pooled, and split again. After several rounds of indexing, in situ proximity ligation and library 

preparation are performed on pooled nuclei, allowing high-throughput generation of single-

cell Hi-C libraries.  

 

One of the major challenges in single-cell Hi-C is the efficient recovery of contacts; 

inefficient digestion and ligation and incomplete recovery of input material result in contact 

maps that represent only a proportion of the contacts that may exist in a single cell. 

Modifications of the original protocol increased the average number of contacts detected in 

one cell from ten thousand up to a range of hundreds of thousands (Nagano et al., 2017; 

Stevens et al., 2017), but this remained a fraction of the possible contacts in the genome (2-

5% of possible ligation products). Recently, the development of Dip-C has increased the 
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number of detectable contacts to an average of one million per cell by omitting biotin 

incorporation and including a whole genome amplification step in the protocol (Tan et al., 

2018a).  

 

1.10.2.6 Combining C-based approaches with chromatin immunoprecipitation  

C-methods can be used to study chromatin contacts mediated by specific proteins, such as 

chromatin modifiers, architectural proteins, members of the transcription machinery, or cell 

type specific transcription factors. To explore contacts that coincide with chromatin 

occupancy of specific proteins, Hi-C libraries can be enriched by chromatin 

immunoprecipitation (ChIP) prior to ligation (Figure 1.6). Early methods, such as ChIP-loop 

(Horike et al., 2005) and enhanced 4C-ChIP (e4C) (Schoenfelder et al., 2010b), required that 

chromatin is solubilised to enable specific immunoprecipitation prior to ligation. However, 

standard 3C conditions often do not fully solubilise chromatin, as nuclei stay mostly intact 

after SDS treatment (Gavrilov et al., 2013), resulting in low signal-to-noise ratios. Other 

approaches, such as chromatin interaction analysis by paired-end tag sequencing (ChIA-PET),  

included sonication of the nuclei, as is more typically used for ChIP (Fullwood et al., 2009). 

Although sonication allows efficient precipitation of chromatin, its influence on the outcome 

of the subsequent proximity ligation remains unclear. Challenges in implementing ChIA-PET 

have led to other strategies for combining ChIP with Hi-C, namely Hi-ChIP (Mumbach et al., 

2016) and proximity ligation-assisted ChIP-seq (PLAC-seq) (Fang et al., 2016). Instead of 

performing protein pulldown followed by ligation of DNA fragments, Hi-ChIP and PLAC-seq 

start with in situ Hi-C and proximity ligation before sonication and immunoprecipitation. In 

this order, the ligation occurs in intact nuclei under optimal conditions, before chromatin 

contacts specific to the protein of interest are enriched. Regardless of these increased 

efficiencies, the results from immunoprecipitated C-libraries should be interpreted carefully, 

due to the bias towards the genomic regions that are bound by the protein for which the 

library is enriched (Davies et al., 2017). 

 

1.10.2.7 Genomic resolution of genome-wide C-methods  

A major consideration for any genome-wide technique is the genomic resolution. Hi-C data 

represents interaction frequencies between genomic regions in a contact matrix, consisting of 

equally sized genomic bins. The bin size (resolution) depends almost entirely on the 

sequencing depth. Resolutions of 30 kb or lower are often preferred to study chromatin 

domains and compartments, but also long-range contacts between large genomic regions (e.g. 
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TADs); using standard Hi-C, this requires sequencing depths of approximately 200 - 400 

million reads in mammalian genomes. However, billions of reads become necessary for high 

(1kb)-resolution datasets of the human genome that can provide detailed insights into 3D 

genome topology (Rao et al., 2014). Recently, a computational approach, HiCPlus, has 

applied deep learning to infer high-resolution contact matrices from low-resolution Hi-C data, 

reducing the sequencing depth to obtain a certain resolution by 1/16 (Zhang et al., 2018b). 

 

1.10.3 Ligation-free detection of contacts  

The reliance of 3C-based approaches on the ligation of the ends of DNA fragments found in a 

cluster of contacts favours the detection of ‘simple’ chromatin contacts which involve two or 

a small number of genomic regions. In each cluster of contacting DNA fragments isolated 

during a 3C-based experiment, each DNA fragment can only capture two other contacting 

fragments (O'Sullivan et al., 2013). In complex DNA clusters, each fragment ligates with one 

or two other fragments out of many simultaneously contacting fragments. Therefore, the 

interactome of a DNA fragment is diluted across the cell population by the choice of only one 

or two other fragments during ligation. Recently, three ligation-free approaches have been 

developed for genome-wide mapping of chromatin contacts, GAM (Beagrie et al., 2017), 

SPRITE (Quinodoz et al., 2018), and ChIA-Drop (Zheng et al., 2019). These methods are 

orthogonal to ligation-based approaches and are starting to provide new insights into 3D 

genome topology. Other ligation-free approaches – tyramide signal amplification (Chen et al., 

2018a) (TSA-seq) and DNA adenine methyltransferase identification (Marshall et al., 2016; 

van Steensel and Henikoff, 2000; Vogel et al., 2007) (DamID) – map chromatin with respect 

to nuclear landmarks (such as the nuclear lamina or various nuclear bodies), thereby helping 

to define chromatin positions in 3D space. 

 

1.10.3.1 Mapping contacts with nuclear structures with DamID and TSA-Seq  

DamID is an in vivo genome-wide method for detecting interaction sites between a protein of 

interest and DNA. The DNA binding domain of the protein of interest is fused to the DNA 

adenine methyltransferase (Dam) protein from E. coli (Marshall et al., 2016; van Steensel and 

Henikoff, 2000; Vogel et al., 2007), which specifically methylates adenines in the sequence 

GATC. When the fusion protein is expressed at low levels in cells, GATC sequences within 

or close to DNA binding sites of the protein of interest are marked by methylation. After 

DNA extraction, the methylated GATC sites are cut with a methylation-sensitive restriction 

enzyme and adapters are added to the restriction fragments to ensure only methylated binding 
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sites are amplified and sequenced. In an interesting adaptation called Targeted DamID (TaDa) 

(Marshall et al., 2016), expression of the Dam fusion protein is restricted to a specific cell 

type of interest, using targeted expression systems (e.g. Gal4), which allows detection of 

DNA-protein interactions, e.g with RNA polymerase II, in a cell-type specific manner without 

prior isolation or sorting of cells. DamID has been successfully used to study DNA 

interactions with proteins, such as Lamin B1, which resulted in the genome-wide mapping of 

Lamina-associated domains (LADs), and provided spatial information about chromatin with 

regard to the nuclear periphery (Guelen et al., 2008; Peric-Hupkes et al., 2010). However, 

interactions between chromatin and other nuclear compartments, such as splicing speckles, 

are not readily detected with DamID because most of the DNA surrounding the compartments 

is not directly binding to the tagged proteins (Spector and Lamond, 2011). 

 

TSA-Seq addresses this problem by using tyramide signal amplification (TSA) to measure the 

distances between chromatin and nuclear compartments (Chen et al., 2018b). In this approach, 

horseradish peroxidase (HRP) is conjugated to an antibody that binds to a protein specific to 

the nuclear compartment of interest, where it catalyses the production of biotin-conjugated 

tyramide free radicals, which diffuse and bind to nearby macromolecules – including DNA. 

Biotin-labelled DNA can be subsequently selected by biotin pull-down and sequenced to 

identify all genomic regions that were close enough to the protein of interest to be labelled. 

With TSA-seq spatial distances of chromatin with splicing speckles were determined genome-

wide, mapping the distances of all genes to their nearest speckle (Chen et al., 2018b).   

 

Another recent adaptation of DamID, called DamC, detects 4C-like contacts between a target 

region and the surrounding DNA regions, up to a few hundred kilobases (Redolfi et al., 2019). 

In DamC, Dam is fused with the reverse tetracycline receptor (rTetR), which binds to Tet 

operator sites inserted at the genomic region of interest. The Dam fusion protein methylates 

the target and its interaction partners in vivo. When combined with high-throughput 

sequencing, DamC reveals chromatin contacts independently of crosslinking or ligation, but 

requires engineering of the cells of interest unlike the other C-methods and ligation free 

approaches. The comparison with 4C and Hi-C showed high similarities at the level of TADs 

and CTCF loops at many genomic sites, however, some alterations of loops and sub-TAD 

structures could also be observed (Redolfi et al., 2019).  
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1.10.3.2 Mapping all genome-wide contacts with GAM 

In GAM, nuclei are sectioned in random orientations from a population of fixed and sucrose-

embedded cells using ultra-thin cryosectioning (220-230 nm thickness). Single nuclear slices 

are then isolated directly from the cryosection by laser microdissection. GAM thus avoids cell 

extraction or sorting, both of which can disrupt cellular and nuclear structures, which can be 

especially important when analysing complex tissues. The DNA from every slice is extracted, 

whole genome amplification is performed and indexed sequencing adapters are added before 

the DNA from all slices is pooled for sequencing (Figure 1.7). From the sequencing data for 

several hundred nuclear sections, each from a single cell, chromatin contacts between pairs of 

DNA loci can be inferred by counting their co-segregation frequency (that is, how often are 

the two loci contained in the same nuclear sections). Genomic regions that are closer in 3D 

space are more frequently found in the same nuclear slices. To detect statistically significant 

interactions, GAM was combined with a mathematical model, statistical inference of co-

segregation (SLICE) (Beagrie et al., 2017). The most specific chromatin contacts detected 

with SLICE were found to contain active genomic regions, such as active enhancers and 

actively transcribed genes, with these contacts extending over megabases up to entire 

chromosomes (Beagrie et al., 2017). SLICE separately models the random interactions that 

depend on genomic distance and the specific interactions that occur at a given physical 

distance (for example,  below 100 nm; ref. (Beagrie et al., 2017)); it interrogates which pairs 

of loci co-segregate more often in the collection of slices than expected from random 

contacts, and quantifies the frequency of specific interactions in the cell population. GAM 

also allows genome-wide interactions between three or more DNA loci to be detected 

simultaneously, and found long-range contacts between TADs containing super-enhancers 

and highly-transcribed TADs (Beagrie et al., 2017). The resolution of GAM datasets depends 

on the number of nuclear slices collected. With 400 nuclear slices, sequenced with ~1 million 

reads per slice, it was possible to achieve a resolution of 30 kb for pairwise chromatin 

contacts (Beagrie et al., 2017), comparable to a Hi-C library with similar sequencing depth 

(Dixon et al., 2012). Larger GAM datasets comprising a few thousand nuclear slices will help 

define the maximal resolution that can be practically afforded by GAM.  

 

1.10.3.3 Mapping all genome-wide contacts with SPRITE and ChIA-Drop  

SPRITE (Quinodoz et al., 2018) and ChIA-Drop (Zheng et al., 2019) detect chromatin 

interactions by tagging crosslinked chromatin complexes. Similar to 3C-based approaches, 

these methods rely on mild fixation and fragmentation of chromatin inside the nucleus – but 
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unlike 3C-based approaches, they do not use proximity ligation. Instead, in SPRITE, the 

crosslinked chromatin fragments are split across a 96-well plate, where each well contains a 

unique barcode (Figure 1.7). The indexed chromatin complexes are re-pooled, followed by 

sequential rounds of splitting, barcoding and pooling. The DNA (and RNA) molecules within 

an individual chromatin complex are identified after sequencing by their unique combination 

of barcodes added using this split-pool strategy; only DNA fragments that were crosslinked 

with each other will display the same combinations of barcodes. In ChIA-Drop (Figure 1.7), 

crosslinked and fragmented chromatin is separated into single chromatin complexes by 

droplet formation using a microfluidics device. Each droplet contains reagents for barcoding 

and amplification, and barcoded complexes are pooled and sequenced, as in SPRITE. SPRITE 

detects TADs and loop domains, both of which are features of Hi-C contact maps. However, 

SPRITE also detects additional genome-wide features of nuclear architecture, such as the 

association of specific genomic regions with nucleoli and splicing speckles. The predominant 

chromatin hubs around these nuclear bodies contain genomic regions from different 

chromosomes, an observation that coincides with single cell imaging (Pombo and Branco, 

2007), but that had not been made using 3C-based assays. SPRITE also detects long-range 

contacts between regions containing active genes and super-enhancer regions that were first 

recognised as being multiway-specific interactions in studies using GAM (Beagrie et al., 

2017). 
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Figure 1.7: Ligation-free methods to map chromatin contacts genome-wide.  

Genome Architecture Mapping (GAM) measures co-segregation frequencies of genomic regions by slicing the 

nucleus into thin nuclear sections and sequencing the DNA content of a large number of randomly collected 

slices. To obtain nuclear slices, cells are fixed and cryosectioned. Single nuclear slices are isolated from the 

cryosection using laser microdissection. DNA is extracted from each nuclear slice by whole genome 

amplification and sequenced. The sequence information is used to score the presence or absence of genomic loci 

in each slice. Spatial proximity of all pairs of loci in the genome is inferred from the frequency of their co-

occurrence in the population of slices. Split-pool recognition of interactions by tag extension (SPRITE) detects 

chromatin interactions of multiple genomic regions by tagging single crosslinked chromatin complexes with 

unique combinations of identifiers before sequencing. Cells are fixed and the crosslinked chromatin is 

fragmented using sonication. The resulting chromatin complexes are split onto a 96-well plate, and DNA in each 

well is ligated to a unique adapter. All wells are pooled and split again into 96 wells, followed by adapter 

ligation. The process is repeated five times until each chromatin complex is labelled with a unique combination 

of adapter sequences. DNA is purified and sequenced, and the adapter combination of each sequenced DNA 

fragment is used to identify all genomic regions with the same combination of adapters that were initially 

crosslinked together, hence that were in spatial proximity. ChIA-Drop detects chromatin contact by barcoding 

crosslinked chromatin complexes, after cell fixation, lysis, and chromatin fragmentation. Barcodes are delivered 

in droplet containing a unique identifier, and reactions for adapter ligation and DNA amplification. Each 

chromatin complex is loaded onto a droplet in a microfluidics device and sequenced. Barcodes identify regions 

from the same droplets, meaning regions that were crosslinked due to spatial proximity. Figure adapted from 

Kempfer and Pombo (2019). 
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Table 1.1: Comparison of methods used to detect chromatin contacts. 

 

3-C-based methods 

Assay Description Number of 

contacts 

Multiplicity 

of contacts 

Single cell 

information 

Number of cells Detectable 

contacts 

3C proximity ligation and 
selection of target regions 

with primers, detection by 

quantitative PCR 

one vs one pairwise  no 100 million (Naumova 
et al., 2012) 

protein 
mediated 

4C proximity ligation and 
enrichment for contacts with 

one bait region by inverse 

PCR, detection by 
sequencing 

one vs all pairwise no robust: 10 million (van 
de Werken et al., 

2012a); low input: 340 

K (Schwartzman et al., 
2016) 

protein 
mediated 

5C proximity ligation and 

enrichment for larger target 
region with primers, 

detection by sequencing 

many vs 

many 

pairwise no robust: 50-70 million 

(Dostie and Dekker, 
2007); low input: 2 

million (Kim et al., 

2018) 

protein 

mediated 

Hi-C proximity ligation and 

enrichment for all ligated 

contact pairs, detection by 
sequencing 

all vs all pairwise no robust: 2-5 million 

(Rao et al., 2014) 

low input: 100-500 K 
(Belaghzal et al., 

2017; Lu et al., 2018) 

protein 

mediated 

TCC tethered proximity ligation 

and enrichment for all ligated 
contact pairs, detection by 

sequencing 

all vs all pairwise no 25 million (Kalhor et 

al., 2011) 

protein 

mediated 

PLAC-seq,  

ChIA-PET 

proximity ligation and 

pulldown of specific protein- 

mediated contacts, detection 
by sequencing 

many vs 

many 

pairwise  no 

 

robust: 100 million (Li 

et al., 2017a) 

low input: 500 K 
(Fang et al., 2016) 

protein 

mediated  

(specific) 

Capture-C, 

C-HiC 

proximity ligation and target 

enrichment using probes for  
genomic regions of interest, 

detection by sequencing 

many vs all pairwise  no robust: 100 K (Davies 

et al., 2016) 
low input: 10-20 K 

(Oudelaar et al., 2017) 

protein 

mediated 

single-cell 

Hi-C 

proximity ligation and 

enrichment for all ligated 
contact pairs, detection by 

sequencing 

all vs all pairwise yes hundreds protein 

mediated 

 

Imaging-based approaches 

Assay Description Number of 

contacts 

Multiplicity 

of contacts 

Single cell 

information 

Number of cells Detectable 

contacts 

2D-FISH fixation to flatten cells, 

hybridisation of fluorescent 

probes to target regions, 

measurement of 2D spatial 

distances 

between 2 

and 52 

regions*  

pairwise or 

more  

yes  hundreds  all in spatial 

proximity  

3D-FISH fixation of cells, 
hybridisation of fluorescent 

probes for target regions, 

measurement of 3D spatial 
distances 

between 2 
and 52 

regions*  

pairwise or 
more  

yes 

 

hundreds 

 

all in spatial 
proximity 

 

cryo-FISH fixation of cells, 

cryosectioning, hybridisation 
of fluorescent probes for 

target regions, measurement 

of 2D spatial distances 

between 2 

and 52 
regions*  

pairwise or 

more  

yes 

 

hundreds 

 

all in spatial 

proximity 

 

Live cell 
imaging 

fluorescent labelling of 
genomic loci in living cells, 

measurement of spatial 

distances over time 

between 2 
and 12 

regions 

pairwise or 
more  

yes 

 

hundreds 

 

all in spatial 
proximity 

 

 

Ligation-free methods 
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GAM cryosectioning of fixed cells, 

DNA extraction from nuclear 
sections and sequencing, 

inferring spatial distances 

from co-segregation of 
genomic regions in nuclear 

sections 

all vs all pairwise or 

more 

yes hundreds (Beagrie et 

al., 2017) 

all in spatial 

proximity 

SPRITE fixation of cells, 
identification of crosslinked 

chromatin fragments by split 

pool barcoding and 
sequencing 

all vs all many no 10 million (Quinodoz 
et al., 2018) 

protein- 
mediated 

ChIA-Drop fixation of cells, 
identification of crosslinked 

chromatin fragments by 

droplet-based and barcode-
linked sequencing  

 

all vs all many no 10 million (Zheng et 
al., 2019) 

protein-
mediated 

 

* Classical FISH experiments rarely distinguish between more than 2-5 differentially labelled regions 

simultaneously (Shimizu et al., 2015). Cycles of probe hybridisation can increase this number up to 52 (Müller et 

al., 2002). 

 

1.11 Comparing approaches to map chromatin contacts 

Fundamental differences exist between current approaches for mapping 3D genome folding, 

including how the chromatin is fixed and prepared, their power to detect multiple chromatin 

contacts, or contacts with different spatial distances and protein occupancy, and their ability 

to detect long-range contacts within the same or different chromosomes. These differences 

have sometimes led to observations that can be difficult to reconcile between the different 

approaches.  

 

1.11.1 Fixation and chromatin preparation 

With the exception of live-cell methods (such as DAM-based and CRISPR-based 

approaches), all chromatin folding techniques start by crosslinking DNA-protein complexes 

to stabilise nuclear structures. Chemical fixation using formaldehyde is the most common 

approach for crosslinking, but concentrations, buffers and fixation times vary widely; for 

example, 1% formaldehyde is typically used for C-methods, 4% for most DNA-FISH 

experiments in whole cells, and 8% for GAM or cryo-FISH in nuclear slices. Other fixatives 

include solvent-based precipitation using ethanol, methanol or acetone. A recent imaging 

study compared the effects of formaldehyde fixation and cryofixation on nuclear structure 

using partial wave spectroscopy (Li et al., 2017b). It revealed that weaker fixatives (such as 

4% formaldehyde in PBS) introduce larger structural distortions than stronger fixatives (such 

as glutaraldehyde, often used for electron microscopy). However, the distinction between 

condensed and decondensed chromatin remains detectable at the population level (Li et al., 
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2017b), which is consistent with the ability of all current chromatin folding methods to 

successfully map euchromatin and heterochromatin. The effect of varying crosslinking 

conditions (from no fixation to 5% formaldehyde fixation) has been examined in Capture-C 

experiments; similar short range-interactions were detected under all conditions, but 

formaldehyde concentrations below 2% gave increased efficiency of detection (Oudelaar et 

al., 2017). Our own previous work showed that the organisation of the active form of RNA 

polymerase II, which marks transcription sites, can be highly disrupted with weaker fixatives, 

but not with the fixation regimen used for GAM or cryoFISH (Guillot et al., 2004). In FISH, 

denaturation of the DNA by heat and formamide induces fine structural changes in chromatin 

folding, such as slight distortions of the interchromatin space (Markaki et al., 2012; Solovei et 

al., 2002). However, 3D-FISH preserves the organisation of centromeres seen by imaging the 

same cells before and after hybridisation (Markaki et al., 2012), and cryoFISH retains the 

organisation of active RNA polymerase II sites (Xie et al., 2010). In ‘resolution after single-

strand exonuclease resection’ (RASER-)FISH, heat denaturation of the DNA is avoided and 

DNA accessibility is achieved by exonuclease digestion, thereby reducing the effects of DNA 

denaturation (Brown et al., 2018).  

 

1.11.2 Multiplicity of chromatin contacts  

The dependency of 3C-based methods on DNA-end ligation results in a preferential detection 

of lower multiplicity contacts that involve fewer genomic regions (O'Sullivan et al., 2013). 

However, in every 3C library a proportion of all ligation events occurs between more than 

two DNA fragments. Current methods to capture these higher complexity ligation events 

include multi-contact 4C (MC-4C) (Allahyar et al., 2018), which uses long-read sequencing 

(such as Nanopore sequencing) of 4C libraries to capture 3-way contacts of a region of 

interest, and chromosomal walks (C-walks) (Olivares-Chauvet et al., 2016), which implement 

multiple ligation steps, followed by dilution and barcoding of the isolated ligation products. 

Alternatively, methods such as the concatemer ligation assay (COLA) (Darrow et al., 2016) 

and Tri-C (Oudelaar et al., 2018) generate 3C libraries with a restriction enzyme that cuts 

small DNA fragments, which increases the frequency of detecting multiple ligation events in 

one sequencing read. Estimates based on direct comparison of pairwise and multiway ligation 

events indicate that only 17 % of chromatin contacts in mouse ESCs are pairwise contacts 

and, therefore, the majority of the genome is involved in higher-order contacts between more 

than two genomic loci (Olivares-Chauvet et al., 2016). These observations are supported by a 

recent study using SPRITE that showed that classical ligation-dependent methods under-
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represent higher complexity contacts (Quinodoz et al., 2018). Assays that do not depend on 

ligation detect DNA fragments that are in spatial proximity regardless of the number of 

interacting genomic loci. For example, long-range multiway contacts between genomic 

regions harbouring super-enhancers were readily found in GAM (Beagrie et al., 2017), FISH 

(Beagrie et al., 2017) and SPRITE (Quinodoz et al., 2018) data, but had not previously been 

detected with Hi-C. Furthermore, analyses of triplet interactions between TADs in GAM 

showed that multiple interactions between super-enhancer regions and active genes are a 

common feature of genome conformation in mouse ESCs (Beagrie et al., 2017). 

 

1.11.3 Spatial distance between contacting genomic regions 

 The spatial distance between genomic loci is thought to influence the probability of ligation 

irrespective of the frequency of contacts. Whereas cryo-FISH and SPRITE have readily 

detected abundant inter-chromosomal contacts in human, mouse and Drosophila cells (Branco 

et al., 2008; Branco and Pombo, 2006; Rosin et al., 2018; Tan et al., 2018a), C-based 

methodologies are more often used to explore specific contacts within chromosomes, with 

some exceptions (Loviglio et al., 2016; Monahan et al., 2019; Simonis et al., 2006; 

Spilianakis et al., 2005; Tan et al., 2018a). Recent CRISPR-Cas9 live-cell imaging of a small 

number of chromatin contacts within and between chromosomes showed that inter-

chromosomal contacts display spatial distances in the range of ~280 nm, in contrast to 

distances of ~190 nm for intrachromosomal interactions (Maass et al., 2018a). Interestingly, 

only the intrachromosomal contacts could be observed in matching Hi-C data, indicating a 

dependency of close spatial distances for successful proximity ligation. 

 

1.11.4 Protein-mediated interactions versus bystander contacts 

GAM and all imaging-based techniques collect all possible spatial relationships between 

genomic regions, regardless of their involvement in a protein-mediated interaction, and allow 

sampling of the whole range of spatial distances within the interphase nucleus. Thus, contacts 

detected by these methods do not only reflect protein-mediated chromatin interactions, but 

also detect bystander contacts. However, it is possible to identify the most specific contacts 

through effective sampling to take into account all the behaviours of all genomic regions at all 

linear distances across the cell population. In this regard, GAM currently has more statistical 

power than FISH as it samples all possible combinations, whereas FISH remains limited to 

the analyses of a subset of regions or chromosomes. 
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1.11.5 Levels of concordance between different methods  

The validation of results obtained by C-methods often entails the use of DNA-FISH on a few 

selected loci. Many examples show agreement between 3C interaction frequencies and spatial 

distances measured by FISH, especially at large genomic distances (Giorgetti and Heard, 

2016; Hakim et al., 2011; Lieberman-Aiden et al., 2009; Rao et al., 2014; Tang et al., 2015; 

Wang et al., 2015). Loci in the same TAD are often closer in nuclear distance than loci in 

different TADs (Dixon et al., 2012; Nora et al., 2012), and interaction frequencies obtained 

from Hi-C correlate with spatial distances at and above the TAD level (Wang et al., 2015). A 

linear relationship between Hi-C contacts and FISH distances was found by investigating the 

physical distances between all TADs along a chromosome (Wang et al., 2015). An overall 

correlation between Hi-C interactions and median spatial distance measured by high-

throughput FISH have recently been shown for 90 pairs of loci. However, the range of 

physical distances between genomic regions containing Hi-C interactors (with high-ligation 

frequency) and non-interactors (with low ligation frequency) overlap extensively, with about 

20% of distances being closer between two non-interactors than two interactors (Finn et al., 

2019). Thus, Hi-C captures spatial proximity but Hi-C interactions are not easily translated 

into physical distances. Other comparisons between FISH and C-methods have also found 

non-trivial relationships between physical distance distributions and population-average 

interaction frequencies (Giorgetti and Heard, 2016) and show that contact frequency is 

distinct from average spatial distance, both in polymer simulations and in experimental data 

(Fudenberg and Imakaev, 2017).  

 

The use of FISH to validate Hi-C results has helped investigate false positives in Hi-C data, 

assuming FISH is correct, but is not a valid strategy for an unbiased search for contacts that 

are missed by Hi-C (that is, false negatives). Thus, any underrepresented contacts in Hi-C 

data have so far not been systematically studied. The development of orthogonal genome-

wide ligation-free approaches, such as GAM and SPRITE, have been able to identify new 

aspects of 3D genome folding that had not been detected by Hi-C but which are fully 

validated by FISH (Beagrie et al., 2017; Quinodoz et al., 2018). The first and relatively small 

GAM dataset identified specific long-range contacts across linear genomic distances that span 

tens of megabases, which involve active and enhancer-rich genomic regions (Figure 1.8a). 

One promising outcome of the emergence of these orthogonal approaches is the development 

of analysis tools that use the information they generate about such long-range contacts to 

discover the same contacts in Hi-C data (Figure 1.8a). In this regard, it is interesting to note 
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that CTCF depletion in human cells results in the detection by Hi-C of long-range contacts 

between super-enhancers (Rao et al., 2017), which raises the possibility that CTCF-mediated 

contacts may be preferentially detected by Hi-C in normal conditions, but once CTCF-

dependent interactions are lost, other underlying folding patterns, including long-range 

contacts, become easier to detect.  

 

The first SPRITE dataset has also highlighted novel aspects of 3D folding that are not readily 

captured by Hi-C (Quinodoz et al., 2018). By discriminating contacts according to their 

multiplicity, SPRITE shows a contact decay with genomic distance that is very similar to Hi-

C when considering only low complexity SPRITE clusters (2-10 genomic regions per 

contact hub; Figure 1.8c). By contrast, SPRITE shows striking abundance of long-range 

contacts when considering also higher-order contacts, which confirms early theoretical 

predictions that ligation-based approaches are biased to the detection of more simple 3D 

chromatin contacts (O'Sullivan et al., 2013). Although GAM and SPRITE are orthogonal 

methodologies, their frequency of contacts relative to genomic distance are remarkably 

concordant (Figure 1.8c; the data represented was obtained from refs. (Beagrie et al., 2017; 

Quinodoz et al., 2018)). 
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Figure 1.8:Comparison of long-range chromatin contacts across methods.  

(a) Genome Architecture Mapping (GAM) detects significant interactions between super-enhancers (SE, circles 

1 and 2), spanning large genomic distances (18 Mb and 28 Mb). The heatmap shows GAM interaction 

probabilities for chromosome 11 (region 30-65 Mb) in mouse embryonic stem cells (ESCs) at 500 kb resolution 

(Beagrie et al., 2017). Contacts between the super-enhancer regions also can be detected using cryo-fluorescence 

in situ hybridisation (cryo-FISH), which confirmed their interactions in a high percentage of cells in the 

population. While 74% of cells had the 18 Mb distant super-enhancer contact, and 18% of cells had the 28 Mb 

distant contact, only 9% of the cells revealed low spatial distances for a chosen 10 Mb distant control region with 

one of the super-enhancers (circle 3), which was not detected by GAM. The images show DAPI stained 

cryosections with interacting and non-interacting 500 kb super-enhancer regions (Beagrie et al., 2017). (b) Long-

range super-enhancer contacts can also be found when looking at GAM contacts without filtering for the most 

significant interactions (~500 million reads, 40 kb resolution, mESCs, data, Beagrie et al., 2017), and although 

they are not readily detected in Hi-C data with average sequencing depth (~240 million reads, 40 kb resolution, 

mESCs, data, Dixon et al., 2012), they start to emerge in deep-sequenced in situ Hi-C data (~800 million reads, 

50 kb resolution, mESCs Bonev et al., 2017). Heatmaps are visualised from the published, normalised matrix 

files. Scores are color-coded, where the color-code range (maximum and minimum cut-off) is determined by the 

mean value of the bin distances 1 to 20 and -50 to -30 from the diagonal, respectively. (c) The plot shows the 

distribution of contact frequencies detected by Hi-C, GAM and SPRITE (all clusters or clusters with 2-10 reads) 

along the linear genomic distance of chromosome 11 in mESCs, scaled to the maximum observed value in each 

dataset. The ligation-free methods GAM and SPRITE detect similar ranges of chromatin contacts, which can 
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extend over large genomic distances. By contrast, Hi-C contacts typically extend over shorter genomic distances. 

However, SPRITE data can be sorted based on the number of interactions within one chromatin complex. When 

considering only small SPRITE clusters with fewer than 10 genomic regions in the same chromatin cluster, the 

range of detection between Hi-C and SPRITE is comparable, indicating that Hi-C favours less complex short-

range contacts over long-range interactions involved in chromatin hubs with many interaction partners. Plot was 

generated by Christoph Thieme (laboratory of A. Pombo) using the same data used in panel b for GAM (Beagrie 

et al., 2017) and Hi-C (Dixon et al., 2012), and normalised SPRITE clusters for chr 11, according to Figure 3B 

of ref. (Quinodoz et al., 2018). Figure adapted from Kempfer and Pombo (2019). 

 

1.11.6 Limitations and applications of different methodologies  

The use of proximity ligation adds limitations because ligation has low efficiency, and is 

potentially affected by the local distance in the cluster between two ends of DNA or the 

topology of the two ends within the cluster. SPRITE also depends on ligation of a small oligo 

to each DNA end in a contact cluster; however, it is no longer dependent on the physical 

distance between two DNA fragments in the cluster, which allows mapping of all contacts 

within one chromatin complex. In C-methods and SPRITE, detection of contacts also depends 

on the efficiency of the fragmentation step to expose the DNA end. In GAM, there is no DNA 

restriction digest or ligation, and the detection of DNA depends on its extractability and 

sequencing depth. C-methods, GAM, SPRITE and FISH can be applied directly to cells, 

tissues or organisms, whereas CRISPR and Lac/Tet operator -based imaging and DAM-

related methods require genetic engineering of cell lines or whole organisms, and will not be 

suitable for the analyses of most human biopsies. 

 

Each of the assays discussed here have different limitations and applications, and thus 

contribute to our current understanding of 3D genome folding in different ways. 3C-based 

techniques have the advantage of providing enormous amounts of chromatin contact 

information in one comparably simple biochemical experiment, although they may require 

high-depth sequencing when aiming for high resolution. 3C-based methods, and in particular 

proximity ligation itself, also have important limitations that favour the detection of more 

simple contacts over higher-order chromatin contacts, which can lead to misunderstanding of 

the importance and abundance of certain interactions. 

 

Imaging and ligation-free methods have the ability to detect chromatin contacts at all scales of 

chromosome folding, including contacts between chromosomes. GAM and SPRITE can be 

readily used for sequence-unbiased genome-wide explorations, whereas detection of contacts 

with DNA-FISH remains limited to pre-selected loci and is most often used to validate 

findings from genome-wide techniques. Imaging fluorescently labelled chromatin loci in live 
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cells with CRISPR-based techniques will improve our understanding of possible artefacts 

resulting from chromatin preparation or fixation. Other developments based on cryo-focused 

ion beam (cryo-FIB) milling of intact, frozen cells (Mahamid et al., 2016), or cryolysis 

(Aitchison and Rout, 2015) also hold the potential of devising fixation-free versions of GAM 

and SPRITE that sample through fractionated frozen nuclei. 

 

1.12 Aims of the thesis 

The main goal of this thesis is to explore two major aspects of genome topology which have 

been understudied, mostly due to limitations of current methodologies, namely allele-specific 

chromatin folding and complex interactions that span large genomic distances in and between 

chromosomes. In short, using GAM and Hi-C in specific model systems with intrinsic 

controls, I aimed to advance our understanding of the functionality and importance of allelic 

differences and inter-chromosomal contacts in mammalian gene regulation. While Hi-C has 

been the method of choice for studies of 3D genome folding, the original version of GAM 

was not suitable for collection of high-resolution, larger datasets. Thus, another goal of the 

work presented in this thesis was the development of a high-throughput version of GAM that 

allows the collection of large datasets for subsequent high-resolution analysis of chromatin 

contacts and for determining allele-specific interactions.  

Allele specificity of chromatin folding has been studied with 3C-based methodologies, which 

revealed few differences in the genome-wide folding of the parental alleles. The work 

presented in this thesis suggests that low efficiency in assigning contacts to their haplotypes 

makes it difficult to study allelic differences. I aimed to test whether phasing of parental 

genomes is more efficient in GAM, and further explore the possibility of gene regulatory 

functions of allele-specific genome topology. 

I set out to gain insight into the functionality of long-range chromatin contacts by genome-

wide mapping of DNA interactions in the context of congenital disease. Here, I chose to study 

the effects of a genomic deletion at the human 16p11.2 locus, associated with ASD, on gene 

expression in neuronal differentiation. With simultaneous mapping of chromosome topologies 

using Hi-C and collection of transcriptomic data using RNA-seq, I aimed to decipher 

mechanisms of gene regulation via long-range chromatin interactions in the context of the 

disease. 
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2. Materials and methods 

2.1 Oligonucleotides 

Primers and adapters were HPLC-purified, purchased from biomers.net. 

 

Table 2. 1: Primer and adapter sequences. 

Primers and adapters for Hi-C Sequence 

3C-Gapdh_for (ligation control) 5’TATCAAGGGTGCCCGTCACCTTCAGCTTTC 

3C-Gapdh_rev (ligation control) 5’GGGCTTTTATAGCACGGTTATAAAGTGG 

Gapdh-no-HindIII_for (digestion control) 5’AGCCATCAGCTATGCACGTA 

Gapdh-no-HindIII_rev (digestion control) 5’GACTTGGAGGAGGTTTGCTG 

Ncapd2-HindIII_for (digestion control) 5’CGCCAGTTTAGAAGCAGCTC 

Ncapd2-HindIII_rev (digestion control) 5’TGTGCGATCTAACCTCATGG 

Gapdh-HindIII_for (digestion control) 5’TGGAGGTTTCTTTCCTGTCC 

Gapdh-HindIII_rev (digestion control) 5’TCCCCTTAGTTCGAGGGACT 

P5 universal adapter (TruSeq) 
5' AATGATACGGCGACCACCGAGATCTACACTCT

TTCCCTACACGACGCTCTTCCGATCT 

P7 index adapter 5 (TruSeq) 
5' GATCGGAAGAGCACACGTCTGAACTCCAGTCA

CACAGTGATCTCGTATGCCGTCTTCTGCTTG 

P7 index adapter 6 (TruSeq) 
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTC

ACGCCAATATCTCGTATGCCGTCTTCTGCTTG 

P7 index adapter 12 (TruSeq) 
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTC

ACCTTGTAATCTCGTATGCCGTCTTCTGCTTG 

PCR Primer 1.0 (P5) (TruSeq) 
5’ AATGATACGGCGACCACCGAGATCTACACTCT

TTCCCTACACGA 

PCR Primer 2.0 (P7) (TruSeq) 5’ CAAGCAGAAGACGGCATACGAGAT 

Primers for GAM Sequence 

GAT-7N 5’ GTG AGT GAT GGT TGA GGT AGT GTG GAG 

NNN NNN N 

GAT-COM 5’ GTG AGT GAT GGT TGA GGT AGT GTG GAG  

 

2.2 Cell lines 

• Mouse 46C ESCs (Ying et al., 2003) were kindly provided by Domingos Henrique 

(Institute of Molecular Medicine, Lisbon, Portugal). 
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• Mouse 16p ESC lines +/+, df/+, df/dp (Horev et al., 2011) were kindly provided by 

Alea Mills (Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA). A 

diagram describing the deletion and duplication is presented in Chapter 5, Figure 5.1). 

• Mouse F123 ESCs (a male, hybrid cell line, derived from S129/Jae and Cast) (Gribnau 

et al., 2003) were kindly provided by Bing Ren (University of California San Diego, 

San Diego, CA, USA).  

 

2.3 Antibodies 

2.3.1 Primary antibodies 

• GATA-6 AF1700, goat polyclonal, IgG, (0.2 mg/ml), R&D Systems  

• Nanog (14-5761), Lot: E04325-1653, Clone:eBioMLC-51, rabbit monoclonal, IgG, 

(0.5mg/ml), Invitrogen Antibodies, eBioscience  

• Oct3/4 (c-10)x sc-5279, Lot: A2315, mouse monoclonal, IgG2b, (200µg/ 0.1ml), 

Santa Cruz 

• Pan Histone (MAB3422), Clone: H11-4, mouse monoclonal, Merck  

 

2.3.2 Secondary antibodies 

• AlexaFluor488 (A21202), donkey anti-mouse IgG (H+L), Invitrogen  

• AlexaFluor488 (A21208), donkey anti-rabbit IgG (H+L), Invitrogen  

• AlexaFluor488 (A11055), donkey anti-goat IgG (H+L), Invitrogen  

• AlexaFluor488 (A11001) goat anti-mouse IgG (H+L), Invitrogen 

 

2.4 Kits 

• KAPA Library Quantification Kit (Roche, 07960140001) 

• TruSeq® Stranded Total RNA Library Prep Human/Mouse/Rat (Illumina, 20020596) 

• PCR Mycoplasma test kit (PanReac AppliChem, A3744) 

• Agilent RNA 6000 Nano Kit (Agilent Technologies, 5067-1511) 

• WGA-4 GenomePlex® Single Cell Whole Genome Amplification Kit (Sigma Aldrich, 

254-457-8) 

• REPLI-g Mini Kit (Qiagen, 150023) 

• MALBAC® Single Cell WGA Kit (Yikon Genomics, EK100101210) 

• Ampli-1 WGA kit (Menarini Silicon Biosystems) 

• MinElute PCR Purification Kit (Qiagen, 28004) 

file://///catalog/search%253fterm=254-457-8&interface=EG/EC%20No.&lang=en&region=US&focus=product
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• MinElute 96 UF PCR Purification Kit (Qiagen, 28051) 

• Quant-iT® PicoGreen dsDNA Assay Kit (ThermoFisher, P7589) 

• Agencourt® AMPure® XP magnetic beads (Beckman Coulter, A63880) 

• Qubit™ dsDNA HS Assay Kit (Life Technologies, Q32851) 

• Agilent High Sensitivity DNA Kit (Agilent Technologies, 5067-4626) 

• Illumina Nextera XT library preparation kit: 

Nextera® XT DNA Library Preparation Kit (Illumina, FC-131-1096) 

Nextera® XT Index Kit v2 Set A (Illumina, FC-131-2001) 

Nextera® XT Index Kit v2 Set B (Illumina, FC-131-2002) 

• NextSeq 500/550 High Output v2 kit (75 cycles) (Illumina, TG-160-2005) 

• NextSeq 500/550 High Output v2 kit (150 cycles) (Illumina, TG-160-2002) 

2.5 Published datasets 

Table 2. 2: Published datasets. 

Data type Specification Cell type Availability 

DamID 

Lamina associated 

domains identified with 

Lamin B1 

Mouse embryonic stem cells 

(E14Tg2A) 

(Peric-Hupkes et al., 

2010) 

GEO: GSE17051 

ATAC-seq ATAC peaks 
Mouse embryonic stem cells 

(E14) 

ENCODE reference 

epigenome project 

GEO: GSM3109355 

ATAC-seq ATAC peaks 
Mouse embryonic stem cells 

(F123) 

(Juric et al., 2019) 

GEO: GSE119663 

ChIP-seq CTCF peaks 
Mouse embryonic stem cells 

(F123) 

(Juric et al., 2019) 

GEO: GSE119663 

ChIP-seq H3K27ac peaks 
Mouse embryonic stem cells 

(F123) 

(Juric et al., 2019) 

GEO: GSE119663 

ChIP-seq H3K4me1 peaks 
Mouse embryonic stem cells 

(F123) 

(Juric et al., 2019) 

GEO: GSE119663 

ChIP-seq H3K4me3 peaks 
Mouse embryonic stem cells 

(F123) 

(Juric et al., 2019) 

GEO: GSE119663 

GAM 
Sequencing data from 

nuclear profiles  

Mouse embryonic stem cells 

(46C) 

(Beagrie et al., 2017) 

GEO: GSE64881 

Hi-C 
Normalised Hi-C 

contact frequencies 

Mouse embryonic stem cells 

(F123) 

(Kubo et al., 2017) 

4DN data portal: 

4DNESKKSKG7Y 

Hi-C Raw Hi-C reads 
Mouse embryonic stem cells 

(J1) 

(Dixon et al., 2012) 

GEO: GSE35156 

Hi-C 
Normalised Hi-C 

contact frequencies 

Mouse neuronal precursor 

cells (E14, 60 h 

differentiation) 

(Bonev et al., 2017) 

4DN data portal:  

4DNFIDWM3HN5 
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2.6 Processing of published datasets 

Single-end ChIP-seq reads were downloaded and aligned to the Mouse reference genome 

mm10 (Dec. 2011, GRCm38/mm10) using Bowtie2 v2.0.5 (Langmead and Salzberg, 2012). 

The reference genome was indexed, and the alignments were performed with default 

parameters. Replicated reads (i.e., identical reads, aligned to the same genomic location), 

occurring more often than the 95th percentile of the frequency distribution of each dataset, 

were removed. Peaks of enrichments were calculated using BCP (Xing et al., 2012). GAM 

data was processed to obtain normalised contact maps, exactly as described in Beagrie et al. 

(2017), with the difference that reads were mapped to the mm10 genome assembly instead of 

mm9, for comparison purposes with other datasets. Raw Hi-C data from Dixon et al. (2012) 

was processed as described in 2.18.1 Hi-C data analysis. 

 

2.7 Molecular biology methods  

If not described differently all classical molecular biological experiments were performed 

according to the handbook "Molecular Cloning: A Laboratory Manual"(Sambrook and 

Russell, 2001). 

 

2.8 Cell culture 

Table 2. 3: ESC culture reagents. 

Reagent Composition / supplier 

Knockout serum replacement (KSR) 10828028, Invitrogen 

Fetal bovine serum (FBS) Heat-inactivated FBS, 30 min at 56°C (Gibco) 

Trypsin-EDTA (0.05%), phenol red 25300054, Thermo Fisher 

Accutase A11105-01, Life Tech 

Feeder medium 90 % DMEM (11995-065, Gibco), 10 % FBS 

Freezing medium 90 % FBS, 10 % DMSO 

F123 ESC medium 

DMEM (11995-065, Gibco), supplemented with 15 

% KSR, 1x Glutamax (35050, Gibco), 10 mM non-

essential amino acids (11140-050, Gibco), 50µM 

beta- mercaptoethanol (31350010, Gibco), 1000 U / 

ml LIF (GFM200, Cell Guidance Systems) 

46C ESC medium 

GMEM Bhk21 (11710035, Gibco), supplemented 

with 10 mM non-essential amino acids (11140-050, 

Gibco), 0.1 mM beta-mercaptoethanol (31350010, 

Gibco), 1 mM sodium pyruvate (Gibco), 10 % FBS, 

2000 U/ml LIF 

Gelatine 0.1 % gelatine in 1x PBS 

F123 gelatine ESGRO Complete Gelatine (SF008, Merck) 

ESGRO medium ESGRO Complete Plus clonal grade (SF001, Merck) 
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2.8.1 Thawing cells 

Cells were thawed in a water bath at 37°C and then directly added to 10 ml of media. Cells 

were pelleted by centrifugation at 190xg for 5 min, resuspended in fresh media, and seeded. 

 

2.8.2 Splitting cells 

Cells were washed in 1x PBS and trypsinised in Trypsin-EDTA for 5 min at 37°C. Reaction 

was stopped with two volumes of media. Cells were resuspended and trypsin was removed by 

centrifugation for 3 min at 190xg. The cell pellet was resuspended in fresh media and seeded, 

typically with a split radio of 1:6. F123 mouse ES cells were not passaged with Trypsin-

EDTA, but using Accutase for 3-10 min at 37°C to gently lift the cells from the cell culture 

dish. 

 

2.8.3 Freezing cells 

For cryopreservation, cells were trypsinised at 70 – 80 % confluency. The cell pellet was 

resuspended in freezing media and frozen in 1-ml aliquots in cryo-vials. Vials were frozen in 

a cryo-box with isopropanol at -80°C for 24 h and then transferred to liquid nitrogen for 

storage. 

 

2.8.4 Culturing 46C mESCs 

ESCs were cultured directly on gelatine-coated culture dishes in media with a high 

concentration of Leukemia Inhibitory Factor (LIF) to maintain pluripotency of the cells and 

avoid spontaneous differentiation. Cells were split onto new gelatine-coated dishes every 48 h 

and media was changed every 24 h. Typically after one week in culture, cells were plated for 

harvest. After ~ 3 – 8 h ESCs settled and the media was changed to ESGRO media. Cells 

were grown in ESGRO media for ~ 48 h before harvest at 70 – 80 % confluency.  

 

2.8.5 Culturing F123 mESC line 

F123 ESCs were cultured on a layer of feeder murine embryonic fibroblasts (MEFs), that 

have been mitotically inactivated (GSC-6201G, Global Stem). Feeder cells were grown at 

37°C in feeder media, and used up to 10 days after seeding. One day before culturing ESCs, 

dishes were coated with 0.1% gelatine and inactivated feeder cells were plated with a density 

of ~1500 cells per mm2. After feeders have settled (~ 4 – 12 h after plating) ESCs were 

seeded onto the feeder layer and grown at 37°C in F123 ESC media. Cells were split onto 

new feeder-coated dishes every 48 h, and media was changed every 24 h. Typically, after two 
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passages, feeder cells were removed from the ESC culture by splitting cells onto an uncoated 

dish for 30 mins. MEFs settle fast, while the ESCs remain in suspension. The cell suspension 

was transferred to a new uncoated plate for another 30 min to increase the efficiency of feeder 

removal, and afterwards cells were seeded on gelatine-coated dishes. The feeder-removal was 

repeated after 48 hours, and ESCs were subsequently plated for harvest. As feeder-removal 

results in reduced levels of LIF in the culture, the LIF concentration in the media was doubled 

when the cells were in feeder-free culture conditions. Cells were harvested after ~ 48 h at 

70 – 80 % confluency.  

 

2.8.6 Culturing 16p11.2 mESC lines 

ESCs were cultured directly on gelatine-coated plates in M15 medium, supplemented with 

15% FBS and 2000 U/ml LIF. Typically, cells were grown for one week before plating them 

for harvest or for subsequent differentiation. Cells were split every 48 h and media was 

changed every 24 h. Cell harvest was performed at 70 – 80 % confluency. Cell culture work 

with the 16p cell lines was conducted by Julietta Ramirez and Dr. Marta Slimak Mastrubuoni 

from our laboratory.  

 

2.8.7 Neuronal differentiation of 16p ESC lines 

Cell were differentiated according to Ferrai et al. (2017). Briefly, the differentiation of ESCs 

to dopaminergic neurons starts with differentiating ESCs into epiblast stem cells (EpiSCs) by 

growing them for 4 weeks in N2B27 basal medium containing Activin and FGF2. The 

EpiSCs were kept in culture for one week, followed by differentiation towards midbrain-

specific dopamine neurons. The differentiation protocol includes blockade of FGF signalling, 

followed by subsequent enhancement of FGF signalling and simulation with Shh. After 5 

days of differentiation neuronal progenitor cells were harvested, and after 16 days of 

differentiation premature dopaminergic neurons were harvested. The differentiation was 

conducted by Julietta Ramirez and Marta Slimak Mastrobuoni.  

 

2.8.8 Mycoplasma test 

For detection of Mycoplasma in cultured cells the PCR Mycoplasma test kit was used 

according to manufacturer’s instructions.  
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2.9 RNA isolation 

Cell lysis was performed in TRIzol Reagent (Invitrogen, 15596026) at room temperature 

(RT), and lysate was frozen in liquid nitrogen and stored at -80°C upon processing. Samples 

were incubated at RT for 5 min and homogenized with 200 ml chloroform per 1 ml of TRIzol, 

by shaking for 15 s and incubating 3 min at RT. After centrifugation at 12,000xg for 15 min at 

4°C, the upper aqueous phase containing the RNA was transferred to a new tube and RNA 

was precipitated by adding 500 µl HPLC-grade isopropanol, incubating for 10 min at RT, and 

centrifugation at 12,000xg for 10 min at 4°C. Supernatant was removed and RNA pellet is 

washed with 75 % ethanol, air-dried for 10 min, resuspended in RNase-free water, and 

incubated at 55°C for 10 min. DNA was removed by DNase treatment using Turbo DNase 

(AM2238, Thermo Fisher) according to the manufacturer’s instructions. Purified RNA was 

stored at -80°C.  

 

2.10 RNA-seq 

Purified RNA was analysed on the Bioanalyzer using the Agilent RNA 6000 Nano Kit to 

ensure intact, non-degraded RNA presence. RNA-seq libraries were generated from 1 µg of 

clean RNA using the TruSeq Stranded total RNA library preparation kit according to the 

manufacturer’s (Sample prep guide 15031048). Libraries were analysed on the Bioanalyzer 

using the Agilent High Sensitivity DNA Kit and DNA concentrations were measured with the 

Qubit Quant IT kit according to manufacturer’s specifications to estimate the molarity with 

the following formula. 𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 (𝑛𝑀)  =  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑔/µ𝑙)660 𝑔/𝑚𝑜𝑙 𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑝)  𝑥 106 

 

Samples were pooled and sequenced on the NextSeq500, paired end 75 bp, with the NextSeq 

500/550 High Output v2 kit (150 cycles), following the manufacturer’s instructions for 

denaturing, dilution, and sequencing of the libraries.  

 

2.11 Hi-C 

 

2.11.1 Preparation of Hi-C cell pellets 

Cells were grown on a 100-mm cell culture dish to 70-80 % confluency at the day of harvest. 

A technical replicate was grown for counting cell numbers. Typically, 25 million cells were 

used for one Hi-C library. Cells in adherent cell culture were fixed in 14 ml fresh culture 
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media, supplemented with 2% formaldehyde for 10 min at RT, while gently rocking the plate 

every 2 min. Crosslinking was stopped by adding 781 µl of 2.5 M glycine, and incubation at 

RT for 5 min, followed by 15 min on ice. Cells were scraped off the plate with a cell scraper 

and transferred into a 15 ml conical tube. Cells were spun down with 872xg for 10 min at 

4°C, media was removed and the cell pellet was frozen in liquid nitrogen for storage at -80°C.  

 

2.11.2 Chromatin preparation 

Cells were resuspended in 500 µl fresh lysis buffer (5 µl 1 M Tris-HCl, pH 8.0, 50 µl 0.1 M 

NaCl, 5 µl 20 % Igepal CA-630, 440 µl H2O, 2.5x protease inhibitor cocktail), incubated on 

ice for 15 min, followed by two rounds of disruption of the cells with 20 strokes using a 

Dounce homogenizer (pestle B) and 1 min incubation. After a total of 30 min in lysis buffer, 

cell lysate is transferred to a 1.7 ml tube and centrifuged with 200xg for 5 min at 4°C. The 

supernatant was discarded and the pellet was washed with 1x cold NEB 2 restriction buffer, 

followed by resuspension in 250 µl 1x NEB 2. The lysate was divided into 5 aliquots and 312 

µl 1x NEB2 was added to each aliquot. 38 µl 1% SDS were added, aliquots were mixed by 

pipetting and incubated at 65°C for 10 min, shaking. Tubes were put on ice and 44 µl 10% 

Triton X-100 were added to each tube. Aliquots were incubated for 1 h at 37°C, shaking. 

Afterwards, 10 µl aliquot (undigested control) were stored at -20°C and 15 µl HindIII HF 

(100 U/µl = 1500 U) was added to each tube. Aliquots were incubated at 37°C while shaking 

overnight.  

 

To determine the digestion efficiency, a 15 µl aliquot (digested control) was taken and DNA 

was extracted from both control samples (digested, undigested). DNA extraction from control 

samples was performed by adding TE buffer to 95 µl, then adding 2 µl RNaseA (1mg/ml) and 

incubating at 37°C for 1h. 5µl proteinase k (10mg/ml) were added and samples were 

incubated at 65°C for 2 h, shaking at 700rpm. Then, 100 µl phenol-chloroform were added, 

and samples were vortexed for 30 s, spun down at 21130xg for 10 min (RT) and the 

supernatant was transferred to a new 1.7 ml tube. An aliquot was taken and run on 1 % 

agarose gel to visually evaluate the digestion efficiency. Then, 10 µl sodium acetate, pH 5.2 

were added and samples were mixed by pipetting. 250 µl 100 % ethanol (cold) were added, 

samples were inverted for mixing and incubate at -80°C for 1 h, spun down at 4°C, 9391 g for 

20 min, and washed with 500 ml 70 % EtOH. Samples were resuspended in 25 µl H2O. DNA 

concentration were measured with Nano Drop and 200 ng of each sample was run on a 1% 

agarose gel. The extracted DNA was normalised and qPCR analysis was performed using a 
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primer pair within a HindIII restriction fragment (no HindIII site), and a primer pair spanning 

a HindIII restriction fragment. For the PCR reaction, 5 µl of SYBR PCR master mix were 

combined with 1 µl of each PCR primer (10 µM), 3 µl H2O and 1 µl template, and the 

reaction was run on a qPCR cycler for 15 min at 95˚C, followed by 45 cycles of 10 s at 95˚C 

and 1 min at 60˚C. The digestion efficiency was calculated from the delta Ct-values of the 

two primer pairs from the digested and the undigested control using the following formula. 

 𝐷𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)  =  100 − 〈 1002(∆𝐶𝑡 (𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − ∆𝐶𝑡 (𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙))  〉, with 

 ∆𝐶𝑡 = 𝐶𝑡𝐻𝑖𝑛𝑑𝐼𝐼 𝑠𝑖𝑡𝑒  −  𝐶𝑡𝑛𝑜 𝐻𝑖𝑛𝑑𝐼𝐼 𝑠𝑖𝑡𝑒  

 

If needed, another 1000 units (10 µl) restriction enzyme were added to each tube for 

continued digestion at 37°C, shaking, o.n. Afterwards, digestion efficiency was determined 

again. The digestion efficiency was always above 50 % before proceeding to the subsequent 

steps. 

 

For biotin-labelling, samples were cooled down on ice. One aliquot was kept separately on ice 

as a control library to later determine the biotin-labelling efficiency. For biotin fill-in, 1.5 µl 

10mM dATP, 1.5 µl 10mM dGTP, 1.5 µl 10mM dTTP, 37.5 µl 0.4mM biotin-14-dCTP 

(Invitrogen), and 10 µl 5U/µl Klenow (NEB) were added to each aliquot. Aliquots were 

incubated at 37°C for 45 min, with gentle mixing every 15 min, and placed on ice 

immediately afterwards. 86 µl 10 % SDS was added to all 5 tubes (including labelling 

control) and incubated for exactly 30 min at 65°C to inactivate the enzyme. Samples were 

placed on ice immediately and 575 ml lysate from each aliquot was transferred to a 15 ml 

conical tube for DNA ligation and 750µl 10x T4 DNA Ligase Reaction Buffer (500 mM Tris-

HCl pH 7.5, 100 mM MgCl2, 100 mM DTT), 750µl 10% Triton X-100, 10.5 µl 7.5% BSA, 

and 5345 µl H2O were added. Samples were inverted 4x, the labelling control was incubated 

with 2µl T4 DNA Ligase (5 U/µl, Invitrogen) and the other aliquots with 20 µl T4 DNA 

Ligase at 16°C overnight (water bath, 4°C). 50 µl ATP (100 mM) were added to each tube 

and ligation was continued another 4 h.  

 

2.11.3 DNA isolation and quality assessment 

For reverse crosslinking 50 µl of 10 mg/ml proteinase K were added to each tube and samples 

were incubated over night at 65°C (water bath). Afterwards, another 50 µl proteinase k were 
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added for 2 h of incubation at 65°C. Reactions were cooled down to room temperature and 

transferred into 50 ml conical tubes. 10 ml phenol-chloroform were added to each tube, 

samples were vortexed for 2 min, and then centrifuged for 10 min at 3000xg at RT. The 

aqueous phase (top) was transferred to a fresh 50 ml conical tube and the extraction was 

repeated using 8 ml chloroform. After centrifugation, the top phase was transferred to a 35 ml 

centrifuge bottle (SS34), the volume was brought to 10 ml with 1x TE buffer, 0.1 volumes (1 

ml) of 3 M sodium acetate pH 5.2 was added, mix and samples were spun down briefly. 2.5 

volumes (25 ml) of ice-cold 100 % ethanol were added and samples were mixed gently, and 

incubated at -80C overnight. Samples were thawed and centrifuged at 4°C for 30 min at 

20216xg, washed with 10 ml fresh 70 % ethanol 3x, with centrifugation at 4°C for 20 min at 

20216xg. The supernatant was discarded, the DNA pellet was air-dried and resuspended in 

450 µl 1x TE buffer and transfer to a 1.7 ml tube. Then, 500 ml phenol-chloroform were 

added, samples were vortexed for 30 s, and spun with 26915xg for 5 min at RT. Supernatant 

was transferred to a new tube and the extraction was repeated using 500 µl chloroform. 400 µl 

supernatant were transferred to a new tube and 0.1 volumes (40 µl) of 3M sodium acetate pH 

5.2 were added, followed by 1 ml 100 % ethanol (cold), and incubation at -80°C for 2 h. 

Samples were spun down at 4°C with 26915xg for 20 min, supernatant was removed, and 

pellets were washed 4 times with 70 % EtOH. All EtOH was removed carefully and after 

drying DNA was resuspended in 25 µl 1x TE buffer with 1 µl RNase A (1 mg/ml). Samples 

were incubated for 15 min at 37°C, and all aliquots but the labelling control were pooled. 

DNA was quantified using the Quant-iT PicoGreen assay (Invitrogen). 8µl of a 1:10 dilution 

of each library was run on a 1 % agarose gel to visually assess the ligation efficiency. To test 

the formation of ligation products a PCR reaction was performed to amplify a ligation product 

formed by two directly adjacent restriction fragments. The resulting amplicon is digested with 

HindIII or NheI to assess the proportion of biotin-labelled library. For amplification a dilution 

series of the Hi-C library and the labelling control was made and amplified in a total of 5 

reactions per sample by adding 5 µl 5x Hi-Fi buffer, 2 µl 50 mM MgSO4, 2.5 µl 2 mM 

dNTPs, 0.125 µl 80 µM of oligonucleotides 3C-Gapdh_for and 3C-Gapdh_rev, 0.25 µl 

Phusion 2 U/µl, and 11 µl H2O to 4 µl template and running the reaction in a PCR cycler for 

30 s at 95˚C, followed by 35 cycles of 10 s at 98˚C, 30 s at 65˚C, and 30 s at 72˚C, followed 

by 1 x 7 min at 72˚C. 10 µl of each PCR product (300 bp) were run on a 1.2 % agarose gel to 

assess the amount of ligation product formed. The remaining reactions were pooled and 

digested with the following digestion reaction at 37°C for 1 h. 
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Reagent H2O NheI HindIII Both 

PCR Product 15 µl 15 µl 15 µl 15 µl 

NEB2 5 µl 5 µl 5 µl 7.5 µl 

H2O 25 µl 25 µl 27.5 µl 45 µl 

BSA (10mg/ml) 0 0.5 µl 0 0.75 µl 

Enzyme 5 µl H2O 5 µl NheI 2.5 µl HindIII 5 µl NheI + 2.5 µl 

HindIII 

 

The digested PCR products were run on a 2.0 % agarose gel and gel bands were quantified 

with ImageJ to determine the biotin-labelling efficiency with the following formula. 

 

Figure 2. 1: Calculation of the biotin 

labelling efficiency of a Hi-C library.  

Agarose gel with the amplicon of the labelling 

control (3C) and the Hi-C library undigested 

(H2O), digested with NheI, HindII, and both 

enzymes. The efficiency is calculated by 

quantifying the intensities of the bands a – f.  

 

 

 

 

 

 

2.11.4 Biotin removal, pull-down and library preparation 

Up to 10 reactions, each with 5 µg of Hi-C library, were prepared for pull-down by removing 

biotinylated nucleotides from the ends of unligated restriction fragments. To 5 µg Hi-C 

library 1 µl 10 mg/ml BSA, 10 µl 10x NEB2, 1 µl 10 mM dATP, 1 µl 10 mM dGTP, 1.67 µl 

T4 DNA polymerase (3 U/µl) were added, and reaction was added up to 100 µl with H2O and 

incubated for 4 h at 12°C. Then, 2 µl of 0.5M EDTA, pH 8.0, were added to each tube to stop 

the reaction, samples were pooled, and DNA was purified with a phenol-chloroform 

extraction, followed by DNA precipitation, as described above. DNA was resolved in 600 µl 

H2O and divide in 3x 200 µl aliquots for sonication. DNA was sheared to a size of ˜300 to 

500 bp using a Bioruptor Plus with the following setting. Settings: high, 30 s on / 30 s off, 15 

cycles, at 4˚C. DNA was size selected for fragments between 300 and 500 bp with AmPure 

XP beads at RT according to the manufacturer’s instructions using a 0.65x ratio for binding 

and removal of large fragments above 500 bp, followed by 0.85x for binding and selecting of 

fragments above 300 bp. DNA was eluted in 300 µl Qiagen elution buffer and quantified with 
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the Qubit dsDNA HS assay. Samples with more than 2 µg DNA were used for subsequent 

pull-down. 

For pull-down of ligation products, 150 µl Dynabeads MyOne Streptavidin C1 (Invitrogen) 

were washed with 400 µl Tween wash buffer (5 mM Tris, 0.5 mM EDTA, 1 M NaCl, 0.05 % 

Tween 20) for 3 min, then placed on a magnetic rack, supernatant was removed, and wash 

was repeated for a total of 3 times. Then beads were resuspended in 300 µl 2x binding buffer 

(10 mM Tris, 1 mM EDTA, 2 M NaCl), and the 300 µl Hi-C library were added. Sample was 

incubated on the beads at RT for 30 min rotating to allow all biotinylated DNA fragments to 

bind to the beads. Then, the beads were washed twice with 400 µl binding buffer, each time 

transferred to a new tube, and resuspended in 100 µl NEB ligase buffer. Then beads were 

resuspended in 10 µl 10x Ligase buffer (NEB), 4 µl 10 mM dNTPs, 5 µl T4 DNA polymerase 

(NEB, 3 U/µl), 5 µl T4 polynucleotide kinase (NEB, 10 U/µl), 1 µl large (Klenow) fragment 

(NEB, 5 U/µl), and 75 µl H2O and incubated for 30 min at 20˚C. Beads were washed twice in 

200 µl Tween Wash Buffer, and twice in 200 µl Qiagen elution buffer, before adding 5µl 10x 

NEB2, 10µl 1mM dATP, 3µl Klenow (exo-), and 32µl H2O (nuclease free) and incubating 

for 30 min at 37°C. Beads were washed twice in 200 µl Tween Wash Buffer, and twice in 200 

µl Qiagen elution buffer, before adapter ligation. For adapter ligation sequencing adapters 

were prepared by annealing 15µl universal adapter P5 (15 µM), with 15 µl P7 indexing 

adapter (15 µM) in 70 µl H2O at 95°C for 5 min, followed by 70x decrease by 1°C, hold each 

for 1 min, and 1x 25°C for 30 min. Then, 10µl of 5x Ligase buffer (Invitrogen) were mixed 

with 5µl TruSeq adapters (15µM) and 32µl H2O (nuclease-free), added to the beads with 3µl 

DNA ligase (Invitrogen) and incubated overnight at 16°C, shaking at 750 rpm. Beads were 

washed twice in 200 µl Tween Wash Buffer, and twice in 200 µl Qiagen elution buffer, and a 

test PCR was performed on the beads to determine the optimal number of cycles needed for 

amplification. The test PCR reaction was prepared by mixing 2.5 µl Hi-C library with 0.5 µl 

primer P5 (25 mM), 0.5 µl primer P7 (25 mM), 0.625 µl 10 mM dNTPs, 5 µl 5x Herculase 

buffer, 1 µl DMSO, 0.5 µl Herculase polymerase, and 14.375 µl H2O, and running the 

reaction for 2 min at 98°C, followed by several cycles (tests included 5, 7, 10, 15 cycles) of 

15 s at 98°C, 30 s at 62°C, 1 min at 72°C, and 1 cycles of 5 min at 72°C. PCR products were 

run on a 1.5% agarose gel to determine the number of cycles, at which a visible DNA smear 

appears, which were between 6-8 cycles for all prepared samples. All remaining material was 

amplified with the determined number of cycles, pooled afterwards, and purified twice with 

1.8x Ampure XP beads according to manufacturer’s instructions. Clean libraries were 

resuspended in Qiagen elution buffer and DNA was quantified with the Qubit dsDNA HS 
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Assay Kit and run on Bioanalyzer using the Agilent High Sensitivity DNA Kit to estimate the 

molarity with the following formula. 𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 (𝑛𝑀)  =  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑔/µ𝑙)660 𝑔/𝑚𝑜𝑙 𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑝)  𝑥 106 

 

Samples were sequenced on the NextSeq500, paired-end 75 bp, with the NextSeq 500/550 

High Output v2 kit (150 cycles), following the manufacturer’s instructions for denaturing, 

dilution, and sequencing of the libraries. 

 

2.12 Sample preparation for cryosectioning 

Ultrathin nuclear cryosections can be produced in the absence of resin-embedding, by the 

Tokuyasu method (Tokuyasu, 1973). Fixation of cells was performed as described previously 

(Branco and Pombo, 2006). Briefly, cells were grown on a 10mm cell culture dish to 70 % 

confluency, media was removed, and cells were fixed in 4% and 8% paraformaldehyde in 

250 mM HEPES-NaOH (pH 7.6; 10 min and 2 h, respectively), gently scrapped, and softly 

pelleted and embedded in saturated 2.1 M sucrose in PBS and frozen in liquid nitrogen on 

copper sample holders. 

 

2.13 Cryosectioning 

Ultrathin cryosections were cut with a glass knife using an ultracryomicrotome (Leica 

Biosystems, EM UC7) at ~230 nm thickness, captured on sucrose-PBS drops and transferred 

either to autoclaved glass coverslips for immunofluorescence or to PEN membrane steel 

frame slides 4.0 µm (Leica Microsystems, 11600289) for laser microdissection.  

 

2.14 Immunofluorescence 

For immunolabelling, cryosections were washed in 1x PBS (3x 10 min each) and 20 mM 

glycine in PBS (30 min), permeabilised with 0.5 % Triton X-100 in PBS (v/v), for 10 min,  

and blocked for 1 h with PBS+ (1% BSA, 0.1% casein, 0.2% fish skin gelatin, in PBS, pH 

7.6). All washes and antibody dilutions were done with PBS+. For imaging, primary 

antibodies were diluted 1:100, secondary antibodies 1:1000. For laser microdissection, the 

primary and secondary antibody dilutions were 1:50 and 1:500, respectively. Primary 

antibodies were incubated overnight at 4˚C, followed by a 1-h wash, and secondary antibodies 

were incubated for 1 h, followed by a 30-45 min wash. For imaging cryosections on glass, 

cryosections were washed 3x in PBS, and mounted in DAPI Vectashield. Coverslips were 
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sealed with nail polish and imaged immediately after the nail polished had dried. For laser 

microdissection, cryosections were washed 2 times with PBS and 3 times with H2O, then 

liquid was removed, the sample was air-dried for 10 min and immediately taken for laser 

microdissection (LMD).  

 

2.15 Genome architecture mapping (GAM) 

 

2.15.1 Staining of nuclear profiles (NPs) 

Before collecting NPs under the laser microdissection microscope (LMD), cryosections were 

washed in sterile-filtered (0.2 µm syringe filter) 1x PBS (3 times, 5 min each), washed with 

sterile-filtered H2O (3 times, 5 min each), and then taken to the LMD, or stained either with 

cresyl violet, or were immuno-labelled for using a pan histone antibody (see 2.14). Cresyl 

violet staining was performed with sterile-filtered 1 % (w/v) cresyl violet (Sigma-Aldrich, 

C5042) in H2O for 10 min, followed by 2 washes with H2O (30 s each). The same protocol 

was applied to different DNA and cellular dyes that have been tested in GAM, and that can be 

found in Table 3.2. 

 

2.15.2 Collecting nuclear profiles 

Individual NPs were isolated from the cryosection by laser microdissection using a laser 

microdissection microscope (Leica Microsystems, LMD7000). Unstained or cresyl-violet 

stained cells were identified under bright-field imaging and the laser was used to cut the PEN 

membrane surrounding each cell. Cut NPs were collected in a PCR Cap Strip filled with 

opaque adhesive material (Carl Zeiss Microscopy, 415190-9161-000). For each collection 

day, 1 or 2 caps were left empty and taken through the whole genome amplification (WGA) 

and sequencing process as a negative control for quality control purposes. 

 

2.15.3 Whole genome amplification 

Several different protocols were used to perform whole genome amplification (WGA). First, 

the WGA-4 GenomePlex® Single Cell Whole Genome Amplification Kit (Sigma Aldrich) 

was used to amplify DNA from NPs. For test purposes, also the REPLI-g Mini Kit (Qiagen), 

the MALBAC® Single Cell WGA Kit (Yikon Genomics), and Ampli-1 WGA kit (Menarini 

silicon biosystems) were applied to NPs, according to the manufacturer’s specifications. Most 

of the data produced during my PhD were produced using a WGA protocol developed by Dr. 
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Enric-Espel Mesferrer (University of Barcelona, Spain), Dr. Alexander Kukalev (our 

laboratory), and myself.  

 

The WGA4 kit (Sigma) was used as previously described (Beagrie et al., 2017). Briefly, H2O 

(13 μl) was added to each LMD caps containing a NP. Fragmentation master mix (8 μl 

proteinase K solution, 128 μl 10x single cell lysis and fragmentation buffer) was added to 

each lid (1.4 μl/lid), and 1 μl of human genomic DNA was added to a single lid without a NP 

to act as a positive control. The lids were pressed into a 96 well PCR plate and incubated 

upside down at 50 °C for 4 h. After incubation, the PCR plate was left to cool at room 

temperature for 5 min, before it was inverted and centrifuged at 800 xg for 3 min. The plate 

was heat-inactivated at 99°C for 4 min in a PCR machine and cooled on ice for 2 min. 2.9 μl 

1x single cell library preparation buffer and 1.4 μl library stabilisation solution were added to 

each well and the plate was incubated at 95°C for 4 min, before cooling on ice for 2 min. 1.4 

μl of library preparation enzyme was added to each reaction, then the plate was incubated on a 

PCR machine at 16 °C for 20 min, 24°C for 20 min, 37 °C for 20 min and finally 75 °C for 5 

min. After WGA library preparation, the PCR plate was centrifuged at 800 xg for 3 min. 10x 

amplification master mix (10.8 μl), water (69.8 μl) and WGA DNA Polymerase (7.2 μl) were 

added to each well and the sample was PCR amplified using the program provided by the 

WGA4 kit supplier. 

 

The WGA we developed in the laboratory is based on the original Multiple Annealing and 

Looping Based Amplification Cycles (MALBAC) protocol for WGA (Zong et al., 2012). In 

this technique, random hexamers bind to the genome in multiple annealing steps and amplify 

genomic DNA. The amplification products contain a common primer sequence, which was 

attached to the random hexamers, and are then further amplified with primers annealing to the 

common sequence. MALBAC has been used for genome but also transcriptome amplification 

in single cells, which had been published (Chapman et al., 2015). In this thesis, different 

modifications were applied to the protocol to achieve optimal DNA extraction and WGA 

performance for heavily cross-linked samples used for GAM (presented in supplementary 

Table 8.2) Here, I describe the final version of the WGA reaction. First, NPs were treated 

with lysis buffer and protease for cell lysis and protein removal. To each NP, 7 µl lysis buffer 

(30mM Tris Cl, 2mM EDTA, 5% Tween 20, 0.5% Triton X-100, 800 mM Guanidinium HCl 

pH 8.0), and 3 µl Qiagen protease (Qiagen, 3.175 U/ml) were added, and incubated overnight 

at 60˚C. Then, the protease was heat inactivated by incubating at 75˚C for 30 min. Samples 
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were placed on ice to cool down. Then, 0.8 µl 10 mM dNTPs, 0.8 µl 100 mM MgSO4, 2 µl 

GAT-7N (10µM), 4 µl 10x Thermo Pol buffer (NEB), 1.2 µl DeepVent polymerase (exo-) 

(NEB, 2U/µl), and 21.2 µl H2O were added to each sample and DNA was amplified with the 

following PCR cycler conditions. First, 1x 3 min at 95˚C, followed by 11x 50 s at 20˚C, 50 s 

at 30˚C, 45 s at 40˚C, 45 s at 50˚C, 4 min at 65˚C, and 20 s at 95˚C, followed by 1x 5 min at 

72˚C. Then, the adapter sequence from the GAT-7N primer, which is common to all 

amplified products from the first PCR reaction, is amplified with a common primer (GAT-

COM) by adding 1.2 µl 10 mM dNTPs 

0.4 µl 100 mM MgSO4, 2.4 µl GAT-COM (10µM), 2 µl 10x Thermo Pol buffer (NEB), 0.6 µl 

DeepVent polymerase (exo-) (NEB, 2U/µl), and 13.4 µl H2O. Amplification is done with 1x 

3 min at 95˚C, followed by 24x 20 s at 95˚C, 30 s at 58˚C, 3 min at 72˚C, followed by 1x 3 

min at 72˚C. 

 

2.15.4 Preparation of sequencing libraries 

For some samples collected in mouse 46C ESCs, WGA-amplified DNA was purified using 

either the Qiagen MinElute PCR Purification Kit or the MinElute 96 UF PCR Purification Kit 

and eluted in 50 μl of the manufacturer’s elution buffer. For the majority of samples, 

including all F123 data, the WGA reaction was purified with Ampure XP beads (Ampure XP, 

Agencourt), or SPRI beads (DeAngelis et al., 1995). The concentration of each sample was 

determined by Quant-iT PicoGreen quantification. Sequencing libraries were then made using 

either the Illumina TruSeq Nano DNA HT kit or the Nextera XT library preparation kit, 

according to the manufacturer’s recommendations. The Nextera XT library preparation was 

further successfully tested for the generation of high-quality sequencing libraries with only 

1/5 of the volumes recommended by the manufacturer. Library concentrations were estimated 

with the Quant-iT PicoGreen assay and libraries were pooled together in batches of 96 or 192 

libraries. The DNA concentration of the library pool was measured with the Qubit dsDNA HS 

assay and run on Bioanalyzer using the Agilent High Sensitivity DNA Kit to estimate the 

molarity with the following formula. 

 𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 (𝑛𝑀)  =  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑔/µ𝑙)660 𝑔/𝑚𝑜𝑙 𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑝)  𝑥 106 

 

As described in Beagrie et al. (2017), libraries produced with the TruSeq approach were 

sequenced in batches of maximum 96 samples in single end 100 bp rapid-run mode on two 

lanes of an Illumina HiSeq machine. Each library has 30 bp WGA adaptors at both ends, so 
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the flow cell was not imaged for the first 30bp of each run (these are known as “dark cycles”). 

Libraries produced with the Nextera XT kit are randomly fragmented by Tn5 enzyme during 

the library prep, which means that sequencing adapters are inserted at random positions inside 

the WGA products. Thus, the WGA adapters are no longer present at the first position of the 

library insert DNA, which makes the HiSeq dark cycle run redundant. Nextera libraries were 

sequenced single end 75 bp with the NextSeq500/550 High Output v2 kit (75 cycles) on the 

NextSeq500 sequencer following the manufacturer’s instructions for denaturing, dilution, and 

sequencing of the libraries. 

 

2.16 Microscopy 

Images were acquired on a confocal laser-scanning microscope (Leica TCS SP8; 63x oil 

objective, NA 1.4), using pinhole equivalent to 1 Airy disk. Images from different channels 

were collected sequentially to prevent fluorescence bleed-through. Raw images (TIFF files) 

were merged in ImageJ and contrast stretched without thresholding. Image acquisition was 

done randomly based on the DAPI staining, to avoid bias. 

 

2.17 Calculating the average nuclear radius from cryosections 

Cryosections of F123 ESCs were prepared, stained with DAPI and imaged on a confocal 

laser-scanning microscope as described above. The radius of a nucleus can be estimated from 

the average of radii of nuclear slices, collected from random positions in a population of 

nuclear sections. The average radii of nuclear slices were calculated from 2 technical 

replicates (2 cryosections) for F123 mESCs by measuring the area of randomly chosen 

nuclear slices (Figure 2.2a-b) and using Area = (𝜋 * R2). The incremental average of all 

measured slice radii per cryosection is plotted to determine whether the collection of 

measurements was saturated (Figure 2.2c). From the average slice radius R = 3.64 ± 0.30 µm 

we estimated a nuclear radius RN = 4.63 µm, using RN = (4/𝜋) * R.  
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Figure 2. 2: Nuclear radius of F123 mESCs.  

(a) Example cryosection stained with DAPI used for measuring nuclear slice radii. (b) Histogram showing the 

distribution of slice radii collected from 2 technical replicates. (c) Incremental average of slice radii for both 

replicates. 

 

2.18 RNA-seq data analysis 

For the 16p11.2 cell lines, sequencing reads were mapped to mm9 with STAR (Dobin et al., 

2013), transcripts were quantified with RSEM (Li and Dewey, 2011), and analysis of count 

data was performed with DEseq2 (Love et al., 2014). To obtain differentially expressed genes 

between experiments, count values of genes were compared that had a value of transcripts per 

million (TPM) > 1 in at least one of the biological replicates. Genes were considered as 

differentially expressed between two experiments, when their adjusted p-values (Benjamini 

and Hochberg) were below 0.05. Analysis was performed by Dominik Szabo, with the 

guidance of Dr. Christoph Thieme from our laboratory. 

 

RNAseq data from F123 was processed for standard and allele-specific gene expression 

analysis. The quality of the paired-end RNA sequencing reads was verified using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). No reads needed to be trimmed 

or removed due to quality concerns. The paired-end reads derived from RNA sequencing 

were mapped to the most recent mouse reference genome assembly mm10 (GRCm38.p6) 

using STAR (version 2.7.2c) (Dobin et al., 2013) under consideration of the current mm10 

annotation (downloaded from ensemble: ftp://ftp.ensembl.org/pub/current_gtf/mus_musculus 

/Mus_musculus.GRCm38.98.gtf.gz) and available information of genomic variants in the 

mm10 F123 genome (described in 2.20.8). Following recommendations about best practices 

for data processing in allelic expression analysis (Castel et al., 2015), duplicate reads were 

removed from the data using Picard MarkDuplicates (version 2.21.1: 

https://software.broadinstitute.org/gatk/documentation/tooldocs/4.1.3.0/picard_sam_markdupl

icates_MarkDuplicates.php). Default options were used with the exception of 

REMOVE_DUPLICATES = TRUE. To quantify the overall expression of genes, mapped 
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reads overlapping exons were assigned to the respective genes and summarized as gene 

specific count values using HTSeq-count (Anders et al., 2015). The use of HTSeq-counts to 

generate gene level read count values is recommended by the gold standard tool used for 

differential gene expression analysis DESeq2 (Love et al., 2014). Options were set to count 

reads overlapping exons of genes, accounting for the paired end nature of reads, only 

considering primary alignments and the default minimal alignment quality of 10. The same 

annotation file was used as described before in the read mapping step. Subsequently TPM 

values were calculated normalising count values for gene length and library size.  

 

To differentiate between the expression of genes located on the two parental alleles, reads 

overlapping heterozygous genomic variants were counted in an allele-specific manner. Reads 

overlapping those heterozygous variants located within exons of genes were counted using 

GATK ASEReadCounter (The Genome Analysis Toolkit (GATK) version 4.1.3.0: 

https://software.broadinstitute.org/gatk/documentation/tooldocs/4.1.3.0/org_broadinstitute_he

llbender_tools_walkers_rnaseq_ASEReadCounter.php). Subsequently only genomic variants 

within regions of high mappability and with a minimum total coverage of 20 reads were 

considered to reduce the risk of introduced biases. In case multiple genomic variants were 

present within the same gene, the counts were aggregated over the gene in an allele specific 

manner using the available haplotype information described above in the read mapping step. 

Aggregated counts were tested for significant allele specific expression differences 

(binomialtest vs 0.5) and the false discovery rate was controlled for by correcting resulting p-

values for multiple testing using the Benjamini & Hochberg method. Subsequently ASE ratio 

(
𝑟𝑒𝑎𝑑𝑐𝑜𝑢𝑛𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝐶𝐴𝑆𝑇 𝑎𝑙𝑙𝑒𝑙𝑒𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑐𝑜𝑢𝑛𝑡𝑠 ) and Log2foldchange 𝑙𝑜𝑔2 (𝑟𝑒𝑎𝑑𝑐𝑜𝑢𝑛𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝐶𝐴𝑆𝑇 𝑎𝑙𝑙𝑒𝑙𝑒𝑟𝑒𝑎𝑑𝑐𝑜𝑢𝑛𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝐽129 𝑎𝑙𝑙𝑒𝑙𝑒 ) 

were calculated. Analysis was performed by Julia Markowski (Roland Schwarz laboratory, 

Max Delbrück Centrum, Berlin). 

 

2.19 Hi-C data analysis 

Hi-C data mapping, normalisation, and quality controls were performed by myself. Further 

Hi-C analyses were performed by Dr. Ehsan Irani and Dr. Christoph Thieme from our 

laboratory. 

 

2.19.1 Generation of Hi-C contact maps 

Published mESC Hi-C data from Dixon et al. (2012) was mapped to the mm9 reference 

genome and corrected using the iterative correction pipeline (Imakaev et al., 2012), as it was 
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done in the original publication, by Markus Schueler from our laboratory. All newly produced 

Hi-C data was analysed by myself, and mapped using the TADbit pipeline from Serra et al. 

(2017). Reads were filtered for unligated fragments (dangling ends), self-ligation, random 

DNA breaks, and PCR duplicates. Raw Hi-C contact frequencies were normalised using the 

iterative correction pipeline (Imakaev et al., 2012) for one iteration. 

 

2.19.2 Correlation analysis of Hi-C datasets 

The pairwise similarity of intrachromosomal Hi-C matrices was assessed at 50kb resolution 

using HiCRep (v. 0.99.6) (Yang et al., 2017). For data correlations, the stratum-adjusted 

correlation coefficient (scc) for all pairs of chromosomes was calculated by using a maximum 

distance threshold of 20 Mb and an estimated optimal smoothing of zero. Results values were 

evaluated separately as well as aggregated mean values from all chromosomes. 

 

2.19.3 Viewpoint-based Hi-C analysis 

Z-score normalised interaction matrices were generated by normalising Hi-C matrices (after 

log transformation) for genomic distance. 

 

𝑧𝑖,𝑘+𝑖log   =   𝐻𝑖, 𝑘+𝑖log   −  ⟨ 𝐻𝑗, 𝑘+𝑗log  ⟩𝑗std (𝐻𝑗, 𝑘+𝑗log )  

 

From the z-scores, normalised contact frequencies were filtered for a viewpoint-based 

analysis, by selecting only contacts of one genomic region with the remaining genome. 

 

2.19.4 Differential Hi-C contact analysis 

In order to study differential Hi-C contacts, different datasets were first normalised using z-

score normalisation: the contact frequency between all loci with the same genomic distance 

was normalised to have the zero average and the standard deviation of one. Then gained and 

lost contacts between different datasets were identified after subtracting the generated z-score 

matrices as respectively positive and negative values. 

 

2.19.5 Defining A/B compartments in Hi-C data 

A/B compartments were identified at previously described (Liebermann-Aiden et al., 2009). 

Briefly, for each chromosome the observed over expected matrix was generated,  
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𝐻𝑖,𝑘+𝑖′ = 𝐻𝑖,𝑘+𝑖⟨𝐻𝑗,𝑘+𝑗⟩𝑗 
Then, a correlation matrix, 𝐶𝑖,𝑗 = corr(𝐻𝑖′, 𝐻𝑗′)  was generated, where the Pearson correlation 

between loci 𝑖 and 𝑗 is given by 𝐶𝑖,𝑗. Principal component analysis (PCA) was performed on 

the correlation matrix 𝐶. Usually the first eigenvector stores the information about 

compartments. To indicate which values corresponds to A or B compartments, the first 

eigenvector was correlated with the GC content, knowing that A correlates with more GC rich 

regions. 

 

2.19.6 Analysis of topologically associating domains 

Insulation scores for each TAD boundary were calculated as previously described (Crane et 

al., 2015). Normalised contact frequencies were measured in a window box 10 times larger 

than the resolution of the dataset, moved at an offset of two windows from the diagonal of the 

matrix. This measure quantifies the contacts that span a particular genomic region. At TAD 

boundaries this value is lower than within TADs, resulting in a local drop of the insulation 

score of the boundary. This local drop was called as a boundary. 

 

2.20 GAM data analysis 

If not stated otherwise, GAM data analysis was performed by Dr. Alexander Kukalev and Dr. 

Ibai Irastorza Azcarate from our laboratory. 

 

2.20.1 Mapping of nuclear profiles 

Nuclear profiles from 46C mESCs were mapped to the mm10 reference genome. Nuclear 

profiles from F123 mESCs were mapped to an N-masked mm10 genome assembly, where all 

SNPs in the F123 genome were substituted with N, to allow unbiased mapping of maternal and 

paternal reads. Mapping was done with bowtie2, as previously described (Beagrie and Schueler, 

2017). 

 

2.20.2 Calling positive windows 

For NPs collected with the Sigma WGA4 kit, which were processed with the TruSeq library 

preparation kit (Illumina), positive windows were identified using a curve fitting approach, as 

previously described (Beagrie et al., 2017). Briefly, the genome was split into equal-sized 

windows, and the number of reads was calculated from each nuclear profile overlapping each 

genomic bin. Two distributions were fitted to the histogram of the number of reads per 



2. Materials and methods 

 59 

window in each NP. A negative binomial distribution represents noise, and was used to 

determine a threshold number of reads, where the probability of observing more than this 

number of reads mapping to a single genomic window by chance was less than 0.001. This 

threshold was independently determined for each NP, and windows were called positive if the 

number of reads was greater than the determined threshold. To obtain a robust estimate of the 

noise, we fit a log-normal distribution representing signal simultaneously with the negative 

binomial, however the parameters of the log-normal distribution are not used in determining 

the threshold. 

For all other NPs we used a nucleotide coverage-based approach to identify positive windows. 

Similar to the old window calling procedure, the genome was first split into equal size bins 

and the number of reads in each bin and number of nucleotides sequenced in each bin were 

calculated for each NP sample with bedtools (Quinlan and Hall, 2010). Next, we calculated 

lowest percentile of nucleotide coverage distribution that only allow positive windows with 3 

reads and more for each sample in the dataset, and use the mean value of all percentiles as 

optimal percentile for the entire dataset.  To obtain individual threshold for each NP in 

nucleotides, we then apply the optimal percentile to individual nucleotide coverage 

distributions for each NP. Windows were called positive if the number of nucleotides 

sequenced in each bin was greater than the determined individual threshold. 

 

2.20.3 Checking for cross-contamination between samples 

To compare the genomic content of nuclear profiles on each plate and exclude potentially 

cross-contaminated samples we use Jaccard similarity index. Briefly, we represented genomic 

content of each NP as a vector of zeros and ones, corresponding to the negative and positive 

genomic windows aligned according to the linear genome. We calculated Jaccard similarity 

index between all vectors corresponding to the samples that were processed together on the 

same 96 well plate.  Samples with a Jaccard similarity index > 0.4 were excluded from the 

data analysis as potentially contaminated. The pipeline was developed by Thomas M. Sparks, 

our laboratory.  

 

2.20.4 Quality metrics of NPs 

Low-quality samples due for example to failed capture of NPs at the time or low DNA 

extraction were removed from the final set of GAM libraries and all subsequent analyses. A 

number of quality metrics were measured for each sequencing libraries produced from single 

NP, 3xNPs or water controls. First, the percentage of mapped reads and percentage of PCR 
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duplicate reads were measured. For assessing contamination of nuclear profiles with DNA 

from other species, 100,000 randomly selected reads from each sample were mapped against 

common species in the laboratory (human, E. coli, yeast) using Fastq-screen 

(bioinformatics.babraham.ac.uk/projects/fastq_screen).  

NPs are expected to cover a proportion of the whole genome, organized in consecutive 

stretches of genomic DNA being present or absent from the NP, reflecting chromatin looping 

in and out of a thin nuclear slice. Depending on the radial position of the slice relative to the 

whole nucleus, varying numbers of chromosomes are expected to be present in a single NP. 

Therefore, for every NP, we assessed the total number of positive windows as a measure of 

genome coverage, the number of positive windows immediately adjacent to another, 

reflecting the proportion of orphaned windows in the genome, and the number of positive 

chromosomes for each sample. In order to effectively count the chromosomes, present in each 

NP, an algorithm was applied that checks for stretches of positive windows in the genome, as 

a proxy for presence or absence of a chromosome. In detail, we checked the number of 50 kb 

positive windows in all Mb regions (20 positive windows in each Mb) and calculated the 4th 

quartile for all the chromosomes. If a certain chromosome’s average number of 50 kb positive 

windows in a Mb is the same or higher than the 4th quartile of all the chromosomes, this 

specific chromosome is called as present in the NP.  Finally, we used these metrics, together 

with the number of uniquely mapped reads to evaluate NP quality and decide on quality 

thresholds for the GAM datasets. 

 

2.20.5 Determining resolution of pairwise co-segregation matrices 

Each NP contains a very limited amount of genomic material. For good quality genome 

sampling we expect each pair of genomic loci to be found together in one of the NPs at-least 

once. To determine highest resolution that can be used for pairwise chromatin contact matrices, 

we conducted a data erosion by removing NPs from the dataset, and asked how many NPs are 

sufficient to sample entire genome at multiple resolutions. This analysis was performed for 

different genomic resolutions (10 to 100 kb) to estimate the highest resolution that was deemed 

robust to study genome organisation. The highest resolution where we observed good quality 

of genome sampling was used in the further analysis. 

 

2.20.6 DNA detection efficiency  

In order to assess the quality of genome sampling, the detection efficiency in the F123 GAM 

dataset was calculated according to Beagrie et al., 2017. The detection efficiency is 1, when 
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the probability to find a genomic region is the same as the actual detection frequency of that 

region. The efficiency is less than 1, when the probability exceeds the detection frequency. 

For simplicity, the same probability was assumed for all genomic loci. The probability of a 

single locus to be detected in a nuclear profile was calculated based on the following criteria; 

the genomic size of the locus (bin size in kb), the size of the nucleus (nuclear radius 

estimation in 2.17), the thickness of the nuclear slice (0.22 µm), and the total genome size 

(mm10 genome length 5.46 Gb). This analysis was performed by Luca Fiorillo under the 

supervision of Mario Nicodemi (University of Naples, Italy). 

 

2.20.7 Normalisation 

The use of different normalisations of the GAM was explored by Thomas M. Sparks and 

Christoph Thieme (our laboratory). Pointwise mutual information (PMI) is a measure of 

association used in information theory and statistics. It is frequently used in linguistics to infer 

the co-association of words between documents (Watford et al., 2018). The PMI of genomic 

windows x and y describes the difference between the probability of both windows being 

found in the same NP (i.e. their joint distribution) and their individual distributions across all 

NPs. PMI assumes that finding one window is independent of finding the second window.  

NPMI normalisation was implemented for GAM by Thomas M. Sparks from our laboratory. 
 

2.20.8 Phasing of nuclear profiles 

The high SNP density of the F123 genome was used to phase the reads from NPs to their 

haplotypes. For generating genotype calls for the hybrid F123 (CAST×S129) cells, we 

downloaded parental genome sequencing data from publicly available databases. For Mus 

musculus castaneus, we downloaded the genome sequence from the European Nucleotide 
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Archive (accession number ERP000042). S129/SvJae genome sequencing data was 

downloaded from the Sequence Read Archive (accession number SRX037820).  We 

performed reads trimming using Cutadapt (https://cutadapt.readthedocs.io/en/stable/) and 

mapped the reads to mm10 genome assembly using Burrows-Wheeler Aligner (http://bio-

bwa.sourceforge.net/). SNP location and sequence were identified using bcftools 

(http://samtools.github.io/bcftools/bcftools.html). SNPs that have less than 5 reads per SNP 

and quality below 30 were excluded from the analysis. High quality SNPs were masked with 

N in the reference genome assembly and NPs were mapped to the N-masked genome using 

bowtie2. The reads mapped to N-masked genome were checked for the presence or absence 

of a SNP, and sorted to the corresponding haplotype using SNPsplit (Krueger and Andrews, 

2016). The phased reads we used to assign positive windows to their parental alleles, as the 

majority of them contained phased reads from either the maternal or the paternal allele. A 

minimum coverage of 75 nucleotides (corresponding to 2 phased reads) was determined to 

assign a positive window to one haplotype. Positive windows with more than 2 reads from 

both alleles, were assigned to both haplotypes. Phasing of nuclear profiles was developed by 

A. Kukalev. 

 

2.20.9 Defining A and B compartments 

We calculated A and B compartments for GAM as described above (2.19.5), with the only 

difference that we did not always extract the principal component 1, but the first component 

that explain the most variance. 

 

2.20.10 Detection of differential contacts 

To identify differential contact between the alleles, allele-specific contact matrices were 

normalised, normalised contact intensities were subtracted, and, ultimately, contacts seen 

strong in both or at significantly different levels by either of the two alleles were extracted.   

For the analysis of allele-specific contacts in F123 mESCs we subjected NPMI normalised 

contact matrices at 50 kb resolution for all autosomal chromosomes for pairwise comparisons. 

In order to avoid amplification of spurious contacts from noise and zero inflation, we limited 

our analysis to 4 Mb genomic distance. Next, we used GAM window detection frequency to 

flag potentially oversampled or undersampled genomic regions in the GAM data (applied 

range > 0.01; < 0.07) and excluded those regions from the comparisons. To adjust for intrinsic 

differences of value distributions a normalisation step is considered essential. From a number 

of tested normalisation approaches, we identified z-scores 
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 𝑧 = 𝑥𝑑 − 〈𝑥〉 {\𝑏𝑎𝑟{𝑥𝑑}}𝑆𝑑  

 

for values of same bin-distance (d) of a chromosome to be best suited for the data. We 

confirmed that contact frequencies of each normalised chromosomal matrix can be 

parameterized by a Normal distribution with very good fit and assigned p-values for each 

contact accordingly. Next, we extracted all contacts with p-value<0.05 or p-value>0.95 as 

maternal-specific or paternal-specific contacts, respectively. In contrast to these contacts 

which are either strong on the maternal or the paternal allele, we defined a set of contacts 

which are observed by both methods at similarly high value intensities. We defined these 

strong and common contacts to be the top 10% of contacts with a z-score delta between -1 

and 1 ranked by the minimum of z-score normalised scores in both datasets. 

 

2.21 TF enrichment analysis 

For finding enriched TF motifs in F123 ATAC-seq regions Regulatory Genomics Toolbox 

Motif (www.regulatory-genomics.org/rgt) matching was used with the motif database 

HOCOMOCO11 MOUSE MOTIFS (www.regulatory-genomics.org/motif-anaysis). 

Identified motifs were filtered for expressed TFs in F123 mESCs using the TPM-values from 

the RNA-seq data. Only motifs of expressed TFs (TPM>1) were used in the analysis. Then, 

ATAC-seq peaks were mapped to genomic windows (50 kb) with common or allele-specific 

contacts and the coverage of each motif was calculated in each dataset (considering only 

regions identified by ATAC-seq). The 32 motifs with the highest coverage (percentage of 

windows containing the motif) were selected for subsequent motif pair analysis. Motif pairs 

were identified by their occurrence in contacting windows, and ranked based on their 

coverage (percentage of contacting windows containing a motif pair). TF enrichment analyses 

in differential contacting pairs of windows was developed and performed by Yingnan Zhang, 

Catherine Baugner, and Dr. Lonnie Welch (Ohio University, Athens, OH, USA) 

 

2.22 Gene Ontology enrichment 

Gene Ontology (GO) enrichment analysis of genes with allele-specific expression was 

performed using GO-Elite version 1.2.5 (Gladstone Institutes; http://genmapp.org/go_elite). 

Selected results (to decrease term redundancy) are reported. Default parameters were used as 

filters: z-score threshold > 1.96, permutation-derived p-value < 0.05, number of genes 

changed > 2. Over-representation analysis was performed with the "permute p-value" option, 
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2000 permutations. UCSC Known Gene IDs were converted into the correspondent Ensembl 

Gene IDs (using the UCSC KnownToEnsembl table, downloaded from the UCSC Table 

browser http://genome.ucsc.edu/cgi-bin/hgTables) before performing the GO enrichment 

analyses. The group of genes used as background was chosen based on expression (TPM>1) 

and the presence of SNPs (only phased genes with at least 1 SNP were included). Analysis 

was performed together with A. Kukalev.  
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3. GAM technology development 

 

Notes to author contributions: 

The experimental work presented in this chapter was performed by myself, in collaboration 

with Dr. Alexander Kukalev, Prof. Dr. Enric Espel-Mesferrer (University of Barcelona, 

Spain) and Robert A. Beagrie. A. Kukalev often performed the WGA or the library 

production. R.A. Beagrie advised and helped with collecting nuclear profiles for 46C ESC 

work, and further taught me how to perform GAM. E. Espel-Mesferrer developed the in-

house WGA protocol in collaboration with A. Kukalev using samples that I collected and 

processed for library preparation. Further, Gesa Loof, Izabela Harabula, Leonid Serebreni, 

and Dr. Warren Winick-Ng helped generating samples for some of the tested variables. I. 

Harabula performed the experiment presented in Figure 3.25. The majority of all 

computational analysis presented here was performed by A. Kukalev, with contribution of 

R.A. Beagrie, and Dr. Ibai Irastorza Azcarate. The analysis presented in Figure 3.3 was 

performed by R. Beagrie, Dr. Antonio Scialdone (Institute of Epigenetics and Stem Cells, 

Helmholtz Zentrum München, Germany), and Carlo Annunziatella (Laboratory of M. 

Nicodemi, University of Naples, Italy). The analysis presented in Figure 3.19 was done by 

Luca Fiorillo (laboratory of M. Nicodemi, University of Naples, Italy). Data normalisation 

and testing for bias (Figure 3.26) was done by Thomas M. Sparks. If not noted otherwise, all 

mentioned authors are from the laboratory of Prof. Ana Pombo, Max Delbrück Center, Berlin. 

 

3.1 Objective and research motivation 

Our laboratory developed Genome Architecture Mapping (GAM), a technique to map 

chromatin contacts via accessing co-segregation frequencies of genomic regions in nuclear 

slices. The main objective of my PhD was to apply GAM to mouse ESCs, to obtain a large 

dataset with high statistical power, that would allow a deep exploration of chromatin topology 

with high genomic resolution and with allelic information. To achieve this long-term goal, I 

started by optimising the GAM protocol to be able to produce samples in high-throughput, 

suitable for the collection of large datasets. The optimisations had several major goals that 

would help overcome several of the bottlenecks of the original experimental design used in 

Beagrie et al. (2017). The bigger challenge was first and utmost the efficiency of DNA 

extraction from crosslinked nuclear slices using whole genome amplification (WGA). In 

2015, when I joined the laboratory, GAM was performed using the WGA4 kit from Sigma, 

with successful DNA extraction, as shown in Beagrie et al. (2017). The challenge at the time 
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was to keep the efficiency of the experiment, after moving the laboratory of A. Pombo from 

London to Berlin. In 2017 the Sigma WGA4 kit no longer yielded effective extraction of 

DNA from GAM nuclear slices, so that unplanned efforts to test other WGA kit providers and 

to devise an in-house WGA approach became necessary. Several implementations were 

included in the protocol to improve the efficiency of DNA extraction, ultimately leading to 

the development of a WGA protocol independent from commercially available kits. The 

original GAM protocol was complex, time-consuming and expensive. This chapter presents 

an overview of experimental optimisations and their outcome, followed by explorations of 

different quality metrics of a GAM dataset collected with the optimised GAM pipeline, and 

comparisons to the previously produced dataset published in Beagrie et al. (2017). 

 

3.2 Reproducibility of GAM 

To test the reproducibility of the GAM technique, I first applied the original GAM protocol 

(Beagrie et al., 2017) on the same mESC line (46C; Figure 3.1). Briefly, nuclear profiles were 

isolated from 230 nm thin cryosections using a Leica laser microdissection microscope. DNA 

was extracted from single nuclear profiles and amplified by whole genome amplification 

using the WGA4 kit from Sigma. The extracted DNA was purified with column purification 

and prepared for Next Generation Sequencing using the TruSeq DNA library preparation kit 

from Illumina. Sequencing libraries were pooled and sequenced on the HiSeq2000 system. 

With the standard GAM protocol, I was able to extract DNA equally well as in the GAM 

dataset that was previously produced using a Zeiss laser microdissection microscope in A. 

Pombo’s lab in London (Beagrie et al., 2017), showing that GAM can be used independent of 

the user, laser microdissection instrument, or laboratory installations (Figure 3.1). 
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Figure 3. 1: Reproducibility of the GAM pipeline.  

(1-4) The GAM protocol comprises cryosectioning (1), laser microdissection of single nuclear profiles (NPs) 

from the unstained cryosection (2), DNA extraction by whole genome amplification (WGA; 3), library 

preparation and sequencing (4). Applying the original GAM protocol (Beagrie et al., 2017) to 46C mouse ESCs 

reproduces quality metrics of single nuclear profiles. (3) After WGA, DNA from NPs is visible as faint DNA 

smear on a 1.2 % agarose gel, compared to WGA material from 5 ng of human DNA, and a clean water control. 

DNA ladder: Gene Ruler 1kb plus. (4) After sequencing, the percentage of reads mapping to the mouse genome 

indicates the success of DNA extraction from a NP. Typically, a NP contains consecutive stretches of the 

genome, interrupted by genomic regions that are not present, which corresponds to DNA folding in and out of a 

thin cryosection, here shown by typical sequencing tracks of NPs mapping to the mouse chromosome 6 (mm9).  

 

 

3.3 Optimising the GAM protocol for high-throughput sample production  

To reduce the hands-on time and the costs of production per nuclear profile, while retaining 

high efficiency of DNA extraction, several variants of different steps of the GAM protocol 

were tested. The sum of the modifications implemented led to the development of a whole 

new GAM pipeline (Figure 3.2), which drastically reduces time and cost per nuclear profile. 

Each modification was tested in side-by-side comparisons with the variant of the step of the 

previously used protocol. For steps before and during WGA, when the DNA sample cannot be 

divided in two, the quality of each method variation was tested against the quality metrics of 

sequencing libraries of nuclear profiles produced with the previous version of the protocol. 

For all protocol changes in library preparation and sequencing, tests were performed on the 

same DNA input material after WGA.  
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Figure 3. 2: The new GAM pipeline was optimised to reduce experimental time and costs.  

Protocol steps of the first GAM pipeline (purple arrows; Beagrie et al. 2017), and the new pipeline (orange 

arrows). Common steps are indicated with grey arrows. 

  



3. GAM technology development 

 69 

3.3.1 Multiplex GAM 

One formulation of GAM, developed in collaboration with the laboratory of Mario Nicodemi, 

is multiplex GAM (Beagrie et al. in preparation), where instead of having only one nuclear 

profile per GAM sample (or tube), 2-6 nuclear profiles are extracted jointly. This is possible 

because each single nuclear profile contains ~8 % of the diploid genome, and each locus is 

detected in only ~1 out of 10 nuclear profiles. This implementation can reduce the number of 

tubes that are required to collect a GAM dataset und thereby reduce the workload and costs of 

the experiment.  

To explore the possibility of collecting multiplexed NPs, a statistical model, termed SLICE 

(previously designed for 1NP GAM data (Beagrie et al., 2017)) was further developed to 

estimate a theoretically optimal number of tubes required to obtain interactions between loci 

separated by different genomic distances (analysis done by Carlo Annunziatella, laboratory of 

M. Nicodemi, University of Naples; and Antonio Scialdone, Institute of Epigenetics and Stem 

Cells, Helmholtz Zentrum München, Germany). When combining NPs within one tube, the 

minimal number of samples (m* in Fig. 3.3b) required to map contacts at a given resolution 

(here we chose 30 kb) goes down with increasing number of NPs per tube, leading to an 

optimum of 3 - 4 NPs per sample (Figure 3.3b). When combining more than 4 NPs in a single 

sample, the power to resolve contacts decreases, especially at larger genomic distances, and 

more samples start to be required for the generation of the dataset. We decided to explore the 

use of 3NPs per sample for collecting multiplex GAM data (Figure 3.3a). This collection 

mode was first tested in silico, where we generated a 3-NP dataset out of 480 single NPs by 

combining the sequencing information from 3 single NPs into one file, and then computed co-

segregation matrices from 160 in-silico 3-NPs (analyses performed by Robert Beagrie; Figure 

3.3c). The datasets show high similarity, especially at shorter genomic distances below 4 Mb 

(r = 0.8 – 0.9), which slightly decreases at larger genomic distances (r = 0.7). 

However, sections collected without nuclear staining do not always contain a nuclear profile, 

but might contain only cytoplasm. To be able to quantify the amount of sections with and 

without nuclear content, cryosections were stained with a cytoplasmic marker and a nuclear 

marker (analyses performed by A. Kukalev; Figure 3.3d). In 230 nm thick cryosections, 

approximately one out of four cell slices does not contain a nuclear profile, which means that 

4 unstained NPs per sample corresponds to a mean number of 3.08 NPs (Figure 3.3e). In the 

subsequent sections of this thesis, I use both standard GAM with 1NP per sample and 

multiplex GAM with 3NPs per sample. For every test, the collection mode (1NP or 3NP) is 

indicated in the figure legend.  
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Figure 3. 3: Multiplex-GAM reduces the number of tubes per dataset.  

(a) Segregation tables for 3 NPs per tube would be expected to have similar co-segregation frequencies to 1 NPs. 

(b) Minimal number of tubes necessary (m*) to map contacts at 30 kb resolution separated by linear genomic 

distances of 1 Mb to 100 Mb, calculated for mESCs (46C), with a SLICE thickness of 220 nm (analysis by C. 

Annunziatella, A. Scialdone) (c) HoxA locus in 46C mESCs in 480 x 1NPs (experimental data) and the in-silico 

merged 3NP data from the same 480 NPs (160 x 3 NPs). (d) Cryosection from 46C mESCs stained with DAPI 

(DNA, blue), and SytoRNA Select (RNA, green). (e) Percentage of tubes that contain 1 – 4 nuclear profiles 

(identified with DAPI) when collecting 4 cellular profiles (identified with SytoRNA Select). Four cellular 

profiles contain on average 3.08 nuclear profiles. 
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3.3.2 Quality assessment criteria of GAM libraries during optimisations 

For assessing the quality of GAM libraries, DNA samples extracted from single NPs were 

sequenced and mapped to their reference genome, and to several other genomes (human, E. 

coli, yeast, others) to probe for contamination. For mouse ESCs, the percentage of reads 

mapping to the mouse genome is an essential mark of quality assessment, as it proves 

extraction of DNA from a nuclear profile, while also indicating potential contamination 

(represented by reads mapping to other genomes), or failures in the WGA (often represented 

by a high percentage of unmappable reads). Any GAM sequencing dataset that passes this 

first quality control is further analysed by calling positive windows at 50 kb resolution and 

assessing the percentage of whole genome coverage in each nuclear profile. Nuclear profiles 

can have different amounts of the genome covered depending on the position of the profile in 

the nucleus, as apical sections are smaller than equatorial sections and therefore have a lower 

genome coverage. To include representation from NPs with different DNA content, 48 

nuclear profiles were produced per condition for most experiments to help compare the range 

of genome coverage of samples obtained using different experimental conditions. Further, we 

reasoned that a good quality nuclear profile would not only have a high percentage of reads 

mapping to the mouse genome, but also contain entire stretches of DNA, represented as 

consecutive positive windows. Thus, in a good quality nuclear profile, a relatively small 

proportion of positive windows are expected to be found without an immediate neighbouring 

window; we call this metric ‘percentage of orphan windows’. Although a larger number of 

metrics were extensively explored, here I use the percentage of mapped reads, genome 

coverage, and the percentage of orphan windows to describe the quality of a nuclear profile.  

 

3.3.3 Cell lines used for optimising GAM 

For the optimisation of GAM, two different mouse ESC lines were used, 46C and F123. 46C 

was used for most of the early experiments, to allow direct comparisons with the published 

GAM dataset (Beagrie et al., 2017). Subsequent experiments were conducted in F123 mESCs, 

the cell line chosen for the production of a large GAM dataset with thousands of nuclear 

profiles. A comparison of GAM datasets produced from either cell line shows a similar 

percentage of mapped reads, genome coverage, or orphan windows between F123 and 46C, 

and that the genome sequence differences between the lines do not seem to affect mapping 

efficiency to the reference genome (Figure 3.4). These analyses suggest that parameters 

optimised for one ESC line, are equally suitable for the other line. For the following results 

shown in this chapter, the cell line (46C or F123) will be indicated in the figure legend.  
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Figure 3. 4: Nuclear profiles (NPs) from the mouse ESC lines 46C and F123 show similar quality metrics. 

Percentage of mapped reads, the genome coverage and orphan windows in 46C and F123 NPs. Collection of 

multiplexed NPs with the WGA4 kit from Sigma, library prep: Nextera, 46C: 120x 3NPs, F123: 46x 3NPs.  

 

3.3.4 Protocol parameters were optimised with different purposes 

The GAM protocol can be divided in different experimental stages; cryosectioning, laser 

microdissection (LMD), whole genome amplification (WGA), DNA purification, library 

preparation, and sequencing. The efforts to improve the efficiency, hands-on time, and costs 

of these experimental steps and the different parameters that were addressed in each step are 

listed in full in the appendix (Tables 8.1 and 8.2), but for the sake of brevity, only a subset of 

the optimisations is discussed in detail. 

 

3.3.5 Implementing save stopping points 

First, we implemented several save stopping points for the user to be able to collect larger 

batches of nuclear profiles simultaneously. With the option to incubate cryosections overnight 

(Figure 3.5), sectioning and LMD collection can be separated, allowing the collection of 

larger sample numbers, and with the option to freeze cryosections, large numbers of sections 

can be prepared and processed at the same time if needed. With the possibility to freeze 

nuclear profiles after collection at the LMD microscope, several rounds of collection can be 

accumulated and processed together in the following WGA and library preparation steps, 

allowing the generation of up to 192 samples in one batch.  



3. GAM technology development 

 73 

 

Figure 3. 5: Overnight storage of samples does not affect quality metrics of GAM samples.  

Cryosections can be stored in PBS overnight (o.n.) without any significant influence on the quality of nuclear 

profiles, as shown for the percentage of mapped reads, genome coverage, and orphan windows for the default 

PBS wash of 30 minutes and the overnight incubation. Cell line: F123, Collection: 3NPs, WGA: in-house, 125 x 

3NPs with 30 min incubation, 264x 3NPs with overnight incubation. 

 

3.3.6 Reducing the hands-on time per nuclear profile 

To reduce the hands-on time per nuclear profile, the library preparation time was reduced, 

which comprised three days per 96-well plate of NPs with the TruSeq library prep kit, plus 

one day of DNA purifications using column purifications on the library input material from 

the WGA. To reduce the time for DNA purification, several methods were tested, which are 

suitable for large sample numbers. The original GAM protocol used a column-based DNA 

purification (Qiagen MinElute columns), such that each sample is processed in Eppendorf 

tube format. To process samples in 96-well plates, we tested a vacuum-based DNA 

purification (Qiagen MinElute 96 UF Plate), and solid phase reversible immobilization (SPRI) 

magnetic beads, which both result in good quality NPs, while reducing the hands-on time 

required to clean up a 96-well plate of NPs from one day to one hour. Next, we tested the 

compatibility of GAM with the Nextera library preparation kit. By changing from TruSeq to 

Nextera library preparation kits, the time required to process a 96-well plate of NPs decreases 

from 3 days to 1 day. The implementation of automated pipetting of the WGA reaction and of 

the library preparation reduced the time per NP further, while retaining library quality. In 

total, the time-optimised GAM protocol for a dataset of nuclear profiles (4x 96 NPs) requires 

7 days of hands-on time, and 2 days of sequencing, which is a more than 4-fold reduction of 

time compared to the original protocol (28 days hands-on time, 12 days sequencing; Table 

3.1).  
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Table 3. 1: Days required for the production of four 96-multiwell plates of GAM samples with the old and 

the new GAM pipeline. 

Protocol step 

Pipeline 

(Beagrie et al., 2017) 

(days) 

New pipeline 

(days) 

Collection of NPs 8 2 

DNA extraction by WGA 4 2 

DNA purification 4 1 

Library preparation 12 2 

Total hands-on time 28 7 

Sequencing 12 2 

Total 40 9 

 

 

3.3.7 Reducing the cost per nuclear profile 

With the goal to reduce the cost per nuclear profile, the number of kit-based reagents was 

minimised, starting from less critical steps in the protocol, such as DNA purification and 

library preparation. First, we adopted the use of SPRI magnetic beads for all DNA 

purification steps. We tested the performance of SPRI beads (produced in-house by A. 

Kukalev) using a published protocol (DeAngelis et al., 1995), in comparison to commercially 

available SPRI beads (AMPure XP, Agencourt). DNA fragment distribution and yield were 

identical between commercially available beads and the SPRI beads produced in-house when 

processing the same input of whole genome amplified DNA produced from nuclear profiles 

with either type of beads (Figure 3.6a). The in-house produced SPRI beads were implemented 

into the revised GAM pipeline.  

To further reduce the cost of library preparation, we scaled down the volumes recommended 

by the manufacturer of the Nextera library preparation kit, according to published 

recommendations (Lamble et al., 2013). We prepared libraries from the same WGA-material 

extracted from nuclear profiles using either the recommended volume or reduced volumes to 

20% of the original. Samples were sequenced and the distribution of reads in sequencing 

tracks were found identical between the two conditions (Figure 3.6b). To extend this 

exploration, we divided the genome in 50 kb windows and called positive signal finding 

excellent overlap of positive windows genome-wide (Figure 3.6c). The similarity between the 

full volumes and the reduced volumes produced at the same time exceeded the similarity 

between technical replicates (both full volumes) produced at different days. Thus, we decided 

to implement the reduced volume library preparation in the revised in-house GAM pipeline, 

which reduced the costs per NP immensely.  
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Figure 3. 6: Cost reduction per nuclear profile.  

(a) Electrogram of amplified and purified DNA from F123 nuclear profiles after WGA. DNA purification with 

AMpure XP beads and in-house SPRI beads results in identical DNA fragment length distributions. FU, 

fluorescence units (b) Sequencing tracks mapping to mouse chromosome 11 for two technical replicates of 

library preparation with full volumes, and a replicate using only 1/5 of the reaction volume. Positive 50 kb 

windows (black) are displayed under each track. (c) Venn plot displays the common and different positive 

windows for technical replicates of library preparations. 
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3.3.8 Visualisation of nuclear profiles 

In the original GAM protocol, NPs were collected on the LMD under transmitted light 

illumination that helped visualise sections from cells, but does not allow choosing of cellular 

slices that contain nuclei (Beagrie et al. 2017). For this reason, several cellular slices did not 

produce useful data. To improve the efficiency of NP collection, we aimed to find a nuclear or 

cellular marker that would allow visualisation of cellular slices containing nuclei under the 

LMD microscope.  

First, we tested different DNA dyes that could potentially stain nuclear profiles. Most 

commonly used DNA dyes work well in cryosections for imaging NPs in standard 

fluorescence microscopy. However, they are more challenging to apply in LMD microscopy, 

due to the high autofluorescence of the membrane slides used for LMD, which excluded some 

potential dyes from being suitable for GAM (Supplementary table 8.2). To be useable in the 

GAM protocol, the staining also has to be compatible with the subsequent DNA extraction by 

WGA. All DNA dyes tested gave no or little DNA extraction, suggesting that the binding of 

the fluorescent dye to the DNA directly interferes with successful DNA extraction and 

amplification (Figure 3.7a, b). This led to the exploration of histological stains, which do not 

specifically label nuclei, but that can be used to more robustly find cellular slices. Here, I 

found several dyes that stain cryosections (Supplementary table 8.2) and could potentially 

enable easier and more reliable collection of nuclear profiles, with one of them being also 

compatible with subsequent DNA extraction by WGA (Figure 3.7c, d).  
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Cresyl violet qualified as a cellular marker to effectively collect nuclear profiles, however it 

still had the drawback of not visualising nuclei, which means that a proportion of the nuclear 

profiles would potentially contain a cellular slice without genomic DNA. Thus, I explored 

using immunofluorescence of DNA binding proteins. I showed that nuclei can be visualised 

under the LMD microscope after staining with a pan-histone antibody (Figure 3.8a), and most 

importantly, the immunofluorescence protocol had no negative effect on the subsequent DNA 

extraction. Compared with cresyl-stained samples, the cryosections stained by 

immunofluorescence have improved quality of DNA extraction, as shown by an increase in 

the percentage of mapped reads, genome coverage, and a decrease in percentage of orphan 

windows (Figure 3.8c, d).  
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Figure 3. 7: Visualisation of nuclear 

profiles in GAM.  

Most stains tested to label nuclear 

profiles in cryosections gave very low 

percentage of mapped reads per NP. 

Control: unstained NPs. (a) Propidium 

iodide (PI) staining on LMD slides is 

visible under the LMD microscope but 

interferes with DNA extraction by 

WGA. (b) SybrGold staining is visible 

under the LMD microscope but 

interferes with DNA extraction by 

WGA. (c) Crystal violet staining is 

visible under the LMD microscope but 

interferes with DNA extraction by 

WGA. (d) Eosine Y staining is visible 

under the LMD microscope but 

interferes with DNA extraction by 

WGA. (e) Cresyl violet staining is 

visible under the LMD microscope and 

allows DNA extraction by WGA. Cell 

line: 46C, collection: 3NPs, WGA: 

Sigma WGA4. 

 



3. GAM technology development 

 78 

 

Figure 3. 8: GAM can be combined with immunofluorescence.  

(a) Anti-pan-histone staining under the LMD microscope. Staining of histones using a pan-histone antibody 

raised in mouse, followed by indirect immunodetection with fluorochrome-Alexa anti-mouse antibodies. (b) 

Cresyl violet staining under the LMD microscope. (c) Percentage of mapped reads, genome coverage, and 

orphan windows in single nuclear profiles for cresyl-stained samples and samples undergoing an 

immunofluorescence staining against pan-histone. N = 31 NPs (cresyl), 24 NPs (pan-histone) (d) Percentage of 

mapped reads, genome coverage, and orphan windows in multiplexed nuclear profiles for cresyl-stained samples 

and samples undergoing an immunofluorescence staining against pan-histone. N = 54 x 3 NPs (cresyl), 23 x 3 

NPs (pan-histone). Cell line: F123, WGA: in-house.  

 

3.3.9 Laser-microdissection 

Next, I tested several parameters related with the LMD collection of nuclear profiles, such as 

the material of the membrane slide, or the orientation of the sample in the LMD microscope 

(Figure 3.9a). Interestingly, while the orientation of the sample in the LMD has no effect on 

NP quality (Figure 3.9b), different membrane types strongly influence the extraction 

efficiency, resulting in samples with strongly reduced percentages of mapped reads (Figure 

3.9c). For the collection of NPs, we use opaque-filled caps (Leica), specially designed for 

laser microdissection, which are thought to reduce statics during dissection. To test the effect 

of the opaque-filled caps on subsequent DNA extraction, I used standard PCR caps to collect 

NPs and compared them with the LMD caps. In fact, NPs cut into PCR caps are of slightly 

reduced quality in comparison to the LMD cap, noticeable mostly in a reduced percentage of 

mapped reads (Figure 3.9d). Thus, although PCR caps have the advantage of being less 

expensive than LMD caps, they are not recommendable for GAM. I also found that Pol and 
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PPS membranes are not suitable. Therefore, no changes of the materials used for laser 

microdissection were implemented in comparison to the original protocol.  

 

 

Figure 3. 9: Testing different parameters for laser microdissection of nuclear profiles.  

(a) Different orientation of the membrane slide in the LMD microscope may result in different exposure of the 

sample to the laser beam. (b) Orientation of the membrane slide in the LMD microscope does not affect DNA 

extraction from nuclear profiles, as shown by the percentage of mapped reads per NP. N = 14 x 3NPs facing up, 

14 x 3NPs facing down. Cell line 46C, WGA: Sigma WGA4. (c) Different membranes influence the efficiency 

of DNA extraction from nuclear profiles, as shown by the percentage of mapped reads per NP. N = 16 x 3NPs 

(PEN), 16 x 3NPs (Pol), 8 x 3NPs (PPS). Cell line 46C, WGA: Sigma WGA4. (d) Nuclear profiles fall into a 

collection cap after LMD. Percentage of mapped reads, genome coverage, and percentage of orphan widows per 

NP show slightly reduced quality for PCR caps compared to LMD caps. N = 79 NPs (LMD cap), 112 NPs (PCR 

cap). Cell line: F123, WGA: in-house. 

 

3.3.10 Whole Genome Amplification using different methodologies 

(a) DNA extraction with the WGA4 kit from Sigma 

The efficiency of the WGA reaction in the extraction and amplification of DNA from single 

nuclear profiles is an essential step for the successful analysis of 3D genome topology with 

GAM. We tested various conditions in the WGA reaction, first by optimising the performance 

of the WGA4 kit from Sigma Aldrich, a kit designed to extract and amplify DNA from single 

cells. The WGA reaction relies on lysis and DNA fragmentation, annealing of universal 

primers to the fragmented DNA, and amplification. Although the DNA content of the GAM 

nuclear slices is 20-50x lower that a single cell, the WGA4 kit was successfully used in 
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Beagrie et al. (2017) to extract DNA from nuclear profiles, reaching 83 % efficiency in the 

extraction of 30 kb windows (Beagrie et al., 2017).  

 

In 2017, while testing different experimental parameters in the WGA4 kit (Table 3), we 

noticed a sudden drop in the quality of GAM sequencing data from nuclear profiles. We 

noticed that all WGA4 kits received after January 2017 failed to extract DNA from GAM 

nuclear profiles, although they could still amplify control genomic DNA at low 

concentrations equivalent to a single cell. To better understand the cause of the decreased 

quality of GAM datasets found in three consecutive batches of GAM collection, we quantified 

the percentage of mapped reads, the genome coverage and percentage of orphan windows in 

data collected with batches received before and after January 2017 (Figure 3.10a). 

Consistently, the whole batch of NPs collected with the new WGA4 kits showed a low 

percentage of mapped reads, low genomic coverage and a high fraction of orphan reads, 

indicating inefficient DNA extraction. The low quality of these datasets was confirmed by 

examining the fragment size distribution of DNA extracted from NPs with the WGA4 kit 

before and after January 2017 on an agarose gel (Figure 3.10b). NPs from the affected batches 

displayed bulks of small DNA fragments in almost every sample. These low molecular weight 

fragments are likely to be dimers of WGA primers that ligate in the absence of extracted DNA 

from NPs. Visualisation of the sequencing and positive window tracks of poor-quality NPs 

processed for GAM before or after January 2017 also highlighted strong discrepancies 

between detection of raw reads and ability to call positive windows from the later datasets 

(Figure 3.10c). The window calling approach previously devised for GAM data to identify 

signal and noise in each sample was based on fitting a binomial curve on the reads 

distribution, before setting a sample-specific threshold based on the fitting of the curves 

(Beagrie et al., 2017) (Figure 3.10d). A sample-specific threshold is required to call windows 

in GAM data due to the fact that each dataset contains varied amounts of DNA depending on 

whether the nuclear slices are equatorial or apical, resulting in different coverage and number 

of reads per genomic region (Beagrie et al., 2017). 
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Figure 3. 10: Efficiency of DNA extraction with the WGA4 kit from Sigma dropped unexpectedly.  

(a) A sudden drop in NP quality appeared in all GAM batches after January 2017, noticeable by a low 

percentage of mapped reads, low genome coverage, and a high percentage of orphan windows. (b) Low quality 

metrics appeared simultaneously with bulks of small DNA fragments after WGA, visible when running DNA 

from nuclear profiles on a 1.2% agarose gel. DNA ladder: Gene Ruler 1kb plus. (c) Sequencing tracks mapping 

to mouse chromosome 16 from the January and February batch (2017) of the WGA4 kits. Tracks of positive 

windows underneath the sequencing tracks show less efficient window calling in the February samples, which 

explains the low genome coverage in these samples. Cell lines: F123 and 46C. N = 120 x 3 NPs (2016), 47 x 3 

NPs (01-2017), 94 x 3 NPs (02-2017), 166 x 3 NPs (03-2017), 15 x 3 NPs (10-2016). 

 

Visual inspection of the curve fitting graphs showed that the original curve fitting failed to 

identify the noise, setting the threshold of positive windows too high. To overcome this 

problem, we tested alternative approaches to call windows, and developed one that sets the 

threshold in each sample by defining a percentile rank for the minimum nucleotide coverage 

required for calling a positive window. The percentile itself is defined for a set of NPs (e.g. a 

full GAM dataset, or a batch of NPs) and represents the noise in this particular set of samples 

(typically this percentile is between 77 to 81 for the current GAM datasets, depending on the 

window size). This approach allowed recovery of positive windows from nuclear profiles in 

all batches, including those from the batch from January 2017, suggesting the revised 

approach to be more robust to the quality of sequences from GAM datasets. When applying 

the coverage-based window calling approach, both genome coverage and the percentage of 

orphan windows improved (Figure 3.11a, b).   
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Next, we tested whether the revised coverage-based window calling improved the detection of 

windows in the batches of nuclear profiles from February 2017 onwards. Importantly, most of 

the collected NPs had a low percentage of mapped reads (<15 %), which drastically reduces 

the genomic information that one NP can provide. When taking into consideration only the 

samples that pass this first quality criterion of >15% mapped reads, and applied the coverage-

based window calling, we could obtain the expected range of genome coverage and 

percentage of orphan windows in the WGA4 batch of 02-2017, but the improvements 

introduced were not sufficient to reach the range of good quality values in the 03-2017 or 

subsequent batches produced with the latest batches of the Sigma WGA4 kit (Figure 3.11c). 

Therefore, it was necessary to find alternative WGA kits or to develop our own. 

 

 

Figure 3. 11: A new window calling approach improves the recovery of positive windows from NPs. 

(a) Sequencing track of two nuclear profiles and positive windows called with the percentile-based approach 

(top), and the previously used curve-fitting approach (bottom). (b) Genome overage and percentage of orphan 

windows for the January 2017 batch of nuclear profiles processed with the curve-fitting and the percentile-based 

windows caller. (c) Genome coverage and percentage of orphan windows in NPs with more than 15% mapped 

reads (current quality control criteria for good quality NPs) with the coverage-based window calling. Cell lines: 

F123 and 46C. N = 120 x 3 NPs (2016), 47 x 3 NPs (01-2017), 94 x 3 NPs (02-2017), 166 x 3 NPs (03-2017), 15 

x 3 NPs (10-2016). 

 

(b) Testing other WGA methodologies for GAM 

To identify an alternative to the Sigma WGA4 kit, we first tested different commercially 

available WGA kits from other suppliers, and evaluated their performance on NPs. Those 

were in particular, the Ampli-1 kit from Menarini Silicon Biosystems, the Multiple Annealing 
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and Looping Based Amplification (MALBAC) kit from Yikon Genomics, and the Repli-G kit 

from Qiagen. The challenge with these alternative commercially available kits is that they 

have been optimised for extracting DNA from single cells without crosslinking. GAM 

requires the extraction of DNA from a small fraction of the cell (~230 nm thin nuclear slices), 

corresponding to approximately ~1/40 of an mESC nucleus, which contain highly crosslinked 

chromatin (fixation in 8% formaldehyde for 2h). The only kit that gave promising results was 

the MALBAC kit from Yikon Genomics, which produced GAM samples with good 

percentage of mapped reads, but lower coverage and high percentage of orphan windows, 

compared with those produced with WGA4 kits obtained prior to 2017 (Figure 3.12a, b). 

Although we were able to improve the performance of the MALBAC kit, the GAM datasets 

produced with this kit had unreliable quality, often with high percentage of unmappable reads, 

or E. coli contamination (Figure 3.13), making it unsuitable for high-throughput production of 

NPs. 

 

Figure 3. 12: Testing different WGA reactions for GAM.  

(a) Percentage of mapped reads, genome coverage, and orphan windows for different WGA reactions.  Cell line: 

F123: Sigma n = 32 x 3NPs, Ampli-1 n = 8 x 3NPs; MALBAC n = 8 x 3NPs. (b) DNA from multiplexed nuclear 

profiles (3 NPs) mapping to mouse chromosome 11 (mm9) for different WGA reactions. 
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Figure 3. 13: Variability in quality of the MALBAC 

kit from Yikon.  

Percentage of reads mapping to mouse and E. coli, and 

unmappable reads in NPs processed with different lots 

of the MALBAC kit. Numbers of NPs from left to right: 

40 x 3NPs, 96 x 3NPs, 112 x 3NPs, 96 x 3NPs. Cells: 

F123 mESCs collected by myself, and other murine cells 

collected by I. Harabula and A. Kukalev.  

 

 

 

 

 

(c) Whole Genome Amplification independent of commercially available kits  

To overcome the limitations of commercially available kits, the only alternative option was to 

develop an in-house protocol for WGA. We took inspiration from the MALBAC protocol, in 

which random hexamers bind genomic DNA in multiple annealing steps before amplification. 

The amplification products contain a common primer sequence, which was attached to the 

random hexamers, and are then further amplified with primers annealing to the common 

sequence. MALBAC has been used for DNA and RNA amplification in single cells 

(Chapman et al., 2015; Zong et al., 2012). Here, we show that a modified version of 

MALBAC can be used to amplify DNA from crosslinked nuclear profiles, with similar 

performance to the previously used WGA4 kit from Sigma (Figure 3.14).  
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Figure 3. 14: The in-house version of MALBAC extracts good quality DNA from NPs. 

(a) Percentage of mapped reads, genome coverage, and orphan windows for different WGA reactions.  Cell line: 

F123: Sigma n = 32 x 3NPs; MALBAC n = 8 x 3NPs; in-house n = 15 x 3NPs. (b) DNA from multiplexed 

nuclear profiles (3 NPs) mapping to mouse chromosome 11 (mm9) for the in-house WGA reaction. 

 

To improve the WGA protocol, we started by testing several parameters to enhance the 

efficiency of DNA extraction. A critical condition of the WGA of GAM NPs is the treatment 

with protease to reverse the crosslinking and lyse the nuclear slice. Thus, we tested the 

influence of incubation time and concentration of protease during the incubation on DNA 

extraction efficiency. We found that increasing the incubation time has little effect on the 

quality of nuclear profiles (Figure 3.15a), whereas protease concentration is critical for 

successful DNA extraction (Figure 3.15b). To ensure optimal DNA amplification, we tested 

several parameters in the PCR reaction, such as concentration of nucleotides and magnesium 

(Figure 3.15d), volume of the WGA reaction (Figure 3.15e), annealing time of the hexamers 

and PCR elongation times (Figure 3.15c), or PCR primer annealing temperature (Figure 

3.15f). While most of these changes had a negative effect on DNA amplification and were not 

implemented in the protocol, prolonged annealing and elongation times appear to have a 

positive influence on DNA extraction and could potentially be implemented in the protocol 

(Figure 3.15c). 
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Figure 3. 15: Improving the performance of the in-house WGA reaction.  

Percentage of mapped reads, genome coverage, and orphan windows for different WGA conditions. Collection: 

3 NPs, cell line: F123, WGA: in-house, n varies between plots. Protease incubation time n = 23 x 3NPs each; 

Protease concentration n = 23x 3NPs (1x protease),  47x 3 NPs (2x protease); Amplification times n = 16x 3NPs 

(each); Concentrations of PCR reagents n = 16x 3NPs (each) ; Volumes of WGA reaction n = 63x 3NPs (1x 

vol), 15x 3NPs (2x vol), PCR annealing temperature n = 63x 3NPs (58C), 38x 3NPs (65C). 
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3.4 Final decisions for data collection of nuclear profiles in F123 mESCs 

Considering all the tested conditions, the following protocol was finally chosen; Cells are 

cryosectioned (230 nm) and transferred to a PEN-membrane slide with a 2.1M sucrose in PBS 

drop, washed with PBS for 30 min, and stained with cresyl violet. Then 1 or 4 cresyl-stained 

NPs are laser-microdissected into a single 8-well LMD collection cap. The DNA is extracted 

and amplified using the in-house WGA protocol based on MALBAC, with a 2x concentration 

of Qiagen protease, at 60°C, for 4 h. DNA is amplified with 3-min primer annealing, and 

4 min elongation time, at 58°C annealing temperature, and with 11 cycles in the 

preamplification step, followed by 26 cycles in the second amplification of the WGA. After 

WGA, DNA is purified using 1.7x (for 1NP) or 0.8x (for 3NPs) SPRI beads (in-house 

production), quantified with PicoGreen, then 1 ng per sample is used as input for the Nextera 

XT library preparation kit. The library reaction is scaled down to 1/5 of the recommended 

volumes from the manufacturer to save costs. Libraries are purified with 1.7x SPRI beads (in-

house production) and library DNA quantified using PicoGreen. Next, the same amount of 

DNA is pooled from each library into a sequencing pool containing 192 GAM libraries, and 

sequenced on the NextSeq 500 sequencing device with 75 bp single-end sequencing, to an 

average sequencing depth of 2.7 million reads per library. 

While optimising the GAM pipeline, many successful GAM samples were collected from 

1NP and 3NPs in the F123 cell line. Samples that passed general quality metrics (a high 

proportion of reads mapping to the mouse genome) were included in the F123 dataset. 

However, the majority of data collection for a deep GAM dataset in F123 was produced 

subsequently with the above-mentioned final conditions. The samples produced during 

optimisation had the same distribution of quality metrics when compared with the batch of 

GAM samples collected subsequently. 

 

3.5 Exploration of datasets produced with different GAM protocols 

When working with smaller numbers of NPs during the protocol optimisations, only basic 

quality assessments as described above are feasible, due to the nature of the GAM method, 

which works by sampling nuclear slices in random orientations and with varied DNA content, 

and results in contacts maps of complete genomes only after combining the information from 

a few hundred nuclear profiles. To fully understand the efficiency of DNA detection in 

nuclear profiles collected with different GAM protocols, deeper explorations of the entire 

collection of GAM datasets is necessary. To help assess the quality of GAM datasets 

produced with the new GAM pipeline using F123 mESCs, I used the previous published 
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GAM dataset produced in 46C mESCs. The 46C dataset comprises 471 single NPs (of which 

408 passed quality controls) and 5 negative controls, collected in 12 batches (Beagrie et al. 

2017). The F123 dataset collected in 1NP mode was used for this comparison, and consists of 

1281 samples and 56 controls produced after laser-microdissecting LMD membrane without 

cells, collected in 22 batches, all with the in-house WGA protocol. Before evaluating NP 

quality, cross-contamination between NPs from the same batch was investigated by 

measuring the similarity of positive windows between all wells in a multiwell plates 

(described in 2.20.3). Thirteen samples were excluded from the F123 dataset leaving 1268 

NPs before applying quality cut-offs. 

 

3.5.1 Quality metrics of nuclear profiles collected with different GAM pipelines 

First, I evaluated the consistency of the percentage of mapped reads (to mm10) over the 

period of data collection (Figure 3.16). In both datasets, 46C and F123, the majority of 

samples passed the quality control introduced previously in Beagrie et al. (2017) of >15 % 

mapped reads. However, there are noticeable differences between the datasets. Most of the 

46C batches tend to have larger proportions of NPs with a high percentage of mapped reads 

(more than 50 % mapped reads), whereas NPs in many batches in F123 show a widespread 

distribution of % mapped reads (about 20 – 70 % mapped reads) per dataset.  

 

 

Figure 3. 16: Nuclear profiles show consistent quality metrics between batches.  

Each dot represents individual 1NP GAM samples from mESCs 46C and F123 clones. The percentage of 

mapped reads is shown for each batch of NPs, in chronological order of collection, for 471 single NPs from 46C 

collected with the WGA4 kit from Sigma, and 1281 single NPs from F123 collected with the in-house WGA 

protocol.  
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A number of additional features and quality metrics were assessed in both datasets (Table 

3.2). Previous work showed that an average sequencing depth of 1 million reads was 

sufficient to saturate the detection of 30 kb positive windows in single GAM datasets (Beagrie 

et al., 2017). We decided to sequence F123 nuclear profiles to a higher average sequencing 

depth of 2.7 million reads per NP, in contrast with 1.1 million reads per NP in 46C. As 

expected, the increase in sequencing depth in F123 is accompanied by a proportional increase 

of uniquely mapped reads per NP (Figure 3.17). Another hallmark of NP quality is potential 

contamination with DNA from other species. Here, the majority of NPs from the F123 dataset 

has less contamination with other genomes than the 46C dataset (Figure 3.17), probably due 

to the LMD collection of F123, which took place in a separate room, whereas for the 46C data 

collection, the LMD equipment was located in a shared room.  

 

Table 3. 2: Quality metrics of NPs. 

 

Metric Description 

Total reads Number of sequenced reads (sequencing depth) 

Percentage of mapped reads Percentage of reads mapping to the mouse genome 

Mapping to human Percentage of reads mapping to the human genome 

Mapping to E. coli Percentage of reads mapping to the E. coli genome 

Mapping to S.saccharomyces Percentage of reads mapping to the S.saccharomyces genome 

Uniquely mapped reads 
Number of reads mapping uniquely to the mouse genome (after 

removal of PCR duplicates) 

Genome coverage 
Number of positive windows (50 kb) in the genome divided by the 

total number of windows in the genome.  

Orphan windows 

Percentage of positive windows (50 kb) that are surrounded by 

negative windows for each chromosome. Then, the average of all 

chromosomes is calculated. 

Number of chromosomes 

To count the number of chromosomes, the fourth quartile of the 

number of positive windows in one megabase is 

calculated.  Afterwards, the chromosomes that contain at least one 

megabase window with more positive windows than the fourth 

quartile are counted as present chromosomes.  
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Figure 3. 17: Sequencing reads of 46C (blue) and F123 (green) single NPs map predominantly to the 

mouse genome.  

From top to bottom: Number of sequenced reads vs. uniquely mapped reads to mouse; percentage of reads 

mapping to the human genome vs reads mapping to mouse; percentage of reads mapping to the E. coli genome 

vs. reads mapping to mouse; percentage of reads mapping to the yeast genome vs. reads mapping to mouse. 

Negative controls are shown in red. 
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Next, I examined four quality metrics that best describe the quality of 1NP GAM data, 

namely the number of uniquely mapped reads, genome coverage, percentage of orphan 

windows, and number of chromosomes. Both 46C and F123 datasets follow a similar general 

trend, where having more uniquely mapped reads results in higher genome coverage, 

accompanied by a small tendency to cover a larger number of chromosomes, and a lower 

percentage of orphan windows (Figure 3.18). This trend is less pronounced for the F123 NPs, 

where many uniquely mapped reads does not result in a proportional increase in genome 

coverage as observed in 46C (Figure 3.18). Samples with higher number of chromosomes do 

not necessarily have a high genome coverage, suggesting that parts of the genome were not 

recovered out of the NP (Figure 3.18). Most strikingly, F123 NPs often have higher 

percentages of orphan windows, even when larger numbers of chromosomes are detected 

(Figure 3.18). Taken together, these results suggest that the F123 data collected had less 

efficient extraction of DNA. 
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Figure 3. 18: NPs in the F123 dataset cover a lower percentage of the genome with the same or more 

uniquely mapped reads than 46C.  

Quality metrics of 46C (blue) and F123 (green) from top to bottom: Percentage of genome coverage vs. number 

of uniquely mapped reads; percentage of genome coverage vs number of chromosomes; percentage of orphan 

windows vs number of chromosomes. Negative controls are shown in red. 
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To test whether the samples with lower extraction in F123 belonged to specific batches of 

NPs, I next studied batch effects in the genome coverage and the percentage of orphan 

windows, the two criteria that were most different between the two datasets (Figure 3.17). For 

most batches, the genome coverage per NP in both 46C and F123 is very consistent, with only 

mild differences in the sample distribution between the two datasets. A similar trend is 

observed for orphan windows, but, while the majority of NPs from 46C has less than 30% 

orphan windows, NPs from F123 are more heterogeneous, with many samples having up to 

50-60 % of orphan windows. These analyses showed that the quality criterium of >15 % 

mapped reads used in Beagrie et al. (2017) was not sufficient for removing lower quality 

samples from the F123 dataset. 

 

Figure 3. 19: Nuclear profiles show consistent quality metrics between batches.  

The percentage genome coverage (top) and the percentage of orphan windows (bottom) is shown for each batch 

of NPs, in chronological order of collection, for 471 single NPs from 46C, and 1281 single NPs from F123. 

 

3.5.2 Defining quality control criteria for the GAM datasets from F123 mESCs 

The parameter that displayed the most striking difference between 46C and F123 data was the 

percentage of orphan windows. We considered to use it as an additional parameter to % 
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mapped reads, to help identify lower quality GAM samples in the F123 dataset. Noting that 

GAM samples from 46C rarely had more than 60 % of orphan windows, and the majority of 

F123 NPs was also below this mark, while negative controls showed the opposite behaviour, 

the value of 60 % orphan windows was chosen as an appropriate criterium (Figure 3.20). 

Twelve additional samples with very low number of uniquely mapped reads (<20,000) were 

also excluded as they may correspond to samples that were under-sequenced or were 

contaminated by sequences from other genomes. In total, considering both the % orphan 

windows and the number of uniquely mapped reads, led to the exclusion of 145 NPs from the 

dataset, leaving 1123 good quality NPs for generating segregation tables from (Table 3.3, 

Figure 3.20). This cut-off removes 11% of lower quality samples, which is an improvement 

comparing with 63/471 NPs in the first GAM dataset (Beagrie et al. 2017) (Table 3.3, Figure 

3.20).  

 

Table 3. 3: Number of NPs in F123 and 46C 1NP datasets before and after quality control. 

F123 1NP dataset Number of NPs 

collected 1281 

cross-contaminated 13 

> 60 % orphan windows 133 

< 20 000 uniquely mapped reads 12 

passed quality control 1123 

46C 1NP dataset (Beagrie et al.) Number of NPs 

collected 471 

< 15 % mapped reads 63 

passed quality control 408 
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Figure 3. 20: Different quality control criteria are applied on 46C and F123 to identify low quality NPs. 

In 46C (blue), samples with less than 15 % mapped reads (grey) are removed from the dataset. In F123 (green), 

samples with less than 20,000 uniquely mapped reads and more than 60 % orphan windows are removed from 

the dataset. Negative controls obtained from laser microdissection of membrane not containing NPs are shown in 

red.  
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3.5.3 Differences in detection efficiency between the two GAM pipelines 

A GAM dataset consists of a number of NPs, each with different parts of the genome present. 

The information obtained from each NP can be summarised in a segregation table, which 

shows in which NPs any genomic locus was detected (at a given resolution). With the 

knowledge of a few parameters (the nuclear radius of the cell, the slice thickness, and the 

genome length) the expected number of NPs that contain a single genomic locus can be 

calculated (Beagrie et al., 2017). This expected locus detection frequency can be compared 

with the actual segregation frequency of a locus, which gives an estimate of the efficiency of 

DNA detection. The efficiency in GAM describes the probability of a locus being detected 

and can inform about the extent of false negative loci that were present in a NP but not 

extracted or detected (Figure 3.21b). In 46C, the median detection frequency of a genomic 

locus at 30 kb resolution in the collection of 408 NPs is 6.2 % (Figure 3.21a), which results in 

a detection efficiency of 83 % (Beagrie et al., 2017). We suspected that the reduced genome 

coverage observed in F123 NPs would impact on the detection frequency of genomic loci and 

thereby also the overall detection efficiency. We find that the median detection frequency in 

F123 at 30 kb is 4.2 % (Figure 3.21a), and the detection efficiency is 55 % at the same 

resolution (Figure 3.21c, analysis by Luca Fiorillo, laboratory of M. Nicodemi, University of 

Naples).  

 

The successful extraction of all genomic material from a nuclear profile is a crucial parameter 

for the quality of GAM datasets and the resolution that they can be studied at. To investigate 

the consequences of this reduced efficiency in F123, we explored the consequences of 

different detection efficiencies by modelling GAM in silico (analysis by Luca Fiorillo and 

Francesco Musella, Nicodemi lab, University of Naples). With the model, the theoretical 

number of NPs that is required to obtain saturated contact maps at a given resolution (40kb) 

was determined. As a metric for saturation of contacts, the model considers convergence of 

replicates (that is 0.9 Pearson correlation between replicates). At 100 % efficiency, a GAM 

dataset needs a theoretical minimum of 1000 NPs to achieve convergence (Figure 3.21d). 

Importantly for our subsequent analyses, this number remains stable until 40 % efficiency 

showing that GAM data has a good tolerance for efficiency variations. Below 40 %, 

efficiencies become crucial, as the number of NPs that are required for convergence between 

replicates increases to impractical numbers of samples of ten thousand or more. 
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Figure 3. 21: Detection efficiency of genomic loci is reduced in the F123 dataset compared to 46C.  

(a) Mean detection frequencies for all genomic windows at 30 kb in 46C and F123. (b) Illustration of the effect 

of DNA extraction efficiency (). (c) Genome-wide detection efficiency at different resolutions in 46C and F123. 

(d) The impact of efficiency on capturing chromatin contacts with GAM. Number of NPs required to achieve 

convergence of replicates in a theoretical GAM experiment with different efficiencies. Material in c and d by L. 

Fiorillo. 

 

3.5.4 Extraction efficiencies in F123 are not uniform throughout the genome 

Next, we asked whether the difference in extraction efficiency in F123 had a preference for 

specific regions of the genome namely between open (eu-) chromatin and closed (hetero-) 

chromatin. First, we compared the detection frequencies per genomic window and found that 

window detection frequencies do not correlate well between in 46C and F123 (Figure 3.22). 

For some genomic windows, the lower detection frequency in F123 is apparent, while for 

others this difference is less pronounced.  
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Figure 3. 22: Genomic windows are differentially detected in the 

46C and F123 datasets.  

Density plot of window detection frequencies in the 46C and the 

F123 dataset. Histograms of window detection are shown above 

(46C) and on the right (F123), and show a wider distribution in 

F123 consistent with two or more behaviours in window detection. 

 

 

 

 

 

Next, we tested whether the under-detected windows in F123 share common features that 

could explain why we see them less often than expected. We reasoned that the feature of 

DNA to most likely interfere with extraction, is the compaction of chromatin. More 

condensed chromatin with a high protein occupancy might suffer stronger from reduced 

efficiencies. To test this hypothesis, we first used published ATAC-seq data for mESCs (E14) 

to identify euchromatic DNA regions, by using the density of ATAC peaks as a proxy for the 

openness of chromatin. We grouped genomic windows (50 kb) based on the number of 

ATAC peaks per window, and compared the window detection frequencies of each group 

(Figure 3.23a). In both, 46C and F123, the detection frequency is higher in windows with 

higher ATAC peak density, as expected, since the decondensed state of open chromatin takes 

up larger areas of the nucleus and is sampled slightly more frequently (Beagrie et al., 2017). 

In the F123 dataset, the difference in detection frequency between ATAC-rich and ATAC-

poor genomic regions is very pronounced (Figure 3.23b). In 46C, windows across all 

detection frequencies can have high numbers of ATAC peaks, which results in a more 

uniform detection of windows with and without ATAC peaks. In F123, the majority of 

windows with high numbers of ATAC peaks have higher detection frequencies than windows 

with low numbers of ATAC peaks, which results in the under-detection of closed chromatin 

in the F123 dataset.  

While ATAC-peak occupancy can function as a proxy for euchromatin, the absence of 

ATAC-seq signal does not necessarily identify a genomic region as heterochromatic. 

Heterochromatin contains condensed DNA, which can be found predominantly at the 

periphery of the nucleus, in proximity to the nuclear lamina (Peric-Hupkes et al., 2010). Thus, 

to mark heterochromatin, we classified genomic windows according to their membership to 

LADs using published DamID data in mESCs for Lamin B1, which identifies DNA 

interacting with Lamin B1. In 46C, windows covering LADs have a similar range of detection 

frequencies as windows outside of LADs (Figure 3.23c). In F123, windows covering LADs 
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have lower detection frequencies than windows outside of LADs (Figure 3.23c). The 

difference in LAD detection can be seen in more detail when comparing detection frequencies 

for each genomic window between the datasets, and colouring them based on their location in 

or outside LADs (Figure 3.23d). To explore this trend, we compared the average nucleotide 

coverage and the average number of reads per 50 kb window in LADs and non-LADs in 46C 

and F123 GAM datasets. While windows in 46C have similar reads and coverage between 

LADs and non-LADs (Figure 3.23e), windows in F123 show a clear difference, displaying 

lower nucleotide coverage and less reads in LAD windows (Figure 3.23f). These results point 

towards a general problem of DNA extraction in LADs. 

 

Figure 3. 23: Window detection frequencies in the F123 dataset are not uniform, with reduced frequencies 

in lamina associated domains (LADs). 

(a) Detection frequencies in 46C and F123 of genomic windows (50 kb), grouped based on the number of ATAC 

peaks per window. ATAC-seq data from mESCs (E14). (b)Window detection frequencies of 46C and F123 
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coloured by the number of ATAC-seq peaks per window (50 kb). (c) Detection frequencies of 50 kb windows, 

grouped according to their overlap with a LAD (yes / no) in 46C and F123. (d) Detection frequencies of 50 kb 

windows coloured according to their overlap with a LAD (yes = blue, no = green) in 46C and F123. LAD 

windows are plotted on top. (e) Mean coverage and mean number of reads per window in 46C coloured 

according to lamina-association. LADs (blue) are plotted on top of non-LADs (green). (f) Mean coverage and 

mean number of reads per window in F123 coloured according to lamina-association. LADs (blue) are plotted on 

top of non-LADs (green). 

 

 

3.5.5 Exploring biases in the F123 data and their origin 

The previous observation that LADs are detected less often than non-LADs in the F123 

dataset leads to two main questions. First, what is the cause of this bias in the F123 dataset? 

Second, can it be corrected experimentally and/or computationally? To address the first 

question, we asked whether the LAD under-sampling is a feature of the sum of all NPs or if 

this phenomenon occurs already in single NPs. The first scenario would point towards a 

biased collection of NPs, presumably a preferential collection of larger, more equatorial slices 

of the nucleus, while missing small apical slices that are enriched for lamina and the 

associated large proportions of heterochromatin (Figure 3.24a, b). The second scenario would 

point towards problems in extracting DNA from heterochromatic regions, independent of 

other features of the NP. To distinguish these scenarios, we calculated the ratio of non-LAD 

to LAD windows (at 50 kb) that are present in the mESC linear genome (ratio: 1.53), and 

compared this number with the ratio of non-LAD to LAD windows in every GAM sample 

from single NPs. In 46C, NPs distribute symmetrically around the genome-wide ratio (Figure 

3.24c). In samples with lower genome coverage, NPs tend to cover either LADs or non-

LADs, which appears natural for NPs with less content of the nucleus present. With 

increasing genome coverage, the ratio of LADs to non-LADs becomes more balanced and, in 

many NPs, close to the genome-wide ratio. In F123, the distribution of NPs follows the same 

trend as in 46C (Figure 3.24d), indicating that the F123 dataset contains equatorial as well as 

apical slices, which excludes a biased collection towards more equatorial NPs. However, the 

ratio of non-LADs to LADs is increased in almost every nuclear profile (Figure 3.24d), 

suggesting insufficient extraction of DNA in LADs. 
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Figure 3. 24:The majority of all F123 nuclear profiles contains fewer positive windows overlapping with 

LADs.  

(a) Illustration of the genomic content of apical and equatorial NPs. (b) Expected genome coverage and 

proportion of LADs in apical and equatorial NPs. (c) Ratio of non-LADs to LADs vs. genome coverage in single 

NPs of the 46C dataset. (d) Ratio of non-LADs to LADs vs. genome coverage in single NPs of the F123 dataset. 

 

The lower detection of LADs raised the possibility that the lower extraction could result from 

the peripheral position of the DNA from LADs which is closer to the laser beam that 

microdissects each NP from the cryosection. In this scenario, DNA from LADs could 

potentially be exposed to the laser beam. To test this hypothesis, we made use of the GAM 

datasets of 3NPs that were also collected in F123, but not presented here so far. Here, 4 

cellular slices are microdissected together (Figure 3.25a), corresponding to 3 NPs since 

approximately 25% of cellular slices in ESCs do not contain nuclear material (details see 

Figure 3.3d, e). However, when comparing the detection frequencies in LADs and non-LADs, 

the multiplexed version of GAM clearly displays the same bias as the 1NP dataset (Figure 

3.25b), showing that destruction of DNA during laser microdissection is an unlikely cause for 

the under-detection of LAD/heterochromatic DNA in the F123 datasets. This result is further 

confirmed at the level of nucleotide coverage and reads per windows, which are clearly 

reduced in LAD windows compared to non-LAD windows in both the 1NP and 3NP datasets 

(Figure 3.25c).  
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Figure 3. 25: LAD detection bias is present in the 3-NP F123 dataset as well. 

(a) Illustration of laser microdissection of single NPs and multiplexed NPs. (b) Detection frequencies of genomic 

windows (50 kb), grouped according to lamina association in the 1NP and the 3NP F123 dataset. (c) Mean 

coverage and mean number of reads per window in 3NPs coloured according to lamina-association. LADs (blue) 

are plotted on top of non-LADs (green). 

 

These observations lead to the conclusion that DNA is less well extracted from LADs because 

of the heterochromatic nature of LADs. The most crucial part for DNA extraction in the GAM 

protocol is the WGA, specifically the first reaction, where crosslinked chromatin is treated 

with a cell lysis buffer and protease for protein removal, so that DNA is accessible for primers 

and polymerase in the following DNA amplification. One important experimental change in 

the GAM protocol, is the change from the WGA-4 kit from Sigma to the in-house WGA 

protocol. The major difference between the Sigma WGA-4 kit and the in-house WGA is how 

DNA is extracted from nuclear profiles. The Sigma WGA uses a so-called lysis and 

fragmentation buffer with an unknown component that fragments the DNA in a cell lysis 

buffer, presumably with a high concentration of detergents that clear protein of the DNA. This 

step is essential for the subsequent DNA amplification, as DNA needs to be accessible for 

random oligos to anneal and for the polymerase to read and extend the DNA. In the in-house 

protocol, cell lysis is achieved by a cell lysis buffer with high concentrations of detergents, 

but without DNA fragmentation, as we are not aware of a publicly available DNA 

fragmentation enzyme that can work in the buffer conditions that we found ideal for cell lysis. 

Looking at the differences in detection frequencies between the 46C and F123 dataset, it 

seems probable that protein removal from heterochromatin might have been less efficient 

without simultaneous fragmentation, whilst open chromatin regions suffered less due to lower 

protein occupancy in euchromatin than in heterochromatin. The additional fragmentation step 

in the original Sigma WGA4 kit might be able to compensate for these differences in protein 
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occupancy, explaining why the 46C dataset has a more uniform window detection frequency 

than the F123 dataset. 

 

3.5.6 Impact of LAD under-sampling on locus co-segregation in GAM data  

To investigate how the differences in detection frequency between genomic regions impacts 

on the co-segregation of windows in pairwise matrices, I plotted the co-segregation matrices 

and window detection frequencies of several genomic regions in the F123 and 46C datasets, 

and compared them with the genomic positions of LADs, and gene expression counts from 

total RNA-seq (Figure 3.26). This exploration aimed at better understanding the location of 

the over- and under-detected loci, but did not intended to study chromatin contacts, which is 

done in matrices that are appropriately normalised (Beagrie et al. 2017). In 46C, co-

segregation frequencies are fairly uniform across entire chromosomes (Figure 3.26a), and 

large genomic stretches of tens of megabases (Figure 3.26b). Along the chromosome, regions 

of higher or lower co-segregation frequencies can be observed outside and inside of LADs. In 

contrast, co-segregation frequencies in F123 are very dependent on window detection 

frequency and clearly reduced inside LADs (Figure 3.26a-b). To further explore the effect of 

variable efficiency of window detection, I investigated two shorter regions around the Sox2 

and Myc loci. The Sox2 region contains one small LAD within the surrounding 8 Mb genomic 

region, resulting in high co-segregation frequencies along the entire locus in both 46C and 

F123 (Figure 3.26c). At the Myc locus, a 4 Mb region with the highly expressed Myc gene in 

the middle of two large LADs, co-segregation frequencies are uniform in 46C, but centred 

entirely at the few transcribed regions at the locus in F123 (Figure 3.26d). These observations 

confirmed the variable efficiency of window detection in the F123 data. In the last sections of 

this chapter, I present our brief efforts to improve our experimental pipeline further to obtain 

excellent extraction efficiency, and how the variable efficiency was taken into account 

through normalisation of the pair-wise matrices. Importantly, in Beagrie et al. (2017) a 

mathematical model, SLICE, was used to detect the most specific contacts at a given distance 

of interaction, from co-segregation matrices. Although the original SLICE method already 

considered imperfect efficiency of detection, its current implementation considered only a 

constant efficiency of detection, and for that reason we have not so far determined the most 

prominent GAM contacts using SLICE. The Nicodemi lab is currently working on a revised 

version of SLICE that will consider window-based efficiency, which is especially appropriate 

for larger datasets, where variability in locus detection is less likely to be due to insufficient 

sampling and more likely to result from true efficiency of detection.  
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Figure 3. 26: Low detection frequencies in LADs are noticeable as depleted regions in the raw co-

segregation frequencies in the F123 dataset but not in the 46C dataset.  

(a – d) From top to bottom: Co-segregation frequencies (30 kb) in 46C (left) and F123 (right), window detection 

frequencies in 46C (30 kb), window detection frequencies in F123 (30 kb), Lamina associated domains (LADs) 

in mESCs, total RNA-seq TPM values in F123 (biological replicate 1), and below UCSC gene annotation track. 

All data in mm10. (a) Chromosome 17. (b) Chromosome 5: 50 – 80 Mb. (c) Chromosome 3: 30 – 38 Mb. (d) 

Chromosome 15: 60 – 64 Mb. 

 

3.5.7 Correcting for biases in DNA extraction efficiencies 

(a) Experimental correction 

With the problem of LAD under-sampling in mind we decided that our in-house WGA, which 

can indeed extract DNA from euchromatin with good efficiencies, needed further 

optimisation to extract condensed heterochromatin more effectively. Thus, we decided to 

improve the performance of the WGA specifically at the first steps of the WGA reaction, 

when DNA extraction occurs. I revisited our previous optimisations and found a few 

parameters in the WGA protocol that could be tested, including (a) increasing the 

concentration of protease, (b) prolonging the incubation times for cell lysis, (c) increasing the 

denaturation and elongation times in the DNA amplification, and (d) treating cryosections 

with a detergent prior to the incubation with protease (Figure 3.27a). We found that the 

combination of all these protocol changes yields GAM samples with improved quality 
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criteria, leading to increased genome coverage per NP (Figure 3.27b), fewer orphan windows 

(Figure 3.27c), and higher window detection frequencies (Figure 3.27d). Next, we compared 

the ratio of non-LAD to LAD windows, and found it to be balanced in the optimised samples 

(Figure 3.27f; equal to the LAD ratio of 46C) compared with the F123-1123 dataset (Figure 

3.27e). This result shows that indeed the DNA extraction and amplification during the WGA 

are crucial elements in the GAM protocol that determines DNA extraction efficiency, 

especially from heterochromatic regions, and that optimisations now resulted in a highly 

promising in-house GAM protocol suitable for collecting future GAM datasets without 

problems in extracting DNA from heterochromatin. 

 

Figure 3. 27:Targeted optimisation improve the GAM protocol further and correct for LAD under-

sampling.  

(a) Overview of new experimental conditions. (b) Percentage of chromosome coverage per NP in the previous 

dataset and the new experimental conditions. Previous = 565 x 3NPs F123, new = 48 x 3NPs F123. (c) 

Percentage of orphan windows per NP in the previous dataset and the new experimental conditions. Previous = 

565 x 3NPs F123, new = 48 x 3NPs F123. (d) Window detection frequency in F123 3NPs with the previous and 

the new experimental conditions. Previous = 565 x 3NPs F123, new = 48 x 3NPs F123. (e) Ratio of non-LADs 

to LADs and genome coverage in multiplexed NPs in the previous dataset (565 x 3NPs). (f) Ratio of non-LADs 

to LADs and genome coverage in multiplexed NPs with the new experimental conditions (89 x 3NPs). 
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(b) Computational correction 

Although we were able to improve the GAM protocol further so that future datasets will be 

collected without the bias in detection frequencies between LADs and non-LADs, we aimed 

to improve the computational analyses of the F123-1123 dataset as much as possible to 

improve the detection of heterochromatic windows, which might have lower read coverage 

than expected and might be lost in our window calling approach. In Beagrie et al. (2017), 

GAM data was normalised using D’ (normalised linkage disequilibrium; linkage is the co-

segregation of two loci minus the product of their detection frequencies). Previous 

explorations by Thomas Sparks had shown that normalised point mutual information (NPMI) 

gives improved quality of normalisation. 

 

In order to explore the NPMI normalisation, I compared the raw co-segregation frequencies 

and the normalised data (NPMI) side-by-side, and found that it effectively removes biased 

detection of co-segregation between active genomic windows (Figure 3.28). Applying NPMI 

generates contact maps with smooth contact decay with increasing genomic distance for 

LADs and non-LADs. 
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Figure 3. 28: LAD under-sampling in F123 can be normalised effectively at many genomic loci, even 

within regions containing large proportions of LADs.  

(a – d) Raw (left) and normalised (right) co-segregation frequencies (F123). Genomic positions of mESC LADs 

(yellow) are shown underneath the raw co-segregation matrix. (a) Chromosome 17. (b) Chromosome 5: 50 – 80 

Mb. (c) Chromosome 3: 30 – 38 Mb. (d) Chromosome 15: 60 – 64 Mb 

 

 

To quantify the effect of NPMI normalisation on potential biases of the final matrices, we 

investigated three potential biases as previously shown in Beagrie at al. (2017), namely 

window detection frequency, GC content, and read mappability. We found that D’ 

normalisation of the published ESC-46C and NPMI normalisation of the ESC-F123 data both 

remove these important biases efficiently (Figure 3.29a, b). 
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Figure 3. 29: Normalised NPMI effectively reduces bias in GAM datasets.  

50 kb windows were divided into equal groups according to their detection frequency, GC content or 

mappability (left, middle and right respectively), bar plots give the mean. Mean observed over expected values 

(% bias) between windows in each group are shown for raw GAM co-segregation (middle row) and normalised 

data (bottom row). (a) Normalisation of 46C GAM data (D’ – normalised linkage disequilibrium), shown from 

(Beagrie et al., 2017). (b) Normalisation of F123 GAM data (NPMI – normalised point mutual information). 
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Finally, to disentangle biological differences between the ESC lines 46C and F123, which 

have been grown in different culture conditions, from technical differences between the GAM 

datasets, I compared the normalised GAM matrices from F123 and 46C, with Hi-C data 

produced in 46C (described in chapter 5) and F123 (Kubo et al., 2017). A remarkable 

resemblance of chromatin structures is found at randomly chosen genomic regions both at the 

level of TADs, and at smaller contact domains, between all four datasets (Figure 3.30). 

However, in the 46C GAM dataset some additional contacts are present between domains or 

TADs, that cannot be observed in the corresponding region in the Hi-C datasets, and only to 

some extend in the F123 data (e.g. Figure 3.30, top row). These contacts might reflect 

biological differences in gene expression in mESC 46C and F123, which are different ESC 

lines grown in different conditions (feeder-free and on feeders respectively; different media 

compositions in Table 2.3).  

 

Figure 3. 30: Chromatin contact maps show high resemblance between GAM and Hi-C data from both 

46C and F123.  

From left to right: USCS gene annotation tracks (mm10), Hi-C interaction frequencies in 46C (30 kb), GAM 

normalised co-segregation frequencies in 46C (30 kb), Hi-C interaction frequencies in F123 (25 kb), GAM 

normalised co-segregation frequencies in F123 (30 kb). From top to bottom the following genomic regions are 

displayed: Chromosome 1: 60 – 65 Mb, Chromosome 1: 70 – 75 Mb, Chromosome 10: 40 – 45 Mb.  



3. GAM technology development 

 110 

3.6 Conclusions 

In this chapter, I showed extensive work towards the development of an in-house, affordable 

GAM protocol that significantly increases the throughput of the GAM experimental pipeline, 

thereby decreasing the costs and time required to generate GAM datasets. While working on 

improvements of the GAM protocol, the commercial WGA method from Sigma (WGA4) that 

had been used until then to extract DNA from NPs, suddenly stopped extracting good-quality 

DNA from GAM nuclear slices. This unplanned challenge led us to explore other 

commercially available WGA kits, and ultimate led to the development of an independent 

WGA protocol, inspired by protocols for single cell genome and transcriptome amplification 

(Chapman et al., 2015; Zong et al., 2012). I showed here that the newly developed WGA 

method can robustly extract DNA from nuclear profiles, and thereby allows collection of 

GAM datasets with an immense cost reduction and without having to rely on the 

reproducibility of commercial WGA products. We optimised the in-house WGA protocol 

further, and ultimately generated 1NP and 3NP datasets in mESC (F123) that resulted in a 

large dataset of a total of 3664 NPs, from two biological replicates.  

 

However, the version of the WGA protocol that was applied to collect these large F123 

datasets, turned out to have some drawbacks, which were discovered only after completion of 

data collection, while analysing the complete F123 dataset. A detailed comparison of various 

quality metrics between the published 46C dataset and the new F123 dataset, allowed me to 

reassess all previous optimisations, and find four tested conditions that on their own had only 

marginally improved the performance of the GAM protocol, but when applied together led to 

a vast improvement of all quality metrics. These developments complete the efforts to devise 

an independent, and affordable GAM pipeline which has also been tested in other types of 

samples (e.g. neurons) and shown to work reliably (Izabela Harabula, unpublished results).  

 

The investigations of the lower detection efficiency found in the F123 dataset compared to 

46C, also helped us devise new criteria for quality control of GAM data, and to learn which 

are most crucial and can be used to test GAM data during collection. This new knowledge 

will help the consistent production of high-quality GAM datasets in the future. During the 

entire F123 data collection, we had monitored the percentage of mapped reads and the 

genome coverage. However, we were unaware of the importance of the quality metric ‘orphan 

windows’, which had also been tested in Beagrie et al. 2017, but not shown to distinguish 

lower quality data. Orphan windows represent the frequency of positive windows without a 
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neighbouring positive window, which we found later to be of utmost importance for assessing 

the quality of single GAM samples. While GAM samples with low percentages of mapped 

reads or a low genome coverage can still be of good quality, high percentage of orphan 

windows can only be found in low quality NPs. Thus, the percentage of orphan windows 

should be monitored throughout the data collection, and compared between batches, as 

sudden increases in orphan windows are a sign of experimental difficulties, such as reduced 

DNA extraction efficiencies from NPs during WGA.  

 

Further, we also gained insight into the nature of GAM datasets and how best to assess their 

quality and ameliorate possible biases, through the comparison of two 1NP datasets from 

mESCs (46C and F123). First, we compared the quality of NPs produced with the published 

GAM protocol and NPs generated with the new GAM pipeline. We discovered that reduced 

DNA extraction occurs predominately in genomic regions associated with the nuclear lamina, 

suggesting that the heterochromatic nature of these regions was likely to cause this reduced 

extraction efficiency, rather than the more unlikely scenario of biased collection of equatorial 

sections that have a lower proportion of heterochromatic DNA. This knowledge allowed us to 

identify the cause for the reduced efficiency in the WGA reaction, and led us to re-develop 

new experimental conditions that rescued the DNA extraction efficiency in heterochromatic 

regions to excellent levels. The latest optimised conditions give a GAM protocol that can be 

used in future experiments, and will allow the experimentalist to produce GAM datasets with 

homogeneous DNA extraction efficiencies and in a high throughput, and cost reduced 

manner.  

 

Ultimately, chromatin contact maps from the new mESC GAM dataset, produced here from 

the hybrid ESC line F123, largely resembles the published GAM dataset from 46C, and also 

shows remarkable similarity to published Hi-C data from the same mESC line. Taken 

together, these results show that our revised GAM pipeline and quality control metrics 

generate meaningful chromatin contact information. 
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4. Chromosome topology of the parental alleles 

 

Note on results and author contributions 

The experimental work presented in this chapter was done by myself. Dr. Alexander Kukalev 

and Gesa Loof helped collect nuclear profiles. The analysis presented here was done in 

collaboration with several members of our laboratory. A. Kukalev generated segregation 

tables from GAM sequencing data, developed and applied haplotype phasing to nuclear 

profiles. Dr. Ibai Irastorza Azcarate analysed A/B compartments, and produced the materials 

for Figure 4.11, and 4.3d. Dr. Christoph Thieme identified differential chromatin contacts 

between datasets. Julia Markowski (Roland Schwarz laboratory, Max Delbrück Centrum, 

Berlin) analysed RNA-seq data and identified genes with allele-specific expression. Yingnan 

Zhang (Lonnie Welch laboratory, Ohio University, US) performed transcription factor 

enrichment analysis on differential chromatin contacts.  

 

4.1 Objective and research motivation 

Monoallelic gene expression is a common feature of genes throughout the genome. Despite its 

broad occurrence, its regulation and function are largely unknown. Some studies have 

suggested chromatin folding to be involved in the regulation of alleles at some loci (Dixon et 

al., 2015; Holwerda et al., 2013; Rao et al., 2014; Tan et al., 2018a). Most genome-wide 

studies of chromatin folding have not been sensitive enough to detect differences between 

parental alleles, often due to highly similar genome copies in inbreed mouse lines, or 

unknown parental genome information in humans. To assign data to the haplotypes, hybrid 

mouse lines that have genomes with a high density of single nucleotide polymorphisms 

(SNPs) can be used to distinguish maternal from paternal alleles (Giorgetti et al., 2016; 

Rivera-Mulia et al., 2018). Importantly, the efficiency of phasing sequencing data depends 

strongly on the SNP density of the organism’s genome, but also on the length of the 

sequencing read, and how allele-specific reads are distributed in the genome, which can result 

in rather low percentages of reads that can be assigned to a haplotype. Thus, there are few 

studies that have mapped genome-wide allelic chromatin folding, and the results of these 

studies found only few or mild contact differences between the maternal and the paternal 

genomes in mammalian cells (Dixon et al., 2015; Greenwald et al., 2019; Holwerda et al., 

2013; Rao et al., 2014; Tan et al., 2018a), with exception of the X chromosome in female X 

inactivation (Giorgetti et al., 2016). In contrast with ligation-based methods, GAM detects 

positive windows by counting reads that are present in one relatively large window several 
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tens of kilobases (30 kb in Beagrie et al. 2017). Cryosections, as they are used for GAM, 

mostly contain a single allelic copy, with two being found in only ~8 % of slices containing 

an allele (Lavitas, 2011). Seeing that genome-wide assays to map chromatin contacts appear 

to lack sensitivity to allelic differences, I set out to explore allelic chromatin folding with 

GAM, an orthogonal approach to imaging and 3C-based techniques.  

 

Here, I present allele-specific analyses of RNA-seq and GAM data collected from two 

biological replicates of mESCs, clone F123. I produced a large GAM dataset with a total of 

3664 nuclear profiles. I explore the reproducibility between GAM data replicates and modes 

of collection (1NP or 3NP) and investigate how effectively allelic-specific reads can be 

phased in GAM nuclear profiles. The haplotype-assigned sequence information from the 

nuclear profiles was then used to generate allele-specific chromatin contact maps, which were 

analysed for differences between the alleles. Finally, allele-specific chromatin contacts were 

compared with gene expression differences between alleles, and used to explore enrichments 

for transcription factor binding sites that have the potential to be involved in the establishment 

of bi- and monoallelic chromatin contacts.  

 

4.2 Experimental design 

To map haplotype-specific chromatin contacts, I applied GAM on a hybrid mouse ESC line, 

F123, which was previously used in genome-wide studies of allelic differences, such as 

replication timing and chromatin contact frequencies (Giorgetti et al., 2016; Rivera-Mulia et 

al., 2018). The F123 mESC cell line was derived from an F1 cross between Mus musculus 

castaneus × S129/SvJae (Gribnau et al., 2003), and was kindly provided by the laboratory of 

Prof. Bing Ren (Ludwig Institute, UCSD, CA, USA). The sequence differences between the 

inbreed S129/SvJae and the wild M. castaneus line result in a diploid genome with a high 

SNP density, as shown by the median distance between SNPs of ~50 bp across all 

chromosomes (Figure 4.1).  
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Figure 4. 1: Single nucleotide polymorphism (SNP) density of the F123 genome.  

The F123 line was derived from a cross between S129/SvJae and Mus musculus castaneus (CAST/EiJ). The 

hybrid line has a high SNP density, which can be exploited to distinguish between the haplotypes in the 

sequencing data. The box plot shows the distribution of nearest neighbour distances between SNPs of the CAST 

and the S129 allele to the reference genome (mm10) for each chromosome. 

 

 

With the aim to explore allelic differences in chromatin folding and how they relate with 

differential gene expression, I produced GAM in two biological replicates from F123 mESCs, 

and simultaneously collected RNA for genome-wide expression analysis (Figure 4.2). I also 

explored published ChIP-seq and ATAC-seq data produced for F123 mESCs grown in 

identical conditions (Juric et al., 2019). 

 

Figure 4. 2: Data collection in F123.  

To study chromatin folding with allele specificity, 

GAM was applied in F123 mESCs, both standard 

GAM (collecting 1 NP per tube) and multiplexed 

GAM (collecting 3 NPs per tube) in two 

biological replicates. For genome-wide 

information about gene expression, total RNA-

seq was collected on the same biological 

replicates. Published ATAC-seq and ChIP-seq 

datasets from F123 mESCs grown in the same 

cell culture conditions were used to study open 

chromatin regions, histone modifications, and 

architectural proteins.  
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4.3 F123 mESCs cell culture preserved expression of pluripotency markers 

F123 mESCs are grown in serum/LIF on a layer of mitotically inactivated mouse embryonic 

fibroblasts (MEFs) which act as feeder cells. Visual inspection of the cultures on a brightfield 

microscope showed the expected growth of ESCs in clusters on top of the feeder cells (Figure 

4.3a). To harvest ESCs for genome-wide mapping of gene expression or chromatin contacts, 

they are first separated from feeder cells and kept for a few days in culture. To assure that the 

F123 mESCs were separated successfully from the majority of feeder cells and have not 

started to differentiate, I monitored the RNA and protein levels of markers of pluripotency 

and markers of early differentiation in the two biological replicates used to collect GAM data. 

I confirmed the absence of mycoplasma contamination in the culture (Figure 4.3b) and 

generated cryoblocks of F123 cells that I used to perform immunofluorescence and later used 

for GAM. The expression of two pluripotency markers, Nanog and Oct4, was confirmed by 

immunofluorescence microscopy on cryosections in both replicates (Figure 4.3c). Oct4 

expression was detected in 91-94 % of cells, while Nanog expression was more 

heterogeneous and detected in 61-67 % of cells, as expected (Hatano et al., 2005). ESC 

cultures grown in serum/LIF often contain a small fraction of cells which express early 

differentiation markers. To investigate the proportion of cells showing signs of early 

differentiation, I quantified the number of cells expressing Gata6, which is not expressed in 

pluripotent cells, and found that the F123 cultures contained only 2-4 % of cells expressing 

Gata6, within the range expected for ESC growth in serum/LIF on feeder cells (Figure 4.3c). 

To further quantify the pluripotency levels of both replicates, I also explored the expression 

levels of the mentioned transcription factors, and additional factors marking pluripotency or 

differentiation, using the matched total RNA-seq datasets. The expression (in TPM) of several 

maker genes was quantified using RSEM (Li and Dewey, 2011) and shows comparable levels 

of all examined transcription factors (Figure 4.3d), confirming the overall pluripotent state of 

the mESC F123 samples collected. 
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Figure 4. 3: F123 mESCs show important features of pluripotency. 

 (a) F123 mESCs were grown on feeder cells (irradiated MEFs). Scale bar = 100 µm. (b) Mycoplasma test by 

PCR on 1.2 % agarose gel, with Gene Ruler 1kb plus ladder, shows that F123 cell culture was free from 

mycoplasma DNA. (c) Quantification of cells that express pluripotency marker proteins, Oct4 and Nanog, and 

differentiation marker, Gata6, after indirect immunofluorescence in thin sections from the same cryoblocks 

produced from 2 biological replicates (R1, R2) for GAM data collection. Example images show Oct4, Nanog, 

and Gata6 in DAPI-stained cryosections. Scale bars = 8 µm. (d) Gene expression (log2(TPM +1)) of negative 

and positive markers of pluripotency measured by total RNA-seq in R1 and R2. 

 

4.4 Allele-specific expression occurs at genes with housekeeping functions  

To be able to identify genes with differential expression of the parental alleles, I collected 

RNA from F123 mESCs and produced RNA-seq libraries from two biological replicates. 

Gene expression levels were calculated as transcripts per million (TPM). The levels of gene 

expression (in TPM) correlate well across all genes (Figure 4.4a), and show reproducible read 
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patterns on the genome browser, including good detection of first introns as expected when 

RNA integrity was retained during extraction and library production (Figure 4.4b).  

 

Figure 4. 4: RNA-seq data is reproducible between biological replicates. 

(a) Transcripts per million (TMP) values for two biological replicates of F123 mESCs. (b) RNA read counts of 

examples of expressed genes in both biological replicates. 

 

To phase reads to the S129 and CAST parental alleles, we first mined genome sequencing 

data for the parental strains of F123 to identify SNP positions in the F123 genome (details in 

2.20.8). To differentiate the expression of genes located on the two parental alleles, reads 

overlapping heterozygous genomic variants were counted in an allele-specific manner. Phased 

reads were aggregated over all exons of a gene and aggregated counts were tested for 

significant allele-specific expression (ASE) differences. Genes were defined as differentially 

expressed by an adjusted p-value < 0.05, and a fold change (log2) > 1 between reads mapping 

to CAST and S129 (Figure 4.5a). Further, genes with allelically balanced expression were 

identified based on the fold change between reads mapping to CAST and S129 and for 

subsequent analysis genes with a fold change (log2) < 0.25 were selected as allelically 

balanced genes, which show undetectable differences in read counts between the alleles 

(Figure 4.5b). Interestingly, the top five genes with ASE (Figure 4.5c) on both alleles include 

four genes encoding for proteins of ribosomal subunits (Rpl34, Rpl35a, Rps3a1, Rps26), two 

genes important for ATP production (Atp5md, encoding for ATP synthase and Atp1a2, an 

ATPase). Additional genes included Gapdh, an important metabolic gene, Ramac, encoding 

the regulatory subunit of the mRNA-capping methyltransferase RNMT:RAMAC complex, 

required for efficient gene expression, Fcgr3, encoding for an immunoglobin receptor, Oas1a, 

encoding for an enzyme involved in the innate antiviral response of the cell, and P4ha3, 

encoding for a key enzyme in collagen synthesis. These genes are key to general cellular 

processes, and most of them are expressed in many cell types or tissues. In total, we identified 

477 maternally expressed genes, and 275 paternally expressed genes, distributed throughout 
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the genome (Figure 4.5d). Gene ontology analysis of genes with ASE using the GO-Elite 

package, versus all expressed genes with SNPs (i.e. all phased genes) as background group, 

confirmed their role in housekeeping functions of the cell, such as various metabolic 

processes and translation (Table 4.1).  

 

For a first exploration of the possible regulation of allele-specific genes, I investigated 

whether Polycomb regulation was potentially involved, by matching the list of ASE genes 

with published data of promoter states from mESCs collected in 46C cells (Ferrai et al., 

2017). The classification of gene promoters into active, inactive, and different states of 

Polycomb regulation in mESCs is based on the occupancy of RNA polymerase II (RNApol II) 

and H3K27me3, a mark set by Polycomb repressive complex 2 (PRC2). Different states of 

RNApol II can be identified at active and Polycomb repressed genes, which are also poised 

for activation. Active genes that produce mature mRNAs are associated with RNApol II 

phosphorylated on serine-5 and serine-7 residues of the C-terminal domain of the largest 

subunit of RNApol II. In contrast, Polycomb-repressed genes are found associated with a 

poised form of RNApol II marked only by serine-5. The most interesting class in the context 

of allele-specific expression is the class of PRC active (PRCa) genes. These genes are marked 

by H3K27me3 and RNAPII-S5p on one allele and by actively transcribing RNApol II on the 

other allele (Brookes et al., 2012; Ferrai et al., 2017). Finding this promoter state at genes 

with allele-specific expression would provide a possible mechanism for their allelic 

regulation. In this case, H3K27me3 would be specific to only one allele, and Polycomb-

mediated silencing could specifically repress the transcription of one allele, while the other 

allele is transcribed. Of all 752 genes with allele-specific expression, 127 were not classified 

in Ferrai et al. because their promoters were too close to other active or Polycomb-repressed 

promoters, but 74 have been described as PRCa (Figure 4.5e). This first exploration of 

promoter regulation of the ASE genes suggests that Polycomb regulation may not be the 

primary reason for allele-specific gene expression, however differences between the two 

mESC lines and their culture conditions should be considered. Further studies could take 

advantage of simply using the H3K27me3 classification itself to avoid the high number of NA 

genes, and of exploring other promoter classifications, for example obtained by our lab in the 

ESC-OS25 line (Brookes et al. 2012). Further work will also explore the 74 genes with the 

PRCa classification, for instance regarding the fold change of expression of those genes, or 

whether there are differences between PRCa and other genes with regard to the expression 

level of the silent allele. 
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Figure 4. 5: Allele-specific gene expression in F123 mESCs. 

(a) Allele-specific analysis of gene expression. Plot shows the fold change of phased reads between the maternal 

(S129) and the paternal (CAST) allele and the negative logarithm of the adjusted p-value (including only 

expressed genes with a TPM value > 1) for each gene. Allele-specific expression (ASE) is defined by an 

adjusted p-value < 0.05, and a log2 fold change > 1. Green dots represent genes with ASE, black and red dots 

represent genes with allelically balanced expression. (b) Counts of reads mapping to the CAST or the S129 allele 

in genes without ASE (common, sorted by fold change) and genes with ASE (maternal and paternal). (c) 

Examples of genes with ASE. Number of SNPs, read counts, adjusted p-value, and fold change (log2) of the top 

five genes with ASE are shown for the maternal and the paternal allele. (d) Number of genes with ASE per 

chromosome. Grey bars show all genes with significant ASE (p< 0.05), green bars represent all genes with 

significant ASE and a fold change (log2) > 1. (e) Percentage of allele-specific genes with published promoter 

states in mESCs (Ferrai et al., 2017). Promoters were classified based on the presence of different states of RNA 

polymerase II (RNAPII) phosphorylation (S5p and S7p, which mark both active and polycomb-repressed genes, 

or only active genes, respectively) and H3K27me3, a mark for Polycomb repressive complex 2 (PRC2). 

Promoter states include active genes (with RNAPII-S5p and -S7p), inactive genes (no RNApol II), PCRa genes 

(with RNAPII-S5p and -S7p, and H3K27me3), and PCRr genes (with RNAPII-S5p and H3K27me3).  
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Table 4. 1: Gene ontology (GO) analysis of genes with allele-specific expression (ASE). 

Gene class enrichment of genes with ASE (752) over a group of background genes (Ref) containing all 

expressed genes (9725) in F123 mESCs (with TPM> 1) that contain SNP information (Number of SNPs > 1). 

Total number of ASE genes with GO term: 712, total number of background genes with GO term: 9161. GO 

terms for biological processes, cellular components, and molecular functions are ranked by z-score. For 

relevance purposes, only GO terms with more than 10 genes in the reference list are shown.  GO enrichment 

analysis was performed with GO-Elite.  

 

Ontology

-ID 
Ontology name 

Genes 

with ASE 

Genes 

in ref 

Genes in 

ontology 

Percen

t with 

ASE  

Z-

scor

e 

Permute

d P-value 
Examples 

Biological process 

GO:0006

412 
translation 31 134 223 23.1 6.73 0 

Mrpl52, Rpl13, Rpl14, Rpl17, 

Rpl21, Rpl27a, Rpl28 

GO:0019

748 

secondary 

metabolic process 
6 13 31 46.2 5.19 0 

Akr1b3, Bdh2, Cyp1b1, 

Ephx2, Pam, Star 

GO:0042

273 

ribosomal large 

subunit biogenesis 
5 12 12 41.7 4.41 0 

Bop1, Npm1, Rpl14, Rpl35a, 

Rpl7 

GO:0034

308 

primary alcohol 

metabolic process 
5 12 34 41.7 4.41 0.001 

Aldh1b1, Cyp1b1, Pecr, 

Rbp1, Retsat 

GO:0007

129 
synapsis 5 12 19 41.7 4.41 0.001 

Mael, Mlh1, Stra8, Sycp3, 

Tex15 

GO:0016

101 

diterpenoid 

metabolic process 
6 17 51 35.3 4.26 0.002 

Crabp2, Cyp1b1, Pecr, Rbp1, 

Retsat, Star 

GO:0043

436 

oxoacid metabolic 

process 
53 414 726 12.8 3.96 0 

Aldh9a1, Bdh2, Cd74, 

Crabp2, Cyp1b1, Gapdh, 

Ldhb, Pam 

GO:0031

214 

biomineral tissue 

development 
7 25 64 28.0 3.80 0.0025 

Axin2, Enpp1, Fgfr2, Msx2, 

Pkdcc, Srgn, Tuft1 

GO:0015

908 
fatty acid transport 5 16 37 31.3 3.53 0.004 

Anxa1, Got2, Slc25a17, 

Slc27a2, Slco2a1 

GO:1901

568 

fatty acid derivative 

metabolic process 
5 17 59 29.4 3.35 0.0065 

Cd74, Cyp1b1, Pdpn, Ptgr2, 

Rnpep 

GO:0042

274 

ribosomal small 

subunit biogenesis 
4 12 16 33.3 3.32 0.01 Npm1, Rps15, Rps19, Rps6 

GO:0051

258 

protein 

polymerization 
7 29 57 24.1 3.32 0.004 

Arl6, Fbxo5, Gas7, Tuba1c, 

Tuba3b, Tuba4a, Tubb6 

GO:0006

383 

transcription from 

RNA polymerase III 

promoter 

5 18 20 27.8 3.19 0.0085 
Crcp, Polr1d, Polr2h, Polr2k, 

Polr3h 

Cellular component 

GO:0022

627 

cytosolic small 

ribosomal subunit 
11 26 38 42.3 6.62 0 

Rps12, Rps15, Rps15aRps19, 

Rps2, Rps29, Rps3a1Rps8 

GO:0005

840 
ribosome 27 129 217 20.9 5.66 0 

Mrpl35, Rpl13, Rpl29, Rps15, 

Rps15a, Rps3a1, Rps8 

GO:0009

897 

external side of 

plasma membrane 
14 68 240 20.6 3.99 0.0005 

Abcg1, Cd55, Cd59a, 

Clptm1, Fcgr2b, H2-K1, 

Ly75, Spn 

GO:0005

576 
extracellular region 34 244 1219 13.9 3.69 0 

Adam23, , Bola1, Dpp7, 

Fcgr2b, Fgfr2, Hsd17b11 

GO:0000

795 

synaptonemal 

complex 
5 17 24 29.4 3.35 0.0065 

Ccnb1ip1, Mlh1, Stag3, 

Syce1, Sycp3 

GO:0032

993 

protein-DNA 

complex 
11 58 144 19.0 3.22 0.002 

H3f3b, Hist1h1t, Hist1h2ab, 

Hist1h2ak, Hist1h2bb 

GO:1990

104 

DNA bending 

complex 
8 37 116 21.6 3.17 0.004 

H3f3b, Hist1h1t, 

Hist1h2abHist4h4, Kat6b 

GO:0015

934 

large ribosomal 

subunit 
9 48 64 18.8 2.87 0.013 

Mrpl12, Rpl10l, Rpl14, Rpl17, 

Rpl35a, Rpl7 

Molecular function 

GO:0003

735 

structural 

constituent of 

ribosome 

28 119 208 23.5 6.51 0 

Mrpl12, Rpl34, Rpl35a, 

Rpl41, Rpl7, Rps12, Rps15, 

Rps15a, Rps18 

GO:0004

364 

glutathione 

transferase activity 
5 11 32 45.5 4.69 0.001 

Gsta3, Gstm2, Gstm5, Gsto1, 

Gstz1 

GO:0017

134 

fibroblast growth 

factor binding 
5 14 20 35.7 3.93 0.002 Api5, Fgf2, Fgfr2, Klb, Rps19 
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GO:0016

829 
lyase activity 16 98 174 16.3 3.21 0.002 

Amd1, Aplf, Car2, Car8, 

Cd38, Echdc2, GlulShmt1, 

Uros 

GO:0051

287 
NAD binding 8 37 59 21.6 3.17 0.0055 

Ahcyl2, Aldh9a1, Bdh2, 

Gapdh, Ldhb, Phgdh, Sirt5 

GO:0005

544 

calcium-dependent 

phospholipid 

binding 

4 13 25 30.8 3.11 0.0145 Anxa1, Anxa4, Anxa7, Sytl3 

4.5 Generation of GAM datasets with single and multiplexed nuclear profiles  

With the aim to generate contact maps from F123 mESCs, I collected GAM samples from 

two biological replicates (R1 and R2), in two collection modes (1NP and 3NP). The 1NP 

collection led to the production of a GAM dataset with 1123 1NP samples from R1, which 

was discussed in the previous chapter (section 3.5) in comparison with the previously 

produced GAM dataset in 46C mESCs. To further increase the resolution of the F123 GAM 

dataset, I collected a larger number of NPs using multiplex GAM with 3NP/sample (see 

Figure 3.3 for details) in both R1 and R2. Although 3NP datasets lose the single cell 

information that is inherent to 1NP GAM data, 3NP collection allows three-fold faster 

production of GAM data, suitable for the aim of increasing the genomic resolution to analyse 

chromatin contacts. The 1NP data has the advantage that it can be used to study single-cell 

dependencies and radial positioning. Additionally, I explored the possibility of combining 

1NP and 3NP data into one large GAM dataset with improved resolution, and use this data to 

study pairwise chromatin contacts that are consistent between collection modes (1NP and 

3NP) and biological replicates (R1 and R2).  

 

To study the quality of each dataset and identify criteria for exclusion of low-quality samples 

between datasets, I first compared the quality of NPs collected with the single and the 

multiplexed collection mode (Figure 4.6). As expected from combining genomic information 

from several NPs, the 3NP samples have an overall higher number of chromosomes and a 

higher genome coverage than the 1NP samples (Figure 4.6a), with similar range of percentage 

of orphan windows, consistent with the extractability of genomic windows being independent 

of whether the WGA reaction occurs on 1 or 3 NPs. Further, the quality of the samples in 

terms of the number of uniquely mapped reads is also consistent between 1NP and 3NP 

samples, and between 3NP samples from different biological replicates (R1 and R2) (Figure 

4.6b). Thus, we applied the same quality control criteria chosen previously for the F123 data 

(Chapter 3) to pass the 3NP samples (> 20,000 uniquely mapped reads and < 60 % orphan 

windows) (Figure 4.6a, b, Table 4.2). Next, I compared NPMI-normalised co-segregation 

matrices of all three datasets, and found that the pairwise chromatin contact maps are visually 

similar between all the datasets (1NP and two 3NP datasets from different biological 
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replicates; Figure 4.6c). Visual inspection of the matrices suggests that the 3NP data from the 

second biological replicate (R2) has a slight increase in noise, visible by non-continuous 

contact patches at larger genomic distances, which suggests that the dataset is not fully 

saturated, and might be difficult to analyse on its own with the current number of NPs. 

 

Figure 4. 6: Comparison of data quality in F123 datasets.  

Quality metrics of replicate 1 (R1) – 1NPs (green), R1 – 3NPs (purple), and R2 – 3NPs (orange). (a) Percentage 

of orphan windows vs number of chromosomes. (b) Percentage of genome coverage vs. number of uniquely 

mapped reads. For both, negative controls are shown in red, samples that failed the quality metrics are shown in 

grey. (c) Normalised co-segregation frequencies (NPMI) of a 10 Mb region on chromosome 11.  

 

Table 4. 2: Number of nuclear profiles (NPs) per F123 dataset. 
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4.6 Comparing GAM datasets from biological replicates and collection modes 

For the purpose of combining NPs from different biological replicates and collection modes 

into one large GAM dataset, I first explored the possibility of merging the two biological 

replicates into one dataset and subsequently study primarily contacts that are frequent in both 

replicates, while at the same time reduce the noise in the data due to the increased number of 

NPs. From exploration of the RNA-seq data, we found that gene expression highly correlates 

between the two biological replicates (Figure 4.4a, b). To test whether this correlation is also 

present in the GAM datasets, I compared the window detection frequencies of the two 

replicates of 3NP datasets (Figure 4.7a). There is a strong correlation (r2 = 0.8) between the 

average window detection frequencies of R1 and R2, which shows that genome sampling is 

highly comparable between the two replicates. Further, principal component analysis (PCA) 

can be used to identify A and B compartments in chromatin contact maps. We compared the 

localisation of A and B compartments between GAM datasets as an approach to assess the 

reproducibility of 3D genome topology between the datasets. A and B compartments overlap 

largely between the replicates (Figure 4.7b), with a correlation of r = 0.6. Future analyses will 

investigate the overlap of compartments A and B across the linear genome as additional 

comparison metrics between biological replicates. Based on these observations, we combined 

the two replicates into one merged 3NP dataset. Inspection of NPMI-normalised matrices 

show less apparent noise compared to the replicates (Figure 4.7c). 
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Figure 4. 7: Comparison of biological replicates from 3-NP GAM datasets. 

(a) Correlation of the window detection frequencies in biological replicate 1 and 2 (R1, R2). (b) Eigenvalues of 

the principal component analysis (PCA) of contacts on chromosome 3 in R1 and R2, showing the A (green) and 

the B (red) compartment. (c) Normalised co-segregation frequencies (50 kb) for a 6 Mb genomic region on 

chromosome 11 of R1, R2, and the merged replicates. 
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Next, I explored the differences between the 1NP and 3NP datasets. The genomic content in 

1NP samples is inherently less than in a 3NP sample, which results in proportionally different 

window detection frequencies. As GAM data is normalised for window detection frequencies, 

the normalisation of a mixed population of 1-NP and 3-NP samples can result in biases. To 

avoid potential biases, the single NP data was combined into an in-silico 3-NP dataset (1NP x 

3) by combining the positive windows from 3 random single NPs into 1 multiplexed NP. The 

in-silico 3NP dataset should have the same properties as real 3NP samples.  

To test the effects of combining NPs for an in-silico multiplex GAM dataset, I compared 

window detection frequencies of the in-silico data with the real 3NP dataset (Figure 4.8a). 

The correlation between the datasets is strong (r2 = 0.83), showing that combining single NPs 

after sequencing results in similar detection frequencies as collecting them together. Further, 

compartments A and B identified in the 1NP dataset overlap to large extent with the 

compartments identified in the 3NP data (Figure 4.8b), with a correlation of r = 0.59, which is 

comparable to the correlation between 3NP biological replicates (r = 0.60). Thus, I decided to 

merge all nuclear profiles together as a 3NP dataset that corresponds to a total of 3664 single 

NPs; this corresponds to a 9-fold increase relative to the published 408-1NP GAM dataset 

collected in mESC-46C.  

A main advantage of combining different datasets is the improvement in resolution that 

accompanies the increased number of NPs in the dataset. The saturation of this large dataset 

can be tested by performing an erosion of samples, which provides the information about how 

often each pair of windows in the genome is detected at least once with increasing number of 

samples. As the number of samples increases, more pairs of genomic windows are detected 

and at higher frequency, until the dataset reaches saturation. There is a proportion of never 

detected windows, which overlap with unmappable regions of the genome (see Beagrie et al., 

2017). While the separate 1NP-1123 and 3NP-2541 datasets only saturate at 30 kb (data not 

shown), the combined 3NP-3664 dataset saturates at 20 kb resolution after 2340 NPs (730 

samples) and almost reaches saturation at 10 kb resolution (Figure 4.8c). In comparison to the 

1NP dataset, contact maps of the all-NP dataset tend to show reduced noise at all resolutions 

(Figure 4.8d, e). 
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Figure 4. 8: Combining all NPs for higher resolution analysis of chromatin contacts.  

(a) Correlation of window detection frequencies of 1NPs (1NP x 3, in silico) and 3NPs from biological replicate 

1 (R1). (b) Eigenvalues of the principal component analysis of contacts on chromosome 3, showing A (green) 

and B (red) compartments in 1NPs and 3NPs. (c) Normalised co-segregation frequencies in the 1NP and the all-

NP dataset at different resolutions. (d) Pairs of loci detected at least once in the all-NP dataset with increasing 

number of 3NP samples. Saturation test of the all-NP dataset shows that all pairs of genomic loci are detected at 

least once up to a resolution of 20 kb. (e) GAM datasets and currently used resolutions. 
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4.7 Chromatin contacts of the parental alleles 

Next, we aimed to develop allele-specific mapping of GAM data, taking advantage that the 

large dataset produced for this PhD thesis was obtained in the hybrid F123 mESC line (Figure 

4.9a), with a high SNP density. The first challenge for analysing chromatin contacts with 

allele specificity was to phase reads to maternal and paternal genomes separately in each 

GAM sample. For each GAM sample, reads were assigned to their haplotype using SNPsplit, 

a tool for phasing reads that identifies the haplotype origin of a read by examining each SNP 

position for the presence of a SNP, and then assigning it to a haplotype accordingly. When for 

instance a paternal SNP is detected, the read is phased to the paternal genome; conversely, 

when the SNP corresponding to the genomic region of a given read is absent, the read is 

assigned to the maternal genome (Figure 4.9b). After phasing, an average of 36.5 % of the 

mapped reads of each sample were assigned to one allele (17.8 % to the paternal, 18.7 % to 

the maternal genome) (Figure 4.9c). Examples of parental read distribution in the linear 

genome show that reads often go the same haplotype for large consecutive regions, up to 

entire chromosomes, as expected to the linear collinearity of parental genomes (Figure 4.9d, 

NP 1 and 2). As expected from the slicing of nuclei in random orientations, also both alleles 

are found in the same nuclear profile (Figure 4.9d, NP 3).  

Next, we used the phased reads to call allele-specific positive windows at different 

resolutions. Reproducibly for different resolutions, up to 85 % of all positive windows could 

be assigned to the alleles, with equal proportions for the maternal and the paternal allele 

(Figure 4.9d). We observed a smaller percentage of windows that were assigned to both 

alleles (5.8 – 10.8 % of positive windows, depending on the resolution), which is expected 

and confirmed by cryo-FISH of specific genomic loci in ultrathin cryosections (Lavitas, 

2011). After phasing the windows, the detection frequencies for each allele decrease 

compared to the non-phased data by the expected 2-fold reduction (Figure 4.9e).  
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Figure 4. 9: Phasing of F123 nuclear profiles.  

(a) SNPs between the alleles S129 (maternal) and CAST (paternal) are compared to the reference genome 

(mm10) for phasing of sequencing reads. (b) Percentage of reads per NP that have no SNP information 

(unphased), that are mapped to the maternal or the paternal allele, and conflicting reads that have SNP 

information from both alleles and are discarded from the analysis. (c) Sequencing tracks of three example NPs 

for chromosome 2. Examples are shown for the non-phased, the paternal, and the maternal reads. (d) Percentage 
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of positive windows in the F123 1NP dataset that can be assigned to one or both alleles. (e) Average window 

detection frequencies for the non-phased 1NP F123 dataset (both alleles), the paternal, and the maternal allele.  

 

Using the phased positive windows, pairwise contact maps were generated and NPMI 

normalised separately for each parental genome (Figure 4.10). At the time of completing this 

PhD thesis, all analyses were performed in the F123 1NP dataset, with the future aim to 

reproduce the same analyses in the combined 3NP dataset. Remarkably, the parental-specific 

matrices display seemingly more clear contact maps than the merged data, suggesting that the 

latter is confounded by the allelic differences, which seem more prominent than anticipated 

from previous Hi-C analyses (Rao et al., 2014: Dixon et al., 2015, Rivera-Mulia et al., 2018).  

 

Figure 4. 10: Chromatin contacts of the paternal and the maternal allele. 

Chromatin contacts of the non-phased 1NP dataset and of the parental alleles for a 10 Mb region on 

chromosome 2 (50 kb), centred at the paternally imprinted gene Gatm. 

 

4.8 Allele specificity of compartments A and B 

To explore genome-wide chromatin topologies in the allelic contact maps, A and B 

compartments were identified in the non-phased and the phased F123 datasets, at 100 kb 

resolution (Figure 4.11). Visual comparisons show that the allele-specific compartments often 

overlap, resembling the pattern of the non-phased data (Figure 4.11a). However, there are 

many regions of the genome, where the allele-specific compartments deviate from each other. 

To understand how different the compartments of the alleles are from each other, in 

comparison to the compartments of different non-phased datasets, we compared them to the 

two 3NP datasets, R1 and R2 (Figure 4.11a). Interestingly, we observed that differences 

between the alleles occur more often than differences between non-phased datasets, even 

when they come from different biological replicates. This observation could be confirmed 

when calculating the overlap of the compartments between all F123 datasets, which is lowest 

between the two allelic datasets (Figure 4.11b). In total, 25.8 % of the F123 genome shows 
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differences in compartments between the maternal and the paternal allele, with equal 

contributions of A and B compartment (Figure 4.11c).  

 

 

Figure 4. 11: Large-scale differences between A/B compartments of the maternal and the paternal allele. 

(a) Principal component analysis (PCA) at 100 kb resolution showing the A and B compartment of chromosome 

17 in different F123 datasets. Black lines mark example regions with compartment changes between the 

maternal and the paternal allele. (b) Overlap of A/B compartments of all chromosomes between F123 datasets. 

(c) Compartment differences between the maternal and the paternal allele in percentage of genomic windows at 

100 kb.  

 

To further explore the differences between allele-specific compartments, we asked whether 

they contained genes with different expression patterns. Genes were classified according to 

whether they are active (expressed, TPM-value >1) or inactive (not expressed, TPM-value 

<1). Although compartments A and B are enriched for active and inactive chromatin, 

respectively (Lieberman-Aiden et al., 2009, Dixon et al., 2012), active and inactive genes do 

not have strict memberships to A or B compartments (Figure 4.12a). Compartments A that are 

biallelic in F123, contains 60 % of all genes, with the majority of them (69 %) being active. In 

contrast, biallelic B compartments, which comprise 17 % of all genes, contains 31 % active 
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genes. The monoallelic compartments (A paternal and B maternal, or vice versa) harbour a 

total of 23 % of genes, and equal percentages of active and inactive genes (51 % of active 

genes). These results suggest differences in expression between bi- and monoallelic 

compartments. Noteworthy, when comparing TPM values of genes within the different 

compartments, a clear difference in expression can be observed between the biallelic A and B 

compartment, while the monoallelic compartments show intermediate gene expression 

between the more active A and the more inactive B compartment, with no difference between 

the maternal and the paternal allele (Figure 4.12b).  

 

The gene expression differences between bi- and monoallelic compartments connect gene 

activity with differences between alleles in the presence of eu- and heterochromatin, and thus 

provide an orthogonal validation of the detected compartment differences. Further, it suggests 

two possible mechanisms for the establishment of monoallelic compartments. First, slightly 

lower and heterogeneous gene expression might lead to variable association with the A or B 

compartment, and in some cases change the compartment on one of the alleles. Second, the 

association of one allele with the A and the other allele with the B compartment could be a 

result of allele-specific gene expression. To test this hypothesis, the fold change of expression 

between the alleles was compared for genes in mono-and biallelic compartments (Figure 

4.12c). Generally, the majority of genes in all compartments have balanced expression 

between the alleles. Genes with allele-specific expression (ASE) are located predominantly in 

the biallelic A compartment (70 % of maternally and 72 % of paternally expressed genes), 

and to lesser extend in equal proportions in the biallelic B, or the monoallelic compartments, 

with no noticeable differences in fold change of expression with regard to their location. This 

first exploration of compartments and allele-specific expression revealed no genome-wide 

connection between the expression of a gene on one allele and a corresponding change of the 

compartment. However, further analysis that takes into account the distribution of genes with 

balanced and allele-specific expression in the genome, and their linear distance to each other, 

might help reveal cases where gene expression differences connect to compartment changes 

between the alleles. 
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Figure 4. 12: Allele-specific A or B compartments have equal proportions of active and inactive genes. 

(a) Overlap of active and inactive genes with the A/B compartment in F123 mESCs. Outer ring: Percentage of 

genes per compartment. Inner ring: Percentage of active (TPM >1) and inactive genes (TPM <1) per 

compartment. (b) Expression (log2(TPM)) of genes inside biallelic (A/A, B/B) and monoallelic (A/B, B/A) 

compartments. (c) Fold change (log2) of read counts per allele (paternal / maternal) for genes in bi- and 

monoallelic compartments. Compartment labels (A/B, B/A) in a - c: maternal allele / paternal allele.  

 

4.9 Differential contacts between maternal and paternal alleles 

To explore allele-specific chromatin contacts, maternal and paternal contact maps were 

subtracted from each other to extract both differential and common contacts (Figure 4.13a). 

The data from each allele was first normalised by calculating z-scores for each genomic 

distance, before subtracting the z-score normalised contacts from each other, resulting in a 

delta z-score contact map with all differential contacts (Figure 4.13b). Next, the allele-specific 

contacts were extracted by setting a threshold for the significant 5 % allele-specific contacts, 

which most frequently contact on one allele and not the other. To explore the contacts that 

have equally strong intensities on both alleles, we selected the top 10 % most common and 

strong contacts of the alleles. This selection leaves us with three datasets, maternal-specific, 

paternal-specific, and common contacts, which we can use for the exploration of mono- and 

biallelic chromatin conformations (Figure 4.13b). Visual inspection of the allele-specific and 
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common contact maps shows regions of clustered differential contacts which cover specific 

genomic windows within a neighbourhood.  

 

Figure 4. 13: Differential contacts between the alleles.  

(a) Pipeline to identify significant differential contacts between the alleles. (b) Chromatin contacts of a 12 Mb 

region on chromosome 4 in the F123 1NP dataset. From top to bottom: Normalised contact frequencies (NPMI) 

of the maternal allele, normalised contact frequencies (NPMI) of the paternal allele, delta z-score of the maternal 

minus the paternal allele, significant maternal-specific contacts, significant paternal-specific contacts, top 

interactions that are shared by the alleles, mm10 gene annotation. Differential contacts were identified with a 

threshold for genomic distance. Only contacts within the range of 4 Mb are considered and shown here. 



4. Chromosome topology of the parental alleles 

 134 

 

4.9.1 Most imprinted genes have allele-specific contacts 

Genome-wide studies of 3D genome topology at genomic regions that have allelic differences 

in gene expression have not so far found a clear relationship between chromatin contacts and 

allelic expression differences. However, a few examples with allele-specific chromatin 

contacts have been reported for imprinted genes (Dixon et al., 2015; Greenwald et al., 2019; 

Holwerda et al., 2013; Rao et al., 2014; Tan et al., 2018a). Thus, I started the exploration of 

allele-specific contacts detected by GAM and their relationship with genes with allele-specific 

expression at imprinted gene loci.  

Imprinted genes often cluster in specific regions of the genome, and differences between the 

folding of the parental alleles have been observed for several of them. At the H19/Igf2 

imprinted gene cluster on chromosome 7, which contains the first described imprinted genes 

(Barlow et al., 1991; Bartolomei et al., 1991; DeChiara et al., 1991; Ferguson-Smith et al., 

1991), many allele-specific contact are detecable, especially on the maternal allele (Figure 

4.14a). GAM matrices show that the H19/Igf2 locus has many maternal-specific contacts with 

regions further downstream, and selected paternal-specific contacts with upstream regions. 

The difference in the directionality of these contacts is accompanied by a local drop of 

interactions over the paternal H19/Igf2 locus, corresponding to the location of a paternal-

specific TAD border at the H19/Igf2 locus. These differences are not only visible in the allele-

specific contact maps, but also amongst the top 5 % of allele-specific contacts on both alleles, 

showing maternal contacts between the H19 locus and other maternally active genes (Figure 

4.14b). The majority of genes in the cluster, including H19, are active on the maternal allele 

(paternally imprinted). Interestingly, on the maternal allele, the H19/Igf2 locus interacts with 

other imprinted genes (Tnfrsf22, Tnfrsf 23, Tnfrsf26). On the paternal allele, where those 

genes are silenced, this interaction is lost, and the H19/Igf2 locus interacts with regions 

further upstream. Generally, almost all imprinted genes have allele-specific contacts in the top 

5% monoallelic contacts (Figure 4.14c), however, the specific contacts are not always on the 

active allele. There are examples where an imprinted gene has more contacts on the silent 

allele, and others where it has more contacts on the expressed allele. In the future, it will be 

interesting to perform a thorough exploration of these contacts considering the expression 

state of the imprinted gene in F123, which might help distinguish these two scenarios, as 

imprinted genes may engage in different contacts depending on whether they are expressed in 

mESCs or not.  
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Figure 4. 14: The majority of imprinted genes has specific contacts on one parental allele. 

(a) Paternal and maternal contact maps of the imprinted gene cluster on chromosome 7, including H19 and Igf2 

(b) Maternal- (top) and paternal- (below) specific contacts at the imprinted gene cluster. Cluster contains 

paternally (purple) and maternally (green) imprinted genes. (c) Number of imprinted genes with and without 

allele-specific contacts (top 5%).  
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4.9.2 Allele-specific expression and differential chromatin contacts 

With the aim to study a possible connection between allele-specific expression (ASE) and 

chromatin contacts, I explored different genomic loci containing genes with ASE and found 

that allele-specific chromatin contacts can be found at many of these loci (examples in Figure 

4.15a). To explore the biology underlying these differential contacts, I inspected the linear 

genome occupancy of the enhancer mark H3K27ac and identified candidate regulatory 

regions using H3K27ac ChIP-seq data for F123 mESCs (Juric et al., 2019). Allele-specific 

interactions between genes with ASE and enhancers can be found at different loci. The 

maternally expressed genes Pus7 and Guf1 for example engage in long-range contacts 

specifically on the maternal allele (Figure 4.15a, top). Conversely, the paternally expressed 

genes Snhg14 and Snrp (imprinted), or Col4a1 and Cars2  interact with enhancer-rich regions 

specifically on the paternal allele (Figure 4.15a,bottom). 

 

To understand the genome-wide prevalence of enhancer contacts for genes with ASE, I 

quantified how many enhancer contacts occur at paternally and maternally expressed genes in 

both allele-specific contact maps (Figure 4.15b). For this comparison, I chose genes with 

maternal-specific (n = 477), and paternal specific (n = 275) expression, but also genes with 

allelically balanced expression (n = 3790). Genes were chosen based on the fold change 

between the read counts mapping to the parental alleles and the p-value (details in chapter 

4.4). An enhancer contact was defined by the presence of H3K27ac in the genomic window 

interacting with a gene with ASE. Furthermore, I investigated contacts for the presence of 

H3K4me1 (Figure 4.15c), a mark for active and poised enhancers, H3K4me3 (Figure 4.15d), 

which can be found predominantly at promoters of active genes, and CTCF (Figure 4.15e), an 

architectural protein enriched at DNA loops. In all three groups of genes, balanced, 

maternally, and paternally expressed genes, very similar percentages of contacts are found 

overlapping with the investigated ChIP-seq peaks. Generally, common contacts have a larger 

overlap with all investigated ChIP-seq peaks compared to the allele-specific contacts. This 

first exploration of chromatin contacts is limited to active histone marks and CTCF, which are 

the publicly available ChIP-seq datasets for F123 mESCs. Future work will be extended to the 

analyses of other histone marks, such as H3K9me3 and H3K27me3, to explore histone marks 

connected with gene silencing and heterochromatin. 
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Figure 4. 15: Connecting maternal and paternal chromatin contacts with allele-specific expression.  

(a) Examples of allele-specific chromatin contacts (5 and 95 % of differential z-scores) of maternally or 

paternally expressed genes (orange bars) and F123 mESC enhancers defined by the presence of H3K27ac (ChIP-

seq peaks, black bars). (b - e) Percentage of contacts (common, paternal-specific, maternal-specific) of allelically 

balanced, maternally, and paternally expressed genes with different chromatin features. (b) Percentage of 

contacts with H3K27ac. (c) Percentage of contacts with H3K4me1. (d) Percentage of contacts with H3K4me3. 

(e) Percentage of contacts with CTCF. Contacts were scored positive for a feature when the underlying genomic 

bin contained one or more ChIP-seq peaks.  

 

Many studies have described contacts between co-transcribed, active genes, suggesting their 

co-localisation in active chromatin hubs (Ferrai et al., 2010; Osborne et al., 2004; Osborne 

and Eskiw, 2008; Schoenfelder et al., 2010b). Further, silenced genes have also been found in 
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repressed chromatin hubs, for instance in Polycomb bodies (Mifsud et al., 2015). Previous 

work in mESCs showed that active genes preferentially contact other active genes, while the 

combination of active and inactive genes is less frequent (Beagrie et al., 2017). To test 

whether this preference can also be observed for allele-specific expression, I investigated how 

often maternally or paternally expressed genes contact each other (Figure 4.16). In fact, of all 

possible gene-gene combinations investigated (Figure 4.16a), genes with expression on the 

maternal allele preferentially contact each other, followed by genes with expression on the 

paternal allele (Figure 4.16b). Contacts between maternally and paternally expressed genes 

occur less frequent. This difference was strongest when analysing the common contacts, 

suggesting that gene-gene contacts of maternal or paternal genes occur predominantly in 

biallelic configurations.  

 

 

Figure 4. 16: Contacts between genes with allele-specific expression. 

(a) Possible gene-gene contacts between maternally or paternally expressed genes. Biallelic contacts are present 

in the common contacts, monoallelic contacts are either maternal-specific or paternal-specific. (b) Gene-gene 

contacts present in the common, paternal-specific, and maternal-specific contacts. Contacts are normalised to the 

number of genes present in each group of genes; maternal – maternal (477 + 477 genes); paternal – paternal (275 

+ 275 genes); maternal – paternal (477 + 275 genes).  
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4.10 Transcription factor analysis of common and allele-specific chromatin 

contacts 

Transcription factors (TFs) are key to cellular identity and their binding to regulatory DNA 

regions determines not only the expression of genes in different cell types, but also 

corresponds to clustering of occupied TF binding sites in 3D space (Liu et al., 2014; Ma et al., 

2018b). Clustering can be observed for regions occupied by the same TF, but also for regions 

bound by different TFs, of which many have been reported to engage in physical protein-

protein interactions (Ma et al., 2018b). Thus, we aimed to investigate which TF binding sites 

are present at frequent chromatin contacts in F123 mESCs, that are shared by the alleles, or 

that are specific to the maternal or paternal allele. For the discovery of potential TF 

candidates, genomic windows engaging in common or allele-specific contacts were filtered 

for ATAC-seq peaks (ATAC-seq data from Juric et al., 2019) to narrow down the size of the 

genomic region that is scanned for the presence of TF binding sites to open chromatin regions 

(Figure 4.17). Then, all TF motifs that were found inside open chromatin regions were filtered 

for expression of the corresponding TF, as a proxy for potential TF binding. TF binding sites 

that are enriched in open chromatin regions are analysed for co-localisation in 3D space based 

on the percentage of chromatin contacts that harbour the two TF motifs. This percentage is 

expressed as the coverage of a motif pair. Here, we report the top 10 TF motif pairs that are 

enriched in common or allele-specific chromatin contacts, ranked according to their coverage 

(Table 4.3). Interestingly, the top TF motif pairs in all three lists of chromatin contacts are 

combinations of CTCF, SALL1, UBIP1, and MAZ, followed by SMAD3, CTCFL, and 

KLF15. Seeing that common and allele-specific contacts are enriched for the same TF binding 

site motifs, encourages the analysis of the binding of these TFs in F123 with respect to allelic 

differences. Consequently, further analysis of these TFs could include haplotype phasing of 

ChIP-seq data, to identify regions with differential TF occupancy between the alleles.  
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Figure 4. 17: Pipeline to identify transcription factor (TF) motif pairs. 

The search for TF binding sites in a set of chromatin contacts (here: common, maternal-specific, paternal-

specific) is restricted to ATAC-seq peaks inside genomic bins engaged in specific chromatin contacts. The top 

TF motifs (A, B, C, ...) are analysed for motif pairs that preferentially contact each other. Enriched TF motif 

pairs are chosen based on their coverage (percentage of contacts connecting two TF motifs).  

 

 

Table 4.3: Top 10 transcription factor motif pairs ranked according to their coverage in common, and 

allele-specific chromatin contacts.  
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4.11 Conclusions 

This chapter addresses allele-specific differences between chromosome topologies and 

chromatin contacts in F123 mESCs using GAM. Here, I collected three GAM datasets in the 

hybrid mESC line F123, which comprise a total of 3664 nuclear profiles. The data show high 

reproducibility between biological replicates and GAM collection modes, which is shown by 

comparing window detection frequencies and A/B compartments between datasets. By 

merging all three datasets into one, complete saturation of the data is achieved at a genomic 

resolution of 20 kb and contacts maps visually appear well detected even at 10 kb resolution, 

which shows the potential of the F123 data to discover specific chromatin contacts at higher 

resolution than previously achieved with GAM (30 kb; Beagrie et al., 2017). 

 

Further, this work for the first time distinguishes chromatin contacts between the alleles in 

GAM, and shows that 80 % of all positive windows in GAM data can be assigned to a 

haplotype. The efficient phasing of GAM data allows genome-wide explorations of chromatin 

contacts at 50 kb resolution in a 1123 NP large dataset, with the potential to achieve even 

higher resolution in the full F123 dataset of 3664 NPs. Comparisons of the allele-specific 

chromatin contacts revealed genome-wide differences between the alleles for association with 

the A or B compartment. About 25 % of the F123 genome is present in monoallelic 

compartments, with equal contributions of the A and B compartment on both alleles. 

Interestingly, while biallelic compartments have clear and expected preferences for the 

presence of active and inactive genes in the A and the B compartment, the monoallelic 

compartments contain equal amounts of active and inactive genes.  

 

Furthermore, allele-specific analysis of RNA-seq data revealed hundreds of genes with allele-

specific expression, many of them with housekeeping functions. While those genes were not 

enriched in monoallelic compartments, but more often found in biallelic A compartments, 

many of the allele-specific and almost all imprinted genes are engaged in allele-specific 

chromatin contacts. Finally, to address mechanism for the establishment of common and 

allele-specific contacts, transcription factors were identified that have the potential to bind to 

open chromatin engaged in mono- and biallelic contacts. Further work is required to reveal 

the importance of these transcription factors for common and allele-specific chromosome 

topologies in mESCs. 
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5. The effects of the 16p11.2 deletion on chromatin contacts and gene 

regulation 

 

Note on results and author contributions 

The following chapter presents results obtained in collaboration with Dr. Ehsan Irani, 

Dominik Szabo, Dr. Christoph Thieme, Dr. Marta Slimak-Mastrobuoni, and Julieta Ramirez 

Cuellar. E. Irani provided an approach for z-score normalisation of Hi-C data, mapped the 

positions of A/B compartments, and produced differential Hi-C scores. C. Thieme and D. 

Szabo analysed all RNA-seq data in this chapter, and D. Szabo provided the materials for the 

figures 5.2b, 5.3 to 5.6 and 5.11. C. Thieme called TAD borders in the Hi-C data, and 

calculated correlations between Hi-C datasets. M. Slimak-Mastrobuoni and J. Ramirez 

performed the neuronal differentiation, and M. Slimak-Mastrobuoni generated RNA-seq 

libraries for two out of three biological replicates. All other experiments and analysis were 

performed by myself. The three ESC lines used in this chapter were previously produced in 

the laboratory of Dr. Alea Mills, Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, 

USA (Horev et al., 2011) and kindly shared by Yon Chang and Dr. Alea Mills. 

 

5.1 Introduction and research motivation 

The aim of this thesis is to expand the knowledge about chromatin structures and their 

functionality. Here, I aimed to investigate the impact of chromosomal rearrangements on 3D 

genome folding and gene regulation, using a model system of congenital disease. The 

relationship between changes in chromatin topology and disease has so far been investigated 

mostly at the level of TADs or promoter-enhancer contacts within a few megabases of the 

disease-associated genomic locus, with few exceptions (Barutcu et al., 2015; Loviglio et al., 

2016; Maass et al., 2018a; Zhang et al., 2018a). An intriguing study on chromatin contacts in 

neurological disorders shows the effects of a ~600 kb chromosomal deletion at the 16p11.2 

locus in humans on gene expression and long-range chromatin contacts (Loviglio et al., 

2016). CNVs at this locus have been associated with disease, namely a high prevalence of 

autism spectrum disorder (ASD), increased risk of intellectual disability and psychiatric 

disorders in carriers of the deletion and the duplication, as well as other phenotypes, such 

micro- or macrocephaly in the duplication and deletion, respectively (Kumar et al., 2008; 

Niarchou et al., 2019; Steinman et al., 2016). Changes in long-range contacts involving the 

16p11.2 locus were observed both within the same chromosome and between chromosomes 
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(Loviglio et al., 2016). Although these changes were only mildly connected to gene 

expression differences, this study raised the possibility that a genomic re-arrangement in one 

chromosome may affect chromatin folding genome-wide. To investigate the effects of these 

long-range topology changes on gene expression and better understand the mechanisms of 

ASD, we decided to develop an in vitro system to study the effects of the 16p11.2 deletion on 

chromatin contact changes during neuronal development. Further, our in vitro system mimics 

a developmental stage when genes relevant for ASD are regulated. The cell types affected in 

ASD are currently not clear, although the complexity of the disease suggest multiple brain 

regions may be affected; however, several studies suggest a critical role for dopamine 

signalling in ASD (Anderson et al., 2008; Bariselli et al., 2018; Gadow et al., 2008; Jo et al., 

2016; Nakamura et al., 2010; Nguyen et al., 2014; Staal et al., 2012) and dopamine 

antagonists are approved to treat some behavioural problems associated with ASD (Hellings 

et al., 2017; LeClerc and Easley, 2015). Thus, we chose to work with a neuronal 

differentiation system that drives pluripotent cells towards dopaminergic neuron fate (Ferrai 

et al., 2017). Applied in mouse ESCs, the differentiation undergoes early stages of neuronal 

fate decisions to derive neuronal precursor cells, and results in premature dopaminergic 

neurons after 16 days. We obtained mouse ESCs carrying the 16p11.2 locus CNV that is most 

common in humans and that phenocopied the human disease in mice (Horev et al., 2011). By 

studying gene expression and chromatin topology in the context of the 16p11.2 deletion, we 

aim to understand which genes are misregulated in neuronal development in ASD, and how 

this misregulation is connected to topology changes in the genome. We next used a genome-

wide approach to investigate chromatin contacts connected to changes in gene expression in 

ASD. This approach seeks to gain insight into the functionality of long-range and inter-

chromosomal contacts, a topic which is still highly debated in the field.  

 

5.2 Experimental design 

In order to study chromatin folding in the 16p11.2 deletion, we obtained mouse ESC lines 

which contain rearrangements in 7qF3, the mouse region syntenic to human 16p11.2, which 

were previously generated in the laboratory of Dr. Alea Mills (CSHL, Cold Spring Harbour, 

NY, USA) starting from ESCs generated from wildtype C57BL/J6 mice, and used to generate 

mouse models of the 16p11.2 deletion (Horev et al. 2011). The human 16p11.2 deletion is 

located in a genomic region which is conserved between human and mouse genomes. The 

equivalent murine region spans 550 kb and contains 27 protein-coding genes, which comprise 

a consecutive synteny block shared between humans and mice (Figure 5.1a). The high gene 
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density in the deletion region raises some additional challenges in studying broader structural 

effects of the 16p11.2 deletion in gene regulation, because of the effect of gene dosage 

changes in a large number of protein-coding genes in the deletion region. Thus, we considered 

three different murine ESC lines described in Horev et al. (2011). First, the df/+ mESC line 

that contains the heterozygous 16p11.2 deletion; this line is referred to as 16p-deletion (or 

‘16p-d’) in this thesis. Second, we chose a mESC line (df/dp) containing both the 16p11.2 

deletion and the corresponding duplication (here referred to as ‘16p-dd’ ESC line), with the 

aim of balancing out gene dosage effects (Figure 5.1b). The 16p-dd ESC line carries the 

16p11.2 deletion on one allele, and the duplication of the 16p11.2 region on the other allele. If 

gene dosage would be effectively recovered in the 16p-dd line, it would make it possible to 

discover alterations in gene expression due to the structural rearrangement. Last, we used the 

wildtype ESC line as a control line; here referred to as ‘16p-co’. This complex experimental 

design explores gene expression differences between the wildtype cell and the heterozygous 

deletion (16p-d), and searches for matching gene expression differences between the control 

and duplication-deletion (16p-dd) cells. This approach allows us to specifically investigate 

changes in gene expression that are likely to be due to the large 16p11.2 genomic deletion, 

rather than from halving gene dosage. Overall, this should help identify genes that change 

solely because of downstream effects of the reduced expression of genes within the deletion 

region. It should be noted, that our experimental design does not aim to ignore gene dosage 

effects of the 16p11.2 deletion, which are also likely to contribute to the autism phenotypes of 

the 16p11.2-deletion carriers. While the effects of gene dosage include an interesting set of 

target genes for autism research, however they are not the focus of this study. At this time, 

only three of the genes within 16p11.2, Taok2, Mapk3, and Kctd13, have been assigned to the 

SFARI list of ASD genes (https://www.sfari.org). In this thesis, I retain the human 

nomenclature of the 16p11.2 rearrangement, even though it is modelled in the 7qF3 mouse 

region, as is standard in this field of research (Horev et al., 2011). 
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Figure 5. 1: Copy number variations (CNVs) at the 16p11.2 locus.  

(a) Genes and synteny in the human 16p11.2 deletion region are conserved between human and mice. Similarity 

between human and mouse genomes and corresponding gene tracks are shown, colour coded by chromosome. 

The 16p11.2 locus is syntenic to a genomic region in the mouse 7qF3 locus. (b) The 16p11.2 cell lines used in 

this project carry different CNVs at the 16p11.2-syntenic murine locus on chromosome 7. 

 

5.3 Neuronal differentiation of the 16p11.2 cell lines 

To investigate the effects of the 16p11.2 deletion in ASD pathology, we chose to investigate 

changes in gene expression and 3D chromatin structure, not only in pluripotency but also 

during neuronal differentiation. We took advantage of a reliable neuronal differentiation 

system that was previously established in our lab, which generates a homogeneous population 

of neuronal precursor cells (NPCs) and dopaminergic neurons (Figure 5.2a), by manipulating 

FGF and Shh signalling (Ferrai et al., 2017). First, we collected RNA and Hi-C-ready 

chromatin in the three ESC lines (co, d and dd). Second, the three ESC lines were 

differentiated into stable EpiStem cell (EpiSC) lines, which can be amplified and stored. The 

EpiSCs were then induced to differentiate by blockage of FGF/ERK signalling and 

differentiated towards the dopaminergic fate by stimulation with FGF and Shh (Ferrai et al., 

2017). Five days after induction, the cells differentiate into NPCs; at this time, we collected 

RNA and Hi-C-ready chromatin. Finally, at day 16, we collected only RNA. The 

differentiation of all three 16p11.2 ESC lines was performed in several replicates, and showed 

no consistent differences in pluripotency levels, growth rate, or differentiation, based on the 

morphology of the cells (Figure 5.2a), or protein levels of stage markers validated by RT-

qPCR and immunofluorescence, respectively (J. Ramirez and M. Slimak-Mastrobuoni, 

personal information).  
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Figure 5. 2: Successful differentiation of 16p11.2 cell lines.  

Morphology of 16p-co, 16p-d, and 16p-dd at different stages of the neuronal differentiation; embryonic stem 

cells (ESCs), neuronal precursor cells (NPCs), and premature dopaminergic neurons (Neurons). Scale bar: 

100 µm. 

 

5.4 RNA-seq libraries are highly similar between replicates and cell lines and 

cluster into cell types 

To investigate whether the 16p11.2 deletion or deletion-duplication had major effects on the 

cell state and to identify changes in gene expression, we produced total RNAseq libraries for 

the 16p11.2 lines (16p-co, 16p-d, and 16p-dd) in several replicates, for ESCs, NPCs (day 5), 

and neurons (day 16) (Figure 5.3a). Comparison of expression levels show that biological 

replicates correlate well (e.g. NPC/16p-co, replicate 1 and 2, r = 0.957; Figure 5.3b), which 

can be confirmed for all cell lines (data not shown), indicating little variability between the 

neuronal differentiations. Further, principal component analysis (PCA) of the first two 

principal components (explaining 80 % of the variance between samples) shows that all 

experiments cluster according to their differentiation stage, regardless of the CNV of the cell 

line. We also analysed the expression of differentiation stage markers (Figure 5.3d). As 
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expected, the expression of pluripotency markers Pou5f1 (Oct4) and Nanog is high in ESCs, 

showing large similarity between biological replicates and 16p11.2 lines. In NPCs, Nanog and 

Pou5f1 expression could no longer be detected, while the expression of early neuronal 

markers, such as Hes5, Nes, and Tubb3 is detected. Nes expression is no longer present in 

neurons, while Hes5 expression peaks in NPCs, and is still present in neurons. Tubb3 starts 

being expressed in day 5, and its expression is highest in day 16. Lastly, neurons express the 

dopaminergic marker Th, indicating the commitment of the neurons towards the dopaminergic 

fate. The expression of stage markers observed in the three 16p11.2 lines are equivalent to the 

expression observed for other mESC lines (e.g. ESC-46C; Fraser et al., 2017), and confirms 

successful differentiation of all three cell lines to premature dopaminergic neurons. These 

results show that the 16p11.2 deletion and deletion-duplication do not alter the broad 

signature of the RNA expression in cells undergoing neuronal differentiation, neither the time 

nor efficiency of differentiation from pluripotency to NPCs and early dopaminergic neurons.  

 

Figure 5. 3: RNA-seq libraries show large similarity between replicates and cell lines.  

(a) Libraries are collected in biological replicates at three stages in the neuronal differentiation (ESC, NPC, 

neuron). Each differentiation of cells carrying the deletion (d1, d3) or duplication-deletion (dd2, dd4) was 

accompanied by the wildtype control (c1, c3 and c2, c4), respectively. (b) Correlation of TPM values (log2) 

between biological replicates of NPC 16p-co (c1, c2). (c) Principal components (PCs) 1 and 2, explaining 62% 



5. The effects of the 16p11.2 deletion on chromatin contacts and gene regulation 

 148 

(PC1) and 18% (PC2) of variance between samples, shows clustering of samples according to their 

differentiation stage, but not according to their cell lines. (d) Expression (RNA-seq, log2(TPM)) of pluripotency 

marker genes (Pou5f1, Nanog), NPC marker genes (Hes5, Nes, Tubb3), and marker genes of dopaminergic 

neurons (Tubb3, Th) in 16p-co, 16p-d, and 16p-dd at different stages of neuronal differentiation. 

 

5.5 Differential RNA-seq analysis at the 16p11.2 locus confirm dosage effects in 

the deletion, and dosage compensation in the duplication-deletion 

To investigate gene expression changes induced by the 16p11.2 deletion that are independent 

of the 0.5x gene dosage, we searched for changes in gene expression that were also found in 

the 16p-dd line. To this end, we analysed the gene expression differences between the 

16p11.2 control cell line (16p-co), as well as the line carrying the deletion (16p-d) and the one 

carrying the duplication-deletion (16p-dd), and searched for common genes with altered 

expression. To determine gene expression changes above the internal fluctuations within each 

type of sample, we computed significant gene expression changes within the same timepoint 

in the different cell lines by considering the variability in transcript levels between all 

biological replicates within each cell line.  

First, we started by investigating the levels of gene expression at the 16p11.2 locus itself, and 

specifically whether the 16p-dd line, which has both copies of the 16p11.2 locus in one allele, 

effectively compensated dosage. First, we compared the transcript levels of genes within the 

16p11.2 deletion and their immediate neighbours in the genome (Figure 5.4). As expected, the 

genes within the 16p11.2 deletion showed significantly reduced gene expression in the 16p-d 

cell line compared to wildtype. This reduction could be observed in all three timepoints, 

ESCs, NPCs, and neurons. In the 16p-dd cells, the reduced gene expression due to the 

deletion on one allele could indeed be compensated by the duplication of the whole 16p11.2 

deletion on the other allele for two timepoints, ESCs and NPCs. In day 16 neurons, the dosage 

compensation did not fully restore the wildtype transcript levels of the genes at the 16p11.2 

locus; in fact, nine genes inside the 16p11.2 region showed reduced expression compared to 

the NPC control in the 16p-dd line. These results show that the 16p-dd cells can be considered 

as a control for dosage compensation in ESCs and NPCs, but cannot fully compensate for 

gene dosage in day 16 neurons. Thus, we decided to focus our analysis of differential gene 

expression and their connection to genome topology mostly on the earlier timepoints in the 

differentiation, ESCs and NPCs.  
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Figure 5. 4: Gene expression differences between control and mutant cell lines at the 16p11.2 locus.  

Gene expression differences (log2 fold change) of the 16p-d and the 16p-dd TPM values compared to 16p-co 

TPMs. Under each graph, gene expression (log2 TPM) of 16p-co is shown. Inside the 16p11.2 deletion 24 genes 

are expressed (genes between dotted lines), which were downregulated in 16p-d in ESCs, NPCs, and neurons. In 

16p-dd, ESCs and NPCs genes inside the deletion show only minor differences in expression compared to the 

wildtype, but are slightly downregulated in neurons.  

 

5.6 A small number of differential expressed genes are common to NPCs from the 

16p-d and 16p-dd  

To find genes that are differentially regulated due to the 16p11.2 deletion and not to gene 

dosage, we intersected the lists of differentially expressed genes in the 16p-d and the 16p-dd 

line in ESCs, NPCs and neurons (Figure 5.5). We found only 3 and 5 differentially expressed 

genes in the ESC 16p-d and 16p-dd lines, respectively, with none of them being shared, 

suggesting that the 16p11.2 deletion has little influence on gene regulation in pluripotency, 

even though most of the genes it contains are expressed (Figure 5.4). However, in NPCs, the 

number of differentially expressed genes increases to 123 and 54 in 16p-d and 16p-dd, 

respectively, with 11 common genes. Remarkably, none of the 11 overlapping genes were 

located on chromosome 7, which carries the 16p11.2 deletion. In neurons, the number of 

differentially expressed genes was highest in the 16p-dd line, suggesting that not only the 

incompletely compensated gene dosage, but the duplication itself contributes to a large 
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number of differentially expressed genes. The more complex results in neurons led us to focus 

our next analysis in the NPC timepoint.  

 

Figure 5. 5: Cells carrying the 16p11.2 deletion have only a small number of differentially expressed genes 

that are shared with their dosage-compensated control.  

Number of significant differentially expressed genes (adjusted p-value < 0.05) in 16p-d and 16p-dd compared to 

16p-co in (a) ESCs, (b) NPCs, and (c) neurons (NEU). Venn diagrams show the overlap of differentially 

expressed genes in the two mutant cell lines. (d) List of all differentially expressed genes shared by 16p-d and 

16p-dd in NPCs and neurons. 

 

5.7 Most gene expression changes common in 16p-d and 16p-dd in NPCs are 

located on chromosome 18 

Surprised by the identification of differentially expressed genes in other chromosomes that are 

common to the 16p-d and 16p-dd NPCs, we asked whether these genes had a preferential 

genomic location (Figure 5.6). First, we confirm that ESCs have little changes in gene 

expression both in 16p-d or 16p-dd relative to wildtype 16p-co. In NPCs, there are extensive 

changes in gene expression found across all chromosomes, especially in 16p-d. A small 

number of changes are conserved, and these are found in chromosomes 1, 5, 14, 15, 18 and X. 

We were most interested in the changes found in chromosome 18, all of which were 

protocadherin genes found in a single genomic region. Unexpectedly, none of the significant 

gene expression changes in chromosome 7 where common in 16p-d and 16p-dd NPCs. 

Finally, we found that the 16p-dd leads to stronger gene deregulation in neurons, and 

affecting genes found across all chromosomes, including many in chromosome 7, where the 

deletion is located.  
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Figure 5. 6: Differentially expressed genes shared by 16p-d and 16p-dd are mostly found on chromosome 

18. 

Number of differentially expressed genes per chromosome of 16p-d, and 16p-dd in comparison to the control 

cell line 16p-co in ESCs (top), NPCs (middle), and day 16 neurons (bottom). Common genes between 16p-d and 

16p-dd are indicated in black. 

 

5.8 Mapping chromatin contacts in 16p11.2 cells 

The aforementioned observations of differentially expressed genes both within chromosome 7 

and across the genome, particularly in chromosome 18, raised the possibility that the deletion 

leads to broader alterations in genome organisation. To explore the 3D genome folding of the 

16p11.2 cells, we mapped chromatin contacts genome-wide using Hi-C, which identifies 

pairwise chromatin contacts via proximity-ligation.  

First, I established the Hi-C protocol in the ESC line 46C, which is commonly used in our 

laboratory, by exploring a range of parameters described in the published protocols (Fraser et 

al., 2015; Lieberman-Aiden et al., 2009). Important protocol steps that required adjustment 

were the concentration of the restriction enzyme and incubation time of the restriction 

digestion, the composition of the ligation buffer, the temperature and timing of the biotin 

removal step, and the conditions of adapter ligation and amplification of DNA from 

streptavidin beads (see Methods chapter 2.11 for details). I performed quality controls at all 

stages of the protocol, as suggested in Belton et al. (2012), and optimised the protocol to 

match the published recommendations for digestion efficiency (Figure 5.7a) and efficiency of 

biotin incorporation (Figure 5.7b). Library preparation was adjusted according to these 

efficiencies, as well as effective DNA extraction, sonication, and size selection of DNA 

fragments of 300 – 600 bp (Figure 5.7c). All adapter ligated and amplified libraries were run 
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on a high sensitivity Bioanalyzer to determine the average fragment size of the Hi-C library 

and to check for uniform amplification of all fragment sizes (Figure 5.7d).  

After sequencing, I mapped reads to the mm9 reference genome and analysed them with 

TADbit (Serra et al., 2017) to determine the percentage of reads that contain ligation events 

between two restriction fragments, or in other words, valid Hi-C pairs. When filtering reads 

for valid Hi-C pairs, additional classes of reads can be identified, such as dangling ends 

(suggesting inefficient ligation or biotin-end removal), self-circles (suggesting a low 

concentration of crosslinked chromatin fragments in the ligation reaction), or PCR duplicates 

(a result of low amounts of input material in the library preparation and a general hallmark of 

low quality sequencing libraries). I compared the efficiency of my protocol with published 

Hi-C data in mESCs, which at the time was considered as the gold standard for Hi-C (Dixon 

et al., 2012). With my optimised Hi-C protocol, I reached almost identical quality metrics 

compared to Dixon et al. (Figure 5.7e). The Hi-C data was then ICE-normalised using 

TADbit and matrices were plotted for visual inspection and comparison with the published 

matrices from Dixon et al. (2012). Overall, Hi-C contact frequencies in 46C mESCs closely 

resembled the contact frequencies detected in Dixon et al. (2012) (Figure 5.7f, g). 
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Figure 5. 7: Set-up of the Hi-C protocol and quality controls.  

(a) Undigested and digested Hi-C libraries, with the respective digestion efficiencies for two genomic regions 

below. Digestion efficiencies have been estimated by RT-qPCR. 2% formaldehyde (FA) fixation results in 

reduced digestion efficiencies compared to 1% FA. (b) Assay to determine biotin labelling efficiency. Amplified 

ligation product from two adjacent HindIII restriction fragments is digested with HindIII and with NheI. 

Fragments without biotin incorporation carry the HindIII restriction site, fragments that incorporated biotin carry 

a NheI restriction site. The efficiency of incorporation is calculated from the proportion of DNA that can be 

digested with NheI compared to HindIII. (c) Sonication and size selection of a purified Hi-C library results in 

fragments of 300 – 600 bp in size. (a – c) DNA is loaded on a 1.2% agarose gel, next to the Gene Ruler 1kb plus 

ladder. (d) Electropherogram showing the fragment size distribution of a Hi-C sequencing library with an 

average fragment size of 540 bp. FU, fluorescence units. (e) Percentage of reads with dangling ends (unligated 

fragments), self-circles (fragments ligated to themselves), and PCR duplicates in Hi-C libraries from Dixon et 

al., 2012 (blue) and libraries produced with 1% or 2% formaldehyde fixation (pink). Below, reads after mapping, 

filtering, and assigning them as cis reads (reads within a chromosome), all as percentage of the previous step, 

mapped reads as percentage of total reads. (f) ICE normalised Hi-C ligation frequencies in mESCs from Dixon et 

al., (2012) and (g) 46C mESCs (2% FA).  
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Next, I applied Hi-C on ESCs and NPCs of the three 16p11.2 cell lines, 16p-co, 16p-d, and 

16p-dd, resulting in six Hi-C libraries. Mapping and filtering showed good quality metrics for 

all libraries (Figure 5.8a, b). HiCRep (Yang et al., 2017) was used to compare Hi-C datasets 

and check for similarity between the different lines. The pipeline determines the correlation 

between Hi-C data, while giving weight to different genomic length scales, a process that 

makes the comparison of datasets more accurate and sensitive to differences between 

samples, which is often not given when calculating the Pearson correlation between datasets. 

With HiCRep higher correlations between libraries of the same timepoint can be observed, 

compared to libraries from different timepoints (Figure 5.8c), similar to what we observed in 

the matching RNA-seq data.  

 

Figure 5. 8: Comparable quality metrics between 16p11.2 Hi-C datasets.  

(a) Hi-C data collected in the three 16p11.2 cell lines. (b) Mapped reads in percentage of total reads, valid read 

pairs after filtering, and cis reads in percentage of valid pairs. (c) Spearman’s correlation coefficient (SCC) of 
the 16p11.2 Hi-C datasets, calculated with HiCRep. 

 

5.9 Chromatin contacts around the 16p11.2 locus are largely unchanged between 

cell lines 

Next, I studied the chromatin contacts at the 16p11.2 locus and neighbouring regions. 

Interestingly, these analyses show that the 16p11.2 region corresponds to a single TAD in 
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ESC and in NPCs, and together with the neighbouring regions there are no noticeable major 

changes in TAD organisation between the two differentiations stages (Figure 5.9a, b).  

To explore the impact of the deletion on chromatin topology, I compared the Hi-C contact 

frequencies at the 16p11.2 locus between 16p-co and 16-d or 16p-dd in both ESCs and NPCs 

(Figure 5.9a, b). In 16p-co, the wildtype cells, ESCs and NPCs show highly similar contact 

frequencies. Noteworthy, the 16p11.2 deletion is found inside compartment A of chromosome 

7 in NPCs (Figure 5.9b; analyses of compartments are ongoing in ESCs). The comparison 

with 16p-d and 16p-dd shows that overall contact frequencies do not show noticeable 

changes, except for increased contact frequencies between the flanking regions of the 16p11.2 

deletion, an expected result of reducing the genomic distance between these regions. The 

same effect is visible in the 16p-dd data, but the difference to the 16p-co line appears less 

pronounced, potentially balanced out by reduced contacts between these regions on the allele 

carrying the duplication. To quantify these observed differences, we subtracted Hi-C contact 

frequencies after z-score normalisation of either the 16p-d line or the 16p-dd line from the 

control 16p-co (Figure 5.9c, d). Indeed, the subtraction revealed only a few contact changes, 

locally and chromosome wide. The most prominent change occurs at the 16p11.2 locus in 

NPCs, where chromatin contact frequencies are clearly deleted for contacts with the deletion 

and increased upstream and downstream of the deletion in 16p-d and 16p-dd. However, these 

changes do not alter the positions of TAD borders at the locus nor do they affect the 

association with the A compartment. Further, the genes at the locus that significantly change 

their expression in 16p-d (9130019O22Rik and Tgfb1i1) and in 16p-dd (Zfp764) do not show 

specific contact changes in the respective Hi-C data. 
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Figure 5. 9: Chromatin contacts around the 16p11.2 locus change only marginally between cell lines. 

(a) Hi-C contact frequencies (log2) of chromosome 7 in 16p-co and the zoom to the genomic locus carrying the 

16p deletion in 16p-co, 16p-d, and 16-dd in mESCs. Below: genomic position of the 16p11.2 deletion, gene 

density, and positions of differentially expressed genes. (b) Hi-C contact frequencies (log2) of chromosome 7 in 

16p-co and the zoom to the genomic locus carrying the 16p11.2 deletion in 16p-co, 16p-d, and 16-dd in NPCs. 
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Below the zoom to the 16p11.2 locus, from top to bottom: Genomic position of E14.5 brain super-enhancers, 

genomic position of the 16p11.2 deletion, position of TADs, gene density (shown in 16p-co), differentially 

expressed genes (shown in 16p-d, and 16p-dd), A (green) and B (red) compartments. (c) Delta z-score of Hi-C 

contacts in ESCs for 16p-d minus 16p-co (left), and 16p-dd minus 16p-co (right). Top matrices show differential 

contacts of the 16p11.2 locus, bottom matrices show differential contacts of chromosome 7. (d) Delta z-score of 

Hi-C contacts in NPCs for 16p-d minus 16p-co (left), and 16p-dd minus 16p-co (right). Top matrices show 

differential contacts of the 16p11.2 locus, bottom matrices show differential contacts of chromosome 7. 

 

5.10 The 16p11.2 locus contact other regions on chromosome 7 with no direct 

connection to gene expression changes  

Although most contacts on chromosome 7 are largely unchanged in both timepoints, we 

observed significant differential gene expression in NPCs for a number of genes on the same 

chromosome. These genes were not consistent between the deletion and the dosage 

compensated control, however, in order to understand if these changes are connected to the 

16p11.2 locus, we explored the chromatin topology of chromosome 7 and the contacts of the 

16p11.2 region with the remaining chromosome 7 in NPCs. The 16p11.2 deletion comprises a 

gene-dense, active genomic region, located in the A compartment of the chromosome (Figure 

5.9b). Interestingly, a large proportion of the differentially expressed genes of 16p-d and 16p-

dd on chromosome 7 are located in the B compartment (Figure 5.10a). Further, the positions 

of the A and B compartments on chromosome 7 were largely unchanged between 16p-co, 

16p-d, and 16p-dd (Figure 5.10a). To explore the intrachromosomal contacts established by 

the 16p11.2 locus, we used z-score normalised Hi-C contacts and extracted the contacts of 

16p11.2 with chromosome 7. The z-score normalisation takes into account for every genomic 

distance the average contact frequencies of the chromosome as a background signal. Contact 

frequencies of a specific region of interest are normalised to this background signal. 

Consequently, z-score Hi-C tracks (Figure 5.10b) show distance-normalised depletion or 

enrichment of contacts between a genomic region and the remaining chromosome compared 

to the background signal of that chromosome. Interestingly, the 16p11.2 deletion and its 

surrounding genomic regions (+/- 500 kb) establish long-range contacts with other genomic 

regions from compartment A in chromosome 7, while they are depleted for contacts with their 

immediate surrounding (Figure 5.10b, viewpoint 16p, viewpoint 16p - 500 kb). These long-

range contacts appear as distinct patches along the chromosome, a characteristic that cannot 

be observed for regions further up- or downstream of the 16p11.2 locus. The contacts of other 

A compartment regions outside the immediate 16p11.2 locus (the locus comprises 16p11.2 

+/- 500 kb) are distributed along the chromosome, without the 16p11.2-characteristic 

depletion between contact patches (example shown in Figure 5.10b, viewpoint 16p - 1.5 Mb). 
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The 16p11.2 locus, together with all its contact patches on chromosome 7, is located in the A 

compartments, however, not every A compartment is connected to 16p11.2, which might 

indicate that 16p11.2 is involved in a network of active chromatin regions, that has some 

specificity (Figure 5.10b), especially, as the A compartments directly up- and downstream of 

16p11.2 are not a part of this network. However, most of the contacts of 16p11.2 within its 

own chromosome do not contain differentially expressed genes (Figure 5.10b). In the 16p-d 

cell line, 1 (Prr19) out of the 6 differentially expressed genes outside the deletion on 

chromosome 7 can be found inside a contact patch of 16p11.2 (chr7:24,881,000-26,661,000). 

In the dosage compensated control, 2 (2310022K01Rik, 2610034B18Rik) out of 9 

differentially expressed genes are located inside a contact patch (chr7:27,115,000-31,993,000; 

chr7:82,122,000-92,028,000). Further, the contact patches of the 16p11.2 locus are preserved 

between the three cell lines, as shown here for the contacts of the region upstream of 16p11.2 

(Figure 5.10b, viewpoint 16p – 500 kb). At this time, we did not pursue further how the 

intrachromosomal contacts of the 16p11.2 with other regions of chromosome 7 may relate 

with changes of gene expression within compartment A, or how they may affect the 

organisation of the regions that contain differential expressed genes located in compartments 

B. In the next sections, we instead decided to focus on exploring changes found common to 

16p-d and 16p-dd, namely those affecting the protocadherin gene locus in chromosome 18. 
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Figure 5. 10: The 16p11.2 locus engages in long-range contacts with distinct parts of the A compartment 

of chromosome 7 

(a) Principal component analysis (PCA) of chromosome 7 in NPCs for 16p-co, 16p-d, and 16p-dd, A 

compartment is shown in green, B compartment in red. Below, significantly differentially expressed genes in 

16p-d and 16p-dd. The position of the 16p11.2 deletion is highlighted in yellow. (b) Z-score normalised Hi-C 

contacts, showing contacts of one 500 kb viewpoint with chromosome 7. From top to bottom: z-score (log) 16p-

co with the viewpoint in 16p11.2, z-score (log) 16p-co with the viewpoint 500 kb upstream of 16p11.2, z-score 

(log) 16p-d with the viewpoint 500 kb upstream of 16p11.2, significantly differentially expressed genes of 16p-

d, z-score (log) 16p-dd with the viewpoint 500 kb upstream of 16p11.2, significantly differentially expressed 

genes of 16p-dd, z-score (log) 16p-co with the viewpoint 1.5 Mb upstream of 16p11.2.  
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5.11 Pcdh gene clusters on chromosome 18 are deregulated in 16p-d and 16p-dd 

When exploring the chromatin topology of chromosome 7, we were able to identify specific 

long-range chromosomal contacts involving the 16p11.2 locus, but these contacts could not 

readily explain gene expression differences observed between the control and 16p-d or 16p-dd 

on chromosome 7, potentially because none of the significantly differentially expressed genes 

in 16p-d on chromosome 7 are also found in the dosage-compensated control 16p-dd. Thus, 

indirect effects of the reduced expression of the genes within the 16p11.2 deletion might 

contribute to these changes. Thus, we decided to explore also gene expression changes on 

chromosome 18 with respect to chromatin topology, and focus on the Pcdh genes that are 

differentially expressed in both 16p-d and 16p-dd (Figure 5.11). While the Pcdhb cluster is 

upregulated both in 16p-d and 16p-dd, the neighbouring Pcdha and Pcdhg clusters show 

different behaviours. The Pcdha cluster is upregulated in 16p-dd and unaffected in 16p-d, the 

Pcdhg cluster is downregulated in 16p-d and unaffected in 16p-dd (Figure 5.11). The Pcdh 

clusters a, b, and g comprise the majority of all protocadherin (Pcdh) genes, in a total of 

nearly 60 out of 80 genes, which are expressed in neurons and have been demonstrated to 

play a central role in self-recognition of neuronal cells in the central nervous system (Chen 

and Maniatis, 2013). The importance of Pcdh genes in neuronal development and their co-

regulation in the 16p11.2 deletion and the dosage compensated control cells not only suggest 

a role of Pcdh genes in the manifestation of the 16p11.2 phenotypes, but it further suggests a 

causal relationship to the deletion, that is not connected to gene dosage effects.  
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Figure 5. 11: Pcdh clusters are differentially expressed in 16p-d and 16p-dd. 

Fold change (log2) of genes in the Pcdh clusters a, b, and g in 16p-d (left) and 16p-dd (right) compared to the 

control cell line 16p-co in ESCs (top), NPCs (middle), and day 16 neurons (bottom). Adjusted and unadjusted p-

values are indicated by stars and by colour gradient, respectively. Under each graph showing the fold change, the 

gene expression (log2 TPM) of 16p-co is shown. 

 

5.12 Chromatin topology of the Pcdh locus changes in 16p-d and 16p-dd 

The Pcdh gene clusters a, b, and g are located next to each other, inside a 1 Mb genomic 

region of the B compartment of chromosome 18 (Figure 5.12a). As expected, no expression is 

detected in Pcdha and Pcdhb in ESCs, while Pcdhg is weakly expressed. In NPCs, the three 

clusters remain located in the B compartment, although the Pcdhb and g clusters become 

expressed or increase expression, respectively, while the Pcdha cluster remains silent (Figure 

5.11). The association with the B compartment remains in NPCs for both 16p-d or 16p-dd, 

although changes in gene expression are detected in all the clusters (Figure 5.12a). Further, all 

three Pcdh clusters are located inside one TAD (boundary positions indicated in Figure 

5.12b), with clearly demarcated borders in 16p-co, 16p-d and 16p-dd. Noteworthy, there are 

sub-TAD structures within the Pcdh-TAD (Figure 5.12b), which may contain information 

about the differential regulation of the Pcdh clusters.  
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The Pcdhb cluster is located in the middle of the Pcdh TAD and upregulated in 16p-d and 

16p-dd NPCs. To explore the chromatin contacts of the Pcdhb cluster, we quantified the z-

score normalised contact frequencies of the Pcdhb cluster with the neighbouring region 

(Figure 5.12c). Interestingly, in ESCs, where Pcdhb genes are not expressed, the cluster has 

high contact frequencies within itself and with the Pcdha and g clusters in 16p-co, 16p-d and 

16p-dd, with a clear drop of contacts at both ends of the cluster.  

In NPCs, the contacts of Pcdhb with itself are lower than in ESCs in the control line 16p-co. 

Upstream of Pcdhb, both the drop of contact frequencies at the border of the Pcdhb cluster 

and the contacts with the neighbouring Pcdha cluster remain. Downstream of the Pcdhb 

cluster we find a more marked decreased in contacts, which taken together with the increased 

gene expression of the Pcdhb and Pcdhg clusters in NPCs, suggests that this structure 

acquires a slightly more open chromatin conformation in NPCs compared to ESCs. In the 

16p-d and 16p-dd NPCs the contacts of Pcdhb with the neighbouring regions change 

drastically. The self-contacts of the Pcdhb cluster are highly reduced, and while the contacts 

with the Pcdha clusters are mostly unchanged, the Pcdhg cluster interacts more frequently 

with Pcdhb.  

The expression of Pcdhb genes in neurons is known to be regulated by CTCF-mediated 

looping between the promoter of a Pcdhb gene and a distant enhancer containing six DNaseI 

hypersensitive sites, the cluster control region (CCR) of Pcdhb (Yokota et al., 2011). The 

CCR is located downstream of the Pcdhg cluster, and its deletion leads to downregulation of 

Pcdhb genes, and also some isoforms of the Pcdhg genes. Interestingly, the contacts between 

the Pcdhb cluster and the CCR increase in the 16p-d and 16p-dd NPCs in comparison to the 

control (Figure 5.12c), in concordance with the upregulation of the Pcdhb cluster in the two 

cell lines.  
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Figure 5. 12: Chromatin contacts of the Pcdhb cluster change in the 16p-d and 16p-dd NPCs but not in 

ESCs. 

(a) Principal component analysis (PCA) of chromosome 18 in NPCs; Eigenvalues of the PCA shown for the 

Pcdh locus in 16p-co, 16p-d, and 16p-dd, A compartment in green, B compartment in red. (b) Hi-C contact 

frequencies (log2) of 16p-co NPCs at the Pcdh locus. TAD boundaries are indicated by dotted lines. (c) Z-score 

normalised Hi-C contacts, showing contacts of the Pcdhb cluster with its local surrounding on chromosome 18. 

From top to bottom: z-scores (log) of 16p-co ESCs, 16p-d ESCs, 16p-dd ESCs, 16p-co NPCs, 16p-d NPCs, 16p-

dd NPCs. Table at the right indicates gene expression of the Pcdh clusters in ESCs and NPCs in each cell line, in 

the same order as the z-scores. 
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5.13 Inter-chromosomal contacts connect the 16p11.2 locus with chromosome 18 

To study how the 16p11.2 deletion on chromosome 7 might be connected to the gene 

expression and chromatin changes at the Pcdh clusters on chromosome 18, we examined 

chromatin contacts between chromosomes. Inter-chromosomal contacts detected with Hi-C 

are magnitudes lower than contacts within the same chromosome, however, their specificity 

has been shown in several studies (Apostolou and Thanos, 2008; Horta et al., 2018; 

Spilianakis et al., 2005). Inter-chromosomal contacts between the 16p11.2 locus and other 

chromosomes have also been reported in human blood cells (Loviglio et al., 2016). To this 

end, we explored the z-score normalised inter-chromosomal contacts of the 16p11.2 locus on 

chromosome 7 with chromosome 18 (Figure 5.13a, viewpoint 16p). As inter-chromosomal 

contacts cannot be assigned to a certain genomic distance, we used the average contact 

frequencies between chromosome 7 and 18 as a background signal for the z-score 

normalisation. Interestingly, in NPCs the 16p11.2 locus interacts with several regions on 

chromosome 18, most frequently with the region immediately upstream of the Pcdh TAD. 

The Pcdh clusters are clearly depleted for contacts with the genomic region upstream of the 

Pcdh TAD, more than with any other region along chromosome 18 (Figure 5.13a, shown for 

viewpoint Pcdhb). Noteworthy, this inter-chromosomal contact of 16p11.2 is present in 

NPCs, but not in ESCs (Figure 5.13a), which also do not show detectable changes in Pcdh 

gene expression. To further validate the contacts between the 16p11.2 locus and the Pcdh-

adjacent TAD, I examined trans contacts in published Hi-C data in NPCs (Bonev et al., 

2017). The Hi-C data was generated from NPCs after 60 hours differentiation into cortical 

neurons. Despite the biological differences between NPCs from different neuronal 

differentiation systems, the inter-chromosomal contact can be clearly seen in the contact map 

of chromosome 7 and 18 (Figure 5.13b).  

 



5. The effects of the 16p11.2 deletion on chromatin contacts and gene regulation 

 165 

 

Figure 5. 13: Inter-chromosomal contacts between the 16p11.2 locus and chromosome 18 

(a) from top to bottom: Principal component analysis (PCA) of chromosome 18 in 16p-co NPCs, z-score 

normalised Hi-C contacts (log) of the Pcdhb cluster with chromosome 18 in 16p-co NPCs, z-score normalised 

Hi-C contacts (log) of 16p with chromosome 18 in 16p-co ESCs, z-score normalised Hi-C contacts (log) of 16p 

with chromosome 18 in 16p-co NPCs. (b) Inter-chromosomal Hi-C contact frequencies between chromosome 7 

and 18 in NPCs of cortical neurons from Bonev et al. (2017). Boxes in (a) and (b) indicate the position of the 

trans contact between 16p11.2 and the Pcdh-adjacent region.  
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5.14 Inter-chromosomal contacts between chromosome 7 and chromosome 18 

change upon deletion of 16p11.2, specifically between two potential super-

enhancers 

There has been growing evidence that genomic regions containing super-enhancers can 

contact each other over large genomic distances (Beagrie et al., 2017; Quinodoz et al., 2018). 

Further, super-enhancers often associate with splicing speckles (Chen et al., 2018b), where 

inter-chromosomal contacts occur frequently (Quinodoz et al., 2018). To explore whether 

super-enhancers could be involved in the trans contacts between chromosome 7 and 18, we 

examined the two chromosomes for known super-enhancers. Since super-enhancer locations 

are not available for our cell type of interest, we chose the closest match to NPCs where 

super-enhancers have been identified, in mouse embryonic day E14.5 brain (Khan and Zhang, 

2016). In fact, not the region comprising the 16p11.2 deletion itself but the genomic region 

immediately upstream of 16p11.2, as well as the Pcdh-adjacent region contain super-

enhancers in the developing brain (positions indicated in Figures 5.8 and 5.14). From 

explorations of the intrachromosomal contacts of chromosome 7, we had seen that the regions 

upstream and downstream of 16p11.2 are engaged in the same long-range contacts as 16p11.2 

(Figure 5.9). For inter-chromosomal contacts, the same trend can be observed. Both 

neighbouring genomic regions of 16p11.2 (+/- 500 kb) interact with the Pcdh-adjacent region 

on chromosome 18 in NPCs (Figure 5.14a). The presumable presence of super-enhancers at 

both sites of the inter-chromosomal contact provides a potential mechanism for contacts 

between chromosomes that could involve splicing speckles.  

 

When comparing the z-score normalised contact frequencies of the 16p11.2-adjacent regions 

in the control and the 16p-d and 16p-dd NPCs, clear changes can be observed. While the 

contact patch anchoring the 16p11.2 locus to chromosome 18 is still present, the signal inside 

the patch is redistributed in 16p-d and 16p-dd (Figure 5.14 a). To explore this change in 

higher resolution with respect to the positions of the two super-enhancers on chromosome 7 

and 18, I plotted the contacts of the 16p-adjacent region containing the chromosome 7 super-

enhancer (16p – 500 kb) over the genomic region containing the chromosome 18 super-

enhancer inside the inter-chromosomal contact patch (Figure 5.14 b). In NPCs, the contact 

between the two potential super-enhancer regions in 16p-co is lost upon deletion of 16p11.2 

in both 16p-d and 16p-dd. In ESCs, this contact is not present in any of the three cell lines.  
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Figure 5. 14: The contacts of the 16p11.2 locus with a potential super-enhancer on chromosome 18 change 

when introducing the 16p11.2 deletion. 

(a) Z-score normalised Hi-C contacts (log) with a ~60 Mb region on chromosome 18 in 16p-co, 16p-d, and 16p-

dd NPCs. Top three viewpoints are located 500 kb upstream of 16p11.2, bottom three viewpoints are located 

500 kb downstream of 16p11.2. Below, the positions of super-enhancers in embryonic day E14.5 mouse brain 

(black) are shown. Red asterisk indicates the chromosome 18 super-enhancer contacting the 16p11.2 locus. (b) 

Contacts of the 16p11.2-adjacent region containing the chromosome 7 super-enhancer (16p – 500 kb) with the 

genomic region containing the chromosome 18 super-enhancer marked in (a). Contacts with the 200 kb region 

containing the potential super-enhancer are shown plus 400 kb up- and downstream of the enhancer region. At 

the top the contacts of 16p-co, 16p-d, and 16p-dd ESCs are shown, below 16p-co, 16p-d, and 16p-dd NPCs are 

shown.  
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5.15 Moderate changes in contact frequencies between the Pcdh clusters and the 

adjacent potential super-enhancer on chromosome 18 

The question remains how the loss of an inter-chromosomal contact upstream of the Pcdh 

clusters affects the gene expression of the Pcdhb genes. The Pcdhb locus does not interact 

with its upstream TAD or the potential super-enhancer within this region, in fact, all three 

Pcdh clusters are strongly depleted of contacts with the potential super-enhancer on 

chromosome 18 (Figure 5.15a). However, few contacts between the super-enhancer and the 

Pcdhg cluster emerge in 16p-d and 16p-dd, noticeable in a reduced depletion of contacts 

(Figure 5.15a, red arrow). Noteworthy, when analysing the differential Hi-C contacts between 

16p-co and both 16p-d and 16p-dd of chromosome 18, the change in contact frequencies 

between the Pcdh clusters and the potential super-enhancer upstream of the clusters is one of 

the most prominent significant contact changes on chromosome 18. Thus, the change in 

contact depletion in 16p-d and 16p-dd NPCs might indicate the emergence of ectopic contacts 

between the Pcdh clusters and the potential super-enhancer in a subset of the cell population, 

which might be sufficient to alter gene expression of the Pcdhb cluster.  
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Figure 5. 15: Moderate changes in chromatin contact frequencies between the Pcdh clusters and the 

upstream region interacting with 16p11.2 

(a) Z-score normalised Hi-C contacts (log) of the potential super-enhancer upstream of the Pcdh TAD with the 

Pcdh locus in 16p-co, 16p-d, and 16p-dd NPCs. Super-enhancer positions (black) are indicated above. Arrows 

indicate region with changed contact frequencies. (b) Delta z-score of Hi-C contacts in NPCs for 16p-d minus 

16p-co (left), and 16p-dd minus 16p-co (right). (c) Delta z-score of Hi-C contacts in ESCs for 16p-d minus 16p-

co (left), and 16p-dd minus 16p-co (right). 
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5.16 Summary and conclusions 

In this chapter, we investigated chromosome folding in the context of congenital disease 

associated with a large genomic deletion at the human locus 16p11.2. The heterozygous 

deletion contains 27 protein-coding genes and is linked to a high prevalence of autism 

spectrum disorder (ASD) in humans. When introducing this deletion in mice, it phenocopies 

the human disease. We differentiated murine embryonic stem cells (ESCs) carrying the 

16p11.2 deletion (16p-d) into neuronal precursor cells (NPCs) and further into premature 

dopaminergic neurons, alongside with an ESC line carrying the 16p11.2 deletion on one 

allele, and the respective duplication on the other allele for the purpose of dosage-

compensation of the genes inside the deletion. This dosage-compensated control (16p-dd) 

provided the possibility to focus our investigation on the direct effects of the genomic deletion 

on genome topology, disentangled from indirect effects of the reduced gene dosage of the 27 

protein-coding genes inside the 16p11.2 deletion. We could confirm the dosage compensation 

of genes located at the 16p11.2 region in the 16p-dd line in ESCs and NPCs, but not in 

neurons, where gene expression was altered possibly an effect of the two adjacent copies in 

one allele. This suggests potential regulatory effects of introducing the duplication at the 

16p11.2 locus, a topic which we chose not to address in this study, but may have relevance to 

understand 16p11.2 duplication syndromes.  

In ESCs, gene expression differences between the wildtype (16p-co) and 16p-d or 16p-dd 

were marginal, suggesting that the effects of the 16p11.2 deletion do not affect pluripotency 

but only manifest later in development. Thus, we focused on NPCs, where most common 

gene expression differences were found between 16p-d and 16p-dd with respect to the 

wildtype. In NPCs, the 3D chromatin folding of the 16p11.2 locus, a genomic region on the 

murine chromosome 7, revealed that the 16p11.2 deletion comprised a TAD inside the A 

compartment of chromosome 7. The chromatin contacts of the 16p11.2 locus change only 

marginally between wildtype and 16p-d or 16p-dd, with no effect on the association of 

16p11.2 with the A compartment or the surrounding TAD boundaries, nor with a direct link to 

the gene expression differences observed in proximity to the 16p11.2 deletion.  

 

However, we noticed that the 16p11.2 locus engaged in long-range contacts with other, but 

not all, A compartments along the entire length of chromosome 7, while being depleted of 

contacts with the remaining chromosome. These long-range contact patches were found 

exclusively for the genomic region of the 16p11.2 deletion and the immediate upstream and 

downstream regions (+/- 500 kb). Regions of the A compartment further away from the 
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16p11.2 locus did not engage in specific contact patches, but showed broadly distributed 

contacts along the chromosome. This unique contact pattern of the 16p11.2 locus suggests an 

affiliation of 16p11.2 in long-range chromatin contact hubs, which have been described for 

example for active genes or super-enhancers that engage in multiway contacts over large 

genomic distances (Beagrie et al., 2017; Quinodoz et al., 2018). The genes on chromosome 7 

with significant expression changes in 16p-d or 16p-dd did not necessarily interact with the 

16p11.2 locus, only a small subset of those genes were found inside a contact patch of 

16p11.2, and further, only half of those genes were associated with the A compartment, 

suggesting that those gene expression differences are caused by indirect effects of the 

deletion, or alternatively result from rewiring of the A compartments that may affect the 

organisation of the adjacent B compartments bearing differentially expressed genes. 

Noteworthy, none of the genes on chromosome 7 changed their expression in both 16p-d and 

16p-dd.  

 

To our surprise, the most striking difference in gene expression common to 16p-d and 16p-dd 

was the upregulation of a protocadherin gene cluster on chromosome 18 in NPCs. The 

upregulation of the Pcdhb cluster was accompanied by downregulation of the Pcdhg cluster in 

16p-d and upregulation of the Pcdha cluster in 16p-dd. All three cluster are within a ~1 Mb 

sized TAD inside the B compartment of chromosome 18, with possible sub-TAD structures. 

While the boundaries of the Pcdh TAD are maintained between wildtype, 16p-d, and 16p-dd, 

contacts within this TAD are rearranged in the mutants, consistent with a more open 

chromatin conformation of the Pcdhb cluster in 16p-d and 16p-dd, as well as ectopic contacts 

between the Pcdhb and the Pcdhg cluster. Further, the Pcdhb cluster revealed a slight increase 

in contact frequencies with a described enhancer, the cluster control region (CCR) of Pcdhb.  

 

An exploration of the inter-chromosomal contact frequencies between chromosome 7 and 18 

showed that indeed the 16p11.2 locus interacts with a region on chromosome 18, immediately 

upstream of the Pcdh clusters. Both, the 16p11.2 locus, more precisely the upstream 

neighbour of the 16p11.2 deletion, and the Pcdh-adjacent region involved in the inter-

chromosomal contact contain super-enhancers in the developing mouse brain, indicating 

towards a possible mechanism for contacts between chromosomes involving super-enhancers. 

Combined evidence from SPRITE and TSA-seq suggests that super-enhancers from different 

chromosomes can associate with the same splicing speckle, thereby generating inter-

chromosomal contacts (Chen et al., 2018b; Quinodoz et al., 2018). Thus, we propose that the 
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contact of 16p11.2 with chromosome 18 detected by applying a z-score normalisation on our 

Hi-C data is a candidate contact between chromosomes, potentially mediated by super-

enhancers. The presence of this contact was confirmed in Hi-C data from NPCs of cortical 

neurons, which was sequenced to higher depth than our Hi-C data (Bonev et al., 2017). The 

inter-chromosomal contact between the two E14.5 brain super-enhancer is present in NPCs, 

but not in ESCs, and is lost in 16p-d and 16p-dd. Finally, we showed that the Pcdh clusters 

are depleted of contacts with the upstream super-enhancer. Upon introduction of the 16p11.2 

deletion, this depletion is diminished, potentially due to sporadic contacts between the super-

enhancer and Pcdhg in a subset of the cell population. We propose that the moderate, but 

significant difference in contact frequencies between the brain super-enhancer and the Pcdh 

cluster might trigger the upregulation of the Pcdhb cluster in the absence of the 16p11.2 

locus. 

 

  



6. Discussion 

 173 

6. Discussion 

 

6.1 Detecting chromatin contacts with GAM 

Chromatin contacts and 3D genome topology play important roles in nuclear functions, such 

as gene regulation and replication. Different techniques can be used to map 3D genome 

folding and detect pairwise or multiway interactions between genomic regions or with nuclear 

compartments, such as nuclear bodies or the lamina. Pairwise chromatin contacts within the 

range of DNA loops and TADs can now be mapped with unprecedented resolution, with 

advances in 3C-based assays, such as high-depth Hi-C, that push the achievable genomic 

resolution to obtain contacts at 1 kb resolution or higher (Hsieh et al., 2019; Rao et al., 2014). 

With the development of ligation-free techniques, such as genome architecture mapping 

(GAM) (Beagrie et al., 2017), or split-pool recognition of interactions by tag extension 

(SPRITE) (Quinodoz et al., 2018), complex multi-way contacts have been revealed that 

extend over large genomic distances and connect super-enhancers with each other, enhancer 

with active genes, or that bring together active genes. In the first GAM dataset, produced in 

mouse embryonic stem cells (mESCs), pairwise and multiway contacts were studied by 

collecting and analysing 400 nuclear profiles (Beagrie et al., 2017). This data allowed the 

exploration of pairwise contacts at 30 kb resolution, and higher-order contacts between 

topological domains. Contacts between chromosomes were observed, but not analysed in this 

first small dataset, due to insufficient reproducibility of inter-chromosomal contacts when 

considering halves of the dataset, therefore requiring the expansion from GAM datasets with 

400 NPs to larger datasets with more than 1000 NPs.  

 

6.1.1 Optimisations of the GAM protocol 

With the aim to explore chromatin contacts at higher resolution and with increased statistical 

power, I collected a larger GAM dataset comprising several thousand nuclear profiles. To 

generate a dataset of this magnitude, I first optimised GAM to reduce collection time and 

costs. In this thesis, I presented a greatly improved version of GAM that is five times faster 

(40 to 9 days to collect a 400-NP dataset) and cheaper (~3x) than the published method 

(Figure 3.2). Most importantly, this protocol includes a new method for whole genome 

amplification (WGA) that is independent from commercially available kits. This protocol will 

be of value in other genomic applications that require amplification of minute amounts of 

DNA. The work presented here allow the wider use of GAM, and the collection of larger 

datasets to investigate not only pairwise, but higher-order contacts, radial positioning, 
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compaction and inter-chromosomal contacts, which are all features that GAM can detect, but 

in the first dataset with 400 NPs had not reached their full potential. Further, I showed that 

GAM can be combined with immunofluorescence, a major development that allows the 

targeted selection of specific cell types in a mixed cell population or tissue bringing the 

opportunity to map chromatin contacts in vivo, directly in tissue without disturbing the tissue 

context of the cells of interest (Figure 3.8). With the optimisations I present in this thesis, 

large GAM datasets can be collected to study genome folding in great detail in any cell type 

of interest (e.g. pluripotent cells in the epiblast, G. Loof, unpublished work; glutamatergic 

neurons in the hippocampus, I. Harabula, unpublished work).  

 

While the GAM protocol presented in the beginning of chapter 3 drastically reduces time and 

costs of the experiment, the change from a commercially available kit for WGA to the in-

house WGA protocol was accompanied by a slight decrease in data quality of nuclear profiles 

during most of the collection of the data presented in this thesis. Careful assessment of the 

quality of nuclear profiles collected with the new protocol helped us identify their most 

predictive quality criterium, which is the fraction of positive genomic windows with 

neighbouring positive windows (windows without neighbours were termed ‘orphan 

windows’). The new protocol generated nuclear profiles with slightly higher percentages of 

orphan windows compared to the published protocol performed with the commercial WGA 

kit (WGA4, Sigma) sold before 2017. The discovery of this parameter helped us identify low 

quality samples in our dataset which we could remove based on the percentage of orphan 

windows, a quality cut-off that was found to be redundant with percentage of mapped reads in 

Beagrie et al. (2017), but improved the overall quality of the dataset compared to the cut-off 

applied previously (>15 % mapped reads).  

 

The slight differences in the quality of nuclear profiles also affected the efficiency of 

detection of genomic regions in the dataset (i.e. the proportion of false negatives). Genome-

wide comparisons of data produced with the new version of GAM or the published protocol 

revealed a decrease in DNA detection efficiency of 28 % in the new dataset (Figure 3.21). 

Although the efficiency of DNA detection is a good metric to help optimise protocol 

parameters and assess the quality of a dataset, it can only be computed after a relatively large 

number of samples is collected (e.g. at least 400 as in Beagrie et al. 2017). Further exploration 

of GAM performance using in silico polymers (Nicodemi laboratory) showed that efficiencies 

of window detection as low as 40 % are well tolerated in GAM, and result in similar data. 
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Furthermore, lower detection efficiencies within 40-100 % only marginally influence the 

number of nuclear profiles that are required to extract significant and reproducible contacts 

from GAM data (Figure 3.21). Fortunately, the GAM data collected with the new protocol 

still reached an efficiency of 70 % at 50 kb resolution, which allowed further exploration of 

the new GAM data without further compromises due to the efficiency.  

 

Data comparisons of the large dataset produced here also showed bias in the sampling of eu- 

and heterochromatin, in which DNA from heterochromatic regions, such as lamina-associated 

domains, is detected in fewer nuclear profiles than euchromatic regions. Some of this bias has 

biological meaning due to the natural compaction of heterochromatin and can be found as 

well in the previously published GAM data. The slight difference in detection frequency in 

the published dataset was in fact used to identify the level of compaction of genomic regions 

(Beagrie et al., 2017). In the new dataset, this difference was more pronounced and a result of 

lower efficiency of extraction of DNA from heterochromatin.  

 

Explorations of all tests performed in the past to optimise the GAM protocol helped us 

identify a small set of final optimisations that on their own had no or only minor effects on the 

performance of the technique, but when combined in one single experiment corrected for the 

observed bias, and extracted DNA with high efficiency from both eu- and heterochromatin 

(Figure 3.27). Therefore, a fully revised GAM protocol is now available which delivers high 

quality GAM data with a fully in-house approach, which is affordable, tuneable and much 

faster. 

 

To be able to work with the datasets presented here that have uneven detection frequencies in 

eu- and heterochromatin, we applied data normalisation using a pointwise mutual information 

approach, and showed that the normalisation effectively removed biases from the data. This is 

a promising result as it is likely that the implementation of GAM, in other labs and other 

samples, may initially give data with lower efficiency, but that the downstream analyses can 

be still performed if care is taken to correctly normalise the data and track down the biases. 

Our work also led to a batch of QC metrics that will be implemented in GAMtools (Beagrie 

and Schueler, 2017), for the broader use of GAM data in other laboratories. After 

normalisation, chromatin contacts in the new dataset, collected in the mESC line F123, 

largely resembled the chromosome topologies mapped in Beagrie et al. (2017; 46C mESCs). 

Interestingly, for many genomic regions with noticeable differences between both GAM 
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datasets, the F123 GAM data showed high similarity with Hi-C data from F123 (Figure 3.28), 

suggesting biological rather than technical differences as the origin of the observed 

differences in chromatin contact frequencies between the two GAM datasets. Different cell 

culture conditions or genetic backgrounds from different mouse strains have been shown to 

influence pluripotency of mESCs (Iijima et al., 2010; Kawase et al., 1994), which could also 

explain differences in chromosome topology detected in the two GAM datasets.  

 

Nonetheless, for future applications of GAM, we strongly recommend the use of the further 

optimised protocol presented in Figure 3.27, which allows the application of the in-house 

WGA protocol and all other advantages that our optimisations provide in comparison to the 

published GAM protocol, without reduced efficiency in DNA extraction. Summarising, the 

most important improvements of GAM presented in this thesis are a 4-fold reduction of the 

experimental time, a reduction of the sequencing time due to elimination of the need to use 

customised sequencing runs with dark cycles, a 3-fold cost reduction per nuclear profile, the 

implementation of an easy cellular staining that improves visibility of nuclear profiles during 

laser microdissection, automation of all pipetting steps in the protocol except DNA 

purification, safe stopping points that help optimise collection times, and the ability to select 

cells during laser microdissection with immunofluorescence.  

 

6.1.2 Reproducibility of GAM data generated with different collection modes 

An open question was the reproducibility of chromatin contacts in GAM data from 1NP and 

3NP datasets. Here, I collected a GAM dataset with 1123 1NPs, and a dataset with 847 x 

3NPs using the multiplexed version of GAM with three nuclear profiles per tube. I showed 

that datasets are highly similar in terms of quality and chromatin topologies, such as A and B 

compartments (Figures 4.6 and 4.8), which confirmed our theoretical predictions and 

reassures that 3NP collection does not change the majority of detectable contacts in a GAM 

dataset. Further, visual comparisons of chromatin contact maps showed large similarities 

between the normalised co-segregation frequencies of 1NP and 3NP data. The 3NP data could 

in principle contain long-range contacts that are not only due to co-segregation of spatially 

close genomic regions, but that could be an artefact of multiplexing. Interestingly, I did not 

observe increased noise at large genomic distances in 3NP data. On the contrary, visual 

inspections of 3NP contact maps showed in many cases less contacts spanning large genomic 

distances than 1NP data, a difference which yet has to be explored, as it could indicate either 

reduced noise or loss of some long-range contacts in 3NPs. Here, investigation of the 
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composition of contacts in both datasets with gene expression and chromatin features, such as 

histone marks for active and inactive chromatin will help understand which contacts are 

different between collection modes, and whether they contain expected pairs of genomic loci, 

such as active genes with other active genes, or unexpected combinations, such as active 

genes with inactive genes (Beagrie et al., 2017). Further, Beagrie et al. (2017) presented a 

mathematic model for determining contact probabilities from co-segregation frequencies. 

Statistical inference of co-segregation (SLICE) was applied to identify the most significant 

contacts in the data. Since then, SLICE has been developed further to extract contact 

probabilities from 3NP GAM data (Carlo Annunziatella, Antonio Scialdone, Mario Nicodemi; 

unpublished). Applying SLICE to 1NP and 3NP datasets will help identify which contacts are 

signal and which are noise, and ultimately help identify the same significant chromatin 

contacts in 1NP and 3NP data.  

 

6.1.3 Genomic resolution of GAM data 

One of the aims of this thesis was to improve the achievable resolution of GAM. In Beagrie et 

al. (2017), the collection of 400 single NPs allowed mapping of chromatin contacts at 30 kb 

resolution. Here, we showed that the combined dataset of 1123 1NPs and 847 3NPs detected 

all mappable window pairs (i.e. at all intrachromosomal distances) at least once at 20 kb 

resolution, a measure for estimating the saturation of a GAM dataset. While full saturation 

was not achieved at 10 kb resolution, visual exploration of chromatin contacts shows good 

detection of genomic windows at 10 kb, with only subtle differences in genome sampling 

compared to 20 kb resolution (Figure 4.8). These observations promise that detection of 

chromatin contact at 10 kb can be achieved with our current GAM datasets from the mESCs 

F123 line, namely with the SLICE model, by inferring contacts using deep learning, as it has 

been shown for improving resolution in Hi-C data (Zhang et al., 2018b), and potentially by 

continuing to add more nuclear profiles to the dataset, since the same biological samples are 

stored in liquid nitrogen and available for further data collection. In contrast, Hi-C datasets 

have achieved resolutions of 1 kb using very deep sequencing (Bonev et al., 2017; Rao et al., 

2014), a goal that GAM has not accomplished yet. The main difference to GAM is that the 

resolution of proximity ligation assays depends almost entirely on the sequencing depth and, 

depending on the DNA fractionation step, even nucleosome resolution can be obtained with 

high depth sequencing (Hsieh et al., 2019). In GAM, the genomic resolution depends 

foremost on the number of nuclear profiles. Even with reduced DNA detection efficiencies 

GAM can be used at high resolution if enough nuclear profiles are collected. Down to a 
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detection efficiency of 50 % the number of nuclear profiles required for obtaining chromatin 

contacts remains unaffected, as shown with modelling of GAM data (Figure 3.21). Thus, to 

obtain a resolution at the level of high depth sequencing Hi-C datasets, eventually GAM will 

require less sequencing, but the time commitment of the experimentalist might be the limiting 

factor of the highest resolution that GAM will meet with the currently available protocol. 

Further optimisations of GAM to reduce costs and workload, namely the automation of the 

DNA purification steps and especially of the laser microdissection, will help achieving high 

depth datasets and show whether there is a limit to the genomic resolution that can be 

achieved with GAM.  

 

6.1.4 Further improvements of the GAM protocol 

As discussed above, the power and achievable resolution of GAM is closely dependent on the 

number of nuclear profiles in the dataset. However, with an increasing number of nuclear 

profiles costs and workload increase drastically. Thus, we already had implemented a 

multiplexing step in the GAM protocol to reduce the number of samples that has to be 

processed. By collecting three nuclear profiles into one tube, we reduced the workload for 

collecting many samples, however, we lost the single cell information that is inherent to a 

1NP dataset. Multiplexing was therefore limited to a relatively small number of NPs per tube 

that still allows to distinguish interacting from non-interacting loci in the resulting GAM data 

(Figure 3.3). An important modification of the GAM technique would be the use of barcodes 

as early in the protocol as possible to be able to combine many nuclear profiles before 

producing sequencing libraries. One possibility to add barcodes to DNA presents itself during 

the whole genome amplification of nuclear profiles. Here, DNA is amplified with random 

hexamer primers linked to a common adapter sequence, which is amplified further to generate 

enough copies of the input material for processing and library preparation. By using indexed 

adapters, we could multiplex nuclear profiles from up to 96 tubes into one reaction for the 

subsequent library preparation. The use of indexed primers may result in reduced efficiency 

of DNA amplification, which should be monitored carefully when introducing this step to the 

protocol. The implementation of a barcoded whole genome amplification reaction would 

reduce the costs and especially the workload per dataset. 

 

6.1.5 Determining contacts probabilities with SLICE 

Beagrie et al. (2017) showed the successful implementation of SLICE, a mathematical model 

to determine contact probabilities and distinguish interacting from non-interacting loci in 
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GAM. Pairwise and multiway interactions were analysed in the mESC genome with SLICE, 

and found preferential enriched for contacts involving active genes and enhancers at 30 kb 

resolution, and for active regions and super-enhancers at the scale of interactions between 

topological domains (Beagrie et al., 2017). The use of SLICE in the F123 dataset is therefore 

essential not only to reproduce and further explore these contacts at higher resolution, but also 

to extend the analysis with SLICE to inter-chromosomal chromatin contacts, which were not 

studied in Beagrie et al. due to the small size of the dataset. We initially applied SLICE to 

analyse the 1NP F123 dataset, using the same approach as in Beagrie et al (2017). However, 

we found that the bias of increased detection of euchromatic regions resulted in biased contact 

probabilities, leading to overestimated contacts between active regions, and produced contact 

probabilities that largely resembled the raw co-segregation frequencies in F123 (results not 

shown). On the contrary, in 46C, where this detection bias is not present, SLICE detected 

significant contacts independent of the chromatin state of the underlying genomic region. 

While I did not show this work in the thesis, the discovery of unbalanced detection of eu- and 

heterochromatic regions in our latest GAM datasets has now motivated further improvements 

to the SLICE model, to be able to consider DNA detection efficiencies as an input to the 

model. Currently, a new version of SLICE is under development, that calculates and 

normalises for the detection efficiency of every genomic locus (Francesco Musalli, Nicodemi 

lab, University of Naples, Italy). SLICE with data normalisation will not only be useful to 

analyse the F123 datasets and other GAM data that have DNA detection biases due to 

experimental conditions, it will also help to work with datasets from samples with non-

optimal DNA preservation, for example post-mortem human biopsies, which are often subject 

to DNA degradation (Zsikla et al., 2004).  

 

Further, the application of GAM in F123 showed its power to identify chromatin contacts 

with allele specificity. The consistency of allele-specific co-segregation frequencies depends 

on the uniform distribution of sequence variants in the genome. Thus, some genomic regions 

are under detected in allele-specific data because they have a lower SNP density and can be 

phased less effectively. Those regions would appear as never contacting in the current version 

of SLICE and consequently bias SLICE for regions with high sequence variability between 

the alleles. Here, normalisation of SLICE based on DNA detection efficiencies would allow 

the unbiased identification of allele-specific contact probabilities.  
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6.1.6 Future analysis of chromatin topology in F123 

GAM has the ability to detect pairwise and multiway contacts (Beagrie et al., 2017). While 

pairwise contacts can be investigated using normalised co-segregation frequencies, higher-

order contacts have so far only been studied using SLICE. Analysis of contact probabilities 

from both pairwise and multiway contact in the F123 genome with a version of SLICE that 

takes into account different detection efficiencies within a dataset will help compare the 

published GAM dataset with the here produced data in F123 mESCs. Concordant with the 

larger number of NPs in the F123 dataset, SLICE should be able to extract significant contacts 

at higher resolution than previously achieved. Especially for multiway contacts, this 

opportunity becomes very relevant. In Beagrie et al. (2017), 3-way contacts were analysed at 

the resolution of entire TADs (500 kb – 1 Mb), which does not allow for the discovery of 

higher-order contacts at the single gene level, for example between several enhancers with a 

single target promoter. A high-resolution analysis of multiway contact opens exciting 

possibilities to study gene regulation in 3D with GAM data.  

 

Several studies have reported gene networks of genes with similar transcriptional activity, 

which suggests that genes come together for coordinated gene expression. Cluster of genes 

have been described for genes bound by the same transcription factors (Apostolou et al., 

2013; Denholtz et al., 2013; Schoenfelder et al., 2010b; Wei et al., 2013). Furthermore, it has 

been suggested that different genes associate in different cell types (Bonev et al., 2017; 

Schoenfelder et al., 2015a) and that repressed genes also cluster in Polycomb bodies for 

coordinated gene silencing (Schoenfelder et al., 2015b). Deletions of genes from a gene 

cluster can affect the expression of other genes in the cluster (Engreitz et al., 2016; Fanucchi 

et al., 2013). However, attempts to image multiple genes inside a gene cluster showed low 

percentage of cells with multiway contacts, even for genes with coordinated response to the 

deletion of a gene from the cluster (Fanucchi et al., 2013). While most studies using 3C-based 

assays claim to detect chromatin hubs, none of them has actually shown the simultaneous 

association of multiple genes in a cluster. Polycomb-target genes for example have been 

shown to contact each other in pairwise contacts, but it remains unclear how often more than 

two Polycomb-target genes come together in the same nuclear body at the same time. 

Quinodoz et al. (2018) used SPRITE, a ligation-free assay to detect higher-order contacts, and 

showed that indeed multiple genes come together at splicing speckles or at the nucleolus. 

However, imaging of those contacts suggests relatively large spatial distances between the 

genes inside the same cluster (Quinodoz et al., 2018), larger than seen for the super-enhancer 
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contacts detected by GAM and validated by cryo-FISH (Beagrie et al., 2017). Thus, SPRITE 

maps genes in spatial proximity but may not be directly sensitive to physical distance as in 

GAM, and therefore have some difficulty in distinguishing associations within a physically 

large chromatin hub from protein-mediated interactions with close spatial distances. GAM 

analyses contacts with respect to their spatial distance, independently of the network of 

proteins (or other molecules) that lead to the spatial proximity. SLICE applies a distance 

threshold for interacting loci, in the first use of SLICE the investigated spatial distance was 

limited to 100 nm. Thus, with the application of SLICE in F123 mESCs, we will be able to 

identify multiway interactions within close spatial distances between genes. We expect to 

gain insight into the function of multiway contacts in gene regulation, and reveal regulatory 

regions and genes that interact with each other simultaneously in the same nuclear hub. 

Further, we can use this information to learn more about the transcription factors involved in 

enhancer-gene and gene-gene contacts. While previous work has shown the involvement of 

architectural proteins, such as cohesion and mediator complex, and pluripotency factors, such 

as Klf4, Sox2 and Nanog, in the formation of gene regulatory networks in ESCs, those studies 

often start with a set of candidate proteins and test their enrichment in a set of chromatin 

contacts (Apostolou et al., 2013; Denholtz et al., 2013; Schoenfelder et al., 2010b; Wei et al., 

2013). Additionally, contacts investigated with 3C-based assays are typically enriched for 

pairwise chromatin contacts, which might not involve the same transcription factors as 

multiway contacts. For an unbiased search of potential transcription factors involved in the 

establishment of multiway gene networks, higher-order contacts between genes could be 

mined for transcription factor motifs.  

 

Another interesting open question is the abundance and specificity of inter-chromosomal 

contacts in the mESC genome. While there are several studies reporting inter-chromosomal 

contacts (Cairns et al., 2016; Fanucchi et al., 2013; Hacisuleyman et al., 2014; Lomvardas et 

al., 2006; Mifsud et al., 2015; Nagano et al., 2017; Schoenfelder et al., 2010b; Spilianakis et 

al., 2005), they are often understudied in 3C-based work due to their low abundance in 

proximity ligation assays. GAM offers the possibility to explore contacts between 

chromosomes and determine their contact probabilities using SLICE. Knowing how many 

cells engage in specific inter-chromosomal contacts is relevant, and might help clarify 

contradicting results from Hi-C and imaging (Maass et al., 2018a). Here, an interesting 

exploration would be to determine at which physical distances inter-chromosomal contacts 

occur predominantly. At the moment, we use SLICE with a distance threshold for interacting 
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loci of 100 nm. Live cell imaging showed that inter-chromosomal contacts can have larger 

spatial distances than intrachromosomal contacts (Maass et al., 2018a), thus applying different 

distance thresholds could help explore different kinds of contacts. An example for inter-

chromosomal contacts is the association of active genes from different chromosomes at 

splicing speckles (Quinodoz et al., 2018). Explorations of different spatial distances could 

help distinguish inter-chromosomal interactions with different functions, or even identify the 

contacts that are involved in direct, and presumable protein-mediated interactions between 

genomic regions from those that associate with the same nuclear body without direct 

interaction between the genomic regions. This exploration would lead to genes or super-

enhancers that are interacting with different spatial distances, which can then be tested for 

their effect on transcription of nearby genes using genome editing. The deletion of a super-

enhancer with a spatial distance of 90 nm might have different effects than the deletion of an 

enhancer within 300 nm distance and could provide systematic insights into the importance of 

spatial distance between regulatory elements and target regions within the nucleus, as well as 

direct evidence for the functionality of inter-chromosomal or very long-range contacts. The 

exploration of transcription factors involved in these contacts would also be interesting, 

especially as different transcription factors might contribute to contacts of different spatial 

distances, which could depend on the size or abundance of proteins connecting genomic 

regions. Defined questions about chromatin contacts based on spatial distance have so far not 

been addressed on a genome-wide scale and could provide unique information about genome 

folding that is currently not considered with any other genome-wide chromatin contact assay. 

 

6.2 Chromosome topology of the parental alleles 

 

6.2.1 GAM can be used to study allele-specific chromosome folding 

The work presented in this thesis showed for the first time that GAM can map chromatin 

contacts with allele specificity. Using a hybrid mESC line with a high sequence variance 

between the parental alleles, we were able to phase and assign 80 % of the genomic regions 

detected in GAM data to the maternal or the paternal genome sequence. Other genome-wide 

techniques that have assigned chromatin contacts to their haplotypes usually phase a 

significantly lower fraction of their data. In Hi-C, phasing of chromatin contacts using a 

female mESC line with the same parental strains as F123, and with the same SNP density, 

resulted in a phasing efficiency of 26 to 38 % (Giorgetti et al., 2016). This large difference in 

efficiency can be explained by technical differences between the techniques. Hi-C interaction 
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frequencies are measured by counting how many unique read pairs are found connecting two 

restriction fragments both of which contain a SNP. The number of phased interactions in a Hi-

C dataset is the number of phased unique read pairs. For Hi-C and GAM, the percentage of 

phased reads is very similar, in Giorgetti et al. (2016) up to 38 % phased reads were reported, 

here we report 37 % phased reads. However, the strength of phasing contacts with GAM lies 

in the next step. Chromatin contacts in GAM are not based on single read information but on 

the co-segregation frequency of positive windows, the detection of which results from many 

reads. Using a relatively small proportion of phased reads, we were then able to assign 

positive GAM windows to their parental alleles, as the majority of them contained phased 

reads from only one, the maternal or the paternal allele. This increased the phased data from 

37 % of reads to 80% of positive windows (Figure 4.9). Further, we compared our results 

with observations made in cryoFISH, which showed that about 10 % of nuclear profiles 

contain both alleles of a genomic region covered by DNA-FISH probes (Lavitas, 2011). We 

could reproduce this percentage in the phased GAM data, and showed that in ~8 % of profiles 

we could positively identify the two alleles. This is also interesting as it may allow to search 

for correlations between the contacts established by the two alleles in the same cell; this will 

of course be limited by the low percentage of samples containing both maternal and paternal 

alleles. The high efficiency of phasing allowed us to study chromatin contacts at 50 kb 

resolution in the 1123 NP dataset, with the potential to increase the resolution in the larger 

dataset that combines nuclear profiles from 1NP and 3NP datasets. 

 

6.2.2 The abundance of allele-specific chromatin contacts in the genome 

Using our 1NP GAM dataset, we found that chromatin contacts of the parental alleles are 

different at many regions in the F123 genome. On its own this is a remarkable observation, as 

several studies using Hi-C have so far suggested otherwise. Except for contact differences on 

the X chromosome of female cells due to X inactivation (Giorgetti et al., 2016), few 

differences between alleles have been reported. Exceptions can be found at some imprinted 

genes. For instance, several studies in human cells suggest allele-specific CTCF-mediated 

loops at the imprinted genes H19 and IGF2 (Dixon et al., 2015; Rao et al., 2014; Tan et al., 

2018b). In mice, a recent study finds allele-specific contacts using 4C at the murine H19/Igf2 

locus in ESCs, accompanied by allele-specific DNA methylation and CTCF binding at the 

imprinting control region (ICR) immediately upstream of H19 (Llères et al., 2019). Other loci 

have been described to display allele-specific contacts, such as the immunoglobulin heavy 

chain locus (Holwerda et al., 2013) and other imprinted loci, such as the Dlk1-Dio3 locus 
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(Llères et al., 2019). Reassessment of allele-specific Hi-C data has recently shown a generally 

higher likelihood for imprinted genes to be found at differential chromatin loops (Greenwald 

et al., 2019). Overall, only a few structural changes between the parental alleles have been 

reported in genome-wide comparisons of allele-specific chromatin contacts. While Dixon et 

al. (2015) and Rao et al. (2014) find large structural homogeneity between the alleles, 

Greenwald et al. (2019) report slight differences in chromatin loop intensities between alleles, 

that were moderately connected to allele-specific expression. Chen et al. (2017) find few 

differences in A/B compartments between the alleles (0.6 % of the genome had allele-specific 

A or B compartments). Another study in mESCs suggests more changes between the 

compartments of the maternal and paternal allele, although the percentage of the genome with 

monoallelic compartments is not reported (Rivera-Mulia et al., 2018). The differences 

between alleles observed in this latter study were not found connected to parental origin 

(maternal / paternal), but rather to the genetic background of the allele. Further, while 

differences in A/B compartments between alleles did not correlate with allele-specific 

expression, they correlated with asynchronous replication timing between alleles. 

Asynchronous replication timing occurs in 12 % of the mESC genome with the genetic 

background of F123. Upon differentiation to neuronal precursor cells (NPCs) differences 

between alleles are reduced to 1 % of the genome, and alongside many regions that previously 

had allele-specific differences in replication timing and compartments are now synchronised. 

However, the supplementary material in Rivera-Mulia et al. suggests that the actual number 

of allele-specific compartments does not change drastically between ESCs and NPCs. This 

suggests that there are regions in the genome with altered chromosome topologies between 

the alleles that cannot be explained with asynchronous replication timing alone. 

 

With GAM, we found that 25 % of the genome has allele-specific A/B compartments in F123 

mESCs (Figure 4.11). This percentage is higher than what has been reported before, and has 

not been replicated yet. To confirm these structural changes between the alleles, the analysis 

of allele-specific chromatin contacts first has to be reproduced in the 3-NP GAM dataset 

presented in this thesis. Some differences in A/B compartments were also found between the 

unphased 1NP and 3NP F123 datasets and although those occurred less often than differences 

between alleles, it indicates a certain variability in A/B compartments that is not only inherent 

to allele-specific compartments. Truly different compartments between the alleles should 

therefore appear reproducibly in the phased 1-NP and 3-NP dataset. Nonetheless, in line with 

Rivera-Mulia et al. (2018), a first exploration of those monoallelic compartments showed no 
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direct correlation with gene expression differences between alleles. However, the connection 

between allele-specific gene expression and mono-allelic compartments could be limited to 

genomic regions with certain features; for instance, gene-poor compartments might be 

affected by the allele-specific expression of one gene inside the compartment, while gene-

dense regions are indifferent to this expression difference. Thus, a refined analysis of allele-

specific expression and compartments might identify regions where indeed the two features 

are connected. Generally, the expression of genes in allele-specific compartments differs from 

biallelic compartments. While biallelic A compartments primarily contain active genes, and 

biallelic B compartments tend to entail inactive genes, the allele-specific compartments have 

the same percentage of active and inactive genes (Figure 4.12). This could suggest that 

genomic regions with equal amounts of active and inactive genes are less strict with their 

association to the A or B compartment. Further, previous work identified asynchronous 

replication timing in F123 mESCs (Rivera-Mulia et al., 2018). The data is publicly available 

and could be used to identify compartment changes that are connected to replication timing 

differences in the future analyses of the F123 GAM datasets produced here.  

 

6.2.3 Chromatin contacts at the imprinted H19/Igf2 locus 

To begin exploring specific chromatin contact differences between alleles, I chose to 

investigate the topology of the previously described H19/Igf2 locus in F123 mESCs. The 

imprinted control region immediately next to H19 has been described to form maternal-

specific interactions in mESCs with a downstream region called the H19/Igf2 distal anchor 

domain (HIDAD) within the borders of the H19/Igf2 TAD (Llères et al., 2019; Rao et al., 

2014; Tan et al., 2018b). This interaction leads to maternal-specific expression of H19 (Llères 

et al., 2019). On the paternal allele, HIDAD interacts with the promoter of Igf2 which leads to 

paternal-specific expression of Igf2. H19 and Igf2 are located 35 kb apart from each other, 

which does not allow the clear identification of the allele-specific contacts of H19 and Ifg2 

with HIDAD in the 50 kb GAM data. However, the chromatin conformation of the larger 

H19/Igf2 locus is clearly different between the two alleles. Our GAM data shows a clear 

directionality of contacts of the H19/Igf2 locus to the downstream imprinted gene cluster 

containing many maternally active genes. These interactions are specific for the maternal 

allele. On the paternal allele, interactions with other imprinted genes are rare, and the 

H19/Igf2 locus specifically interacts with upstream regions. These changes are clearly visible 

in the allele-specific contact maps, where the entire locus displays allele-specific domain 

structures, suggesting a reorganisation of TADs at the H19/Igf2 locus depending on which 
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genes are active or silent in each allele. The observed contact differences also appear amongst 

the top 5 % of allele-specific contacts.  

 

Previous work described differential binding of CTCF at the H19/Igf2 locus, specifically at 

the ICR next to H19 (Llères et al., 2019). It is possible that the differential binding of CTCF 

can alter the chromatin contacts of the ICR not only locally (Llères et al., 2019), but might 

have larger effects on chromosome topology, even to the extent of changing TAD structures 

at the locus. CTCF has been shown to be important for the manifestation of TAD borders at a 

number of disease-associated gene loci (Hnisz et al., 2016; Ji et al., 2016). Genome-wide 

assays have shown that CTCF is enriched at the anchors of loops and the boundaries of TADs 

(Dixon et al., 2012; Rao et al., 2014). Depletion of cohesin, which binds to CTCF to facilitate 

loop formation, has been shown to alter the positions of TAD borders in single cells (Bintu et 

al., 2018). The observations at the H19/Igf2 locus are intriguing, as it suggests that different 

TAD borders can also occur at different alleles in the same cell. The loss of monoallelic DNA 

methylation at this CTCF site could also be studied in the case of two congenital diseases 

associated with gain or loss of methylation at the ICR of H19 and Igf2 (Nativio et al., 2011). 

In Silver-Russel syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS), H19 and Igf2 

lose their allele-specific expression, respectively. One important question is why these allele-

specific domains and long-range contacts have not been captured in previous studies using 

Hi-C or other 3C-based techniques at the locus. Thus, experiments to validate the presence of 

the paternal H19/Igf2 TAD boundary in the GAM data should be done, for example by 

phasing the 3NP data to replicate this conformation in a second GAM dataset and further by 

DNA-FISH experiments with allele specificity.  

 

6.2.3 The regulation of allele-specific gene expression 

Monoallelic expression is the preferential expression of genes on only one of the parental 

alleles. In mammals, there are different forms of monoallelic expression. Random monoallelic 

expression describes the process of cell type- or tissue-specific expression of a gene with 

allele specificity. Here, we found 0.5 % of all transcribed, protein-coding genes have 

significant and strong allele-specific expression, in line with published observations 

(Eckersley-Maslin et al., 2014). Other forms of monoallelic expression include X-

chromosome inactivation in females, genomic imprinting, and allelic exclusion. Male ESCs 

do not have X-inactivation or allelic exclusion, but show imprinting, the process of 

inactivating or ‘imprinting’ one allele of a gene in all cells and tissues. Imprinting usually 
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involves the differential DNA methylation of the parental alleles, either at the promoter of the 

imprinted gene, or at cis-regulatory elements in proximity to the gene (Weaver and 

Bartolomei, 2014). At some loci, differential methylation is connected to differential 

chromatin looping between the alleles (Llères et al., 2019; Rao et al., 2014; Tan et al., 2018b). 

Here, we report that allele-specific chromatin contacts occur at almost all imprinted genes, 

and although we have not yet explored the functionality of these contacts, we showed an 

example of allele-specific TAD structures at the imprinted H19/Igf2 locus, which suggested a 

role for monoallelic binding of CTCF in the formation of these contacts.  

 

Not only imprinted genes, but also genes with random monoallelic expression, are found 

associated with allele-specific chromatin contacts in the GAM data. To begin exploring the 

function of these contacts, we investigated the presence of active chromatin features. Here, 

preliminary explorations detected no difference in the occupancy of active histone marks or 

CTCF at regions contacting genes with mono- or biallelic gene expression. In line with our 

results, Chen et al. (2017) report no difference in enrichment for active chromatin marks and 

CTCF, when examining genes with allele-specific expression and their immediate genomic 

surrounding. However, we can find examples with allele-specific enhancer contacts, 

identified with H3K27ac, at monoallelic genes, which could explain some of the allele-

specific expression in F123 (Figure 4.15).  

 

For further investigation of allele-specific gene regulation and chromatin contacts, several 

considerations have to be made. First, DNA methylation of the cis-regulatory elements, 

including enhancers and promoter of a gene or of nearby CTCF sites could be considered. In 

mammals, DNA methylation occurs at cytosine residues and is found primarily at CpG sites 

(cytosine followed by guanine). Its allele-specificity has been shown for imprinted loci 

(Weaver and Bartolomei, 2014). An exploration of these regions with respect to chromosome 

topologies and expression is interesting, however the number of allele-specific DMRs is low 

(Tomizawa et al., 2011), and though important for imprinting, a direct role for DNA 

methylation in the establishment of random mono-allelic expression is yet missing 

(Eckersley-Maslin et al., 2014). Nevertheless, an exploration of reported DMRs could identify 

allele-specific genes and chromatin contacts connected to DNA methylation, which will 

provide insight into the impact of this repressive mark on allele-specific topologies and 

expression.  
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Not only DNA methylation has repressive functions, but also the Polycomb Group proteins. 

Polycomb repressive complexes (PRCs) are known to bind to and repress genes throughout 

the ESC genome, in many cases to silence developmental genes (Azuara et al., 2006; Boyer et 

al., 2006; Jorgensen et al., 2006). One proposed function of PRCs in allele-specific expression 

is the inactivation of genes on one of the X chromosomes in females involving Xist-mediated 

silencing (Kohlmaier et al., 2004; Mak et al., 2004). In imprinting, Polycomb complexes are 

recruited allele-specifically to some imprinted loci, for example at the Kcnq1 gene, where 

Polycomb mediated silencing is thought to be mediated by a ncRNA (Kcnq1ot1) (Mancini-

Dinardo et al., 2006; Terranova et al., 2008). A role for Polycomb in random monoallelic 

expression has not been described yet. In contrast, the histone marks H3K4me2/3 and 

H3K9me3 have been found at the active and inactive alleles of genes with monoallelic 

expression, respectively (Eckersley-Maslin et al., 2014). A first comparison of genes with 

allele-specific expression and described states of gene promoters in mESCs (Ferrai et al., 

2017) showed that 18% of promoters of allele-specific genes is marked by H3K27me3 

(Figure 4.5). While differences between mESC lines and cell culture conditions have to be 

considered, this association suggest that Polycomb does not play a general role at defining the 

repressed states of promoters of allele-specific genes. Polycomb regulation may also drive 

allele-specific expression, for instance via monoallelic silencing of enhancers, an interesting 

topic that has not been addressed in the literature.  

 

6.2.4 Nuclear positioning of allele-specific genes 

Another layer of gene regulation is the positioning of genes inside the nucleus. The 

heterochromatic environment of the nuclear periphery can have repressive effects on genes 

(Finlan et al., 2008; Reddy et al., 2008), and association with the nuclear lamina is dynamic 

throughout differentiation (Peric-Hupkes et al., 2010). The two alleles of a gene can have 

different radial positions inside the nucleus. While some examples show that indeed 

monoallelic expression of a gene is associated to its allele-specific positioning inside the 

nucleus (Takizawa et al., 2008), the genome-wide prevalence of this mechanism is poorly 

studied. In GAM, radial positioning of genomic loci can be obtained via the genome coverage 

of nuclear profiles containing the locus of interest. Nuclear profiles with the largest genome 

coverage tend to come from the centre of the nucleus, while profiles with lowest genome 

coverage come from the apical parts of the nucleus (Beagrie et al., 2017). Here, we have the 

possibility to study the allele-specific radial positioning of genes with monoallelic expression 

genome-wide and also combine the information of their radial position with the knowledge of 
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other chromosome topologies, such as association with A and B compartments, or the specific 

chromatin contacts of a gene. This could address questions about the dependencies of 

chromatin topologies, for instance if an allele has different associations with enhancers 

depending in its radial position inside the nucleus. 

 

6.2.5 Chromatin contacts mediated by transcription factors 

Another approach to understand chromatin contacts and what drives them is to study the 

clustering of transcription factors (TFs) in 3D space. Regulated genes and cis-regulatory 

regions are often bound by cell-type specific TFs (Whyte et al., 2013). In ESCs, core 

pluripotency factors, including Oct4, Nanog, Sox2, and Klf4 drive the expression of key 

cellular identity genes in the ESC genome, while they repress developmental genes to prevent 

ESCs from differentiating (reviewed in (Young, 2011)). Interestingly, genes and their 

regulatory elements, but also groups of genes with similar transcription levels, contact each 

other when bound by the same TFs (Apostolou et al., 2013; de Wit et al., 2013; Denholtz et 

al., 2013; Wei et al., 2013). Genomic regions that are marked by co-occupancy of 

pluripotency factors tend to preferentially contact each other, suggesting a critical role for 

pluripotency factors to shape the nuclear architecture of ESCs. The clustering of genomic 

regions can be observed for DNA occupied by the same TFs, as well as for combinations of 

different TFs, that are thought to bring together different parts of the genome via physical 

protein-protein interactions (Ma et al., 2018b).  

Here, we explored specific chromatin contacts in mESCs that are common to the alleles and 

contacts that are specific to the paternal or the maternal allele. We searched for enriched 

transcription factor motifs in open chromatin regions involved in specific chromatin contacts, 

and determined which combinations of those motifs are enriched in specific contact of the 

alleles or contacts that are strong on both alleles. The first observation was that allele-specific 

and common contacts share the same TF motif pairs. Interestingly, the most prominent 

combinations of TF motifs at allele-specific binding sites were from the architectural protein 

CTCF, and several transcriptional regulators, namely Sall1, Ubp1, Maz, and further Smad3, 

Klf15 and Klf5 (Table 4.3). Some of these TFs have known functions in the maintenance of 

pluripotency, in particular Sall1. Sall1 is part of the pluripotency regulatory network and 

many of its genomic targets are also bound by Nanog (Karantzali et al., 2011). Binding of 

Sall1 leads to transcriptional repression of developmental genes, and specifically supresses 

mesodermal and ectodermal differentiation in ESCs. Others, such as Maz or Klf15 are 

expressed in several tissues. Maz is a ubiquitously expressed TF and a regulator of several 
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genes in different cell types, including c-Myc (Bossone et al., 1992). Further, Maz can 

function both as activator and repressor and bind to the same cis-regulatory elements as Sp1 

(Song et al., 2003), which is directly interacting with Nanog and Oct4 (Wang et al., 2006). 

UBIP1/LBP-1 was studied extensively in its role as repressor of human immunodeficiency 

virus type 1 (HIV-1) transcription, however its functions in ESCs are largely unknown. The 

combination of several transcriptional regulators with CTCF suggests that bi- and monoallelic 

chromatin contacts bring together specific gene-regulatory networks, for example 

developmental genes that are silenced in pluripotent cells. Further analysis of chromatin 

contacts associated to specific TFs could include the exploration of genes in those contacts. 

Are they indeed targets of the TF in question and, if data is available, do they change 

expression in knockout experiments of the respective TF? Further, ChIP-seq experiments 

might have been performed in mESCs for some of these TFs, which could help identify which 

binding sites are occupied by the TF. For CTCF, ChIP-seq data is available in F123 mESCs, 

which not only allows us to investigate the presence of CTCF at its binding sites, but further 

helps explore allele-specific differences in TF occupancy. Since we found that monoallelic 

contacts are enriched for the same binding sites for TFs than biallelic contacts, albeit at 

different frequency, the allele specificity of a given interaction might be connected to the 

actual presence of the TF at its binding site. Allele-specific binding has been described for 

CTCF in the context of imprinting, and indeed we identified large-scale structural changes at 

a described monoallelic CTCF site. With the SNP information from F123, we should be able 

to phase the CTCF ChIP-seq data and explore the extent of this phenomenon. Further, CTCF 

has been proposed to be connected to differential gene expression, not only of imprinted 

genes, but of genes with random monoallelic expression (Greenwald et al., 2019). At many of 

those genes, loops between CTCF sites had mild differences in contact frequencies of the 

alleles. However, these differences were almost unnoticeable and have not been reported in 

the first publication of this data, suggesting that either the assay (Hi-C) used to identify the 

differential loops was not suited for the purpose, or that other mechanisms play more 

important roles in the manifestation of monoallelic expression. Furthermore, an enrichment 

for CTCF binding sites with sequence variants at and around genes with allele-specific 

expression has been shown (Chen et al., 2017). This opens the possibility that the same TFs 

regulate mono- and biallelic chromatin contacts, however, SNPs within their binding sites 

could influence the ability of the TF to bind to the respective site and thus alter the chromatin 

contact. One approach to explore this possibility without collecting additional ChIP-seq data 

would be to search the TF binding sites identified here for sequence variance. This could 
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indicate if allele-specificity of contacts is connected to differential binding of TFs to the 

alleles.  

 

6.3 The effects of structural rearrangements at the 16p11.2 locus 

The compartmentalisation of chromosomes into domains, such as TADs or DNA loops, play 

important roles in gene regulation and, if disrupted, can lead to disease (Spielmann et al., 

2018). Chromosomes themselves are organised in chromosome territories, with varying 

proportions of intermingling (Branco and Pombo, 2006). While specific and regulatory 

contacts within chromosomes are the subject of many studies, few specific contacts between 

chromosomes have been reported and their functions are still debated. An interesting example 

of inter-chromosomal contacts with regulatory functions are the interactions of an enhancer 

on chromosome 14 with olfactory receptor genes on different chromosomes, which regulate 

the expression of individual olfactory receptors in different sensory neurons (Lomvardas et 

al., 2006). While evidence of contacts between chromosomes increases (Cairns et al., 2016; 

Fanucchi et al., 2013; Hacisuleyman et al., 2014; Horta et al., 2018; Mifsud et al., 2015; 

Nagano et al., 2017; Schoenfelder et al., 2010b; Spilianakis et al., 2005), little is known about 

the impact of inter-chromosomal contacts in disease or how structural rearrangements of the 

genome affect these contacts. In the context of several structural rearrangements changes in 

inter-chromosomal contact frequencies have been reported, for example for of the human 

2q37 deletion (Maass et al., 2018b), the 22q11.2 and 1q21.1 CNVs (Zhang et al., 2018a), or 

16p11.2 CNVs (Loviglio et al., 2016). A role for changes in inter-chromosomal contacts in 

the manifestation of disease has been proposed for some of these CNVs, such as the 2q37 

deletion (Maass et al., 2018b). Here, we show that a deletion at the 16p11.2 locus, associated 

with autism spectrum disorder (ASD), results in the rearrangement and loss of specific inter-

chromosomal contacts between the 16p11.2 locus and chromosome 18. We propose a role for 

these changes of inter-chromosomal contacts in the upregulation of the nearby Pcdhb gene 

cluster, which comprises protocadherin genes with important functions in neuronal 

development. 

 

6.3.1 Upregulation of protocadherin genes in the context of the 16p11.2 deletion 

CNVs at the human 16p11.2 locus are associated with various phenotypes, most importantly 

with a high prevalence of ASD, as well as an increased risk for intellectual disabilities and 

psychiatric disorders and further, abnormal head circumference (Kumar et al., 2008; Niarchou 

et al., 2019; Steinman et al., 2016). We investigated the most common human deletion at the 
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16p11.2 locus, using as model system a previously described mouse line carrying the 16p11.2 

deletion that phenocopies the human disease (Horev et al., 2011). When studying gene 

expression changes in the context of the deletion and its dosage-compensated control, a cell 

line carrying the 16p11.2 deletion on one allele and the respective duplication on the other 

allele, we discovered the significant upregulation of a cluster of protocadherin genes in 

neuronal precursor cells (NPCs), but not in ESCs (Figure 5.11). Most protocadherin genes are 

organised in clusters in the genome, and have unique functions in the development of the 

nervous system. Protocadherins allow self-recognition of neurons and thus prevent adhesion 

of dendrites and axons from the same cell (Rubinstein et al., 2015). Self-avoidance is 

achieved by expressing diverse combinations of protocadherins at the cell surface. Further, 

unique combinations of protocadherins at the cell surface regulate the recognition and cell-to-

cell adhesion of neurons (Thu et al., 2014). The discovery of the misexpression of Pcdh genes 

in the context of the 16p11.2 deletion is exciting, as earlier studies have proposed that Pcdh 

genes could be connected to the autism phenotype. Deficits in synaptic development and 

impaired neuronal connectivity have been linked to ASD (Belmonte et al., 2004). Altered 

connections between neurons can be explained by the misexpression of protocadherins, for 

example, if the stochasticity of their expression is lost, the recognition of different neurons or 

even self-recognition might be impaired. Further, examination of disease-associated SNPs 

identified ASD-related SNPs in Pcdha genes (Anitha et al., 2013).  

 

Clustered protocadherins are arranged in tandem and are located on chromosome 18 in mice 

and chromosome 5 in humans (Wu and Maniatis, 1999). The Pcdha, Pcdhb, and Pcdhg 

clusters each have 18 to 22 exons encoding for different protocadherins, which in the case of 

Pcdha and Pcdhg are combined with a common promoter for each cluster, while Pcdhb exons 

are transcribed each from their own promoter (Tasic et al., 2002). To achieve unique 

combinations of protocadherins in single cells, different genes of the Pcdh clusters are 

expressed stochastically in individual neurons (Esumi et al., 2005; Kaneko et al., 2006). 

Variable exon usage, alternative splicing, and monoallelic expression allow the expression of 

a large diversity of protocadherins, a process that is regulated by different epigenetic 

mechanisms, such as DNA methylation (Toyoda et al., 2014).  

 

In NPCs carrying the heterozygous 16p11.2 deletion, the Pcdhb cluster is upregulated, 

accompanied by downregulation of the Pcdhg cluster. In the dosage compensated deletion, 

the Pcdhb and the Pcdha cluster are upregulated. All three clusters have been described to be 
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regulated by different enhancer elements (Guo et al., 2012; Ribich et al., 2006; Yokota et al., 

2011). Here, we focused on the upregulation of the Pcdhb cluster and found that indeed 

Pcdhb interacts with its known cis-regulatory element in NPCs, and further that this 

interaction occurs more frequently in cells where Pcdhb is upregulated (Figure 5.12). The 

deletion of this Pcdhb enhancer leads to downregulation of Pcdhb genes, and also some 

isoforms of the Pcdhg genes (Yokota et al., 2011), which suggests a role of this enhancer in 

the observed phenotype. The interaction of the enhancer and the genes in the Pcdhb cluster is 

mediated by CTCF, however the enhancer and the promoters of Pcdh genes are also 

negatively regulated to allow stochastic and monoallelic expression in different neurons 

(Gendrel et al., 2013; Hu, 2016). The monoallelic expression of Pcdha and Pcdhb is regulated 

by Smchd1, a protein required for the methylation of the inactive X chromosome and several 

imprinted loci, including genes at the Prader-Willi syndrome locus on chromosome 7 

(Gendrel et al., 2013). Knockout of Smchd1, similar to the observed phenotype in the 16p11.2 

mutants, leads to upregulation of genes in the Pcdha and Pcdhb cluster, but not the Pcdhg 

cluster. These observations suggest that Smchd1 could be involved in the upregulation of the 

Pcdhb cluster, however its expression was not significantly altered in NPCs carrying the 

16p11.2 deletion. It can be speculated whether Smchd1 was misexpressed at an earlier stage 

in differentiation than the timepoint of our investigation (NPCs, day 5). It has been shown that 

the expression of Pcdh genes is regulated early during neuronal development, and once 

established does not change in response to depletion of Smchd1 in later timepoints (Hu, 

2016).   

 

6.3.2 Inter-chromosomal contact of the 16p11.2 locus  

While the modulation of transcription by trans-acting elements, such as transcription factors 

is one possible scenario for the effects observed at the Pcdh gene clusters, we also explored 

the possibility of reorganisation of chromosome topologies in a connection to the expression 

differences of protocadherins. An exploration of inter-chromosomal contacts in Hi-C data 

from NPCs revealed specific inter-chromosomal contacts between the larger 16p11.2 locus on 

chromosome 7 and an upstream region of the Pcdh clusters on chromosome 18. The regions 

on both chromosomes that contact each other specifically in wildtype NPCs but lose their 

interaction in cells with the deletion of the 16p11.2 locus (Figure 5.14) contain super-

enhancers in the developing mouse brain. This observation could indicate that also in NPCs 

these regions are super-enhancers. Super-enhancers are clustered enhancer regions with a high 

occupancy of transcription factors, mediator, and H3K27ac (Whyte et al., 2013), and have 



6. Discussion 

 194 

been shown to preferentially contact with other super-enhancers in higher-order contacts 

(Beagrie et al., 2017). The association of multiple super-enhancers has been proposed to occur 

predominantly in condensates, stable compartments in the nucleus formed by liquid-liquid 

phase separation. Several proteins have been shown to form condensates associated with 

super-enhancers, such as mediator and RNA polymerase II (Cho et al., 2018) or the 

transcriptional coactivators BRD4 and MED1 (Sabari et al., 2018). Phase separation has 

further been suggested to play a role in the formation of many of the membrane-free 

compartments inside the nucleus, such as splicing speckles. At splicing speckles, active 

regions from different chromosomes engage in multiway contacts (Quinodoz et al., 2018), 

and further a large proportion of super-enhancers can be found at speckles (Chen et al., 

2018b). The strong association of the two regions from chromosome 7 and 18 containing 

potential super-enhancers could indicate the association with the same nuclear condensate, 

potentially the splicing speckle. It can be speculated how exactly the removal of the 16p11.2 

locus from an inter-chromosomal contact hub would affect other regions inside the hub. One 

possible scenario could be that in the absence of the 16p11.2 locus, the corresponding region 

on chromosome 18 changes its localisation with respect to other chromosomes and is more 

accessible for regions within its own chromosome territory, such as the Pcdh gene clusters 

immediately downstream of the potential super-enhancer. In fact, the Pcdh clusters are 

strongly depleted of contacts with the super-enhancer region (Figure 5.15). The depletion is 

not lost upon deletion of 16p11.2, however it is slightly but significantly reduced. The 

observed difference could be explained by stochastic contacts of the Pcdh clusters with the 

inter-chromosomal hub in a small proportion of the cell population. Super-enhancers have 

been shown to be strong transcriptional activators that are usually insulated from unrelated 

nearby genes (Dowen et al., 2014; Wang et al., 2014). Their targets are often found in 

insulated gene deserts, which have been termed super-enhancer domains and the borders of 

these super-enhancer domains coincide with TAD boundaries (Dowen et al., 2014; Wang et 

al., 2014). The disruption of these domains can lead to the activation of neighbouring genes 

(Dowen et al., 2014; Ji et al., 2016), similar to what we observe at the Pcdhb cluster.  

6.3.3 Future directions and clarifying experiments 

The exploration of the effects of introducing a deletion at the 16p11.2 locus associated with 

ASD have led to a hypothesis that explains gene expression differences of protocadherin 

genes on chromosome 18 with changes in inter-chromosomal contact frequencies, presumable 

between super-enhancers. To confirm this potentially disease-associated mechanisms, a few 

follow up experiments would be required. First, we were able to detect inter-chromosomal 
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interactions between the 16p11.2 locus and chromosome 18 in our Hi-C data and in published 

data of NPCs, which already showed the reproducibility of this contact (Figure 5.13). The loss 

of this interaction upon 16p11.2 deletion however should ideally be confirmed with an 

orthogonal method to detect chromatin contacts, such as DNA-FISH. Inter-chromosomal 

contacts have been shown in some cases to be captured better with imaging than with 3C-

based techniques (Maass et al., 2018a), which promises clearer results, and at the same time 

would tell us the prevalence of the 16p11.2 inter-chromosomal contact in the cell population. 

Furthermore, we suggested that super-enhancers might be involved in the formation of this 

inter-chromosomal contact. As a proxy for the presence of super-enhancers we used identified 

super-enhancer positions in the mouse brain (E14.5), which does not guarantee the presence 

of super-enhancers in NPC of our differentiation system. Therefore, identification of super-

enhancers in NPCs is important to clarify this point. Here, ChIP-seq for an active enhancer 

marks, such as H3K27ac could be used to identify super-enhancers. We proposed that 

upregulation of Pcdh genes might be the result of spurious interactions, or the loss of 

insulation, between a nearby super-enhancer and the Pcdh gene clusters. Therefore, a 

fascinating experiment would be to engineer a contact between the Pcdh clusters and this 

nearby super-enhancer. A technique to enforce interactions between genomic regions has 

been described recently (Kim et al., 2019). In the light-activated-dynamic-looping (LADL) 

system two synthetic architectural proteins are introduced into the genome, which 

heterodimerise upon activation with blue light. Here, an excellent anchor point for an 

engineered loop with the Pcdh gene clusters would be the enhancer of Pcdhb, which showed 

increase contact frequencies with Pcdhb genes upon deletion of 16p11.2, and is able to 

activate all genes in the cluster (Yokota et al., 2011).  
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8. Appendix 

Table 8. 1: Parameters tested in GAM to enable high throughput collection of nuclear profiles 

Ease of protocol 

WGA, cell Target of optimisation State of protocol before test New implementation Conclusions Recommendation for GAM 

users 

IH, 2 Storage of cryosections No pause between cryosectioning and 

LMD 

Store cryosections at -20°C before 

LMD 

No difference in NP quality Implement as optional save 

stopping point 

S, 1 Storage of nuclear profiles Freezing nuclear profiles during WGA Freezing nuclear profiles after LMD Improved NP quality Implement in protocol 

S, 1 Storage of nuclear profiles No stopping points in WGA Freezing samples during WGA protocol No difference in NP quality Implement as optional save 

stopping point 

S, 1 Pooling of sequencing libraries DNA quantification with Qubit  DNA quantification with PicoGreen No difference in NP quality Implement in protocol 

S, 1 Sequencing machine HiSeq 2000 for sequencing Nextseq 500 for sequencing No difference in NP quality Implement in protocol 

High-throughput, reducing costs per NP 

WGA Target of optimisation State of protocol before test New implementation Conclusions Recommendation for GAM 

users 

IH, 2 Caps for collection of NPs 

(LMD) 

8-well strip opaque filled LMD caps 8-well strip PCR caps Slightly reduced NP quality Not recommended 

IH, 2 Volumes of Nextera library 

reagents 

Volumes according to manufacturer Scale down to 1/5 volume of all 

reagents  

Identical performance Implement in protocol 

S, 1 DNA purification AMPure XP beads  In-house SPRI beads No difference in NP quality Implement in protocol 

High-throughput, reducing time per NP 

WGA Target of optimisation State of protocol before test New implementation Conclusions Recommendation for GAM 

users 

S, IH, M, 1 Automation of WGA Manual pipetting Automated pipetting (with larger 

volumes) 

No difference in NP quality Implement in protocol 

IH, 2 Library preparation protocol Manual pipetting Automated pipetting Identical performance Implement in protocol 

S, 1 DNA purification Qiagen MinElute columns Qiagen MinElute 96 UF Plate No difference in NP quality Implement in protocol 

S, 1 DNA purification Qiagen MinElute 96 UF Plate Ampure XP beads purification 0.8x No difference in NP quality Implement in protocol 

S, 1 Library preparation  TruSeq DNA library preparation Nextera XT DNA library preparation No difference in NP quality Implement in protocol 

S, 1 Pooling of sequencing libraries Manual normalisation Beads-based normalisation Unbalanced distribution of 

sequencing reads per library 

Not recommended 
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Table 8. 2: Parameters for optimising DNA extractions from NPs 

Efficiency of DNA extraction 

WGA Target of optimisation State of protocol before test New implementation Conclusions Recommendation for GAM users 

IH, 2 Washes on cryosections 30 min at RT in 1x PBS Overnight at 4°C in 1x PBS  Slightly improved NP quality Implement as optional save stopping point 

IH, 2 Washes on cryosections 30 min at RT in 1x PBS Add wash: 10 min 0.5 % Triton 

X-100 

Human contamination in the test, 

inconclusive 

Repeat test 

S, 1 Orientation of LMD 

slide 

Sample facing up in LMD Sample facing down in LMD No difference in NP quality No recommendation 

S, IH, 2 Orientation of section 

on LMD slide 

Membrane side (sample 

below) 

Metal frame side (sample on 

top) 

No difference in NP quality Chose side depending on cell type, some cells do 

not stick to both sides 

S, 1, 2 LMD membrane slide PEN membrane PEN membrane on glass No difference in NP quality, but less 

practical 

No recommendation 

S, IH, 1, 2 LMD membrane slide PEN membrane PPS membrane Decreased NP quality If membrane is needed, optimise temperature of 

incubation 

S, 1 LMD membrane slide PEN membrane Pol membrane Decreased NP quality Not recommended 

S, 1 Statics during LMD 

collection 

LMD microscope without 

airfilter 

Humidity chamber around 

LMD microscope 

Improved NP quality Implement, reduced statics make collection of 

NPs more efficient 

S, 1 Visualize NPs No staining DAPI staining NPs not visible Not suitable for GAM 

S, 1 Visualize NPs No staining HOECHST staining NPs not visible Not suitable for GAM 

S, 1 Visualize NPs No staining Toto-3 staining NPs not visible Not suitable for GAM 

S, 1 Visualize NPs No staining EvaGreen staining NPs not visible Not suitable for GAM 

S, 1 Visualize NPs No staining Propidium iodine (PI) staining Decreased NP quality Dye interferes with WGA, not suitable for GAM 

S, 1 Visualize NPs No staining SYBR Gold staining Decreased NP quality Dye interferes with WGA, not suitable for GAM 

S, 1 Visualize NPs No staining SYTO RNA Select staining Decreased NP quality Dye interferes with WGA, not suitable for GAM 

S, 1 Visualize NPs No staining Eosine Y staining Decreased NP quality Dye interferes with WGA, not suitable for GAM 

S, 1 Visualize NPs No staining Crysel violet staining Decreased NP quality Dye interferes with WGA, not suitable for GAM 

S, 1 Visualize NPs No staining Crystal violet staining Decreased NP quality Dye interferes with WGA, not suitable for GAM 

S, 1 Visualize NPs No staining Cresyl violet staining Cells visible, not nuclei, no difference 

in NP quality 

Implement in protocol 

S, IH, 1, 2 Visualize NPs No staining, cresyl violet Immunofluorescence staining Nuclei visible, improved NP quality Implement in protocol 

S, 1 DNA contamination  DNA-free working rooms 

without air filter 

Air filter in DNA-free working 

rooms 

Improved NP quality, less 

contamination 

Implement in protocol 

S, 1 WGA protocol WGA4 kit, size: 50x WGA4 kit, size: 500 x Decreased NP quality Not recommended 
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S, 1 Cell lysis (WGA) 4 hours incubation Overnight incubation No difference in NP quality Consider retesting, might not apply to every cell 

type 

S, 1 Cell lysis (WGA) 1x Proteinase K 2x, 3x, 4x, 8x Proteinase K Improved NP quality at 2x, 3x Equal quality for 2x and 3x, use one of these 

concentrations 

S, 1 Cell lysis (WGA) Proteinase K Streptomyces protease Decreased NP quality Not suitable for DNA extraction from fixed 

cryosections 

S, 1 Cell lysis (WGA) Proteinase K Pancreas protease Decreased NP quality Not suitable for DNA extraction from fixed 

cryosections 

S, 1 Number of PCR cycles 

in WGA 

25 cycles 23 cycles, 20 cycles Increased number of PCR cycles Not recommended 

O, 1 WGA protocol Sigma WGA4 kit Ampli-1 kit Decreased NP quality, atypical 

sequencing tracks 

Not suitable for GAM 

O, 1 WGA protocol Sigma WGA4 kit Repli-G kit Decreased NP quality, atypical 

sequencing tracks 

Not suitable for GAM 

M, 1 WGA protocol Sigma WGA4 kit Yikon Malbac kit Good NP quality, typical sequencing 

tracks 

Kit can be used for GAM 

M, 1 Cell lysis (WGA) 50 min incubation 2 hours, 4 hours incubation Improved NP quality at 4 hours Start with 4h, consider testing longer incubation 

times 

M, 1 Cell lysis  (WGA) 1x protease 2x protease No difference in NP quality Lower sample number than usual, consider 

testing again 

IH, 2 Volume of WGA 

reagents 

Volumes according to initial 

protocol 

Increase volumes of all reagents 

2x  

Slightly reduced NP quality Not recommended 

IH, 2 Cell lysis (WGA) 4 hours incubation Overnight incubation No difference in NP quality No recommendation 

IH, 2 Cell lysis (WGA) 55 C incubation temperature 50, 60, 65 C incubation 

temperature 

Temperature influences genome 

coverage 

Optimal at 60 C 

IH, 2 Cell lysis (WGA) 1x protease 2x protease, 3x protease Improved NP quality Equal quality for 2x and 3x, use one of these 

concentrations 

IH, 2 DNA amplification 

(WGA) 

WGA with 3 min MDA and 4 

min elongation 

WGA with 5 min MDA and 5 

min elongation 

Slightly improved NP quality Consider implementation, repeat test with larger 

sample numbers 

IH, 2 WGA protocol no MALBAC looping step MALBAC looping step High variability of NP quality Repeat test with higher sample numbers 

IH, 2 dNTP and Mg 

concentration in WGA 

0.2 nM dNTP, 2mM Mg 0.4 mM dNTP, 4 mM Mg Decreased NP quality Not recommended 

IH, 2 PCR primer annealing 

in WGA 

annealing temperature 58 C annealing temperature 65 C Decreased NP quality Not recommended 

IH, 2 Number of PCR cycles 

in WGA 

26 cycles 24 cycles, 22 cycles higher variability in DNA yield after 

WGA 

DNA yield below input recommendation for 

library prep, do not implement 

S, 1 DNA purification Ampure XP beads 0.8x Ampure XP beads 1.7x No difference in NP quality Implement in protocol 

S, IH, 1, 2 Number of PCR cycles 

in library prep 

12 cycles 11 cycles Reduced PCR duplicates, but does not 

work for small volume prep 

Implement only for full volume library prep, 

otherwise not recommended 

IH, 2 Sequencing Single end s (1x 75 bp) Paired end s (2x 75 bp) Reads cover identical regions, no 

change in positive windows 

No recommendation 

46C = 1; F123 = 2; Sigma = S; in-house = IH; Malbac = M; other = O 



8. Appendix 

 221 

 




